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For nuclear cross sections a very simple relation between channel averages and averages 
over incident energy is found. The assumptions used are normally satisfied for sets of 
channels involved in inclusive cross sections in regions without intermediate structure. In 
the absence of direct reactions the channel averaged cross sections are expressed in terms 
of channel averaged transmission coefficients; in the presence of such reactions, channel 
averages of first and second powers of transmission matrix elements occur when channel 
correlations induced by direct reactions are neglected. 

The statistical theory of nuclear reactions connects 
fluctuating or compound cross sections averaged over 
the incident energy with the corresponding trans- 
mission matrix that reflects the "optical" or "direct" 
properties of the system. In the absence of precom- 
pound structures this theory is well developed and 
yields simple results for large numbers of open chan- 
nels, if we disregard certain problems that remain 
open for very weakly coupled channels. When no 
direct reactions are present we can use Hauser-Fesh- 
bach theory [1] and in general we may use Vager's 
conjecture [2, 3] to describe the energy average of the 
fluctuating cross section. More elaborate theories for 
small channel numbers or weakly coupled channels 
have been developed partially on numerical basis [4, 
5]. 
On the other hand averages over exit channels have 
been discussed only scantily in spite of their impor- 
tance for inclusive cross sections. 
The purpose of this note will be to show a very 
simple relation that exists between the two types of 
averaging. We shall first summarize briefly the per- 
tinent facts about energy averages. Next we define 
channel averaged cross sections. The desired relation 
among the two types of averages is first shown under 
the restrictions that no direct reactions occur and 
that the channels averaged over are equivalent in the 
sense that their transmission coefficients are equal. 
We finally lift first the latter and then the former 
restriction. 
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In the course of our argument we shall concentrate 
on a fixed angular momentum and drop all the 
kinematical factors that are irrelevant in this context. 
The total cross section 

fl - -  dir 
Gab = (Tab t (7ba (1) 

may be split into direct and fluctuating parts defined 
by 

dlr  -- 2 fl 
~r,,b = 11 - Sbal , % = IS~1ol 2 (2) 

where in turn the S-matrix is split as 

Sbo = S~o + sf'~. (3) 

Here - denotes an energy average and this separation 
implies 

~ = 0 .  

For the energy averaged cross section we have 

- -  d i r -  
aba - -  O'ba "r- O'ba. (4) 

The average fluctuating cross section may be ex- 
pressed as 

_ + ( 5 )  
T r P  

as conjectured by Vager [2] and proved for large 
values of T r P  by Agassi, Weidenmtiller and Man- 
tzouranis [3]. The transmission matrix P is given by 

Pba = (~ba --  Z Sac S~c" (6) 
c 
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In the absence of direct reactions this simplifies for 
inelastic channels to the Hauser-Feshbach result (1). 

O'b. = %. = ~ / ( 1  + 6,b ) (7) 

where T. = P.. is the transmission coefficient. 
We define a channel average for a subset A of the set 
of all open channels, with the condition that the 
number of channels N in A be large compared to one, 
but small compared to the total number of open 
channels. The channel averaged cross section is then 
given by 

<  4o> = Y (8) 
f~l i z A  

To see the basic structure of the problem we first 
look at the simplest possible example, namely a situa- 
tion with no direct reactions and equal transmission 
coefficients for all channels in A. We have a set of N 
functions of a parameter (energy) all with the same 
mean value and variance, that are uncorrelated 
among each other. 
If we now perform an average at a fixed value of the 
parameter over the set of functions, the average value 
is clearly the same as the average of a single function 
taken with respect to the parameter. Thus we find 

s 

(9) 

Although the two types of averages agree, it is impor- 
tant to note the basic difference. The fluctuating cross 
sections are correlated for small differences in in- 
cident energy, and the corresponding correlation 
length is given by Ericson's theory [5] for the com- 
pound system. If on the other hand we choose our 
channel average as a spectral average, the channels 
remain uncorrelated for discrete spectra of the final 
states. For overlapping final states we must find a 
correlation in the spectrum but it is exclusively de- 
termined by the overlap of resonances in the final 
state, and unrelated with the compound system. In 
such a case the interval must be large enough that the 
effect of such correlations is cancelled. 
Next consider the case of arbitrary transmission coef- 
ficients, but no direct reactions. There we partition 
the interval into k bins A~, ~ = l . . . k .  We define 
subsets of channels A~ such that ied~ if T~EA~. N~ will 

= •  be the number of channels in A~ and <T~> N~ i~A T~ 

the average transmission coefficient for the bin A~. If 
N~ is large and A~ small we can use the same argu- 
ment as above for each bin and we find 

1 T To Y 
E vs' 

8 

Adding all bins we obtain 

(10) 

8 

1 T, <Tz> T. 

8 S 

if 

(11) 

=1 2 (12) 

is the average transmission coefficient of the channels 
in A. Note that the concept of bins does not appear 
in the final results. Actually it is not necessary that 
the relevant conditions be fulfilled for all bins. What 
we require is that the functions with the largest 
fluctuations in a given problem appear in sufficient 
number for these fluctuations to average out. This 
implies that the "bin" corresponding to the largest 
transmission coefficients must contain a sufficient 
number of channels. 
In the presence of direct reactions the problem be- 
comes somewhat more involved for two reasons. 
First the direct part of the cross section has to be 
included into the average and secondly the direct 
part may lead to channel cross correlations. The 
former point is easy to take care of, the latter may 
destroy the entire argument. If we assume that these 
correlations are sufficiently small we can write 

1 - -  . 1 
@Aa) = NAA iEZ ~ C% = <GaA~> + N~ ~ r (13) 

To proceed further we define averaged quantities 

1 1 
<Pffa> = ~  ~Z Pz~, <PAA> = ~  ,~AZ Pw (14) 

Then using (2) and (5) and (6) we obtain 

<%.> =l<P~a>l'~ TrP (15) 

The first term is the averaged direct part and the 
second is obtained from (5) following similar argu- 
ments as those that lead to (11). The result given in 
the absence of direct reactions retains the form of a 
Hauser-Feshbach formula for channel averaged 
quantities. This does no longer hold true in the 
presence of direct reactions, as (15) does not have the 



M.C. Nemes and T.H. Seligman: The Relation Between Channel Averages 245 

form of Vager's conjecture as given in (5). We find the 
term ( P f )  rather than a term of the form (P~a) 2. 
This difference obviously emphasizes the importance 
of channels with strong direct coupling to the en- 
trance channels. The result of (15) is to be applied 
with caution for the following reason: if all couplings 
involved in the average are very similar, the differ- 
ence between the two terms above is a higher order 
effect. If this is not the case our assumption of small 
channels correlations may well be false, and thus our 
treatment not valid. Further investigation on this 
point will be necessary. 
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