
Neural Comput & Applic (1993)1:32--45
~) 1993 Springer-Verlag London Limited Neural

Computing
& Applications

Genetic Algorithms and Their Applications to the Design of
Neural Networks

Antonia J. Jones
Department of Computing, Imperial College, London, UK

Keywords: Diffusion genetic algorithm; Evolution-
ary algorithms; Genetic algorithms; Network
representation; Parallel genetic algorithms; Permu-
tational redundancy; Premature convergence;
Stochastic equilibrium; Travelling salesman problem

1. Review of the Ideas

Genetic algorithms, first introduced by Holland [1],
have been applied to a variety of problems, and
offer intriguing possibilities for general purpose
adaptive search algorithms in artificial intelligence,
especially, but not necessarily, for situations where
it is difficult or impossible to model precisely the
external circumstances faced by the program. Search
based on evolutionary models had, of course, been
tried before Holland. However, these models were
based on mutation and natural selection, and were
not notably successful. The principal difference of
Holland's approach was the incorporation of a
'crossover' operator to mimic the effect of sexual
reproduction.

From another perspective, GAs fall into the class
of probabilistic heuristic algorithms which one might
use to attack NP-complete or NP-hard problems
(see, for example Horowitz [2, Chapters 11 and
12]), such as the Travelling Salesperson Problem
(TSP), many of which have significant applications

Original manuscript received 19 February 1992

Correspondence and offprint requests to: Antonia J. Jones,
Department of Computing, Imperial College of Science, Tech-
nology and Medicine, University of London, 180 Queen's Gate,
London SW7 2BZ, UK.

in engineering hardware or software design and
commerical optimisation problems.

In this article we assume that the reader is familiar
with the basic ideas of neural networks but perhaps
less conversant with genetic algorithms. The aim is
to describe the basic ideas of GAs, and then to
survey their application to the design of neural
networks. The basic idea of a GA is illustrated in
Fig. 1.

We seek to optimise members of a population of
'structures'. These structures are encoded in some
manner by a 'gene string'. The population is
then 'evolved' in a very stylised version of the
evolutionary process.

We are given a set A of 'structures' which we can
think of, in the first instance, as being a set of
strings of fixed length l. The object of the adaptive
search is to find a structure which performs well in
terms of a measure of performance:

v : A - - , lR §

where]Ft § denotes the positive real numbers.
The programmer must provide a representation

for the structures to be optimised. In the terminology
of GAs a particular structure is called a phenotype ,
and its representation as a string is called a

l~ i t i a l i s l : Cremt~ pop.
E ~ l t m t e .

ZNTERH#~ C h i l d (t e n)

I Genet lc R19o~tth~:
C ~ t e oh l l d (~en)
vlt 9Chemic ~ e r l t o l , s .
~ b l t i t ~ r in pop.

FITness
ChiZd(~m)

E X T E ~ L

Evalua~Ae o h i l d (r ~ n) . }

Fig. 1. Generic model for a GA.

Genetic Algorithms and Their Applications 33

chromosome or genotype. Usually, this represen-
tation consists of a fixed length string in which each
component, or gene, may take only a small range
of values, or alleles. In this context, 'small' often
means two, so that binary strings are used for the
genotypes.

There is nothing obligatory in taking a one-bit
range for each allele, but there are theoretical reasons
to prefer few-alleles-at-many-sites over many-alleles-
at-few-sites (the arguments have been given by
Holland [1, p 71], and Smith [3, p 56], and supporting
evidence for the correctness of these arguments has
been presented by Schaffer [4, p 107]).

The function v provides a measure of 'fitness' for
a given phenotype and (since the programmer must
also supply a mapping ~ from the set of genotypes
to the set of phenotypes) hence for a given genotype.
Given a particular genotype or string, the goal function
provides a means for calculating the probability that
the string will be selected to contribute to the next
generation. It should be noted that the composition
function v(q~) mapping genotypes to fitness is invariably
discontinuous; nevertheless, GAs cope remarkably
well with this difficulty.

'Fit' strings, i.e. strings having larger goal function
values, will be more likely to be selected, but all
members of the population will have some chance
to contribute. Typically, the evaluation of the goal
function for a particular phenotype, a process which
strictly speaking is external to the GA itself, is the
most time consuming aspect of the computation.

Alleles interact so that adaptation becomes primar-
ily the search for co-adapted sets o f alleles. In the
environment against which the organism is tested,
any individual exemplifies a large number of possible
'patterns of co-adapted alleles', or schemata as
Holland calls them. In testing this individual we
shall see that all schemata of which the individual
is an instantiation are also tested. If the rules
whereby genes are combined have a tendency to
generate new instances of above average schemata,
then the resulting adaptive system has a high degree
of 'intrinsic parallelism'. ~ Considerations of this type
offer an explanation of how evolution can proceed
at all. If a simple enumerative plan were employed,
and if 1012 structures could be tried every second it
would take a time vastly exceeding the estimated
age of the universe to test 101~176 structures.

Figure 2 shows a sketch of the standard style GA.
Given the mapping from genotype to phenotype,
the goal function, and an initial random population,

~The notion of 'intrinsic parallelism' will be discussed, but it
should be mentioned that it has nothing to do with parallelism
in the sense normally intended in computing.

1, Randomly generate a population of M structures

S(0) = {s(1,0) s(M,0)}

2. For each new string s(i,t) in S(t), compute and save
its measure of utility v(s(i,t)).

3. For each s(i,t) in S(t) compute the selection probability
defined by

p(i,t) = v(s(i,t))/(Ei v(s(i,t)))
4. Generate a new population S(t+l) by selecting struc-

tures from S(t) via the selection probability distribution
and applying the idealised genetic operators to the
structures generated.

5. Go to 2.

Fig, 2. Algorithm 1.

the GA proceeds to create new members of the
population (which progressively replace the old
members) using genetic operators, typically
mutation, crossover and inversion, modelled on
their biological analogs.

For the moment we represent strings as:

ala2a3. . .az [a i = 1or0]

Using this notation we can describe the operators
by which strings are combined to produce new
strings. It is the choice of these operators which
produces a search strategy that exploits coadapted
sets of structural components already discovered.
Holland uses three such principal operators: Cross-
over, Mutation, and Inversion.

Crossover: in crossover one or two cut points are
selected at random, and the operation illustrated in
Fig. 3 is used to create two children. A variety of
control regimes are possible, but we used the simplest,
viz select one of the children at random to go into
the next generation. Children tend to be 'like' their
parents so that crossover can be considered as a
focusing operator which exploits knowledge already
gained, its effects are quite quickly apparent.

~SSOVEe

Pa~ent 1.
Parent 2.

Child 1.

Child 2.
It~nT IOH

1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 r r

A tvo poiRt mutation.
INVERSION

1 1 1 1 1 1 1 0 G 0 1 1 0 1 0 r r

~Cut points~

1 0 1 ~ 0 1 0 0 1 1 ~ L 0 1 1 1

1 1 0 0 ~ [1 1 0 0 0 ~ [1 0 1 0

l toleBlxllxole
1 0 1 1 ~ L l 1 0 0 0 1 1 0 1 1 1

-> 111011101011010

(
-~ 118011111811010

Fig. 3. Standard GA operators.

34 A . J . J o n e s

Crossing over proceeds in three steps:

1. Two structures av . .at and b l . . . b t are selected
at random from the current population

2. A crossover point x, in the range 1 to l - 1 is
selected, again at random

3. Two new structures:

a l a 2 . �9 .axbx + l b x + 2. �9 .bl

b l b 2 . �9 .bxa~+ l a~+2. �9 .at

are formed

In modifying the pool of schemata (discussed below),
crossing over continually introduces new schemata
for trial while testing extant schemata in new
contexts. It can be shown that each crossing over
affects a great number of schemata.

There is large variation in the crossover operators
which have been used by different experimenters.
For example, it is possible to cross at more than
one point. The extreme case of this is where each
allele is randomly selected from one or other parent
string with uniform probability - this is called
un i fo rm crossover. Although some writers have
argued in favour of uniform crossover, there would
seem to be theoretical arguments against its use,
viz. if evolution is the search for co-adapted sets of
alleles then this search is likely to be severely
undermined if many cut points are used. In language
we shall shortly develop, the probability of schemata
disruption when using uniform crossover will be
much higher than when using one or two point
crossover.

The design of the crossover operator is strongly
influenced by the nature of the representation. For
example, if the problem is the TSP and the
representation of a tour is a straightforward list of
cities in the order in which they are to be visited,
then a simple crossover operator will, in general,
not produce a tour. In this case the options are:

�9 Change the representation.
�9 Modify the crossover operator.
�9 Effect 'genetic repair' on non-tours which may

result.

There is obviously much scope for experiment for
any particular problem. The danger is that the
resulting algorithm may be so far removed from the
original canonical Holland form that an analogous
schemata theorem may not apply - in which case
the whole justification for the method will have
been lost.

Mutat ion: in mutation an allele is altered at each
site with some fixed probability; thus the number

of genes altered in a mutation of a long string will
be according to a Poisson distribution. Mutation
disperses the population throughout the search
space, and so might be considered as an information
gathering or exploration operator. Search by
mutation is a slow process analogous to exhaustive
search.

Each structure a l a 2 . . . a t in the population is
operated upon as follows. Position x is modified, with
probability p independent of the other positions, so
that the string is replaced by:

a l a 2. . . a x _ l z a x + 1. . . a l

where z is drawn at random from the possible
values. I f p is the probability of mutation at a single
position, then the probability of h mutations in a
given string is determined by a Poisson distribution
with parameter p. Mutation is a 'background'
operator, assuring that the crossover operator has
a full range of alleles so that the adaptive plan is
not trapped on local optima.

Inversion: 2 before we can explain the effects of
inversion we have to modify the string representation
to be order-free. This means that the order of alleles
in the string should not have any effect on the
genotypical information contained within the string.
It turns out that without such an order-free represen-
tation, inversion would be nothing more nor less
than a rather brutal mutation.

We can create an order-free representation by
redefining alleles as ordered pairs (at, Pi), in which
Pt is an integer, 1 <~ Pt ~< l, and P~ denotes the
pos i t ion of the allele at in the canonical (i.e.
standard) representation. Thus, for example, the
string (al,2)(a2,4) (a3,1)(a4,3) in this new represen-
tation, maps to the canonical string a3ala4a2 in the
original representation. Note that, for any string
(P~,P2,. �9 . ,Pt) is a permutation of (1 ,2 , . . . , l) .

Considering the ordered pairs as units, inversion
acts as follows. For some randomly selected positions
x < y in the string we perform the transformation:

(al ,el) (a2,P2). �9 .(ahP,)

--+(a~,P1). �9 �9 (ax,Px) (ay- i , e y - x) (a y - 2 , P y - 2)

. . . (ax+l ,ex+l) (ay ,Py) . . . (a,,Pz)

Thus the effect of an inversion is to reverse the
order of the ordered pair alleles between x+ 1 and

2 This explanation of inversion can readily be omitted on a first
reading without losing the essential point of the genetic operators.
However, the role of inversion has often been misunderstood
(despite the fact that it was clearly explained by Holland), so
that the reader might plan on returning to this section at a later
stage,

Genetic Algorithms and Their Applications 35

y - 1 . A moment's thought reveals that this has no
effect whatsoever on the genotypical information
(i.e. the individual produced by this new string is
identical to the individual produced by the original
string). Plainly, inversion by itself can accomplish
nothing. So what is the point of inversion? Before
answering this question we need to describe how
crossover operates with the new order-free represen-
tation. (Mutation acts just as before - changing the
value of an ai and having no effect on the associated
Pi.)

As previously, the ordered pair alleles (ai, Pi) are
treated as indivisible units and the cut point(s) for
crossover are always chosen between ordered pairs.
To perform a crossover on the new representation
we rearrange the second parent so that it is
homologous to the first parent (literally, this means
the two strings now have 'the same shape'). An
example should serve to illustrate the process.

Example (homologous crossover)
Suppose the two strings are:

Parent 1: (al,3)(a2,1) (a3,2)(a,,4)

Parent 2: (b~,2)(b2,3) (b3,4)(b4,l)

We first re-arrange the second string so that the
second component in each ordered pair (i.e. the
'position indicators') line up with those in the first
parent:

Parent 1: (al,3)(a2,1)(a3,2)(a4,4)
Parent 2: (b2,3)(b4,1) (b1,2)(b3,4)

The second string is now homologous to the first.
Now suppose the cut-point is taken at the second
position. Then the possible children are:

Child 1: (a1,3)(a2,1) (bl,2)Pb3,4)
Child 2: (b2,3)(b4,1) (a3,2)(a,,4)

Note that both inherit the ordering of the first
parent.

To understand what can be accomplished by a
combination of inversion and crossover we recall
the earlier description of evolution as 'the search
for co-adapted sets of alleles'. Suppose now that we
have found a string for which a particular pair of
alleles are co-adapted and therefore contribute to
the construction of a particularly fit phenotype from
this genotype. This co-adapted pair may well be
separated by a considerable distance along the
string. Plainly, under these circumstances the prob-
ability that a crossover cut-point will separate the
co-adapted pair is high.

On the other hand, the fact that this particular
string has a high fitness means (as a consequence

of the design of the GA) that it is likely to produce
many offspring. Suppose that in the course of
reproduction now and again an inversion occurs. In
some of the child strings so produced the co-adapted
pair will be present, and because of the inversion
the distance between them may well be reduced.
This child string has a high fitness, and an additional
advantage that the co-adapted pair are less liable
to be separated by a crossover. Moreover, the
descendants of this child will inherit the new ordering
(at least until another inversion takes place). So this
rather abstract genotypical fact nevertheless confers
a significant and real benefit. Note that the effective-
ness of this process is reduced if the crossover
operator has more than one cut point; the extreme
case being uniform crossover, where we would
predict that inversion would have no effect whatso-
ever.

Inversion has not been much used in the GA
literature. Part of the reason for this may be
the extra computational cost of an order-free
representation; another may be that the mechanism
of inversion seems not to be widely understood.

To summarise: with an order-free representation
inversion increases the effectiveness of crossover by
promoting close linkage between successful alleles.
Linkage occurs when co-adapted alleles are close
together in the genotype, thus reducing the prob-
ability that the group wil be separated by crossover.
This requires an order free string representation
and a mechanism for making strings homologous
before crossover (see Holland [1, p 107-9]. The
effects of inversion are only apparent over a
relatively long time scale, i.e. a large number of
generations.

Two other choices we must make for a GA concern
the birth and death strategies. Is it advantageous to
have several children per generation, or only one?
Recent studies by Yuval Davidor suggest that one
child per generation is optimal. What policy should
be adopted concerning the selection of the strings
to be replaced? Some experiments in controlling
consanguinity between partners in crossover have
also been carried out on the grounds that this
may be another useful mechanism for preventing
premature convergence. In general, the death or
replacement policy has emerged as a useful mechan-
ism of adding a controlled selection pressure. For
example, one often used replacement rule is: replace
the least fit string in the current population. As well
as adding a selection pressure, this rule has the
additional advantage of never deleting the best
string found so far.

36 A.J. Jones

2. Schemata and Intrinsic Parallelism

Let A be the set of all strings. Representing strings
as:

alaza3...at [a/= 1 or0]

we can designate subsets of A which have attributes
in common; these are called schemata (or hyperplane
schemata), by using �9 for 'don't care' in one
or more positions. For example, a~ �9 a3 * . . �9 *
represents the schemata of all strings with first
element aa and third element a3, all other elements
being arbitrary.

In general, the ai may take one of k values.
Thus, including the �9 symbol, the total number of
characters possible in any one position is k+ 1. Since
the string is of length l there are (k + l y possible
schemata. If k = 2 and l = 20, this is around
3.48 x 109 schemata.

Taking any particular string we may replace any
r genes (0 ~< r <~/) by the , symbols to create a
schemata for which the string is an instantiation,
and all possible such schemata are created in this
way. We can do this in:

+(',) = (l + l) t = 21

O)

ways using the Binomial theorem.
Thus any particular string is an instantiation of 2 z

schemata; if k = 2 and l = 20 this around
1.04 • 10 6. Hence the number of schemata sampled
in a population of N strings will not be more than
N2q Although this is a small fraction of the number
of possible schemata, for increasing l it is still
exponentially larger then the population size N.
The ratio of the maximum number of schemata
instantiated by strings in the population over the
total number of schemata is given by:

N ~ (2)

and so tends to zero as l ---> ~. Note that this ratio
is greatest, i.e. most favourable, when k is small.

The key to understanding why genetic algorithms
provide such an efficient search mechanism is the
observation that evaluation of just one string yields
information about a large number of schemata. This
is called intrinsic parallelism, and we next examine
how this comes about.

We can define the observed fitness of a schemata
at time t as the average:

1
v(~,t) - U~,t) ~ v(s) (3)

where if Popt is the population at time t then
I = ~ fq Popt and N(Gt) is the total number of
strings in I. The fraction of Pop, which are in ~ is
just:

N(~, t)
P (~ , t) - N (4)

where N = JPop,]. Of course, what we should like
to know is the actual average fitness of a schemata
across the entire possible population. In practice,
the number of strings in a given schemata is so huge
that it is normally quite impractical to calculate this
information; hence the intersection with Pop, yields
the observed fitness.

The following theorem, stated for the case where
pure crossover is used, helps to explain why
successful structures emerge surprisingly rapidly:

Schemata theorem (Holland). The number of strings
in the population belonging to a given schemata can
be expected to increase or decrease over time at a
rate directly proportional to the observed performance
of the schemata (- implicit parallelism).

More formally;

P(Lt+ 1)/>
I({) (t _ P(~,t))) v({,t)

1 - Pc TL-i,l ~(t) r~ , t) (5)

where Pc denotes the proportion of individuals
undergoing crossover during a generation, and ~,(t)
is the average fitness of the entire population. The
defining length l(~) of a schemata is the length of
the string from the first to the last locus that is not
a , , and it varies from 0 to l -1 . Thus the probability
of a single cut point falling into the part of a string
which will disrupt ~ is l(~)/(l-1).

The anatomy of this theorem is as follows. The
product of the terms outside the large brackets is
the probability that a parent chosen according to
the selection probabilities will be a member of {.
The term in the large brackets is the probability
that a child of this parent will not have its
membership of ~ disrupted by the crossover oper-
ator, and will therefore remain in ~ in the next
generation. This is simply one minus the probability
of disruption. The probability of disruption is the
product of the probabilities of three independent
events; that crossover will occur Pc; that it will fall
within the defining length of the schemata l(~)/(l-1);
and that the mate of the parent who is a member
of ~ is not also a member of ~, 1 - P(Gt). This last
term comes from the selection of mates with a
uniform probability, and the fact that a crossover

Genetic Algorithms and Their Applications

event between two members of ~ cannot fail to
produce offspring who are members of ~. Finally,
it is noted that the representation of ~ in the next
generation is not limited to the offspring of the
members in the current generation. Crossover
between parents who are not members of ~ may
produce offspring who are - hence the greater-than-
or-equal relation.

It is important to note that the proof of the
theorem rests on a very precise prescription of the
algorithm. But given the result then it applies to all
schemata simultaneously - implicit parallelism. The
point to grasp is that although in the first instance
the GA paradigm is a search, one at a time, through
the space of strings, in fact, the process yields an
intrinsically parallel search through the much larger
space of schemata.

To summarise: the main advantages of the GA
adaptive strategy are:

�9 It concentrates samples increasingly towards
schemata that contain structures of above average
utility.

�9 Since it works over a knowledge base (i.e. the
population of structures) that is distributed over
the search space, it is all but immune to getting
trapped on local optima (provided the population
is sufficiently large).

Schemata were invented as a conceptual tool to
explain how it is that genetic algorithms with
crossover work as well as they indeed do. The
fact is that the theory provided by Holland is
mathematically incomplete, except for the simplest
cases, and further developments in the theory, which
would also be important in genetics, are required
before we can truly claim a good understanding of
the mechanisms of crossover.

3. Design Issues - What Do You Want
the Algorithm to Do?

Now we have to ask just what it is we want of a GA.
There are several, sometimes mutually exclusive,
possibilities. For example:

�9 Rapid convergence to a global optimum.
�9 Produce a diverse population of near optimal

solutions in different 'niches'.
�9 Be adaptive in 'real-time' to changes in the goal

function.

We shall deal with each of these in turn, but first
let us briefly consider the nature of the search space.
If the space is flat with just one spike then no

37

algorithm short of exhaustive search will suffice. If
the space is smooth and unimodal then a conven-
tional hill-climbing technique should be used. Some-
where between these two extremes are problems in
which the goal function is a highly non-linear
multimodal function of the gene values - these are
the problems of hard combinatoric search for which
some style of GA may be appropriate.

3.1. Rapid Convergence to a Global Optimum

Of course, this is rather simplisitic: Holland's theory
holds for large populations. However, in many AI
applications it is computationally infeasible to use
large populations, and this in turn leads to a problem
commonly referred to as premature convergnce (to
a suboptimal solution) or loss o f diversity in the
literature of GAs. When this occurs the population
tends to become dominated by one relatively good
solution, and locked into a suboptimal region of the
search space. For small populations the schemata
theorem is actually an explanation for premature
convergence (i.e. the failure of the algorithm) rather
than a result which explains success.

Premature convergence is related to a phenom-
enon observed in nature. Allelic frequencies may
fluctuate purely by chance about their mean from
one generation to another; this is termed random
genetic drift. Its effect on the gene pool in a large
population is negligible, but in a small effectively
interbreeding population, chance alteration in Men-
delian ratios can have a significant effect on gene
frequencies, and can lead to the fixation of one
allele and loss of another. For example, isolated
communities within a given population have been
found to have frequencies for blood group alleles
different from the population as a whole. Figure 4
illustrates this phenomenon with a simple function
optimisation GA.

/V

I

Fig. 4. Premature convergence - no sharing.

38 A.J. Jones

The inexperienced often tend to attempt to
counteract premature convergence by increasing the
rate of mutation. However, this is not a good idea.
A high rate of mutation tends to devalue the role
of crossover in building co-adapted sets of alleles,
and in essence pushes the algorithm in the direction
of exhaustive search. Whilst some mutation is
necessary, a high rate of mutation is invariably
counter-productive.

In trying to counteract premature convergence
we are essentially trying to balance the exploitation
of good solutions found so far against the exploration
which is required to find hitherto unkown promising
regions of the search space. It is worth observing
that, in computational terms, any algorithm which
often inserts copies of strings into the current
population is wasteful. This is true for the Traditional
Genetic Algorithm (TGA) outlined as Algorithm 1
in Fig. 2.

3.2. Produce a Diverse Population of Near
Optimal Solutions in Different 'Niches'

The problem of premature convergence has been
addressed by a number of authors using a diversity
of techniques. Many of the papers in Davis [5]
contain discussions of precisely this point. The
methods used to combat premature convergence in
TGAs are not necessarily appropriate to the parallel
formulations of GAs (PGA), which we shall discuss
shortly.

Cavicchio [6], in his doctoral dissertation, sug-
gested a preselection mechanism as a means of
promoting genotype diversity. Preselection filters
children generated, possible picking the fittest, and
replaces parent members o f the population with
their offspring.

De Jong's [7] crowding scheme is an elaboration
of the preselection mechanism. In the crowding
scheme, an offspring replaces the most similar string
from a randomly drawn subpopulation having size
CF (the crowding factor) of the current population.
Thus a member of the population experiences a
selection pressure in proportion to its similarity
to other members of the population. Emperical
determination of CF with a five function test bed
determined CF = 3 as optimal.

Booker [8] implemented a sharing method in a
classifier system environment which used the bucket
brigade algorithm. The idea here was that if related
rules share payments then subpopulations of rules
will form naturally. However, it seems difficult to
apply this mechanism to standard GAs. Schaffer [4]
has extended the idea of subpopulations in his

VEGA model, in which each fitness element has its
own subpopulation.

A different approach to help maintain genotype
diversity was introduced by Mauldin [9] via his
uniqueness operator. The uniqueness operator
helped to maintain diversity by incorporating a
'censorship' operator in which the insertion of an
offspring into the population is possible only if the
offspring is genotypically different from all members
of the population at a number of specified geno-
typical loci.

Somewhat later, Goldberg introduced the idea of
shared value [10]. The idea of sharing is very simple:
if a number of strings in the current population
cluster closely together, where 'closeness' can refer
to the topology either of the space of phenotypes
or that of genotypes, then their goal function values
might be expected to be similar. If the goal function
is large in this region, then a simple GA would give
each string of the cluster a large selection probability,
thus reinforcing the tendency for succeeding gener-
ations to further cluster in the same region - an
effect which often leads not to an exhaustive
examination of the optimal region, but to premature
convergence.

Goldberg proposed that if two or more strings
were closer together than a specified 'niche width'
then their goal function values should be shared
between the group in some way. Let the ith member
of the population have phenotype xi and the
population size be n. Then the niche count Ni of
the ith member is a real number in the range [1,n]
computed on the basis of a characteristic function
for the niche. 3 Note that Ni = 1 if the string is
isolated, as measured by the specified niche width,
and Ni = n if the niche width is taken so large that
all members of the population are counted as being
as being in the niche. The shared value of the ith
string is taken to be:

v(xi) (6)
V s (X i) - Ni

where v(x) is the usual fitness or goal function. It
is the shared value which is used to compute the
selection probabilities. Specifically, the probability
of selecting the ith string is:

P , - Vs(xi) (7)

Vs(xj)
J

a This is one aspect of sharing which is rather ad hoc -
specification of the niche width requires a priori knowledge of
the search space, and to progressively refine the search the niche
width must dynamically shrink at the right rate.

Genetic Algorithms and Their Applications 39

Thus as more strings cluster in a specific region of
a large goal function, their relative advantage in
enhanced selection probability over other members
of the population is correspondingly reduced. If a
new good string is discovered in a hitherto unex-
plored region (thus having a low niche count), then
its selection probability will be exceptionally high,
thereby ensuring the rapid formation of a new, well
populated niche. This ensures the rapid switching
of attention, or adaptability, dearly a desirable
property.

Goldberg does not explicitly state his replacement
strategy, but by simple experiments one finds that
using the rule 'child replaces string with least shared
value', it is a straightforward matter to reproduce
his results precisely. In experiments one finds that
after 100 generations with pure crossover, good-
niche clustering has taken place and the selection
probabilities based on shared value are virtual equal
across the population. At this point an extremely
stable stochastic equilibrium is in force (see Fig. 5).
The stability can be judged from the observation
that if sharing is now removed (Ni = 1 for all
i), the overall distribution of the population in
phenotype space remains essentially unchanged for
several hundred generations. Essentially the same
results are obtained using genotype sharing, except
that genotype sharing is more reliable (it distingu-
ishes between 1000 and 0111, for example).

It is not so much that Goldberg sharing is a
particularly desirable technique for the production
of niches in a real algorithm - what is more
interesting about this result is that this simple and
intuitive technique so nicely illustrates the existance
of a stable stochastic equilibrium. The principal
moral we draw from these observations is that a
system that is in stable equilibrium is a system that
can be controlled.

LI_

Fig. 5. Stochastic equilibrium with stable niches using Goldberg
sharing.

Mutation can be added to ensure detailed search
of the established niches, and additional selection
pressures such as replacing the least fit string can
ensure that the least valuable niches are gradually
evacuated. The actual effect of sharing can be
simulated by less costly techniques such as Cavicchio
preselection.

3.3. Be Adaptive in 'Real-time' to Changes in
the Goal Function

For any realistically complex problem it seems
unreasonable to ask 'real-time' performance of GAs.
In nature it certainly is the case that the goal
function, insofar as this is anything other than a
useful abstraction of a very large number of factors,
is a time varying function. A species that cannot
adapt to change, or that does not encompass
sufficient diversity, is certainly doomed. However,
regardless of the algorithm's design and hardware,
the fact remains that a well designed GA addressing
a difficult search problem must be expected to run
for a large number of generations (typically in excess
of a thousand) to produce useful results. If useful
results are obtained in 10--300 generations this
suggests that the problem is not really very hard in
some sense, and that some other, possibly simpler,
algorithm might do just as well, if not better.

4. Mass ive ly Para l le l E v o l u t i o n a r y
Algori thms

In the work of the group led by Heinz Muhlenbein
at GMD, Bonn, a new class of algorithms is
emerging which derive some of their important
features from architectural considerations; he calls
these evolutionary algorithms.

The architecture used is a 64-transputer bank
(although it is planned to extend the system) with
configurable links. The underlying idea is to use
genetic algorithms and associate one member of the
population with each transputer. It has been found
that good results are obtained if each member of
the population is allowed to do some 'local hill
climbing' before proceeding to crossover. However
even with this model, loss of population diversity,
with the associated problems of premature conver-
gence, is still experienced.

The model was further modified by Martina
Gorges-Schleuter [11], so that instead of choosing a
partner for crossover based on selection probabilities
computed at a global level, crossover was only
permitted between members of small (overlapping)

40 A.J. Jones

groups - dernes. The topology of these groups is
dictated by the transputer link graph selected by
the programmer. In many of her experiments a ring-
topology was used - exemplified in nature by the
Ring-Gull around the Arctic coast.

The Ring-Gull population originated after the last
ice age as seagutls returned from their retreat in a
region of the Caspian sea. The seagulls' habitat
became an annular region around the North Pole.
A limited gene flow caused by this long chain of
small, poorly linked populations produced sufficient
isolation to ensure that different species developed
one after the other: Larus graelsii (lives in Great
Britain), L. fuscus fuscus (Scandinavia), L. argentus
vegae (Siberia), L. argentus smithoniatus (North
America), and L. argentus argentus (again in
Britain). The latter cohabits, without interbreeding,
with the first, although collectively the Ring-Gulls
share a common gene pool.

Some experiments used a ring topology where
the immediate neighbours and the next but one are
directly connected. This produces a maximally
connected regular graph with connectivity 4. Since
each transputer can have four physical direct links
to other transputers, the ring topology may be
immediately mapped onto a transputer system.
Other experiments used the topology of Fig. 6 in
which overlapping demes are used and an individ-
ual's fitness is computed relative to the phenotype
values of its respective deme members.

In biological terms this whole approach is attract-
ive, since it is a closer model to nature. In practice,
population members do not select their partners
from the whole population, but rather from a
smaller group locally available. This encourages local
groupings of genotype similarities and, provided
there is a small level of interbreeding between
different local groups, the stage is set for a good
distribution of the entire population across a variety
of attractive niches. Thus the overall design of the
PGA avoids premature convergence rather than the

Fig. 6. Transputer link graph showing demes of size 8.

special algorithmic measures that have been applied
in TGAs. In general, it is often the mixing of
two dissimilar genotypes which produces a radical
improvement in the species.

In computational terms the new regime also has
many advantages: The communication overhead
between processes is reduced, since there is now no
need to collect information globally to compute the
selection probabilities, and less computation is
required. Moreover, when inter-process communi-
cation occurs it does so between transputers closely
connected, so that message passing is reduced.

This system is able to solve the Travelling
Salesperson Problem for around 520 cities in about
10 minutes, substantially faster than a Cray. The
limitation here in the number of cities was imposed
by the amount of available memory per node.
Indeed, memory per node was so limited that all
distance pairs between cities could not be stored,
and so only city co-ordinates were stored locally -
which meant that in evaluating a tour length each
component edge length had to be calculated from
the co-ordinate pairs. This fact slowed the algorithm
considerably. Thus in this case, not only did the
memory per node limit the problem size, it was also
a major constraint on the solution time. Of course,
T-800 transputers may each have attached a very
large amount of memory - so that this limitation
on the research was essentially imposed by financial
constraints. 4 It is an intersting question whether or
not the Gorges-Scheulter algorithm can be modified
to run on a vector-based SIMD architecture like
the Cray.

In fact, diffusion GAs have been implemented on
massively parallel SIMD machines. A diffusion GA
with a torus population structure is presented in
Manderick and Spiessens [12]. Neighbours are those
directly adjacent on the grid. Here selection and
crossover in each deme occurs as in a TGA; there
is no filtering of children. Using a few test functions,
the diffusion GA was demonstrated to search more
widely than a TGA, but performance was very much
the same. An implementation on the ICL Data
Array Processor (DAP) studying the effect of some
parameter settings (selection scheme and crossover
type) has followed, Spiessens and Manderick [13].

A Connection Machine implementation of a
diffusion GA on one and two dimensional grids is
discussed in Collins and Jefferson [14]. Selection of
parents is done by two random walks of fixed lengh
from the location, the best encountered on each

4 At present, the best results in terms of size/speed for the TSP
have been reported by Johnson at Bell Labs, and his algorithms
are for a conventional von Neumann architecture.

Genetic Algorithms and Their Applications 41

walk being selected. A multilevel graph partitioning
problem was used to compare this local selection
with panmictic selection methods. Local selection
was found to be more robust, and to find solutions
faster. Population sizes used were very large
(213-219), but despite this panmictic GAs could only
discover one of two optimal solutions for the
problem, whereas the diffusion model always disco-
vered both. This seems particularly significant, since
it is often supposed that problems such as premature
convergence in TGAs can be overcome by simply
making the population large. Whilst this is true in
theory, these results suggest that in practice the
population may need to become impractically large
to solve the problem in this way.

A theoretical analysis of another diffusion GA
using a 2-dimensional grid (similar to Manderick
[12]) concludes that local dominance of highly fit
schemata causes very fast initial niche formation
and exploration of multiple peaks in the search
space. These niches expand and compete, leading
to one of the niches dominating and taking over the
rest.

5. Generation of Neural Networks by
Evolutionary Techniques

Since the design of neural networks optimised for
a specific application is still very much a research
issue, and since, from the evolutionary viewpoint,
nature has performed this task magnificently, it is
natural to ask to what extent we might use
our present knowledge of GAs to design neural
networks. Bibliographies of work in this field
(Rudnick [15], Weiss [16]) are available up to 1990.

In such a paradigm we might expect the compu-
tational cost to be high, but is it possible that from
a number of such studies we may begin to extract
our own design rules by examining the solutions
produced by the GA.

A very early example of such work is that of
Jones and Valenzuela et aL [17], in which the
mapping of a WlSARD network applied to speech
recognition was optimised for the specific task using
GAs. For more conventional neural net models we
can initially identify several ways in which we might
try to use GAs to help design neural networks
optimised for a specific task:

�9 Given the number of nodes and the connectivity,
we might use the GA to determine the weights,
i.e. compare the GA learning weights with other
learning algorithms, e.g. backpropagation.

�9 Given the learning rule, we might use the GA

to determine the connectivity structure, e.g.
for a back-propagation feedforward network we
might use the GA to determine an optimal or
near optimal network topology including the
number of hidden layers, the number of units
within each layer, and the interconnecting links.

�9 Given the number of nodes and the connectivity,
we might try to use GAs to determine a suitable
learning rule (here the 'task' is learning, and so
a number of specific tasks must be used).

Using GAs to learn the weights has been tried on
a number of occasions with a moderate degree of
success [18,19], but in general we might expect that
algorithms such as the simulated annealing of
Boltzmann machines, or the back-propagation algor-
ithm for feedforward nets (admittedly this only gives
a local solution in weight space) which were
customed designed for the problem, might do better.
This does not seem a particularly interesting way to
apply GAs to neural net design, but it probably
should not be completely ignored. For example, the
paper by Montana and Davis [20] is particularly
interesting.

Using GAs to determine the number of hidden
layers for a simple pattern classification problem is
probably not computationally efficient, because this
number is invariably going to be one, two or
(at most three). However, given that we have
(arbitrarily) set the number of hidden layers, it
might be worthwhile to use GAs to determine the
number of nodes in each layer.

There have been several papers using GAs to
design the overall topology of a network [21-26],
and these have yielded interesting results on the
optimisation of network design. They have not,
however, led to qualitatively new kinds of connec-
tionist processes. Moreover, functionally equivalent
networks with different topologies can easily fill up
the population with networks which all perform the
same task to the same level of competence.

Thus, representations which factor out such equiv-
alences would be desirable. Indeed, this seems to
be emerging as one of the principal issues to be
addressed by research in the field [20,27]. Apart
from an enormous enlargement of the search space
arising from permutational redundancy, there are
other potentially serious problems which can arise
from naive representations. This point is made
forcefully by Radcliffe [28]:

" ' . . . t he danger is exemplified by the case where two
equivalent networks (identical up to a relabelling of hidden
units) can be recombined to produce a child which is not
equivalent to them. This is a phenomenon which is not
seen in 'conventional" genetic search (for example, single
parameter optimisation) and it has been strongly argued
elsewhere the problem is highly detrimental to the effective-

42 A.J. Jones

ness of the search process both in the specific context of
neural networks (Radcliffe [27], Belew [18], and more
generally Radcliffe [29,30]).

Radcliffe develops the notion of f o r m a e (in their
original conception formae were introduced as
equivalence classes induced by arbitrary equivalence
relations over the search space) to deal with this
problem. The counting argument used to suggest
that binary representations are to be preferred over
those of higher cardinality apply only to the
traditional schemata formulation. It is argued that
a 'schemata theorem' applies to general formae in
exactly the same way as with conventional schemata,
provided suitable recombination strategies are
applied.

Leaving aside these (rather critical) theoretical
considerations, we briefly review some of the recent
implementations of genetic search applied to neural
networks. Of particular interest are the represen-
tations selected and the extent to which the crossover
operator designed for the representation is liable to
preserve structurally coadapted building blocks. In
some cases, the authors commented on the problem
of permutational redundancy.

Dodd [21] applied a GA to optimise a structured
network for a pattern recognition problem classifying
dolphin sounds. The network was called a spread
network, and consisted of a two dimensional grid
of input nodes, an input 'retina', and a number of
hidden nodes connected to rectangular patches on
the retina. Networks were encoded by a set of
parameters that specified the sizes and overlap of
patches on the retina. He reports that a standard
GA was able to find a network that was superior
to any that he had created by hand.

In Miller et al. [22] a binary encoding of a
connection matrix for a fixed number of nodes is
used. This direct encoding was applied to the 2-bit
parity problem, and it was noted that, in contrast
to the usual solutions, good networks tended to be
irregular and have direct connections from inputs
to the output node. Similar findings were reported
in Whitley [24], where a fully connected feedforward
network was trained and then variants with a subset
of the connections were searched for using a GA.
These results suggest that direct connections can
lead to improved training times.

Similarly, in Robbins et al. [31] a system is
described in which each gene directly determines
the presence or absence of a single connection. This
gives relatively long strings which are unsuitable for
large networks. Two benchmark tasks were used in
this work; the XOR, and Wieland's two spirals.
Results similar to those in Miller et al. [22] were
obtained for 2-bit parity. The authors observe

that direct connections do not speed up weight
adjustment by some form of reinforcement, but
rather that the reduction in learning time may be
due to an increased flexibility in dealing with
weights, possibly (as originally suggested by Miller
et al. [22]) as a result of symmetry breaking.

A higher level scheme is used in Harp [32],
where a more abstract 'blueprint' defines a layered
feedforward network. The encoding uses variable
length strings that are divided into a number of
'areas'. Each area defines a set of nodes (described
by a fixed length binary coded parameter string),
and a number of projections from the area to other
areas. The number of projections is not fixed. Each
area has a spatial organisation defined by the
area parameters. Extra 'punctuation' symbols are
embedded in the encoded strings so as to allow
identification of the start of an area. In this way,
the variable length strings can be expressed to form
legal networks. Crossover also uses the punctuation
to align areas so that fixed regions of the strings
correspond. Two problems were considered; a 4•
digit recognition problem, and the 2-bit parity
problem.

The digit recognition problem consisted of cor-
rectly identifying fixed representations of the digits
0-9. Strings evolved to solve this problem produced
networks that had no hidden nodes, and which
could solve the problem perfectly. The exper-
imenters found this surprising, as they were not
aware that the problem was linearly separable.

A compact encoding scheme is used in Mjolsness
[33], where the connection matrix of a network is
specified by recursive application of duplication
operators to an initial pattern so as to construct the
final matrix. The network search space was defined
by lists of these operators. GAs were not employed,
but conventional search techniques were used to
find solutions for an analogue-to-digital conversion
network. It was suggested that the connection

NetNork Connection Matrix Direct encoding

I
1234

1 8 8 8 8
2 0888
3 1188
4 1188
5 8811

8888888888118881108088118

Fig. 7. Direct encoding of a 2-bit parity (XOR) network.

Genetic Algorithms and Their Applications 43

patterns described by the recursive encodings could
be scaled up to cope with larger instances.

More recent work that uses recursive descriptions
of networks [34] describes a context free production
grammar that can be used to generate connection
matrices. This is a modified L-system [35], where
each production rule gives rise to a 2• matrix of
further production rules or terminal symbols. Rules
can either reference themselves or one another,
thus introducing recursion. Such systems give rise
to structured (at least visually) connection matrices.
A GA was used to search for good sets of production
rules in 4-• encoder problem. This was compared
with a GA using explicitly encoded connection
matrices. Kitano claims that the production rule
system performed well as the number of hidden
nodes was increased, while the solutions for the GA
using the explicit encoding scheme degraded. Such
production schemes for neural networks are rather
attractive, suggesting possibilities for compact rep-
resentations which may sidestep some of the prob-
lems associated with permutational redundancy.
Figure 8 shows an example production system that
will produce a 2-bit parity solving connection matrix
after four steps.

A more complicated developmental system is
defined in Gruau [36]. The system starts with a
single neuron and then develops (grows) into a full
network. A tree structured program controls the
development of the network (it can be viewed as
the genetic program that each cell inherits). The
idea has many appealing properties, and would
seem to be the most 'biologically realistic' method
so far for generating networks. The system is
context sensitive, and can express recursive network
topologies very concisely with the addition of several
features such as conditional branching, also allowing
collections of labelled programs that can be invoked
as an operation.

The third possibility, that of evolving the learning
rule, is intrinsically more interesting because it

Production rules

syste, operatio, s -> ~] -) ~ ->

66680099
96959999
11609066
11909966
99119699
99696699
09900099
99999999

begins to explore how an evolutionary process can
produce systems that learn. Evolution is considered
as a kind of second order adaptation: it is a
process that produces individual systems that are not
immediately adapted to their environment, but
which have the ability to adapt themselves to many
environments by the first order adaptive process of
learning. Viewed from this perspective, the learning
mechanisms themselves are the object of evolution.
A vital component of the overall situation which
produces learning systems is the environment. If
the environment were relatively static, there might
be little need for learning systems to evolve.

This is the approach taken in Chalmers [37]. In
these experiments, supervised learning was applied
to fully-connected, single layer, feed-forward net-
works with sigmoidal output units, with a built in
bias unit to allow for the learning of thresholds.
Here a string encodes the weight space dynamics of
a connectionist system - that is, it encodes a
potential learning procedure.

6. What is Wrong with Present GAs?

The TSP is typical of hard combinatoric search. For
n cities there are �89 undirected tours. This
number rises extremely rapidly as n becomes large.
For all known algorithms the time required to
determine a minimal length tour thus rises exponen-
tially as the problem size increases.

Suppose we weaken the requirements. Instead of
seeking a global optimum, suppose we ask for a
near optimal solution with high probability. Here
the probability measure is defined over the space
of all possible problems - for example, over all
possible sets of n points chosen from the unit square.
Then the situation changes radically, we have the
following

Theorem Karp [3815., For every c > 0 there is an
algorithm A(e) such that A(e) runs in time
C(e) n+O(n log n) and with probability 1, A(e)
produces a tour of length not more than 1 + ~ times
the length of a minimal tour.

How is this magic achieved? The answer is by using
a basic method in computer science, viz. divide and
conquer.

The cellular disection algorithm proceeds by
breaking the problem into parts (clusters of cities),
solving these smaller problems and then gluing the

Fig. 8. Production system producing a 2-bit parity network. 5 See also Steele [39].

44 A.J. Jones

solutions together. Of course, we can apply this
idea recursively as many times as necessary.

As another example, consider the evolution of
the nervous system. The speed and function of
neurons has not increased much in evolution, once
a few tricks like myelination (electrical insulation of
the axon) were developed. Rather, the evolutionary
process, having developed one kind of electrically
active cell useful for information transmission, then
went on to develop small circuits of such cells
with simple functional significance, and then more
complex circuits using the earlier circuits as building
blocks. Once this had been accomplished it is
arguable that a radical redesign of the basic neural
component would be 'counter-productive', since it
would probably require the whole process to begin
again. Competition between such a new organism
and existing more highly developed organisms would
tend to reduce the opportunities for neural circuits
to develop using the radically new neuron.

We can view the natural evolution of neural
circuitry in biology as a kind of 'bottom up' divide
and conquer, in which increased performance is
obtained by using the results of early search as
building blocks for the more sophisticated later
solutions.

My feeling regarding existing GAs stems from
this perception: divide and conquer is an essential
ingredient of successful (i.e. scalable) combinatoric
search algorithms. As far as I am aware, GAs at
present, including the evolutionary algorithms of
Muhlenbein and Gorges-Schleuter, lack this essen-
tial ingredient, and so, even granted intrinsic
parallelism, cannot hope to scale in a reasonable
fashion.

On the other hand, there is no reason why the
evolutionary approach cannot be equipped with
these ideas 6, and it seems that this is one direction
in which research in GAs might profitably proceed.

Acknowledgements. I am indebted to many friends
and students for drawing my attention to relevant
papers that I might welt have otherwise overlooked.
In particular, I should mention Nick Beard of Price
Waterhouse who over the years has sent me dozens
of articles and papers of mutual interest, and Donald
Macfarlane of Buckingham University who kindly
allowed me to see an early version of his thesis.

This work was supported in part by SERC
GR/G18391.

6 Indeed, a little thought suggests a number of different ways in
which this might be done.

References

1. Holland JH. Adaptation in natural and artificial
systems. Ann Arbor (MI): University of Michigan
Press, 1975

2. Horowitz E, Sahni S. Fundamentals of computer
algorithms. London: Pitman, 1978

3. Smith SF. A learning system based on genetic adaptive
algorithms [dissertation]. Pittsburg (PN): Univ of
Pittsburg, 1980

4. Schaffer JD. Some experiments in machine learning
using vector evaluated genetic algorithms [disser-
tation]. Vanderbilt University (unpublished) 1984

5. Davis L, editor. Genetic algorithms and simulated
annealing. London: Pitman, 1987

6. Cavicchio DJ. Adaptive search using simulated evol-
ution [dissertation]. Ann Arbor (MI): Univ of Michi-
gan (unpublished), 1970

7. De Jong K. An analysis of the behavior of a class of
genetic adaptive systems [dissertation]. Ann Arbor
(MI): Univ of Michigan, 1975

8. Booker LB. Intelligent behavior as an adaption to
the task environment [dissertation]. Ann Arbor (MI):
Univ of Michigan, 1982

9. Mauldin ML. Maintaining diversity in genetic search.
In: Proceedings of the National Conference on
Artificial Intelligence; 1984:247-250

10. Goldberg DE, Richardson J. Genetic algorithms with
sharing for multimodal function optimization. In:
Proceedings of the Second International Conference
on Genetic Algorithms; 1987: 41-49; Cambridge
(MA)

11. Gorges-Schleuter M. Genetic algorithms and popu-
lation structures, A massively parallel algorithm
[dissertation]. Dortmund (Germany): Univ of Dort-
mund, Germany, 1990

12. Manderick B, Spiessens P. Fine grained parallel
genetic algorithms. In: Proceedings of the Third
International Conference on Genetic Algorithms.
New York (NY): Morgan Kaufmann, 1989

13. Spiessens O, Manderick B. A massively parallel
genetic algorithm - implementation and first analysis.
In: Proceedings of the Foruth International Confer-
ence on Genetic Algorithms. New York (NY):
Morgan Kaufmann, 1991

14. Collins R J, Jefferson DR. Selection in massively
parallel genetic algorithms. In: Proceedings of the
Fourth International Conference on Genetic Algor-
ithms; 1991; New York (NY): Morgan Kaufrnan.

15. Rudnick M. A bibliography of the intersection of
genetic search and neural networks. Beaverton (OR):
Oregon Graduate Centre, Technical Report CS/E 90-
001, 1990

16. Weiss G. Combining neural and evolutionary learning:
Aspects and approaches Forschungsbefichte
Ktinstliehe Intelligenz, Technical Report FKI-132-90,
1990

17. Jones AJ, Valenzuela CL, Badii A, Binstead MJ,
Stonham TJ. Applications of N-tuple sampling and
genetic algorithms to speech recognition. In: Alek-
sander I, editor. Neural Computing architectures.
New York: Kogan Page, 1988

18. Belew R, McInerney J. Schraudolph NN. Evolving
networks: Using the genetic algorithm with connec-
fionist learning. San Diego (CA): University of
California, CSE Technical Report CS90-174, 1990

Genetic Algorithms and Their Applications 45

19. Wilson S. Perceptron redux. Physica D (forthcoming)
20. Montana DJ, Davis L. Training feedforward neural

networks using genetic algorithms. In: Proceedings
of the Eleventh International Joint Conference on
Artificial Intelligence; 1989:762-767

21. Dodd, N. Optimization of neural network structures
using genetic techniques. Malvern (UK): Royal Sig-
nals and Radar Establishment, Internal Report RIP-
REP/1000/63/89, 1989

22. Miller G, Todd P, Hegde S. Designing neural
networks using genetic algorithms. In: Proceedings
of the Third Conference on Genetic Algorithms and
their Applications; 1989: San Mateo (CA)

23. Whitley D, Hanson T. Optimising neural networks
using faster, more accurate genetic search. In: Pro-
ceedings of the Third International Conference on
Genetic Algorithms, New York (NY): Morgan Kauf-
mann, 1989; 391-396

24. Whitley D, Starkweather T, Bogart C. Genetic
algorithms and neural networks: optimizing connec-
tions and connectivity. Parall Comput 1990; 14

25. Whitley D, Dominic S, Rajarshi D. Genetic reinforce-
ment learning with multilayer neural networks. In:
Proceedings of the Fourth International Conference
on Genetic Algorithms. New York (NY): Morgan
Kaufmann, 1991

26. Dodd N, Macfarlane D, Marland C. Optimisation of
artificial network structure using genetic technique
implemented on multiple transputers. In: Styles D,
Kunii T, Bakkers A, editors. Transputing 91 (Vol 2).
Geneva: ISO Press, 1991

27. Radcliffe NJ. Genetic neural networks on MIMD
computers [dissertation]. Edinburgh (UK): Univ of
Edinburgh, 1990

28. Radcliffe NJ. Genetic set recombination and its
application to neural network topology optimisation.
Edinburgh (UK): Edinburgh Parallel Computing
Centre, Technical Report EPCC-TR-91-21, 1991

29. Radcliffe NJ. Equivalence class analysis of genetic
algorithms. Complex Syst 1991; 5(2): 183--205

30. Radcliffe NJ. Forma analysis and random respectful
recombination. In: Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms. New
York (NY): Morgan Kaufmann, 1991

31. Robbins GE, Hughes JC, Plumbley MD, Fallside F,
Prager R. Generation and adaptation of neural
networks by evolutionary techniques (GANNET).
Neural Comput & Applic 1993; 1:22-30

32. Harp SA, Samad T, Guha A. Towards the genetic
synthesis of neural networks. In: Proceedings of the
Third International Conference on Genetic Algor-
ithms. New York (NY): Morgan Kaufmann, 1989

33. Mjolsness E, Sharp DH, Alpert BK. Scaling, machine
learning, and genetic neural nets. Adv Appl Math
1989; 10

34. Kitano H. Designing neural networks using genetic
algorithms with graph generation system. Complex
Syst 1990; 4:461-476

35. Lindenmayer A. Developmental systems without
cellular interaction, their languages and grammars. J
Theor Biol 1971; 30:455--484

36. Grnau F. Synthrse de rrseaux de neurones par
algorithme grnrtique [dissertation]. Lyon (France):
Ecole Normale Suprrieure de Lyon, 1991

37. Chalmers DJ. The evolution of learning: An exper-
iment in genetic connectionism. In: Proceedings of
the Connectionist Models Summer School; 1990; San
Marco (CA)

38. Karp RM. Probabilistic analysis of partitioning algor-
ithm for the travelling-salesman problem in the plane.
Math Oper Res 1977; 2(3): 209-224

39. Steele JM. Probabilistic algorithm for the directed
traveling salesman problem. Math Oper Res 1988;
11(2): 343-350

