
Neural Comput & Applic (1993)1:32--45 
~) 1993 Springer-Verlag London Limited Neural 

Computing 
& Applications 

Genetic Algorithms and Their Applications to the Design of 
Neural Networks 

Antonia J. Jones 
Department of Computing, Imperial College, London, UK 

Keywords: Diffusion genetic algorithm; Evolution- 
ary algorithms; Genetic algorithms; Network 
representation; Parallel genetic algorithms; Permu- 
tational redundancy; Premature convergence; 
Stochastic equilibrium; Travelling salesman problem 

1. Review of the Ideas 

Genetic algorithms, first introduced by Holland [1], 
have been applied to a variety of problems, and 
offer intriguing possibilities for general purpose 
adaptive search algorithms in artificial intelligence, 
especially, but not necessarily, for situations where 
it is difficult or impossible to model precisely the 
external circumstances faced by the program. Search 
based on evolutionary models had, of course, been 
tried before Holland. However, these models were 
based on mutation and natural selection, and were 
not notably successful. The principal difference of 
Holland's approach was the incorporation of a 
'crossover' operator to mimic the effect of sexual 
reproduction. 

From another perspective, GAs fall into the class 
of probabilistic heuristic algorithms which one might 
use to attack NP-complete or NP-hard problems 
(see, for example Horowitz [2, Chapters 11 and 
12]), such as the Travelling Salesperson Problem 
(TSP), many of which have significant applications 
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in engineering hardware or software design and 
commerical optimisation problems. 

In this article we assume that the reader is familiar 
with the basic ideas of neural networks but perhaps 
less conversant with genetic algorithms. The aim is 
to describe the basic ideas of GAs, and then to 
survey their application to the design of neural 
networks. The basic idea of a GA is illustrated in 
Fig. 1. 

We seek to optimise members of a population of 
'structures'. These structures are encoded in some 
manner by a 'gene string'. The population is 
then 'evolved' in a very stylised version of the 
evolutionary process. 

We are given a set A of 'structures' which we can 
think of, in the first instance, as being a set of 
strings of fixed length l. The object of the adaptive 
search is to find a structure which performs well in 
terms of a measure of performance: 

v : A - - ,  lR § 

where ]Ft § denotes the positive real numbers. 
The programmer must provide a representation 

for the structures to be optimised. In the terminology 
of GAs a particular structure is called a phenotype ,  
and its representation as a string is called a 

l~ i t  i a l i s l :  Cremt~ pop. 
E ~ l t m t e .  

ZNTERH#~ C h i l d ( t e n )  
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vlt 9Chemic ~ e r l t o l , s .  
~ b l t i t ~ r  in pop. 

FITness 
ChiZd(~m)  

E X T E ~ L  

Evalua~Ae o h i l d ( r ~ n ) .  } 

Fig. 1. Generic model for a GA. 
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chromosome or genotype. Usually, this represen- 
tation consists of a fixed length string in which each 
component, or gene, may take only a small range 
of values, or alleles. In this context, 'small' often 
means two, so that binary strings are used for the 
genotypes. 

There is nothing obligatory in taking a one-bit 
range for each allele, but there are theoretical reasons 
to prefer few-alleles-at-many-sites over many-alleles- 
at-few-sites (the arguments have been given by 
Holland [1, p 71], and Smith [3, p 56], and supporting 
evidence for the correctness of these arguments has 
been presented by Schaffer [4, p 107]). 

The function v provides a measure of 'fitness' for 
a given phenotype and (since the programmer must 
also supply a mapping ~ from the set of genotypes 
to the set of phenotypes) hence for a given genotype. 
Given a particular genotype or string, the goal function 
provides a means for calculating the probability that 
the string will be selected to contribute to the next 
generation. It should be noted that the composition 
function v(q~) mapping genotypes to fitness is invariably 
discontinuous; nevertheless, GAs cope remarkably 
well with this difficulty. 

'Fit' strings, i.e. strings having larger goal function 
values, will be more likely to be selected, but all 
members of the population will have some chance 
to contribute. Typically, the evaluation of the goal 
function for a particular phenotype, a process which 
strictly speaking is external to the GA itself, is the 
most time consuming aspect of the computation. 

Alleles interact so that adaptation becomes primar- 
ily the search for co-adapted sets o f  alleles. In the 
environment against which the organism is tested, 
any individual exemplifies a large number of possible 
'patterns of co-adapted alleles', or schemata as 
Holland calls them. In testing this individual we 
shall see that all schemata of which the individual 
is an instantiation are also tested. If the rules 
whereby genes are combined have a tendency to 
generate new instances of above average schemata, 
then the resulting adaptive system has a high degree 
of 'intrinsic parallelism'. ~ Considerations of this type 
offer an explanation of how evolution can proceed 
at all. If a simple enumerative plan were employed, 
and if 1012 structures could be tried every second it 
would take a time vastly exceeding the estimated 
age of the universe to test 101~176 structures. 

Figure 2 shows a sketch of the standard style GA. 
Given the mapping from genotype to phenotype, 
the goal function, and an initial random population, 

~The notion of 'intrinsic parallelism' will be discussed, but it 
should be mentioned that it has nothing to do with parallelism 
in the sense normally intended in computing. 

1, Randomly generate a population of M structures 

S(0) = {s(1,0) . . . . .  s(M,0)} 

2. For each new string s(i,t) in S(t), compute and save 
its measure of utility v(s(i,t)). 

3. For each s(i,t) in S(t) compute the selection probability 
defined by 

p(i,t) = v(s(i,t))/(Ei v(s(i,t))) 
4. Generate a new population S(t+l) by selecting struc- 

tures from S(t) via the selection probability distribution 
and applying the idealised genetic operators to the 
structures generated. 

5. Go to 2. 

Fig, 2. Algorithm 1. 

the GA proceeds to create new members of the 
population (which progressively replace the old 
members) using genetic operators, typically 
mutation, crossover and inversion, modelled on 
their biological analogs. 

For the moment we represent strings as: 

ala2a3. . .az [a i = 1or0] 

Using this notation we can describe the operators 
by which strings are combined to produce new 
strings. It is the choice of these operators which 
produces a search strategy that exploits coadapted 
sets of structural components already discovered. 
Holland uses three such principal operators: Cross- 
over, Mutation, and Inversion. 

Crossover: in crossover one or two cut points are 
selected at random, and the operation illustrated in 
Fig. 3 is used to create two children. A variety of 
control regimes are possible, but we used the simplest, 
viz select one of the children at random to go into 
the next generation. Children tend to be 'like' their 
parents so that crossover can be considered as a 
focusing operator which exploits knowledge already 
gained, its effects are quite quickly apparent. 

~SSOVEe 

Pa~ent 1. 
Parent 2. 

Child 1. 

Child 2. 
It~nT IOH 

1 1 0 0 1 1 1 0 0 0 1 1 0 1 0  r r 

A tvo poiRt mutation. 
INVERSION 

1 1 1 1 1 1 1 0 G 0 1 1 0 1 0  r r 

~Cut points~ 

1 0 1 ~ 0 1 0 0 1 1 ~ L 0 1 1 1  

1 1 0 0 ~ [  1 1 0 0 0 ~ [  1 0 1 0  

l  toleBlxllxole 
1 0 1 1 ~ L l 1 0 0 0 1 1 0 1 1 1  

-> 111011101011010 

( 
-~ 118011111811010 

Fig. 3. Standard GA operators. 
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Crossing over proceeds in three steps: 

1. Two structures av . .at and b l . . . b t  are selected 
at random from the current population 

2. A crossover point x, in the range 1 to l - 1  is 
selected, again at random 

3. Two new structures: 

a l a 2 .  �9 .axbx + l b x  + 2. �9 .bl 

b l b 2 .  �9 .bxa~+ l a~+2. �9 .at 

are formed 

In modifying the pool of schemata (discussed below), 
crossing over continually introduces new schemata 
for trial while testing extant schemata in new 
contexts. It can be shown that each crossing over 
affects a great number of schemata. 

There is large variation in the crossover operators 
which have been used by different experimenters. 
For example, it is possible to cross at more than 
one point. The extreme case of this is where each 
allele is randomly selected from one or other parent 
string with uniform probability - this is called 
un i fo rm crossover.  Although some writers have 
argued in favour of uniform crossover, there would 
seem to be theoretical arguments against its use, 
viz. if evolution is the search for co-adapted sets of 
alleles then this search is likely to be severely 
undermined if many cut points are used. In language 
we shall shortly develop, the probability of schemata 
disruption when using uniform crossover will be 
much higher than when using one or two point 
crossover. 

The design of the crossover operator is strongly 
influenced by the nature of the representation. For 
example, if the problem is the TSP and the 
representation of a tour is a straightforward list of 
cities in the order in which they are to be visited, 
then a simple crossover operator will, in general, 
not produce a tour. In this case the options are: 

�9 Change the representation. 
�9 Modify the crossover operator. 
�9 Effect 'genetic repair' on non-tours which may 

result. 

There is obviously much scope for experiment for 
any particular problem. The danger is that the 
resulting algorithm may be so far removed from the 
original canonical Holland form that an analogous 
schemata theorem may not apply - in which case 
the whole justification for the method will have 
been lost. 

Mutat ion:  in mutation an allele is altered at each 
site with some fixed probability; thus the number 

of genes altered in a mutation of a long string will 
be according to a Poisson distribution. Mutation 
disperses the population throughout the search 
space, and so might be considered as an information 
gathering or exploration operator. Search by 
mutation is a slow process analogous to exhaustive 
search. 

Each structure a l a 2 . . . a t  in the population is 
operated upon as follows. Position x is modified, with 
probability p independent of the other positions, so 
that the string is replaced by: 

a l a  2. . . a x _  l z a x +  1. . . a  l 

where z is drawn at random from the possible 
values. I f p  is the probability of mutation at a single 
position, then the probability of h mutations in a 
given string is determined by a Poisson distribution 
with parameter p. Mutation is a 'background' 
operator, assuring that the crossover operator has 
a full range of alleles so that the adaptive plan is 
not trapped on local optima. 

Inversion:  2 before we can explain the effects of 
inversion we have to modify the string representation 
to be order-free. This means that the order of alleles 
in the string should not have any effect on the 
genotypical information contained within the string. 
It turns out that without such an order-free represen- 
tation, inversion would be nothing more nor less 
than a rather brutal mutation. 

We can create an order-free representation by 
redefining alleles as ordered pairs (at, Pi),  in which 
Pt is an integer, 1 <~ Pt ~< l, and P~ denotes the 
pos i t ion  of the allele at in the canonical (i.e. 
standard) representation. Thus, for example, the 
string (al,2)(a2,4) (a3,1)(a4,3) in this new represen- 
tation, maps to the canonical string a3ala4a2 in the 
original representation. Note that, for any string 
(P~,P2,. �9 . ,Pt)  is a permutation of (1 ,2 , . . . , l ) .  

Considering the ordered pairs as units, inversion 
acts as follows. For some randomly selected positions 
x < y in the string we perform the transformation: 

(al ,el)  (a2,P2). �9 .(ahP,) 

--+(a~,P1). �9 �9 (ax,Px) (ay- i  , e y - x ) ( a y - 2 , P y - 2 )  

. . .  (ax+l ,ex+l) (ay ,Py) .  . . (a,,Pz) 

Thus the effect of an inversion is to reverse the 
order of the ordered pair alleles between x+ 1 and 

2 This explanation of inversion can readily be omitted on a first 
reading without losing the essential point of the genetic operators. 
However, the role of inversion has often been misunderstood 
(despite the fact that it was clearly explained by Holland), so 
that the reader might plan on returning to this section at a later 
stage, 
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y - 1 .  A moment's thought reveals that this has no 
effect whatsoever on the genotypical information 
(i.e. the individual produced by this new string is 
identical to the individual produced by the original 
string). Plainly, inversion by itself can accomplish 
nothing. So what is the point of inversion? Before 
answering this question we need to describe how 
crossover operates with the new order-free represen- 
tation. (Mutation acts just as before - changing the 
value of an ai and having no effect on the associated 
Pi.) 

As previously, the ordered pair alleles (ai, Pi) are 
treated as indivisible units and the cut point(s) for 
crossover are always chosen between ordered pairs. 
To perform a crossover on the new representation 
we rearrange the second parent so that it is 
homologous to the first parent (literally, this means 
the two strings now have 'the same shape'). An 
example should serve to illustrate the process. 

Example (homologous crossover) 
Suppose the two strings are: 

Parent 1: (al,3)(a2,1) (a3,2)(a,,4) 

Parent 2: (b~,2)(b2,3) (b3,4)(b4,l) 

We first re-arrange the second string so that the 
second component in each ordered pair (i.e. the 
'position indicators') line up with those in the first 
parent: 

Parent 1: (al,3)(a2,1)(a3,2)(a4,4) 
Parent 2: (b2,3)(b4,1) (b1,2)(b3,4) 

The second string is now homologous to the first. 
Now suppose the cut-point is taken at the second 
position. Then the possible children are: 

Child 1: (a1,3)(a2,1) (bl,2)Pb3,4) 
Child 2: (b2,3)(b4,1) (a3,2)(a,,4) 

Note that both inherit the ordering of the first 
parent. 

To understand what can be accomplished by a 
combination of inversion and crossover we recall 
the earlier description of evolution as 'the search 
for co-adapted sets of alleles'. Suppose now that we 
have found a string for which a particular pair of 
alleles are co-adapted and therefore contribute to 
the construction of a particularly fit phenotype from 
this genotype. This co-adapted pair may well be 
separated by a considerable distance along the 
string. Plainly, under these circumstances the prob- 
ability that a crossover cut-point will separate the 
co-adapted pair is high. 

On the other hand, the fact that this particular 
string has a high fitness means (as a consequence 

of the design of the GA) that it is likely to produce 
many offspring. Suppose that in the course of 
reproduction now and again an inversion occurs. In 
some of the child strings so produced the co-adapted 
pair will be present, and because of the inversion 
the distance between them may well be reduced. 
This child string has a high fitness, and an additional 
advantage that the co-adapted pair are less liable 
to be separated by a crossover. Moreover, the 
descendants of this child will inherit the new ordering 
(at least until another inversion takes place). So this 
rather abstract genotypical fact nevertheless confers 
a significant and real benefit. Note that the effective- 
ness of this process is reduced if the crossover 
operator has more than one cut point; the extreme 
case being uniform crossover, where we would 
predict that inversion would have no effect whatso- 
ever. 

Inversion has not been much used in the GA 
literature. Part of the reason for this may be 
the extra computational cost of an order-free 
representation; another may be that the mechanism 
of inversion seems not to be widely understood. 

To summarise: with an order-free representation 
inversion increases the effectiveness of crossover by 
promoting close linkage between successful alleles. 
Linkage occurs when co-adapted alleles are close 
together in the genotype, thus reducing the prob- 
ability that the group wil be separated by crossover. 
This requires an order free string representation 
and a mechanism for making strings homologous 
before crossover (see Holland [1, p 107-9]. The 
effects of inversion are only apparent over a 
relatively long time scale, i.e. a large number of 
generations. 

Two other choices we must make for a GA concern 
the birth and death strategies. Is it advantageous to 
have several children per generation, or only one? 
Recent studies by Yuval Davidor suggest that one 
child per generation is optimal. What policy should 
be adopted concerning the selection of the strings 
to be replaced? Some experiments in controlling 
consanguinity between partners in crossover have 
also been carried out on the grounds that this 
may be another useful mechanism for preventing 
premature convergence. In general, the death or 
replacement policy has emerged as a useful mechan- 
ism of adding a controlled selection pressure. For 
example, one often used replacement rule is: replace 
the least fit string in the current population. As well 
as adding a selection pressure, this rule has the 
additional advantage of never deleting the best 
string found so far. 
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2. Schemata and Intrinsic Parallelism 

Let A be the set of all strings. Representing strings 
as:  

alaza3...at [a/= 1 or0] 

we can designate subsets of A which have attributes 
in common; these are called schemata (or hyperplane 
schemata), by using �9 for 'don't  care' in one 
or more positions. For example, a~ �9 a3 * . . �9 * 
represents the schemata of all strings with first 
element aa and third element a3, all other elements 
being arbitrary. 

In general, the ai may take one of k values. 
Thus, including the �9 symbol, the total number of 
characters possible in any one position is k+ 1. Since 
the string is of length l there are ( k + l y  possible 
schemata. If k = 2 and l = 20, this is around 
3.48 x 109 schemata. 

Taking any particular string we may replace any 
r genes (0 ~< r <~/) by the , symbols to create a 
schemata for which the string is an instantiation, 
and all possible such schemata are created in this 
way. We can do this in: 

+(',) = ( l + l ) t  = 21 

O) 

ways using the Binomial theorem. 
Thus any particular string is an instantiation of 2 z 

schemata; if k = 2 and l =  20 this around 
1.04 • 10 6. Hence the number of schemata sampled 
in a population of N strings will not be more than 
N2q Although this is a small fraction of the number 
of possible schemata, for increasing l it is still 
exponentially larger then the population size N. 
The ratio of the maximum number of schemata 
instantiated by strings in the population over the 
total number of schemata is given by: 

N ~ (2) 

and so tends to zero as l ---> ~. Note that this ratio 
is greatest, i.e. most favourable, when k is small. 

The key to understanding why genetic algorithms 
provide such an efficient search mechanism is the 
observation that evaluation of just one string yields 
information about a large number of schemata. This 
is called intrinsic parallelism, and we next examine 
how this comes about. 

We can define the observed fitness of a schemata 
at time t as the average: 

1 
v(~,t) - U~,t) ~ v(s) (3) 

where if Popt is the population at time t then 
I = ~ fq Popt and N(Gt) is the total number of 
strings in I. The fraction of Pop, which are in ~ is 
just: 

N(~, t) 
P ( ~ , t ) -  N (4) 

where N = JPop,]. Of course, what we should like 
to know is the actual average fitness of a schemata 
across the entire possible population. In practice, 
the number of strings in a given schemata is so huge 
that it is normally quite impractical to calculate this 
information; hence the intersection with Pop, yields 
the observed fitness. 

The following theorem, stated for the case where 
pure crossover is used, helps to explain why 
successful structures emerge surprisingly rapidly: 

Schemata theorem (Holland). The number of strings 
in the population belonging to a given schemata can 
be expected to increase or decrease over time at a 
rate directly proportional to the observed performance 
of the schemata (- implicit parallelism). 

More formally; 

P(Lt+ 1)/> 
I({) (t _ P(~,t))) v({,t) . . . .  

1 - Pc TL-i,l ~(t)  r~ , t )  (5) 

where Pc denotes the proportion of individuals 
undergoing crossover during a generation, and ~,(t) 
is the average fitness of the entire population. The 
defining length l(~) of a schemata is the length of 
the string from the first to the last locus that is not 
a , ,  and it varies from 0 to l -1 .  Thus the probability 
of a single cut point falling into the part of a string 
which will disrupt ~ is l(~)/(l-1). 

The anatomy of this theorem is as follows. The 
product of the terms outside the large brackets is 
the probability that a parent chosen according to 
the selection probabilities will be a member of {. 
The term in the large brackets is the probability 
that a child of this parent will not have its 
membership of ~ disrupted by the crossover oper- 
ator, and will therefore remain in ~ in the next 
generation. This is simply one minus the probability 
of disruption. The probability of disruption is the 
product of the probabilities of three independent 
events; that crossover will occur Pc; that it will fall 
within the defining length of the schemata l(~)/(l-1); 
and that the mate of the parent who is a member 
of ~ is not also a member of ~, 1 - P(Gt). This last 
term comes from the selection of mates with a 
uniform probability, and the fact that a crossover 
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event between two members of ~ cannot fail to 
produce offspring who are members of ~. Finally, 
it is noted that the representation of ~ in the next 
generation is not limited to the offspring of the 
members in the current generation. Crossover 
between parents who are not members of ~ may 
produce offspring who are - hence the greater-than- 
or-equal relation. 

It is important to note that the proof of the 
theorem rests on a very precise prescription of the 
algorithm. But given the result then it applies to all 
schemata simultaneously - implicit parallelism. The 
point to grasp is that although in the first instance 
the GA paradigm is a search, one at a time, through 
the space of strings, in fact, the process yields an 
intrinsically parallel search through the much larger 
space of schemata. 

To summarise: the main advantages of the GA 
adaptive strategy are: 

�9 It concentrates samples increasingly towards 
schemata that contain structures of above average 
utility. 

�9 Since it works over a knowledge base (i.e. the 
population of structures) that is distributed over 
the search space, it is all but immune to getting 
trapped on local optima (provided the population 
is sufficiently large). 

Schemata were invented as a conceptual tool to 
explain how it is that genetic algorithms with 
crossover work as well as they indeed do. The 
fact is that the theory provided by Holland is 
mathematically incomplete, except for the simplest 
cases, and further developments in the theory, which 
would also be important in genetics, are required 
before we can truly claim a good understanding of 
the mechanisms of crossover. 

3. Design Issues - What Do You Want 
the Algorithm to Do? 

Now we have to ask just what it is we want of a GA. 
There are several, sometimes mutually exclusive, 
possibilities. For example: 

�9 Rapid convergence to a global optimum. 
�9 Produce a diverse population of near optimal 

solutions in different 'niches'. 
�9 Be adaptive in 'real-time' to changes in the goal 

function. 

We shall deal with each of these in turn, but first 
let us briefly consider the nature of the search space. 
If the space is flat with just one spike then no 
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algorithm short of exhaustive search will suffice. If 
the space is smooth and unimodal then a conven- 
tional hill-climbing technique should be used. Some- 
where between these two extremes are problems in 
which the goal function is a highly non-linear 
multimodal function of the gene values - these are 
the problems of hard combinatoric search for which 
some style of GA may be appropriate. 

3.1. Rapid Convergence to a Global Optimum 

Of course, this is rather simplisitic: Holland's theory 
holds for large populations. However, in many AI 
applications it is computationally infeasible to use 
large populations, and this in turn leads to a problem 
commonly referred to as premature convergnce (to 
a suboptimal solution) or loss o f  diversity in the 
literature of GAs. When this occurs the population 
tends to become dominated by one relatively good 
solution, and locked into a suboptimal region of the 
search space. For small populations the schemata 
theorem is actually an explanation for premature 
convergence (i.e. the failure of the algorithm) rather 
than a result which explains success. 

Premature convergence is related to a phenom- 
enon observed in nature. Allelic frequencies may 
fluctuate purely by chance about their mean from 
one generation to another; this is termed random 
genetic drift. Its effect on the gene pool in a large 
population is negligible, but in a small effectively 
interbreeding population, chance alteration in Men- 
delian ratios can have a significant effect on gene 
frequencies, and can lead to the fixation of one 
allele and loss of another. For example, isolated 
communities within a given population have been 
found to have frequencies for blood group alleles 
different from the population as a whole. Figure 4 
illustrates this phenomenon with a simple function 
optimisation GA. 

/V 

I 

Fig. 4. Premature convergence - no sharing. 
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The inexperienced often tend to attempt to 
counteract premature convergence by increasing the 
rate of mutation. However, this is not a good idea. 
A high rate of mutation tends to devalue the role 
of crossover in building co-adapted sets of alleles, 
and in essence pushes the algorithm in the direction 
of exhaustive search. Whilst some mutation is 
necessary, a high rate of mutation is invariably 
counter-productive. 

In trying to counteract premature convergence 
we are essentially trying to balance the exploitation 
of good solutions found so far against the exploration 
which is required to find hitherto unkown promising 
regions of the search space. It is worth observing 
that, in computational terms, any algorithm which 
often inserts copies of strings into the current 
population is wasteful. This is true for the Traditional 
Genetic Algorithm (TGA) outlined as Algorithm 1 
in Fig. 2. 

3.2. Produce a Diverse Population of Near 
Optimal Solutions in Different 'Niches' 

The problem of premature convergence has been 
addressed by a number of authors using a diversity 
of techniques. Many of the papers in Davis [5] 
contain discussions of precisely this point. The 
methods used to combat premature convergence in 
TGAs are not necessarily appropriate to the parallel 
formulations of GAs (PGA), which we shall discuss 
shortly. 

Cavicchio [6], in his doctoral dissertation, sug- 
gested a preselection mechanism as a means of 
promoting genotype diversity. Preselection filters 
children generated, possible picking the fittest, and 
replaces parent members o f  the population with 
their offspring. 

De Jong's [7] crowding scheme is an elaboration 
of the preselection mechanism. In the crowding 
scheme, an offspring replaces the most similar string 
from a randomly drawn subpopulation having size 
CF (the crowding factor) of the current population. 
Thus a member of the population experiences a 
selection pressure in proportion to its similarity 
to other members of the population. Emperical 
determination of CF with a five function test bed 
determined CF = 3 as optimal. 

Booker [8] implemented a sharing method in a 
classifier system environment which used the bucket 
brigade algorithm. The idea here was that if related 
rules share payments then subpopulations of rules 
will form naturally. However, it seems difficult to 
apply this mechanism to standard GAs. Schaffer [4] 
has extended the idea of subpopulations in his 

VEGA model, in which each fitness element has its 
own subpopulation. 

A different approach to help maintain genotype 
diversity was introduced by Mauldin [9] via his 
uniqueness operator. The uniqueness operator 
helped to maintain diversity by incorporating a 
'censorship' operator in which the insertion of an 
offspring into the population is possible only if the 
offspring is genotypically different from all members 
of the population at a number of specified geno- 
typical loci. 

Somewhat later, Goldberg introduced the idea of 
shared value [10]. The idea of sharing is very simple: 
if a number of strings in the current population 
cluster closely together, where 'closeness' can refer 
to the topology either of the space of phenotypes 
or that of genotypes, then their goal function values 
might be expected to be similar. If the goal function 
is large in this region, then a simple GA would give 
each string of the cluster a large selection probability, 
thus reinforcing the tendency for succeeding gener- 
ations to further cluster in the same region - an 
effect which often leads not to an exhaustive 
examination of the optimal region, but to premature 
convergence. 

Goldberg proposed that if two or more strings 
were closer together than a specified 'niche width' 
then their goal function values should be shared 
between the group in some way. Let the ith member 
of the population have phenotype xi and the 
population size be n. Then the niche count Ni of 
the ith member is a real number in the range [1,n] 
computed on the basis of a characteristic function 
for the niche. 3 Note that Ni = 1 if the string is 
isolated, as measured by the specified niche width, 
and Ni = n if the niche width is taken so large that 
all members of the population are counted as being 
as being in the niche. The shared value of the ith 
string is taken to be: 

v(xi) (6) 
V s ( X i ) -  Ni  

where v(x) is the usual fitness or goal function. It 
is the shared value which is used to compute the 
selection probabilities. Specifically, the probability 
of selecting the ith string is: 

P , -  Vs(xi)  (7)  

Vs(xj) 
J 

a This is one aspect of sharing which is rather ad hoc - 
specification of the niche width requires a priori knowledge of 
the search space, and to progressively refine the search the niche 
width must dynamically shrink at the right rate. 
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Thus as more strings cluster in a specific region of 
a large goal function, their relative advantage in 
enhanced selection probability over other members 
of the population is correspondingly reduced. If a 
new good string is discovered in a hitherto unex- 
plored region (thus having a low niche count), then 
its selection probability will be exceptionally high, 
thereby ensuring the rapid formation of a new, well 
populated niche. This ensures the rapid switching 
of attention, or adaptability, dearly a desirable 
property. 

Goldberg does not explicitly state his replacement 
strategy, but by simple experiments one finds that 
using the rule 'child replaces string with least shared 
value', it is a straightforward matter to reproduce 
his results precisely. In experiments one finds that 
after 100 generations with pure crossover, good- 
niche clustering has taken place and the selection 
probabilities based on shared value are virtual equal 
across the population. At this point an extremely 
stable stochastic equilibrium is in force (see Fig. 5). 
The stability can be judged from the observation 
that if sharing is now removed (Ni = 1 for all 
i), the overall distribution of the population in 
phenotype space remains essentially unchanged for 
several hundred generations. Essentially the same 
results are obtained using genotype sharing, except 
that genotype sharing is more reliable (it distingu- 
ishes between 1000 and 0111, for example). 

It is not so much that Goldberg sharing is a 
particularly desirable technique for the production 
of niches in a real algorithm - what is more 
interesting about this result is that this simple and 
intuitive technique so nicely illustrates the existance 
of a stable stochastic equilibrium. The principal 
moral we draw from these observations is that a 
system that is in stable equilibrium is a system that 
can be controlled. 

LI_ 

Fig. 5. Stochastic equilibrium with stable niches using Goldberg 
sharing. 

Mutation can be added to ensure detailed search 
of the established niches, and additional selection 
pressures such as replacing the least fit string can 
ensure that the least valuable niches are gradually 
evacuated. The actual effect of sharing can be 
simulated by less costly techniques such as Cavicchio 
preselection. 

3.3. Be Adaptive in 'Real-time' to Changes in 
the Goal Function 

For any realistically complex problem it seems 
unreasonable to ask 'real-time' performance of GAs. 
In nature it certainly is the case that the goal 
function, insofar as this is anything other than a 
useful abstraction of a very large number of factors, 
is a time varying function. A species that cannot 
adapt to change, or that does not encompass 
sufficient diversity, is certainly doomed. However, 
regardless of the algorithm's design and hardware, 
the fact remains that a well designed GA addressing 
a difficult search problem must be expected to run 
for a large number of generations (typically in excess 
of a thousand) to produce useful results. If useful 
results are obtained in 10--300 generations this 
suggests that the problem is not really very hard in 
some sense, and that some other, possibly simpler, 
algorithm might do just as well, if not better. 

4. Mass ive ly  Para l le l  E v o l u t i o n a r y  
Algori thms 

In the work of the group led by Heinz Muhlenbein 
at GMD, Bonn, a new class of algorithms is 
emerging which derive some of their important 
features from architectural considerations; he calls 
these evolutionary algorithms. 

The architecture used is a 64-transputer bank 
(although it is planned to extend the system) with 
configurable links. The underlying idea is to use 
genetic algorithms and associate one member of the 
population with each transputer. It has been found 
that good results are obtained if each member of 
the population is allowed to do some 'local hill 
climbing' before proceeding to crossover. However 
even with this model, loss of population diversity, 
with the associated problems of premature conver- 
gence, is still experienced. 

The model was further modified by Martina 
Gorges-Schleuter [11], so that instead of choosing a 
partner for crossover based on selection probabilities 
computed at a global level, crossover was only 
permitted between members of small (overlapping) 
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groups - dernes. The topology of these groups is 
dictated by the transputer link graph selected by 
the programmer. In many of her experiments a ring- 
topology was used - exemplified in nature by the 
Ring-Gull around the Arctic coast. 

The Ring-Gull population originated after the last 
ice age as seagutls returned from their retreat in a 
region of the Caspian sea. The seagulls' habitat 
became an annular region around the North Pole. 
A limited gene flow caused by this long chain of 
small, poorly linked populations produced sufficient 
isolation to ensure that different species developed 
one after the other: Larus graelsii (lives in Great 
Britain), L. fuscus fuscus (Scandinavia), L. argentus 
vegae (Siberia), L. argentus smithoniatus (North 
America), and L. argentus argentus (again in 
Britain). The latter cohabits, without interbreeding, 
with the first, although collectively the Ring-Gulls 
share a common gene pool. 

Some experiments used a ring topology where 
the immediate neighbours and the next but one are 
directly connected. This produces a maximally 
connected regular graph with connectivity 4. Since 
each transputer can have four physical direct links 
to other transputers, the ring topology may be 
immediately mapped onto a transputer system. 
Other experiments used the topology of Fig. 6 in 
which overlapping demes are used and an individ- 
ual's fitness is computed relative to the phenotype 
values of its respective deme members. 

In biological terms this whole approach is attract- 
ive, since it is a closer model to nature. In practice, 
population members do not select their partners 
from the whole population, but rather from a 
smaller group locally available. This encourages local 
groupings of genotype similarities and, provided 
there is a small level of interbreeding between 
different local groups, the stage is set for a good 
distribution of the entire population across a variety 
of attractive niches. Thus the overall design of the 
PGA avoids premature convergence rather than the 

Fig. 6. Transputer link graph showing demes of size 8. 

special algorithmic measures that have been applied 
in TGAs. In general, it is often the mixing of 
two dissimilar genotypes which produces a radical 
improvement in the species. 

In computational terms the new regime also has 
many advantages: The communication overhead 
between processes is reduced, since there is now no 
need to collect information globally to compute the 
selection probabilities, and less computation is 
required. Moreover, when inter-process communi- 
cation occurs it does so between transputers closely 
connected, so that message passing is reduced. 

This system is able to solve the Travelling 
Salesperson Problem for around 520 cities in about 
10 minutes, substantially faster than a Cray. The 
limitation here in the number of cities was imposed 
by the amount of available memory per node. 
Indeed, memory per node was so limited that all 
distance pairs between cities could not be stored, 
and so only city co-ordinates were stored locally - 
which meant that in evaluating a tour length each 
component edge length had to be calculated from 
the co-ordinate pairs. This fact slowed the algorithm 
considerably. Thus in this case, not only did the 
memory per node limit the problem size, it was also 
a major constraint on the solution time. Of course, 
T-800 transputers may each have attached a very 
large amount of memory - so that this limitation 
on the research was essentially imposed by financial 
constraints. 4 It is an intersting question whether or 
not the Gorges-Scheulter algorithm can be modified 
to run on a vector-based SIMD architecture like 
the Cray. 

In fact, diffusion GAs have been implemented on 
massively parallel SIMD machines. A diffusion GA 
with a torus population structure is presented in 
Manderick and Spiessens [12]. Neighbours are those 
directly adjacent on the grid. Here selection and 
crossover in each deme occurs as in a TGA; there 
is no filtering of children. Using a few test functions, 
the diffusion GA was demonstrated to search more 
widely than a TGA, but performance was very much 
the same. An implementation on the ICL Data 
Array Processor (DAP) studying the effect of some 
parameter settings (selection scheme and crossover 
type) has followed, Spiessens and Manderick [13]. 

A Connection Machine implementation of a 
diffusion GA on one and two dimensional grids is 
discussed in Collins and Jefferson [14]. Selection of 
parents is done by two random walks of fixed lengh 
from the location, the best encountered on each 

4 At present, the best results in terms of size/speed for the TSP 
have been reported by Johnson at Bell Labs, and his algorithms 
are for a conventional von Neumann architecture. 
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walk being selected. A multilevel graph partitioning 
problem was used to compare this local selection 
with panmictic selection methods. Local selection 
was found to be more robust, and to find solutions 
faster. Population sizes used were very large 
(213-219), but despite this panmictic GAs could only 
discover one of two optimal solutions for the 
problem, whereas the diffusion model always disco- 
vered both. This seems particularly significant, since 
it is often supposed that problems such as premature 
convergence in TGAs can be overcome by simply 
making the population large. Whilst this is true in 
theory, these results suggest that in practice the 
population may need to become impractically large 
to solve the problem in this way. 

A theoretical analysis of another diffusion GA 
using a 2-dimensional grid (similar to Manderick 
[12]) concludes that local dominance of highly fit 
schemata causes very fast initial niche formation 
and exploration of multiple peaks in the search 
space. These niches expand and compete, leading 
to one of the niches dominating and taking over the 
rest. 

5. Generation of Neural Networks by 
Evolutionary Techniques 

Since the design of neural networks optimised for 
a specific application is still very much a research 
issue, and since, from the evolutionary viewpoint, 
nature has performed this task magnificently, it is 
natural to ask to what extent we might use 
our present knowledge of GAs to design neural 
networks. Bibliographies of work in this field 
(Rudnick [15], Weiss [16]) are available up to 1990. 

In such a paradigm we might expect the compu- 
tational cost to be high, but is it possible that from 
a number of such studies we may begin to extract 
our own design rules by examining the solutions 
produced by the GA. 

A very early example of such work is that of 
Jones and Valenzuela et aL [17], in which the 
mapping of a WlSARD network applied to speech 
recognition was optimised for the specific task using 
GAs. For more conventional neural net models we 
can initially identify several ways in which we might 
try to use GAs to help design neural networks 
optimised for a specific task: 

�9 Given the number of nodes and the connectivity, 
we might use the GA to determine the weights, 
i.e. compare the GA learning weights with other 
learning algorithms, e.g. backpropagation. 

�9 Given the learning rule, we might use the GA 

to determine the connectivity structure, e.g. 
for a back-propagation feedforward network we 
might use the GA to determine an optimal or 
near optimal network topology including the 
number of hidden layers, the number of units 
within each layer, and the interconnecting links. 

�9 Given the number of nodes and the connectivity, 
we might try to use GAs to determine a suitable 
learning rule (here the 'task' is learning, and so 
a number of specific tasks must be used). 

Using GAs to learn the weights has been tried on 
a number of occasions with a moderate degree of 
success [18,19], but in general we might expect that 
algorithms such as the simulated annealing of 
Boltzmann machines, or the back-propagation algor- 
ithm for feedforward nets (admittedly this only gives 
a local solution in weight space) which were 
customed designed for the problem, might do better. 
This does not seem a particularly interesting way to 
apply GAs to neural net design, but it probably 
should not be completely ignored. For example, the 
paper by Montana and Davis [20] is particularly 
interesting. 

Using GAs to determine the number of hidden 
layers for a simple pattern classification problem is 
probably not computationally efficient, because this 
number is invariably going to be one, two or 
(at most three). However, given that we have 
(arbitrarily) set the number of hidden layers, it 
might be worthwhile to use GAs to determine the 
number of nodes in each layer. 

There have been several papers using GAs to 
design the overall topology of a network [21-26], 
and these have yielded interesting results on the 
optimisation of network design. They have not, 
however, led to qualitatively new kinds of connec- 
tionist processes. Moreover, functionally equivalent 
networks with different topologies can easily fill up 
the population with networks which all perform the 
same task to the same level of competence. 

Thus, representations which factor out such equiv- 
alences would be desirable. Indeed, this seems to 
be emerging as one of the principal issues to be 
addressed by research in the field [20,27]. Apart 
from an enormous enlargement of the search space 
arising from permutational redundancy, there are 
other potentially serious problems which can arise 
from naive representations. This point is made 
forcefully by Radcliffe [28]: 

" ' . . . t he  danger is exemplified by the case where two 
equivalent networks (identical up to a relabelling of hidden 
units) can be recombined to produce a child which is not 
equivalent to them. This is a phenomenon which is not 
seen in 'conventional" genetic search (for example, single 
parameter optimisation) and it has been strongly argued 
elsewhere the problem is highly detrimental to the effective- 
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ness of the search process both in the specific context of 
neural networks (Radcliffe [27], Belew [18], and more 
generally Radcliffe [29,30]). 

Radcliffe develops the notion of f o r m a e  (in their 
original conception formae were introduced as 
equivalence classes induced by arbitrary equivalence 
relations over the search space) to deal with this 
problem. The counting argument used to suggest 
that binary representations are to be preferred over 
those of higher cardinality apply only to the 
traditional schemata formulation. It is argued that 
a 'schemata theorem' applies to general formae in 
exactly the same way as with conventional schemata, 
provided suitable recombination strategies are 
applied. 

Leaving aside these (rather critical) theoretical 
considerations, we briefly review some of the recent 
implementations of genetic search applied to neural 
networks. Of particular interest are the represen- 
tations selected and the extent to which the crossover 
operator designed for the representation is liable to 
preserve structurally coadapted building blocks. In 
some cases, the authors commented on the problem 
of permutational redundancy. 

Dodd [21] applied a GA to optimise a structured 
network for a pattern recognition problem classifying 
dolphin sounds. The network was called a spread 
network, and consisted of a two dimensional grid 
of input nodes, an input 'retina', and a number of 
hidden nodes connected to rectangular patches on 
the retina. Networks were encoded by a set of 
parameters that specified the sizes and overlap of 
patches on the retina. He reports that a standard 
GA was able to find a network that was superior 
to any that he had created by hand. 

In Miller et al. [22] a binary encoding of a 
connection matrix for a fixed number of nodes is 
used. This direct encoding was applied to the 2-bit 
parity problem, and it was noted that, in contrast 
to the usual solutions, good networks tended to be 
irregular and have direct connections from inputs 
to the output node. Similar findings were reported 
in Whitley [24], where a fully connected feedforward 
network was trained and then variants with a subset 
of the connections were searched for using a GA. 
These results suggest that direct connections can 
lead to improved training times. 

Similarly, in Robbins et al. [31] a system is 
described in which each gene directly determines 
the presence or absence of a single connection. This 
gives relatively long strings which are unsuitable for 
large networks. Two benchmark tasks were used in 
this work; the XOR, and Wieland's two spirals. 
Results similar to those in Miller et al. [22] were 
obtained for 2-bit parity. The authors observe 

that direct connections do not speed up weight 
adjustment by some form of reinforcement, but 
rather that the reduction in learning time may be 
due to an increased flexibility in dealing with 
weights, possibly (as originally suggested by Miller 
et al. [22]) as a result of symmetry breaking. 

A higher level scheme is used in Harp [32], 
where a more abstract 'blueprint' defines a layered 
feedforward network. The encoding uses variable 
length strings that are divided into a number of 
'areas'. Each area defines a set of nodes (described 
by a fixed length binary coded parameter string), 
and a number of projections from the area to other 
areas. The number of projections is not fixed. Each 
area has a spatial organisation defined by the 
area parameters. Extra 'punctuation' symbols are 
embedded in the encoded strings so as to allow 
identification of the start of an area. In this way, 
the variable length strings can be expressed to form 
legal networks. Crossover also uses the punctuation 
to align areas so that fixed regions of the strings 
correspond. Two problems were considered; a 4• 
digit recognition problem, and the 2-bit parity 
problem. 

The digit recognition problem consisted of cor- 
rectly identifying fixed representations of the digits 
0-9. Strings evolved to solve this problem produced 
networks that had no hidden nodes, and which 
could solve the problem perfectly. The exper- 
imenters found this surprising, as they were not 
aware that the problem was linearly separable. 

A compact encoding scheme is used in Mjolsness 
[33], where the connection matrix of a network is 
specified by recursive application of duplication 
operators to an initial pattern so as to construct the 
final matrix. The network search space was defined 
by lists of these operators. GAs were not employed, 
but conventional search techniques were used to 
find solutions for an analogue-to-digital conversion 
network. It was suggested that the connection 

NetNork Connection Matrix Direct encoding 

I 
1234  

1 8 8 8 8  
2 0888  
3 1188  
4 1188  
5 8811  

8888888888118881108088118 

Fig. 7. Direct encoding of a 2-bit parity (XOR) network. 
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patterns described by the recursive encodings could 
be scaled up to cope with larger instances. 

More recent work that uses recursive descriptions 
of networks [34] describes a context free production 
grammar that can be used to generate connection 
matrices. This is a modified L-system [35], where 
each production rule gives rise to a 2• matrix of 
further production rules or terminal symbols. Rules 
can either reference themselves or one another, 
thus introducing recursion. Such systems give rise 
to structured (at least visually) connection matrices. 
A GA was used to search for good sets of production 
rules in 4-• encoder problem. This was compared 
with a GA using explicitly encoded connection 
matrices. Kitano claims that the production rule 
system performed well as the number of hidden 
nodes was increased, while the solutions for the GA 
using the explicit encoding scheme degraded. Such 
production schemes for neural networks are rather 
attractive, suggesting possibilities for compact rep- 
resentations which may sidestep some of the prob- 
lems associated with permutational redundancy. 
Figure 8 shows an example production system that 
will produce a 2-bit parity solving connection matrix 
after four steps. 

A more complicated developmental system is 
defined in Gruau [36]. The system starts with a 
single neuron and then develops (grows) into a full 
network. A tree structured program controls the 
development of the network (it can be viewed as 
the genetic program that each cell inherits). The 
idea has many appealing properties, and would 
seem to be the most 'biologically realistic' method 
so far for generating networks. The system is 
context sensitive, and can express recursive network 
topologies very concisely with the addition of several 
features such as conditional branching, also allowing 
collections of labelled programs that can be invoked 
as an operation. 

The third possibility, that of evolving the learning 
rule, is intrinsically more interesting because it 

Production rules 

syste, operatio, s -> ~ ]  -) ~ -> 

66680099 
96959999 
11609066 
11909966 
99119699 
99696699 
09900099 
99999999 

begins to explore how an evolutionary process can 
produce systems that learn. Evolution is considered 
as a kind of second order adaptation: it is a 
process that produces individual systems that are not 
immediately adapted to their environment, but 
which have the ability to adapt themselves to many 
environments by the first order adaptive process of 
learning. Viewed from this perspective, the learning 
mechanisms themselves are the object of evolution. 
A vital component of the overall situation which 
produces learning systems is the environment. If 
the environment were relatively static, there might 
be little need for learning systems to evolve. 

This is the approach taken in Chalmers [37]. In 
these experiments, supervised learning was applied 
to fully-connected, single layer, feed-forward net- 
works with sigmoidal output units, with a built in 
bias unit to allow for the learning of thresholds. 
Here a string encodes the weight space dynamics of 
a connectionist system - that is, it encodes a 
potential learning procedure. 

6. What is Wrong with Present GAs? 

The TSP is typical of hard combinatoric search. For 
n cities there are �89 undirected tours. This 
number rises extremely rapidly as n becomes large. 
For all known algorithms the time required to 
determine a minimal length tour thus rises exponen- 
tially as the problem size increases. 

Suppose we weaken the requirements. Instead of 
seeking a global optimum, suppose we ask for a 
near optimal solution with high probability. Here 
the probability measure is defined over the space 
of all possible problems - for example, over all 
possible sets of n points chosen from the unit square. 
Then the situation changes radically, we have the 
following 

Theorem Karp [3815., For every c > 0 there is an 
algorithm A(e)  such that A(e)  runs in time 
C(e) n+O(n log n) and with probability 1, A(e) 
produces a tour of  length not more than 1 + ~ times 
the length of  a minimal tour. 

How is this magic achieved? The answer is by using 
a basic method in computer science, viz. divide and 
conquer. 

The cellular disection algorithm proceeds by 
breaking the problem into parts (clusters of cities), 
solving these smaller problems and then gluing the 

Fig. 8. Production system producing a 2-bit parity network. 5 See also Steele [39]. 
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solutions together. Of course, we can apply this 
idea recursively as many times as necessary. 

As another example, consider the evolution of 
the nervous system. The speed and function of 
neurons has not increased much in evolution, once 
a few tricks like myelination (electrical insulation of 
the axon) were developed. Rather,  the evolutionary 
process, having developed one kind of electrically 
active cell useful for information transmission, then 
went on to develop small circuits of such cells 
with simple functional significance, and then more 
complex circuits using the earlier circuits as building 
blocks. Once this had been accomplished it is 
arguable that a radical redesign of the basic neural 
component would be 'counter-productive', since it 
would probably require the whole process to begin 
again. Competition between such a new organism 
and existing more highly developed organisms would 
tend to reduce the opportunities for neural circuits 
to develop using the radically new neuron. 

We can view the natural evolution of neural 
circuitry in biology as a kind of 'bottom up' divide 
and conquer, in which increased performance is 
obtained by using the results of early search as 
building blocks for the more sophisticated later 
solutions. 

My feeling regarding existing GAs stems from 
this perception: divide and conquer is an essential 
ingredient of  successful (i.e. scalable) combinatoric 
search algorithms. As far as I am aware, GAs at 
present, including the evolutionary algorithms of 
Muhlenbein and Gorges-Schleuter, lack this essen- 
tial ingredient, and so, even granted intrinsic 
parallelism, cannot hope to scale in a reasonable 
fashion. 

On the other hand, there is no reason why the 
evolutionary approach cannot be equipped with 
these ideas 6, and it seems that this is one direction 
in which research in GAs might profitably proceed. 
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