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Abstract: Theoretical equations for the permittivity and conductivity of a heterogeneous 
mixture containing an oriented dispersed phase of spheroidal shape are limited to low 
volume fractions of dispersed phase. Two new sets of equations have been derived here 
for such systems using approaches which have been shown previously to be applicable to 
higher concentrations. One set has generalised forms of equations given by Bruggeman 
and Hanai and includes simplifications applicable to oil in water (O/W) and water in oil 
(W/O) systems. The other set has generalised forms of an equation given by Looyenga. 

Tabulated mixture permittivity e and dielectric increment Ae values are presented and, 
with the exception of O ( W systems containing prolate spheroids, the two types of equa- 
tion show significant differences in both e and Ae. For both types Ae is strongly depend- 
ent on the ratio of the conductivities of the two media of a W/O system. 

The relevance of the mixture equations to the electrical behaviour of micellar, micro- 
emulsion and liquid crystalline systems is considered. 
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Introduction 

There are many equations available for determining 
permittivity and conductivity values for heterogene- 
ous mixtures containing a dispersed phase of spherical 
shape; these have been reviewed by van Beck [1] and 
Hanai [2]. Most formulae are only applicable to low 
volume fractions of dispersed phase. The equations of 
Bruggeman [3] and Looyenga [4], which are exten- 
sions of formulae applicable to low volume fractions 
up to higher concentrations, by a successive incremen- 
tation method, have been shown to be among the best 
for predicting permittivity values. 

In conductivity studies, the equations of Hanai [5], 
which are an extension of the Bruggeman equation to 
the more general case, in which the conductivity com- 
ponent is significant, are favoured [5-7]. These Hanai- 
Bruggeman equations do not enable the complex per- 
mittivity to be found explicitly, but the high and low 
frequency limiting values for both permittivity and 
conductivity in a Maxwell-Wagner type dispersion 
[8, 9] can be determined. 

As well as being applicable to mixtures in which the 
dispersed component is of macroscopic size, it has 

been shown that heterogenous mixture equations can 
be usefully applied to systems containing a much smal- 
ler sized dispersed component, such as in micellar and 
microemulsion systems [10-13]. Further, it has been 
shown that in some of these systems, the dispersed 
phase is of a spheroidal rather than spherical shape 
[10,14,15]. In these and many other fluid systems, the 
dispersed phase will have rotational mobility and will 
thus, as pointed out by Schwarz et al. [16], be oriented 
by an applied electric field. 

Ther are relatively few equations for oriented sphe- 
roids, with those due to Sillars [17], Mandel [18] and 
van Beek [1] for permittivity and Fricke [19] for con- 
ductivity being the most commonly used. However, 
these equations are of limited use in that they are only 
applicable to low volume fractions of dispersed phase 
[1, 2,17]. A more satisfactory situation would be to 
have mixture equations for spheroidal shape based on 
the more widely applicable ones of Bruggeman, Hanai 
and Looyenga. 

While Reynolds and Hough [20] have extended the 
Bruggeman equation for the case of randomly oriented 
spheroids and this has been further extended by Boned 
and Peyrelasse [21] to include conductivity behaviour, 
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the equations are unwieldy and do not directly yield 
permittivity and conductivity values except in a few 
special cases. As the concentration of dispersed phase 
is increased, orientation becomes progressively more 
probable on packing grounds, particularly at larger 
deviations from spherical shape [22]. Thus there are 
benefits in the generation of equations which are easy 
to apply to both directed and randomly oriented 
shapes in both mobile and immobile systems. 

It has been claimed that the Looyenga equation is in 
principle applicable to all spheroidal shapes [4]. This is 
to be disputed however because its derivation involves 
the use of an equation only applicable to spheres, such 
as that due to BSttcher [23]. 

For comparison, derivations of extensions to both 
the Hanai-Bruggeman and the Looyenga equations 
for the case of an oriented dispersed phase of spheroi- 
dal shape are presented here. The latter equation is also 
generalised to include conductivity effects. 

Derivation of new equations 

Generalised Bruggeman equation 
The Bruggeman integral method can be applied to 

oriented spheroidal shapes by using the equations of 
Sillars [17], Mandel [18] or van Beek [1]. 

The Silars equation will be used here and can be 
expressed in the form 

e - -  e l )  e l  

e = S 1 + q~ e l  + Aa(s2 - e l )  (1) 

where el, e2 and e are the respective permittivities of 
the continuous phase, the dispersed phase and the mix- 
ture, r is the volume fraction of dispersed phase and A~ 
is the depolarizing factor along the a-axis given by the 
equation 

abc ; ds 
Aa - 2 (S + a2)3/2(s + b2)1/2(s + C2) 1/2 (2) 

o 

where a, b and c are the lengths of the semi-axes of the 
spheroids, with b = c [1]. 

For prolate spheroids [1,17]: 

- 1  
A s -   )2_1 

+ ] 

For oblate spheroids 

1 (b) arc c~ (b) 

A a - 1 -  (b)2 [ 1 -  (/))2] 3/2 (4) 

1 (In the original formulation For spheres Aa = ~- 

Sillars used a factor n where n = 1/Aa.) 
The Sillars equation is rendered into incremental 

form by adopting the following changes [1, 2]: el is 

replaced by e, e by e + Ae and ~ b ~  where Ar 

the incremental change in volume fraction and r is the 
volume fraction after a given addition. Inserting these 
permittivity and volume fraction changes into the Sil- 
lars equation (1) gives 

[e(1 - Aa) + A~e2]Ae Ar 
c ( e 2  - e )  - 1 - r  

(5) 

Integration of (5) between the limits el and e for the 
permittivity and 0 and r for the volume fraction gives 

e - e 2  (-~3-)Aa=l-qS. (6) 
e I - -  e 2 

The same result is also obtained when the Sillars equa- 
tion is replaced by either that of Mandel [18] or van 

[1]. For spheres Aa = 3 '  and the Bruggeman Beek 
equation is obtained. 

Generalised Hanai-Bruggeman equations 
The Sillars equation can also be expressed in com- 

plex form for appropriate systems [17] 

* ] 
e* = 1 + r + Ao(e  - J" (7) 

Applying the incremental changes, e~'-+e*, e*--,e* 
+ Ae and r --, Ar - r gives equation (5) in complex 

form. 
Provided the complex permittivity is continuous 

during incrementation from e~' to e* the complex inte- 
gral can be solved [2, 24] giving 

c~ c~\e* l = 1 - - r  ( 8 )  
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which is the generalised Bruggeman equation in com- 
plex form. 

This equation is then solved using the following 
simplified form of the Hanai method [2]. 

The complex quantities are expressed as 

E* = (c 2 + y2) I/2 exp [ -  j arctan(y/e)] (9) 

where y is the dielectric loss (= jo/COeo where o is the 
conductivity). 

E* -- E~ ~- [(E -- E2) 2 

+ ~ - Y 2 ) 2 ] i / 2 e x p [ - j a r c t a n ( ~ ) ]  

(10) 

E~ -- E~ : [(E 1 -- E2) 2 

+~I--'2)211/2exp[ -jarctan(J21-y21]'\ E1 -- E2/j  

(11) 

Substituting into equation (8) and separating real and 
imaginary parts yields: 

[ (E-<) + + yfiAo ( 1 -  ~b) 2 

(12) 

and 

arctan [ eyl -- elY] 
eel+YYlJ 

([_ --E2) C V I - - ~ 2 ) - - ( E 1 - - E 2 ) ~ - - Y 2 ) ]  
= A~ arctan Z-@e=) (el -- e2) + (Y -- Y2) ~1 Y2) " 

(13) 

Equation (13) is solved to obtain e and y using the 
approximation arctan g = g/and is thus only applic- 
able for very low values of ~. This approximation is 
valid for the following 

a) The high frequency limiting case where e l>  Yl, e2 
> Y2 and e > y (e = coo, a = oo~) for which 

go~--e2 ( gllAa 
el - e2 ~77/ = 1 - r (14) 

and 

[1 ]1o1.+.] 
ooo A~ (eoo -- e2) - = ~ e[T/7--- coo - e2 

O1 (15) 
C1 

b) The low frequency limiting case where Yl "> El, Y2 
"> e2 and y -> e (e = Cs, o = as) for which 

[ 1 ,] 
e S Aa(OS--02 ) = Aa [O1__O2 -t- - -  0 S - -  02- 

E1 (16) 
Ol 

and 

/ . \ i o~}A~=I_ r  (17) 08--02 
01 -- 02 \ (IS/ 

These equations can be simplified when the two 
components of the mixture have significantly different 
conductivities as will be the case for dispersions of oil 
in water (O/W) and water in oil (W/O). 

For O/W o2 ~ Ol, o2 ~ Os and the low frequency 
limiting values of e and o reduce to 

1 [{e1(1- Aa) - e2} (1-  r 1-1vAa + c3](18) 
Cs - 1 - Aa 

and 

1 
Os = o1(1 - r (19) 

For W/O ol ~ 02, ol ~ Os and the low frequency limit- 
ing values reduce to 

el  (20) ES--  1 
(1 _~)a~ 

and 

O1 (21) O s -  l_k_" 
(1 - r Ao 

1 
For spheres Aa = ~- and the Hanai equations are 
obtained. 
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Generalised Looyenga equation 

Derivation of the Looyenga equation is also based 
on incremental changes, where in this case they are 
el --, s - As, e2--, s + As [4]. For the volume fraction 
term, the mixture is considered to contain a volume 
fraction ~' with a permittivity (e + As) and (1 -  r 
with a permittivity (s  - As) such that 

r = (1 - cp')qb(s - As) + cp'. cp(s + As) (22) 

where r r  As) and ~b(e + As) are all volume 
fraction functions. When equation (22) is expanded in 
a Taylor's series form to the second derivative, we 
obtain: 

qb'-  1 1 As . (23) 
2 4 de~de 

Inserting the incremental permittivity changes into the 
Sillars equation (1) gives 

~b' 1 [  2 A A S ]  
= ~  1 +  a--F- J. (24) 

Combining equations (23) and (24): 

1 d2(/) 
2A----7 e ~ -  + = 0 (25) 

which on integration, together with the appropriate 
boundary conditions, gives 

1 
S = [S 1-2Aa + r  1-2Aa -- Sll-2Aa)] 1-2Aa" (26) 

1 
For spheres, A= = -5 and the Looyenga equation is 
obtained�9 

Extension of  Looyenga equation to include conductivity 

As with the Bruggeman equation, the generalised 
Looyenga equation can also be expressed in complex 
form: 

1 

S* = [ ~  1-2Aa -{- r 1-2& - - ~ l - 2 A a ) ]  1 -2Aa .  (27) 

Expressing the complex quantities in the same form as 
equations (9), (10) and (11) and substituting back into 

equation (27) gives on equating real and imaginary 
parts: 

[ S2 + )2211- 2Aa 2Aa - -  [ S22 "}- )2211--2 
�9 COS 0 1 - - 1 =  r  ] 

�9 cos 0 2 -  qb (28) 

w h e r e  0 1 = (1 - 2Aa) [arctan (y/e) - a r c t a n  ()2JSl)] 

(29) 

and 02 = (1 -  2&)[arctan (y je2) -  arctan (,Vjel)] 

(30) 
and 

e-+)2-- ~ - s i n O a = ~  2 .sin02 
+)21 " 

(31) 

These equations are solved for the following two limit- 
ing cases: 

(a) The high frequency limit ~71 >>YI, S2 >~>)22 and 
e > y (e = Coo, o = oo~) for which conditions 

e~ -2Aa = s 1-2& + r -2Aa -s~ -2&) (32) 

and 

o~ = - -  ~ (O2e l - -OlS2)  + o lS~  �9 (33) 
el L\e~/ 

(b) The low frequency limit )21 > el, )22 >>22 and 
)2 > s (s = Ss, o = Os) for which 

SS = - -  OSSl -- - -  @(O2Sl - o122) (34) 
01 \ a S /  

and 

Ols-2& = o l -2& + dp(ol2-2& _ 01-2A~). (35) 

For these equations simplified forms for the cases of 
Ol > 02 and ol < o2 cannot be given (see Table 5). 

D i s c u s s i o n  

The extended Hanai-Bruggeman values for the high 
and low frequency limiting mixture-permittivites, s~ 
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Table 1. Low and high frequency limiting values of permittivity 
given by extended Hanai-Bruggeman equation for a hypothetical 
oil in water system 

a/b = 3 a/b = 1 a/b = 1/3 
gS g~ gS g~ gS g~ 

0.10 69.6 69.6 67.0 67.0 59.8 59.8 
0.20 61.2 61.2 56.7 56.7 44.8 44.7 
0.30 53.0 53.0 46.9 46.9 32.8 32.6 
0.40 44.9 44.9 37.9 37.9 23.4 23.0 
0.50 37.0 37.0 29.5 29.5 16.3 15.8 
0.60 29.3 29.3 22.0 21.9 11.4 10.5 
0.70 21.9 21.9 15.3 15.2 8.2 6.9 
0.80 14.7 14.7 9.7 9.6 6.4 4.5 
0.90 8.0 7.9 5.4 5.1 5.6 2.9 

Table 3. Low and high frequency limiting values of permittivity 
given by extended Looyenga equations for a hypothetical oil in wa- 
ter system with ojol  = 0.001. (O/W and W/O systems generate the 
same permittivities for given proportions of water and oil) 

a/b = 3 a/b = 1 a/b = 1/3 
s s ~S g~ gS g~ 

0.10 69.0 68.7 74.7 62.7 175.6 43.8 
0.20 60.3 59.7 68.8 49.5 82.3 26.6 
0.30 51.9 51.0 61.0 38.3 41.1 17.1 
0.40 43.8 42.6 51.9 28.9 22.5 11.5 
0.50 35.9 34.5 42.1 21.2 13.3 8.1 
0.60 28.4 26.8 32.0 15.0 8.4 5.8 
0.70 21.4 19.6 22.4 10.1 5.6 4.3 
0.80 14.6 13.0 13.7 6.5 3.8 3.3 
0.90 8.5 7.0 6.8 3.8 2.7 2.5 

and es, as a function of volume fraction of dispersed 
phase ~b for axial ratios a/b = 3 (prolate spheroids), 1 
(spheres) and 1/3 (oblate spheroids) are given for an 
O/W system in table I and for W/O table 2. A value of 
78.0 for the permittivity of water and 2.0 for that of oil, 
corresponding to room temperature, has been used, 
with es being calculated using one of the simplified 
equations, (18) or (20) as appropriate. 

The extended Looyenga values for coo and es at vari- 
ous values of ~O for the above three axial ratios are given 
for O/W in table 3, where a conductivity ratio ojol = 
0.001 has been used in the evalutaion of es. This type of 
equation generates the same permittivities for O/W 
and W/O for given proportions of water and oil, that 
is, a volume fraction ~b of O/W has the same permittiv- 
ity as a fraction (1 - ~) of W/O. 

Although orientation of oblate spheroids with their 
unique axis parallel to the applied field is physically 

Table 2. Low and high frequency limiting of permittivity given by 
extended Hanai-Bruggeman equations for a hypothetical water in 
oil system 

a/b = 3 a/b = 1 a/b = 1/3 
CS s ES g~ CS g~ 

0.10 5.3 4.1 2.7 2.7 2.4 2.4 
0.20 15.5 7.6 3.9 3.6 2.8 2.8 
0.30 52.7 12.8 5.8 5.1 3.5 3.4 
0.40 216.9 19.6 9.3 7.4 4.5 4.3 
0.50 1155.5 27.4 16.0 11.0 6.0 5.5 
0.60 8950.7 36.4 31.3 16.5 8.5 7.5 
0.70 1.25.103 45.9 74.3 25.1 13.3 10.9 
0.80 5.17.106 56.1 251.2 37.6 25.2 17.6 
0.90 2.99.109 66.8 2.01.103 55.0 75.1 33.0 

unrealistic for many systems, because it is unlikely to 
be a direction of stable orientation [16,17], it may well 
be appropriate in certain surfactant and liquid crystal- 
line systems where the molecular dipole moment of 
the dispersed phase lies perpendicular to that of, for 
example, radially distributed molecules [25]. 

The results given here show that the values of coo and 
es are dependent both on dispersed phase shape and 
the mixture equation used, except for prolate spheroi- 
dal O/W systems where the two types of equation 
generate similar values. As the shape becomes progres- 
sively more prolate the permittivity values converge 
and in the limit of a/b -> 1 both types of equation 
reduce to the simple ideal mixing equation 

es = eo~ = ~bcz + (1 - ~ ) e  I . 

This is equivalent to two parallel layers aligned with 
the field and continuous between the two electrodes. 
The dielectric increment Ae(Ae = Cs - coo) is zero for 
this case. 

The extended Hanai-Bruggeman equations give a 
very small dielectric increment for all O/W systems 
considered except for the oblate shape at high concen- 
trations. For W/O Ae is generally significant, and is lar- 
gest for the prolate shape, with extremely large Ae 
values being obtained at higher concentrations. For 
oblate shaped W/O systems Ae is small over most of 
the concentration range and even at the highest con- 
centration it is only moderate. This latter behaviour 
differs from that obtained by Boned and Peyrelasse 
[21] for random orientations where very high Ae 
values were obtained for both oblate and prolate 
shapes. 
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Table 4. Dielectric increment Ae for hypothetical water in oil 
systems for ~0 = 0.5 given by extended Hanai-Bruggeman equations 

oJo2 Ae 
a/b = 3 a / b  = 1 a / b  = 1/3 

0.3 85.1 89.4 77.3 
0.1 83.3 70.6 43.4 
0.03 84.3 48.1 17.3 
0.01 89.6 26.5 7.3 
0.003 111.8 13.4 2.6 
0.001 171.2 5.4 1.2 
0.0001 593.5 5.3 0.6 
0.00001 1027.6 5.3 0.5 

Table 5. Dielectric increment Ae for hypothetical water in oil 
systems for ~ = 0.5 given by extended Looyenga equations 

0(02 ae 
a/b = 3 a/b = 1 a/b = 1/3 

0.3 1.9 7.6 11.0 
0.1 0.5 2.4 2.6 
0.03 0.0 0.1 0.0 
0.01 0.2 1.2 0.7 
0.003 0.8 7.3 2.9 
0.001 1.7 20.9 5.2 
0.0001 3.7 116.5 9.8 
0.00001 7.7 547.0 13.2 

The extended Looyenga equations give a small die- 
lectric increment for the prolate shape at all concentra- 
tions, but Ae is significant for spheres and oblate sphe- 
roids, and largest for the oblate shape at low concentra- 
tions. 

The equations given here show major differences in 
the dependence of the dielectric increment on the ratio 
of the conductivities of the two components. Tables 4 
and 5 give the extended Hanai-Bruggeman and 
extended Looyenga equation values respectively for 
Ae as a function ofoJo2 for W/O systems with ~ = 0.5. 

For the Hanai-Bruggeman type Ae progressively 
falls with decreasing oJo2 for oblate spheroids and 
spheres to attain limiting values of 0.5 and 5.3 respec- 
tively, compared with values of 0.5 and 4.9 given by 
the simplified equation (20). For the prolate shape Ae 
progressively increases and has not attained the value 
of 1128.5 given by equation (20) even when oJo2 = 
10 -s. 

For the Looyenga type, for all three shapes, Ae ini- 
tially falls with decreasing ol/o2 becoming zero at ol/o2 
= 0.03 and then increases again. For spheres large 
increments are predicted when ol/o2 is small. These 
important features show the relevance of conductivity 
data to complement dielectric data in studies of hetero- 
geneous systems. 

Although the theoretical bases for the Hanai-Brug- 
geman and the Looyenga equations are probably 
equally valid [26], dielectric data for both O/W and 
W/O systems of assumed spherically-shaped 
dispersed phase gives a dielectric increment which is in 
reasonable agreement with the Hanai-Bruggeman 
approach [12, 27-29]. This suggests that in such sys- 
tems the latter is more appropriate. Also, data on cer- 
tain spheroidal micellar systems are better accounted 
for by the extended Bruggeman equation rather than 
the Looyenga type [11]. 

However, a lack of experimental data on systems 
with dispersed phases of various shapes at high con- 
centrations prevents an assessment of the usefulness of 
the equations given here. Although the internal field of 
the dispersed globule, together with bound water 
effects and their magnitudes, present considerable 
computational difficulties [25, 30, 31], further studies 
on micellar arid microemulsion systems, together with 
studies on certain liquid crystalline structures should 
provide data which will yield to analysis. 
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