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Theory of dielectric relaxations due to the interfacial polarization 
for two-component suspensions of spheres 
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Abstract: A theoretical formula of dielectric relaxation in a form of complex relative per- 
mittivity is derived for dilute suspensions of spherical particles of two kinds on the basis of 
the Maxwell-Wagner theory of interracial polarization. Another theoretical formula is 
derived further for concentrated suspensions of spheres of two kinds on condition that 
the formula derived above holds for the infinitesimally increasing process in concentra- 
tion of the dispersed spheres. Furthermore a theoretical formula is derived for concen- 
trated suspensions of shelled spheres of two kinds as the extension of the formula for con- 
centrated suspensions. By use of the theoretical formulas proposed, values of the permit- 
tivities and the conductivities of the two-component suspensions were calculated for 
some examples with different sets of phase parameters. Results of the numerical calcula- 
tion demonstrates dielectric relaxation profiles full of variety and characteristic of the 
suspensions containing two kinds of spheres covered with or without shells. 
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1. Introduction 

It is well known theoretically as well as experimen- 
tally that suspensions of particles in a continuous me- 
dium show dielectric relaxations due to interfacial po- 
larization. Maxwell [1] and Wagner [2] proposed a die- 
lectric theory of the interracial polarization for a dilute 
suspension of spherical particles. Afterwards Hanai 
[3, 4] developed a dielectric theory of interracial polar- 
ization for concentrated suspensions on the basis of the 
Maxwell-Wagner theory. 

The dielectric relaxations predicted from the theo- 
ries were discussed experimentally by many workers. 
The limiting values of the permittivities and conducti- 
vities at high and low frequencies in regard to the die- 
lectric relaxations were discussed for a variety of emul- 
sions [5]. The frequency dependence of the permittivi- 
ties and the conductivities was also discussed in detail 
for W/O emulsions [6, 7] and suspensions of ion 
exchange resin gel beads in water [8-11]. Furthermore 
the dielectric relaxations for the concentrated suspen- 
sions of spheres covered with a shell were formulated 

N 105 

and were successfully applied to the observations of 
polystyrene microcapsules [12,13]. 

All the examples showed that the theory developed 
by Hanai for concentrated suspensions is in satisfac- 
tory agreement with the observed results as compared 
with the Maxwell-Wagner theory derived for dilute 
suspensions. At the present stage of the development 
of theories, it is desired to formulate and discuss the 
dielectric relaxation behavior of a concentrated 
suspension containing two kinds of dispersed par- 
ticles; the suspension of this type is termed a two-com- 
ponent suspension hereinafter. 

As regards dielectric theories for such two-com- 
ponent suspensions, Grosse [14] proposed an equation 
of the Bruggeman-Hanai type [15, 3] extended to two- 
component suspensions. Since conductivities are left 
out of theoretical consideration, dielectric relaxations 
due to the interfacial polarization cannot be discussed 
with his equation. Recently Boned and Peyrelasse [16] 
derived some theoretical formulas of complex permit- 
tivities for the case of multicomponent ellipsoidal 
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suspensions. Their discussion is of great use especially 
for such dilute ellipsoidal or spheroidal suspensions. 
Boyle [17] also derived theoretical equations for the 
permittivity and the conductivity of suspensions of an 
oriented dispersed phase of spheroidal shape applic- 
able to higher concentrations. No attempt has so far 
been made to formulate the complex permittivity of 
two- or multicomponent suspensions. 

In this paper, theoretical fromulas for dilute two- 
component suspensions are first introduced on the 
basis of the Maxwell-Wagner theory. Next theoretical 
formulas are derived for concentrated two-compon- 
ent suspensions. Furthermore formulas are derived for 
concentrated two-component suspensions of shelled 
particles. Some frequency profiles are shown of per- 
mittivity and conductivity calculated from the theore- 
tical formulas. 

2. Extension of the Maxwell-Wagner theory to a 
dilute two-component suspension of spheres 

Maxwell [1] and Wagner [2] presented a dielectric 
theory of interracial polarization for a dilute suspen- 
sion of spherical particles. Without loss of generality of 
the formulation, their theoretical formula can be ex- 
tended to a suspension of dispersed particles of two 
kinds, henceforward termed j- and k-spheres, as the 
following: 

* * * * * 

e__-e~ _ e j - e a  @j + e k - &  Oh, 
e* + 2e* * * ek + 2Ca ej + 2e~ ~ -~7 ,  (1) 

where e*, e*, e~, and e~ denote the complex relative 
permittivity of the suspension, the continuous medi- 
um, the suspended j- and k-spheres, and @~ and Oh 
mean the volume fractions of the j- and k-spl~eres, re- 
spectively. 

Asterisked permittivities e*'s are written as e* = e + 
~e/(jc0 e v) in terms of relative permittivity e, electrical 
conductivity ~e, angular frequency co, the permittivity 
of vacuum e v, and imaginary unit }. 

This Equation (1) is transformed to an explicit form 
with respect to e* as 

~3" , X 
= e a --~, (2) 

where 

x = (e;' + 2e *) + 2e  a) + 2(ca + 2e *)(e 7 - e a) o j  

+ 2 (e  7' + 2e*) - o h ,  ( 2 - x )  

and 

Y = (ej ~ + 2e*)(e~ + 2e*)-  (e~ + 2e*)(e~'- e*)Oj 

- (e~ + 2e*)(e~ - e*)Oh. (2-Y) 

3. Derivation of the complex permittivity for a 
concentrated two-component suspension 

3.1 Relation for infinitesimal increase of the dispersed 
phase in the continuous phase 

It is assumed in the present theory that the dispersed 
phase to be added to the continuous phase is a mixture' 
of the k- and the j-spheres with a fixed volume ratio K. 
At the final state in high concentrations, therefore, the 
volume fraction of the k-spheres Ok and that of the j- 
spheres @j are related with each other by a relation 

_ K .  (3) 
0 i 

The total volume fraction @ of the dispersed phase is 
given by 

@ = Ok + @j. (4) 

From Equations (3) and (4), we have 

1 K 
@ j -  1 + ~ @  and O k -  1 + ~ @ "  (5) 

Now we assume that the Maxwell-Wagner type 
Equation (1) holds for the infinitesimal increase in con- 
centration such as that an infinitesimal quantity of the 
dispersed phase is added to the dispersion system of an 
arbitrary concentration. For such an infinitesimally 
increasing process of the dispersed phase, e*, e* and �9 
in Equation (1) should be replaced as follows: 

AO' 
e*--,e*, e * ~ e * + A e * ,  and @-- ,1_@ ~ '  (6) 

where Ae* denotes an increment of e* associated with 
this infinitesimally increasing process, and @' means 
the volume fraction of the dispersed phase which is a 
mixture of the j- and the k-spheres. This replacement 
is the same as that adopted by Bruggeman [15] and 
Hanai [3] to derive dielectric formulas for concentrat- 
ed suspensions. 
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Using Equations (5) and (6), a relation between de* 
and A 4 '  on this infinitesimal process is derived from 
Equation (1) as 

- A 4 '  _ F e*-e.*j e*-e~ K] - 1 1 + K  
1 - @' - [ 2e* + e~' + ~-*~ 7~ 3e* Ae*. (7) 

It is considered that a concentrated suspension is 
obtained as a result of a succession of these infinitesi- 
mally increasing processes. Mathematical representa- 
tion of such a succession is the integration of Equation 
(7) over the ranges r  [0, @] and e* [e*, e*]. 

where 

M = - 2 ( a + f l ) = ( e ~ + e ~ ) -  3w/+ekK,.r176 * X (15) 
I + K  

After somewhat cumbersome calculation by com- 
parison between Equations (10) and (11), the undeter- 
mined coefficients A, B and C are determined as the 
following: 

C -- - 1, (16) 

1 1 [ e~' + e~ K] (17) 
B = ~ - -  4(a-/~) (Cj~ + e ~ ) +  X+K J' 

3.2 Resolution into partial fractions of the infinitesimal 
relation 

In order to perform the integral of the infinitesimal 
relation, Equation (7) must be rewritten in the form of 
partial fractions as follows: 

and 

1 
A = ~ +  

1 [ q + e ~ K ]  
4(o:-fl) (eT+e~)+ I + K  /" (18) 

- A 4 '  
1 - @' 

(2c* + ~7)(2~* + ~ )  ~ *  (8) 
3e*[2(e*) 2 + {(C1 + e~) -- 3 ( #  + e~K)/(1 + K)} e* - e~ e ~ ] '  

(2~* + ~7)(2~* + ~) ~* 
3e* 2(e* - c0(e* - t )  ' 

2(e*) 2 +(e~ + e~)e* + (1/2)qe~ 
= 3e* (e*- ,r)(e*-/~)  Ae*, 

B c) 
= + + Ae*. a e*--/~ -%-i- 

(9) 3.3 Integration of the infinitesimal relation to derive 
the equation for concentrated suspensions 

Integral of Equation (11) over the ranges @' [0, @] 
(10) and e* [e*, e*] is written as 

@ 

j - d@' 

(11) 0 i - -  

The complex quantities ez and Ig in Equation (9) are 
the two roots of a quadratic in e* appearing in the 
denominator of Equation (8), being written as 

= f  1 _~_r e ,A~ade ,+J B de*. (19) 

Complex integral calculation of Equation (19) leads to 

1 (M + t/M 2 + 8e~e~), 6 =  ---~- 

1 (M - 1/M 2 + 8e?e~), /~=-X 

and 

1 l/M2 + , , a - /~  = - -)- 8ej ek, 

(12) 

(13) 

(14) 

1 
In ( l -@)  = ~ [Loge* - Loge*] 

+ A[Log (e* - a) - Log(e* - a)] 

+ B[Log (e* - t )  - Log (e* - fl)], (20) 

where In denotes the natural logarithm of real num- 
bers, and Log means the principal value of the complex 
logarithm. This Equation (20) is the implicit function 
of e* for the concentrated two-component suspension 
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as a function of el, e~, K and �9 through Equations (12) 
to (15) and Equations (17) and (18). 

It can readily be shown below that Equation (20) 
tends to the equation proposed formerly for a single 
component suspension. Under a condition Ch = 0 or 
K = 0 which represents a single component suspension 
of the j-spheres only, one obtains M = e~ - 2e~, re = - 
e~/2,/~ = e~, A = 0, and B = 1 from Equations (12)- 
(18). Equation (20) is, therefore, simplified to the 
equation which was proposed in the previous paper 
[3, 4] for a single component suspension of j-spheres. 
For a suspension of k-spheres only, it follows that ~j = 
O, K = 0% M = e~ - 2e~, ce = - s~ /2, ~ = e~, A = 0, and 
B = 1. Equation (20) is simplified to the equation given 
in the previous papers for a k-sphere suspension. In the 
case of e~ = e*, which means a single component 
suspension witl~ the volume fraction 4 ,  it turns out 
that M = - e~, a = - #/2,/~ = e~, A = 0, and B = 1. 
Equation (20) is also simplified to the equation for a j- 
sphere suspension. 

4. Extension of the equation of concentrated 
suspension to a two-component  suspension of 
shelled spheres 

From a dielectric point of view, several examples 
such as microcapsules, lipid vesicle suspensions and bi- 
ological cell suspensions are considered to be suspen- 
sions of shelled spheres. 

Dielectric forumlation for this kind of concentrated 
suspension of shelled spheres can be achieved by intro- 
ducing equivalent complex relative permittivities e~ 
and e~k of the shelled j-spheres and k-spheres in the 
same manner as used previously in the dielectric analy- 
sis ofmicrocapsules [12,13], lipid vesicles [18] and ery- 
throcyte suspensions [19]. 

The formula of eq, for the j-spheres covered with the / 

j-shells and that of e~k for the k-spheres covered with 
the k-shells are given as follows: 

, , 2(1 - vi) es) + (1 + 2v]) e~ 
eqj = esj (2 + vj) e~) + (1 - vj) e~ ' 

, 2(1  - vk) e *h + (1 + 2vh) e*k 
C'qk = s (2 --b Vk) es* k --[- (1 --  Vk) ' 

and 

v k = ( 1 - 2  dk/3 (24) 

where d and D are the thickness and the outer diame- 
ter of the spherical shell, e* and e* are the complex rela- 
tive permittivity of the shell phase and of the inner 
phase, and the subscripts j and k refer to the j-spheres 
and the k-spheres, respectively. 

For this concentrated suspension of shelled spheres, 
the quantities a,/~, a -/~, M, A and B are expressed by 
the following formulas instead of by Equations (12) to 
(15) and Equations (17) and (18): 

1 (M + I/M 2 + 8eqj eqk ) (25) 

1 (M -- C M  2 -[- 8F~ql C.qk), ~=---8 ( 2 6 )  

1 l / M 2  + , , - -  [~ = - -  ~ 8F-,qj eqk , (27) 

u = ( q*j + - +  SkK) (28)  
I + K  ' 

I , * 1 1 eqJ+eqkK] (29) 
A = ~ + ~  (e~j+e~k)+ I + K  J '  

and 

B -  1 1 [ . r + r (30) 
2 4 C ~  (e~j+eqk)+ I + K  J" 

Consequently the complex relative permittivity e* 
of the two-component suspension of shelled spheres is 
given by Equation (20) as an implicit function of e~, 
es*k, ei~, e'k, d~, dh, Dj, Dk, K and �9 through Equations 
(21) to (30). 

5. Some numerical examples of the dielectric 
relaxation 

(21) In order to examine the frequency profile of the per- 
mittivity and the conductivity of suspensions of these 
kinds, numerical calculation was carried out for some 

(22) examples with different sets of phase parameters by 
means of the preceding formulas. Four typical 
examples, termed Systems, A, B, C and D, are speci- 

(23) fled by each set of phase parameters, whose values are 
listed in Table 1. 
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Table 1. Values of phase parameters characterizing Systems A, B, C and D for evaluating theoretical curves of the dielectric relaxation due to 
the interfacial polarizakon 

System A System B System C System D 

Constitution concentrated concentrated 
two-component two-component 
suspensions suspensions 
without shells of shelled spheres 

Equations concerned Equations (12) to (20) Equations (20) to (30) 

Continuous medium: 
r 3 80 80 80 
x~/l~S cm -1 0 1 1 1 

Shell phase of the dispersed particles: Dj = Dk = 500 I/m, d / =  dk = 2 pan 
j-shell, es[ 1 - 3 3 3 
xsff~S cm - 0 0 1 
k-shell, r - 3 3 3 
~e~k/~tS cm -1 - 0 0 0 

Inner phase of the dispersed particles: 
j-sphere, .. 80 80 80 80 
xi//t~S cm -t~J I 1 30 103 
k-sphere, elk 80 80 80 80 
:gild~S cm -1 103 103 103 10 s 

Volume fraction of the dispersed particles: 
total, r 0.8 0.6 0.6 0.6 
j-sphere, Oj 0.8-0 0.6-0 0.6-0 0.6-0 
k-sphere, Ok 0-0.8 0-0.6 0-0.6 0-0.6 

Number of dielectric relaxations 2 2 3 4 

Figures concerned Figures 1, 2 Figures 3, 4 Figures 5, 6 Figures 7, 8 

5.1 Two-component suspension without shells 

A suspension, termed System A, is assumed to be 
composed of two kinds of dispersed particles with 
respect to the conductivity of inner phases. The rela- 
tive permittivity e and the conductivity x of System A 
at each frequency can be calculated by means of Equa- 
tions (3)-(5), (12)-(18)and (20) for different values of 
the concentration ~i under a fixed value �9 = 0.8. The 
theoretical curves of the dielectric relaxation obtained 
are shwon in Figure 1, in which two distinct dielectric 
relaxations are found for the mixed systems of j- and k- 
spheres. 

Figure 2 shows the complex plane plots of the com- 
plex relative permittivity for a case, termed System 
A-d, with Oj = 0.1 in System A. Two circular arc loci 
can readily be found in the figure, being indications of 
two dielectric relaxations. 

5.2 Two-component suspension of shelled spheres 

The suspensions, termed System B, C and D in 
Table 1, are all assumed to contain two kinds of shelled 
spheres in such a manner that the inner phaSe conduc- 
tivity of j-spheres is different from that of k-spheres: 
namely xij # xik. The outer diameter and the shell 
thickness of the shelled spheres are assumed as Dj = Dk 
= 500 wn and dj = dk = 2 ~tm. The relative permittiv- 
ity e and the conductivity x of these Systems at each 
frequency can be calculated by means of Equations 
(3)-(5) and (20)-(30) for different values of the con- 
centration q~j under a fixed value �9 = 0.6. 

In System B, the inner phase conductivity of j- 
spheres xi, is assumed to be equal to that of the conti- 

I �9 

nuous medium ~e a. The frequency dependence of e, x 
and loss factor Ae" obtained is shown in Figure 3. The 
data of complex relative permittivity for a case, termed 
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Fig. 1. Frequency dependence of relative permittivity e, electrical 
conducitivity ~e and loss factor At" = 0e - ~e~)/(2n f ~ ~) for System 
A. The curves are calculated by means of Equations (3)-(5), (12)- 
(18) and (20) with the values of phase parameters listed in Table 1 
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Fig. 3. Frequency dependence of e, ~c and At" = (x - x/)/(2tt f ~ v) 
for System B. The curves are calculated by means of Equations (3)- 
(5), (20)-(30) with the values of phase parameters listed in Table 1 
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Fig. 2. Complex plane plots of relative permittivity e and loss factor 
At" for System A-d with ~j = 0.1. Numbers along the curve are the 
frequency. The values of phase parameters used are shown in 
Table I 
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Fig. 4. Complex plane plots of e and Ae" for System B-g with ~j = 
0.4. Numbers along the curve are the frequency 

System B-g, with ~j = 0.4 in System B are plotted in 
Figure 4. As readily seen in Figures 3 and 4, System B 
shows two distinct dielectric relaxations. 

In System C, the inner phase conductivity of j- 
spheres xij is assumed to be different from that Of the 
continuous medium xa. The frequency dependence of 
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Fig. 6. Complex plane plots of e and Ae" for System C-l with 
~ = 0.2 

e, x and loss factor Ae" calculated for System C is 
shown in Figure 5. The data, termed System C-l, for 
r = 0.2 in System C are plotted on the complex rela- 
tive permittivity plane in Figure 6. As readily seen in 
Figures 5 and 6, System C shows three dielectric relax- 
ations. 
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Fig. 7. Frequency dependence ofe,  x and Ae" = (x - ~el)/(2u f %) for 
System D. The values of phase parameters used are listed in Table 1 

A suspension, termed System D, is characterized by 
a set of phase parameters as shown in Table 1 with ~e~j = 
1 I~S cm -1 in addition to x 0 = 103 ~S cm-L The frequen- 
cy dependence of the relative permittivity c, the con- 
ductivity • and the loss factor Ad' calculated for Sys- 
tem D is shown in Figure 7. The data, termed System 
D-p, for ej = 0.2 in System D are plotted on the com- 
plex relative permittivity plane in Figure 8. This Sys- 
tem D is seen in Figures 7 and 8 to show four dielectric 
relaxations. 

It is concluded that Equation (20) gives different fre- 
quency profiles of permittivities and conductivities for 
concentrated two-component suspensions of particles 
covered with or without shells. The theory and the 
equations proposed in the present work can be applied 
to dielectric relaxation data on emulsions, suspensions, 
microcapsules, lipid vesicle suspensions and biological 
cell suspensions to obtain more valuable information 
concerning the inner structure of these disperse sys- 
tems. 
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Fig. 8. Complex plane plots ofe and Ae" for System 
D-p with ~] = 0.2 
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