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Summary. Although the steady flow of a granular material down a plane inclined slope has been 
exhaustively examined from both theoretical and experimental points of view, there is still no general 
agreement concerning the basic flow properties such as density and velocity profiles. The majority of 
studies assume that the velocity component of the material perpendicular to the inclined plane is 
sufficiently small to assume that it is everywhere zero. However, recent dynamical modelling of granular 
chute flow indicates that this component of velocity, although small, is actually non-zero. In this paper, 
we examine a dilatant double shearing theory for chute flow assuming that the perpendicular component 
of velocity is non-zero. An explicit analytical form for the perpendicular velocity profile is deduced which 
gives rise to an integral expression for the chute stream velocity. Assuming a linear decreasing density 
profile, numerical integration for the chute stream velocity predicts a non-linear profile which is concave 
in shape and which is in agreement with recent results from computer simulation and existing 
experimental data in the literature. 

1 Introduction 

Granular  media is the general term referring to systems involving solid particles such 
as soil, sand, powder, minerals, grains, beads or rocks which are immersed in a fluid 
environment which might be a vacuum, such as particles in outer space, air or gas 

such as in bulk material  handling and fluidized beds or a liquid such as particles in 
suspension and sedimentation. Such combinations all constitute important  engineering 
systems [1]-[3]  and because of their complexity, the study of granular  media presents 
a fundamental  challenge for basic science [4], [5]. 

A good deal of research has gone into describing the flow of granular  materials and 
considerable progress has been made between theory, experiment and computer  simulation 
[1]-[3].  F rom a theoretical perspective, there are essentially two different approaches for the 
description of granular flows. As a discrete many  particle system, one approach is to consider the 
individual particles while the other is to view granular media as a macroscopic system, that is as 
a continuum. Most  successful theories correspond to these two different approaches, namely 
kinetic theories [6 ] -  [9] based on gas dynamics, and double shearing theories [1], [10] based on 
cont inuum soil mechanics, and both approaches have been extensively applied to many  practical 
granular flows. For  the kinetic theories, see for example, the review articles of Savage [2] and 
Campbell  [3] and for the double shearing theories, see for example, the work of Spencer [1], [11] 
and the recent work of Hill and Wu [12] -  [15]. It  is generally believed that kinetic theories best 
describe rapid granular  flows while double shearing theories apply for initial failure or 
quasi-static granular  flows. 
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Fig. 1. Typical computer simulation results for c~ = 30 ~ and tan 5 = 0.4: a schematical diagram for granular 
chute flow, b perpendicular velocity profile v(y), c chute stream velocity profile u(y), d density profile O(Y) 
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Granular chute flow (indicated in Fig. la)  is perhaps one of the most studied systems 
theoretically [16]-[22],  experimentally [23]-[30],  and by computer simulation [31]-[34].  
Despite these extensive studies, there is no general agreement regarding the basic flow properties 
such as density and velocity profiles. For example, it is still a matter of speculation as to whether 
there exists a low density zone at the base boundary with a maximum at the middle of the flow 
depth or whether the density profile is simply a monotonically decreasing function. Similarly for 
the chute stream velocity, the question arises as to whether the profile is linear or non-linear and 
which is convex or concave in shape [35], [36]. In our recent computer simulation work on chute 
flow [34], we find that there is no low density zone at the base boundary, and a typical density 
profile Q(y) is shown in Fig. 1 d where y is the height above the chute base. A typical chute stream 
velocity profile u(y) is non-linear and is concave in shape as shown in Fig. 1 c. 

The chute flow of a dry granular material is generally regarded as a rapid flow for which the 
kinetic theory should be the most appropriate. However, recent work of Anderson and Jackson 
[21] argues that this is not necessarily the case and claims that a model based on a simple 
combination of kinetic and frictional theories [37], [19] gives better results. The question therefore 
arises as to whether or not double shearing theory can correctly describe the main qualitative 
features for chute flow of a dry granular material. 
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In the majority of the analysis of shear flows, the perpendicular component of velocity is 
assumed to be zero or at least sufficiently small to be ignored [16]. This appears to be a reasonable 
assumption since the perpendicular velocity component is in general much smaller than the 
chute stream velocity component [34], [27] (see Figs. I b and 1 c). In our recent work on dynamical 
modelling of both chute and Couette flows [34], [38], it has been observed that the perpendicular 
velocity component in chute flow is much more likely to be non-zero than that for simple Couette 
flow (Fig. lb). This is because physically in chute flow, in order to maintain an averaged steady 
flow, there should be some averaged perpendicular velocity which balances the downwards 
velocity caused by gravitation. This perpendicular velocity component depends on the averaged 
particle fraction (or density) and therefore the averaged interparticle distance. The larger the 
interparticle distance, the larger the perpendicular velocity that is required. If the averaged 
particle fraction is constant across the flow field, then the perpendicular velocity will also be 
a constant profile. It is expected that a zero perpendicular velocity occurs only under the 
condition of zero inter-particle distance. In a recent paper, Jenkins and Hanes [39] also discuss 
similar questions. 

The aim of this present paper is to investigate whether or not the ditatant double shearing 
theory applied to chute flow of granular materials and assuming the perpendicular velocity 
component is non-zero, predicts results which are qualitatively in agreement with our recent 
computer simulation results. We find by taking the perpendicular velocity component into 
account that dilatant shearing theory actually provides an excellent description of chute flow. We 
emphasise that the present analysis leads to a complicated integral equation for the 
determination of the density profile, which strictly speaking should be solved by an integral 
iteration scheme. However, the details are complicated and therefore we simply examine the 
predictions of our analysis assuming either constant or linearly decreasing density profiles. In 
particular, assuming a linear decreasing density profile, the predicted chute stream velocity 
profile is in excellent agreement with our computer simulation results and some data in the 
literature but despite this successful agreement our approach involves assuming a density profile 
which does not coincide with that presicted by our theory. In the following section, we briefly 
state the governing equations for plane granular flow assuming dilatant double shearing theory. 
In Section 3 we derive analytical solutions for the chute flow variables, and in Section 4 we 
compare our solutions with our recent dynamical simulation results. 

2 Governing equations 

The basic governing equations for plane deformations of a granular material, assuming double 
shearing theory for the determination of velocities, are fully presented by Spencer [1], and 
compact accounts can be found in Spencer [40] and Spencer and Bradley [11]. Here we use an 
extension of this theory, in which double shearing is accompanied by an expansion in the normal 
directions to the shear plane. This theory is referred to as dilatant double shearing and is due 
originally to Mehrabadi and Cowin [10], [41], [42], and the basic equations can also be found in 
Harris [43], [44]. 

With reference to rectangular Cartesian coordinates (x, y, z), as indicated in Fig. la,  and 
assuming that all stress and velocity components are independent of z and that azz is the 
intermediate principal stress, the basic equations for the tensor tr are as follows: 

~axx aa~ = a~xy ~ayy 
-~- + ~Y --Qg sin ~, ~x + ~ y  = Qg cos ~, (1) 
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which together with the Cou lomb-Mohr  yield condition 

(o.~x - o.y,)2 + 4o.~, = [2c cos 3 - (0.~x + o.yy) sin 3] 2, (2) 

constitute three equations for the stress components  o.x~, o.yy, O'~y. In these equations o denotes the 
density, e is the slope angle, 3 is the angle of internal friction (assumed constant) and c is the 
cohesion of the material. In conjunction with these equations there are additional relations 

o.x~ = - p  + q cos 20,  o.ry = - P  -- q cos 20,  o.xy = q sin 20,  (3) 

where p and q are defined by 

1 1 
P = - 2  (o.1 + o.2) = - ~  (0.~ + o.,y), (4) 

1 1 
q = ~ (o-1 - a:)  = ~ {(o.x~ - a,,) 2 + 4o.2y} 1/2, (5) 

where a l  and o-2 denote the maximum and minimum principal stresses respectively 
(a2 _-< o.~ _-< o'1), and 0 is the angle the principal stress o.1 makes with the x-axis. In this 
terminology we note that the Cou lomb-Mohr  yield condition (2) becomes 

q = p sin 3 + c cos 3, (6) 

and for known stress components,  the angle 0 can be determined from either of the following 

equations: 

tan 20 2axy a~x - o.yy = cos 20 = (7) 
o.~ - ayy' 2c cos 3 - (o.~ + o.yy) sin 3" 

Assuming that  the stress components  are known and therefore the angle 0, the velocities (u, v) 
in the (x, y) directions, assuming dilatant double shearing, are obtained as follows: 

~xx c o s 2 0  + + ~xx s i n 2 0 =  ~x + sin" 7 ' (8) 

~x s in20  - + ~xx cos 2 0 =  +2f2  - - -  , (9) 8x cos 7 

where f2 denotes the material derivative of 0 with respect to time, that  is 

00 00 ~ (10) 
Q= ~-  + u ~ -  x +v  ~y, 

and 7 is a constant referred to as the angle of dilatancy. If the velocity components  are known, the 
density r y, t) is determined from the continuity equation 

8~ U ~xSQ 8Q ( OU~x 8~y) + + V ~ y  + 0  + = 0 .  (11) 

We comment  here that for a highly dilatant material  the assumption that  the material  
parameters  ~, 3 and c are constant is physically unrealistic, but acceptable within the context of 
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demonstra t ing the quali tat ive behaviour  of the theory. We also note that  Morr i son  and 

Richmond [47] extend Spencer's incompressible double  shearing theory to include the inert ia 

terms in Eq. (1), and approximate  solutions to hopper  and chute problems are presented. 

A similar extension could be obtained for the di la tant  double shearing theory used here, a l though 

the solut ion details would be more  complicated.  In the following section we present new 

solutions to the above equations for the problem of steady granular  flow down a plane inclined 

chute. 

3 Solutions for granular chute f low 

F o r  s teady plane chute flow we would except that  all quantities are independent  of t and x, 

assuming that  the chute is infinitely long. Accordingly all quantities only depend upon the height 

y above the chute base and the two stress equations become simply 

dtrxy dayy 
- -  - Q(y) g sin ~, - -  = Q(y) g cos ~, (12) 
dy dy 

so that  we have 

o'xy = - 2 ( y )  sin ~, (13) 

%y = 2(y) cos ~, (14) 

where 2(y) is defined by 

Y 

~(y) = g I e(s) as, (15) 
h 

where h denotes the height of the free surface on which the stresses are zero. On introducing the 

quant i ty  # = ax~ - o-yy we may  deduce from Eq. (2) the following quadrat ic  equat ion:  

/~2 + 422 sin 2 ~ = [2(c cos 6 - 2 cos ~ sin 6) - / ~  sin 6] 2, (16) 

which simplifies to give 

cos 2 6 + 2 sin 6 (c cos 6 - 2 cos ~ sin 6) + 22 sin 2 ~ - (c cos 6 - 2 cos ~ sin 6) 2 = 0. 

(17) 

Using the nota t ion  

a = c c o s 6 -  2 c o s a s i n 6 ,  

b = [(e cos 6 - 2 cos a sin 6) 2 - 22 sin 2 a cos 2 6] 1/2 , 

there are two roots  of (17), 

/~ - - a s i n 6  +__b 

2 cos 2 6 ' 

(is) 

(19) 

(20) 
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which gives rise to two values of the angle  ~, thus  

2 sin c~ cos 2 6 
t an  20  = 

a sin 6 T b - '  
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(21) 

tan  y t an  (3 - 7) 
m = 1 + tan  y t an  (6 - ~)" (30) 

F r o m  (23), (24) and  (29) we have 

{ cos (6 --  y)} (31) du _ 2mvoB(A + B c o s  21//) m- 1 COS 2 0 + . , 
dy sm y- 

bo th  of which a p p e a r  to be phys ica l ly  reasonable .  We observe  tha t  f rom the def ini t ion of 2(y) it is 

c lear  tha t  0 is zero on the free surface (y = h). Also f rom the above  equa t ions  we see tha t  for 

a cohesionless  ma te r i a l  (c = 0) the angle  0 is cons tant .  Accord ingly ,  in the subsequent  analysis  we 

assume t h r o u g h o u t  tha t  c is non-zero .  

F o r  the d e t e rmin a t i o n  of the veloci ty  field and  with  the a s sumpt ion  

u = u(y),  v --- v(y), ~ = ~(y),  (22) 

Eqs. (8), (9) and  (11) s implify to yield 

du dv dv cos (6 - y) 
dy sin 20  - ~yy cos 20  dy sin y ' (23) 

du dv ( d~yy d~y ) sin ( 6 - 7 )  
- -cos20+ sin 2 0 = -  + 2 v  - - -  , (24) 
dy dy cos 7 

dQ dv 
--dy + 0 Uy = O, (25) 

f rom which it is a s imple ma t t e r  to  deduce  

dv sin (6 - y) 
d--~ (A + B cos 20) = - 2  v sin 2 0 ,  (26) 

cos y 

where  the cons tan t s  A and  B are defined by  

sin (a - ~) cos (6 - y) 
A = 1 + , (27) 

sin y cos y 

cos (6 - y) sin (6 - y) 
B - + (28)  

sin y cos y 

O n  in tegra t ing  (26) we m a y  readi ly  ob ta in  the explici t  express ion  

v(y) = vo(A + B cos 2~0) m, (29) 

where  Vo denotes  the a rb i t r a ry  cons tan t  of in teg ra t ion  and  m is a fur ther  cons tan t  defined by 
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and therefore upon integration we obtain 

r 

u(y) = -2mvoB  (A + B cos 2~) m- 1 cos 2~ + s~n~ (32) 

r 

where 0o denotes the value of 0 at the chute base (y = 0) and uo denotes a further arbitrary 
constant, which is the slip velocity at the base. Finally from (25), we have on integration 

Go 
~(Y) = vt)-'y" (33) 

where Q0 is a constant. F rom Eqs. (15), (21), (29) and (33) we may formulate a single but 
complicated integral equation for the determination of the density profile Q(Y), which in principle 

we could solve iteratively. However, the details are not simple and therefore in the numerical 

results of the following section we adopt the strategy of simply investigating the various velocity 
and density profiles predicted if we assume in Eq. (15) either constant or linearly decreasing 

density profiles. 

We note that from the explicit form of Eq. (29) and the fact that ~k is zero on the free 
surface we can show that there are no non-trivial solutions of this form for v(y) for which v is zero 

at the free surface y = h. That  is, from the condition A + B = 0 for @ = 0 (or even from the 

condition A -- B = 0 for @ = n/2) we may conclude that both A and B are identically zero. For  
example, the condition A + B = 0 can be readily factored to yield either cos (6 - 7) = - sin 6 or 

sin (6 - 7) = - cos 6, which can be simplified to yield ~ = 6/2 +_ n/4. However, even for these two 
restricted values of 7 we may show that the constants A and B as defined by Eqs. (27) and (28) are 

both identically zero. This implies that our solution always predicts a non-zero component  v at 

the free surface, which means that the free surface must be regarded as a statistical surface which 

has small fluctuations from y = h. 

4 Numerical results 

Equations (21), (29), (32) and (33) are the basic equations describing the chute flow field and the 
parameters involved depend upon the specific material and the physical properties of the chute. 

For  a given material, the coefficient of internal friction tan 6, the dilatancy angle 7 and the 

cohesion c are known parameters. For  a given chute, the slope angle ~ is known while the 
parameters Vo and Uo depend on the boundary  conditions of the chute base. While the 

perpendicular velocity component  v, the angle of the principal stress axis with respect to the 

x-axis @, and the density 0-profiles are all explicit forms, the chute velocity profile u must be 
integrated numerically. 

In order to illustrate the profiles for the above solution, we need to prescribe typical 
parameters. Here, we assume a coefficient of internal friction to be tan 6 = 0.4, which is the 

same value as that used in our computer simulation work [34]. We suppose that the dilatancy 
angle lies within the range 0 < 7 < 6 are here the value tan 7 = 0.2 is arbitrarily assigned. The 

acceleration due to gravity is taken as g = 9.8, and a typical chute slope angle is ~ = 30.0 ~ 
which is also used in our computer simulation results shown in Figs. 1 b -  1 d. For  a dry powder 
according to Rietema [45], a typical value for the cohesion constant is c = 6.1. For  purposes 
of illustration we simply set the remaining parameter values to unity, namely Vo, Uo, Oo and 
h are all taken to be unity. 
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Fig. 2. Typical profiles assuming density constant in equilibrium equations: a principal stress angle r 
b perpendicular velocity profile v(y), c chute stream velocity profile u(y), d density profile Q(y) 

In the first instance, the density Q in the equilibrium equations (12) is assumed to be a constant 
~o* in which case Eq. (15) becomes 

2(y) = g~o*(Y - h). (34) 

While both positive and negative values of r appear to be physically possible, here we only 
consider the case ~ > 0 and in Eq. (21) the negative sign applies. Figure 2 a  shows that ~k(y) is 
a decreasing function of the flow depth y. On the other hand, both v(y) and u(y) are increasing 
functions of y as shown in Figs. 2b and 2c. We note that the flow stream velocity u is almost 
a linear function of y. The density profile in Fig. 2 d shows a linear decreasing trend although the 
rate of  decrease is small. This appears to be in agreement with our computer simulation 
prediction shown in Fig. l d  but clearly contradicts our assumption that 0 is constant. 

We next assume a linear decreasing density in the equilibrium equations (12), namely 

Q(y) = eo*(h - y) (35) 
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Y 

so that Eq. (15) becomes 

1 
2(y) = ~- gQo*(Y - h) 2. (36) 

and all of the remaining functions are as given above. Again, we only consider the case o f~  > 0. 
Figures 3 a - 3 d show the corresponding profiles of 0(Y), v(y) u(y) and 0(Y)- The most interesting 
feature is that the u(y) profile which is non-linear and concave in shape is entirely in agreement 
with our computer simulation result shown in Fig. 1 c and the experimental results given in the 
literature [46]. The perpendicular velocity component (Fig. 3 b) and the density (Fig. 3 d) profiles 
are also non-linear and evidently this density profile is again different from that originally 
assumed. Strictly speaking, the density profile of the flow field should be determined iteratively 
rather than simply guessing the initial estimate but we do not attempt this approach here. 

For our purposes the above two arbitrary cases illustrate the main characteristics of the 
analytical solution. Figures 4 a - 4 d  show the profiles ofr  v(y), u(y) and O(Y) for different slope 
angles and assuming the linear decreasing density profile (35). These profiles share similar trends 
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such that the larger the slope angle, the more linear the profile becomes. We note that the most 
linear chute velocity profiles are obtained at small chute angles which is agreement with our 
computer simulation results [34]. 

5 C o n c l u s i o n s  

For granular flow down a plane inclined chute, the velocity component perpendicular to the 
chute base is an important flow property which for a realistic analysis should not be assumed 
negligible. Computer simulation results indicate this, and an explicit analytical form of this 
perpendicular velocity has been deduced assuming dilatant double shearing and from which an 
integral expression for the chute stream velocity has been obtained. In general, the density and 
velocity profiles of the flow field are coupled functions which in principle should be determined 
iteratively from an integral formulation. By considering a linear density decreasing distribution, 
a non-linear chute stream velocity profile which is concave in shape is found to be in excellent 
agreement with recent results obtained from computer simulation and with experimentally 
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obtained data. However, we emphasise that our approach means that the assumed density profile 

does not generally coincide with that predicted by our theory. We adopt this approach for 
reasons of simplicity and it does give rise to a chute stream velocity profile which is in agreement 

with established work. We also emphasise that the solution presented here predicts a small but 

non-zero perpendicular velocity at the free surface which is consistent with our computer 
simulation data and which we interpret as meaning that the surface must be regarded as 

a statistical surface which has small fluctuations from y = h. 
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