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Summary. The problem of mixed convection from vertical surfaces in a porous medium saturated with 
a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved 
numerically for the case of variable wall temperature conditions. Results for the details of the velocity and 
temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 
0.5-2.0. 

Notation 

d particle diameter 
f dimensionless stream function 
g acceleration due to gravity 
h heat transfer coefficient 
k thermal conductivity 
K permeability coefficient of the porous medium 
L length of the plate 
n viscosity index 
Nu Nusselt number 
Pe Peclet number 
Pr Prandtl number 
qw wall heat flux 
Ra Rayleigh number 
Re Reynolds number 
T temperature 
u, v velocity components in x and y directions 
x, y axial and normal coordinates 
c~ thermal diffusivity 
fl coefficient of thermal expansion 
r/ dimensionless distance 
O dimensionless temperature 
# dynamic viscosity 
0 density 

porosity 
Z mixed convection nonsimilar parameter 
~p stream function 

Subscripts 

w surface conditions 
oo conditions far away from the surface 
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1 Introduction 

Convective heat transfer in porous media has received considerable interest because of numerous 
thermal engineering applications in several areas such as geothermal engineering, thermal 
insulation systems, petroleum recovery, filtration processes, packed bed reactors, sensible heat 
storage beds, ceramic processing and ground water pollution. 

Similarity solutions for free convective heat transfer from a vertical plate in a fluid-saturated 
porous media were obtained by Cheng and Minkowycz [1]. Gorla and co-workers [2], [3] 
developed a procedure to investigate the nonsimilar boundary layer problem of free convection 
from a vertical plate embedded in a porous medium with an arbitrarily varying surface 
temperature or heat flux. The problem of mixed convection from surfaces embedded in porous 
media was studied by Minkowycz et al. [4] as well as Ranganathan and Viskanta [5]. Hsieh et al. 
[6] presented nonsimilar solutions for mixed convection in porous media. All these studies were 
concerned with Newtonian fluid flows. A number of industrially important fluids including fossil 
fuels which may saturate underground beds display non-Newtonian fluid behavior. Non- 
Newtonian fluids exhibit a nonlinear relationship between shear stress and shear rate. 

Chert and Chen [7] and Mehta and Rao [8] presented similarity solutions for free convection 
of non-Newtonian fluids over vertical surfaces in porous media. Nakayama and Koyama [9] 
studied the natural convection over a non-isothermal body of arbitrary geometry placed in 
a porous medium. A similarity solution was derived by Mehta and Rao [10] for the natural 
convective boundary layer flow of a non-Newtonian fluid over a non-isothermal horizontal plate 
immersed in a porous medium. The problem of mixed convection from vertical surfaces in 
porous media saturated with non-Newtonian fluids has not been investigated. 

The present work has been undertaken in order to analyze the problem of nonsimilar mixed 
convection from a vertical non-isothermal flat plate embedded in non-Newtonian fluid- 
saturated porous media. The boundary condition of variable surface temperature is treated in 
this paper. The power law model of Ostwald-de-Waele which is adequate for many non- 
Newtonian fluids will be considered here. The transformed boundary layer equations are solved 
using a finite difference method. The numerical results for the velocity and temperature fields are 
obtained. 

2 Governing equations 

Let us consider the combined convection flow in a porous medium saturated with a non- 
Newtonian fluid along a heat vertical impermeable flat plate. The flow model is shown in Fig. 1. 
The axial and normal coordinates are x and y. The gravitational acceleration g is in the direction 

X~ U 

Tw(X) 
lg 

, y, v Fig. 1. Coordinate system and flow model 



Mixed convection in non-Newtonian fluids 57 

opposite to the x coordinate. The surface of the plate is maintained at a temperature of Tw(x). The 
flow velocity and the pores of the porous medium are assumed to be small and therefore Darcy's 
model is assumed to be valid. The governing equations under Boussinesq and boundary layer 
approximation may be written as: 

au av 
+ ~ -  = O, (1) 

Ox vy 

K 
u" = U n + - -  [egf l (T-  Too)], (2) 

# 

~T aT  azT  
U~xx +v~fy =c~ Oy2" (3) 

In the above equations, u and v are the Darcian velocity components in x and y directions; 
U~ the free-stream velocity; T the temperature; n the viscosity index; 0 the density; # the 
viscosity;/7 the volumetric coefficient of expansion; K the permeability of the porous medium 
and c~ the equivalent thermal diffusivity of the porous medium. 

For the power law model of Ostwald-de-Waele, Christopher and Middleman [11] and 
Dharmadhikari and Kale [12] proposed the following relationships for the permeability: 

= .,j25 \3n + 1 /  L3(1 - e ) ]  [11] 

K 1 2 [  d~ 2 ]" ' /6n+11/16y"~176 
t. ~ L8(1 - e)] \1o.  - -  3) \~) [12] 

(4) 

In the above equation, d is the particle diameter and e the porosity. 
The appropriate boundary conditions are given by 

y = 0 :  v = O, T =  To + ax a, 

y ~ o o :  u = U~, T =  Too 
(5) 

where a and 2 are constants. We note that 2 = 0 corresponds to isothermal wall conditions. 
The continuity equation is automatically satisfied by defining a stream function 0(x, y) such 

that 

a0 a0 
u=ffy-y and v -  ax" (6) 

Proceeding with the analysis, we define the following transformations: 

Z-1 = 1 +~/ Pe~ 

VPe~ 
0 = ~ f(z,  ~/), g 

(7) 
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r - r ~  
0 --  - -  

% - r ~ '  

gov x 
eex - , (7) 

(g 

Rax = - 

Substituting the expressions in (7) into Eqs. (2), (3) and (5), the transformed governing equations 
may be written as 

n(f') "-~ f "  = (1 - Z) 2" 0' (8) 

1 0"+5  

1 + - ( 1 - Z )  f ( g , O ) - -  
n 

O(Z, 0) = 1, 

f '(z,  oe) = Z z , O(z, oe) = O. 

l + - ( 1 - Z ) n  fO'-2f 'O= ~nZ(1-Z) O'~-f~ OZJ 

n ;~ z(1 - z) ~ (z, O) = 0, 

(9) 

(lo) 

Primes in the above equations denote partial differentiation with respect to tl. We note that g = 0 
and 1 correspond to pure free and forced convection cases, respectively. 

For practical applications, it is usually the velocity components, friction factor and Nusselt 
number that are of interest. These are given by 

goo 
u = 7 if(Z, t/), 

of 
v -  c~ P~X2x [ 1  f +  ( ~ ) ( ~ ) f +  ( z - - l ) ( ~ ) ~ X X - f i r / [ l q - ( ~ - )  ( ~ ) 1 1 '  

2~w 2 (Z_3.) p%,/z [f"(Z, 0)]% (11) 
C s : ' -  Q U~ - Re;, 

1 P/~Ze~ 
Nu~ = - ~  - o'(z, o). 

Z 

3 Numerical scheme 

The numerical scheme to solve Eqs. (8) and (9) adopted here is based on a combination of the 
following concepts: 

(a) The boundary conditions for t / =  ~ is replaced by 

f ' (g , /~max)  = ){2, 0(•, P/max) = 0 (12) 

where t/max is sufficiently large value of ~/ where the boundary condition (12) for velocity is 
satisfied, t/max varies with the value of t/. We have set */max = 25 in the present work. 



Mixed convection in non-Newtonian fluids 59 

(b) The two-dimensional domain of interest, (Z, t/) is discretized with an equispaced mesh in 
the Z direction and another equispaced mesh in the q direction. 

(c) The partial derivatives with respect to g and t/are all evaluated by the central difference 
approximations. The central difference approximation for the partial derivatives with respect to 
g vanish when Z = 0 and Z = 1 which correspond to the first and the last mesh points on the 
)~ axis, or free and forced convection, respectively. 

(d) Two iteration loops based on the successive substitution are used because of the 
nonlinearity of the equations. 

(e) In each inner iteration loop, the value of)~ is fixed while each of Eqs. (8) and (9) is solved as 
a linear second-order boundary value problem of ODE on the q domain. The inner iteration is 
continued until the nonlinear solution converges for the fixed value of g. 

(f) In the outer iteration loop, the value of )~ is advanced from 0 to 1. The derivatives with 
respect to Z are updated after every outer iteration step. 

More details of the numerical solution scheme are explained in the remainder of this section. 
In an inner iterations step, the finite difference approximation for each of the Eqs. (8) and (9) 

is solved as a boundary value problem. To describe the procedure, we consider Eq. (8) first. 
By defining 

U = f .  (13) 

Eq. (8) may be written in the form 

ai U" = sl (14) 

where 

a l  = n IUT ' - l ,  

sl = (1 - Z) 2" 0'. (15) 

The boundary conditions for U are 

U(Z, 0) = 0,  U'(Z, ?]max) = Z 2. (16) 

Note that we replace the boundary condition at infinity by that at a finite distance qmax. 
The coefficient ai and the source terms in Eq. (14) in the inner iteration step are evaluated 

using the solution from the previous iteration step. Equation (14) is then transformed to a finite 
difference equation by applying the central difference approximations to the first and second 
derivatives. The finite difference equations form a tridiagonal system and can be solved by the 
tridiagonal solution scheme. 

Equation (9) is also written as a second-order boundary value problem similar to Eq. (14), 
namely 

a20" + b20' + c20 = s2, 

a 2  = 1, 

b~ -- v + ~ ( i  - z) , 

r ~" --V't~,  

s2 = ~ n  z ( z  - 1) tT' ~ - O' . 

( i 7 )  

(18) 
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The numerical results are affected by the number  of mesh points in both directions. To obtain 

accurate results, a mesh sensitivity study was performed. In  the t/direction, after the results for the 

mesh points of 51, 100, 200, and 800 were compared it was found that 200 points give the same 

results as 800. In the Z direction, only 11 mesh points were found to give as accurate results as 

with 21 points. Therefore, the remainder of the computations were performed with 200 times 11 

mesh points. 

4 Results and discussion 

Numerical data for the missing wall gradient - O'(Z, 0) are presented for )~ ranging from 0 - 1  in 

Tables 1 -  6. We have chosen Z and n as prescribable parameters. To assess the accuracy of the 

present results, we have shown a comparison of our results with those of Hsieh et al. [6] for the 

case of Newtonian fluid, namely, n = 1. It may be noted that the agreement between our results 

and the literature values is within 2 - 5  % difference. We therefore conclude that our results are 

very accurate. 

Table 1. Comparison of values of -0'(X, 0) for n = 1.0 

-o'(z, o) 

Present results Hsieh et al. 

Z 2=0 .0  2=0.5  2=0 .0  2=0.5  

1.0 0.56414 0.88601 0.5642 0.8862 
0.9 0.51028 0.80144 0.5098 0.8014 
0.8 0.462 01 0.726 37 0.460 3 0.725 9 
0.7 0.42148 0.66417 0.417 4 0.662 9 
0.6 0.39092 0.61883 0.3832 0.6160 
0.5 0.37207 0.59411 0.3603 0.5890 
0.4 0.36569 0.59202 0.3506 0.5844 
0.3 0.37165 0.61195 0.3550 0.6026 
0.2 0.38913 0.65136 0.373 2 0.6419 
0.1 0.416 98 0.707 01 0.403 5 0.6991 
0.0 0.45383 0.775 84 0.443 8 0.770 4 

Table 2. Values of -0'(Z, 0) for n : 0.5 

- O'(Z, O) 

,~ 2 = 0.0 2 = 0.5 Z = 1.0 2 = 2.0 

1.0 0.56414 0.93070 1 . 1 2 8 1 2  1.50420 
0.9 0.54405 0 . 9 1 5 4 1  1 . 1 0 5 6 5  1.47647 
0.8 0.524 41 0.90108 1.083 42 1.449 01 
0.7 0.505 37 0.88778 1 . 0 6 1 5 0  1.42187 
0.6 0.48708 0.875 56 1.039 97 1.39513 
0.5 0.46968 0.86445 1 . 0 1 9 0 2  1.36897 
0.4 0.453 29 0.854 44 0.998 92 1.343 68 
0.3 0.43799 0 . 8 4 5 5 1  0.98018 1.31992 
0.2 0.423 81 0.837 60 0.963 22 1.298 39 
0.1 0.41075 0 . 8 3 0 5 1  0.94886 1.28106 
0.0 0.40692 0.858 62 0.949 49 1.278 07 
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Table 3. Values of -0 ' (Z,  0) for n = 0.8 

- O ' ( z ,  o )  

z ,z = o . o  ,~ = o .5  ,z = 1 .o  ,z = 2 . 0  

1.0 0.56414 0.88601 1.12796 1.50391 
0.9 0.51424 0.80902 1.03026 1.37402 
0.8 0.47221 0.74604 0.95079 1.268 85 
0.7 0.43772 0.69587 0.88782 1.18595 
0.6 0.41127 0.65919 0.84198 1.12605 
0.5 0.39326 0.63694 0.81443 1.09045 
0.4 0.383 87 0.629 99 0.806 53 1.080 80 
0.3 0.38314 0.63843 0.81895 1.09826 
0.2 0.391 18 0.66218 0.85190 1.143 85 
0.1 0.408 44 0.70133 0.905 42 1.218 06 
0.0 0.439 27 0.761 78 0.984 89 1.32547 

Table 4. Values of - O'(Z, 0) for n = 1.0 

- 0'(Z, O) 

Z 2 = 0.0 2 = 0.5 2 = 1.0 2 = 2.0 

1.0 0.56414 0.88601 1.12812 1.50404 
0.9 0.51028 0.80144 1.02045 1.36052 
0.8 0.462 01 0.72637 0.92510 1.233 61 
0.7 0.42148 0.66417 0.84632 1.128 89 
0.6 0.39092 0.618 83 0.78916 1.05290 
0.5 0.372 07 0.59411 0.758 54 1.01203 
0.4 0.36569 0.59202 0.75747 1.01058 
0.3 0.37165 0.61195 0.78546 1.04887 
0.2 0.38913 0.65136 0.838 99 1.122 80 
0.1 0.41698 0.70701 0.91339 1.22558 
0.0 0.453 83 0.775 84 1.004 26 1.350 33 

Table 5. Values of --O'(z, O) for n = 1.5 

-0'(z, 0) 

Z 2 = 0.0 2 = 0.5 2 = 1.0 2 = 2.0 

1.0 0.56414 0.88601 1.12796 1.50391 
0.9 0.508 46 0.797 96 1.015 64 1.35414 
0.8 0.45479 0.71245 0.90636 1.20840 
0.7 0.40631 0.63447 0.80632 1.07499 
0.6 0.36821 0.57348 0.72747 0.96979 
0.5 0.34682 0.54268 0.68737 0.91615 
0.4 0.34613 0.550 33 0.698 25 0.93104 
0.3 0.36464 0.59167 0.75429 1.00777 
0.2 0.39689 0.65345 0.83707 1.121 12 
0.1 0.43712 0.726 45 0.933 66 1.252 76 
0.0 0.48134 0.80415 1.035 48 1.390 64 
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Table  6. V a l u e s  of  - 0'(~, O) for  n = 2.0 

- o'(z, o) 

z 2 = 0 . 0  2 = 0 . 5  2 =  1.0 2 = 2 . 0  

1.0 0 .56666  0 .88638  1 .12812 1 .50404 

0.9 0.513 25 0.798 37 1.015 53 1.353 78 

0.8 0 .46246  0 .71145  0 .90373  1.20438 

0.7 0.416 47 0.628 72 0.796 25 1.060 29 

0.6 0 .37971  0 .55969  0 .70507  0 .93718  

0.5 0 .36003  0 .52496  0 .65829  0 .87287  

0.4 0 .36406  0 .54093  0 .68037  0 .90257  

0.3 0.388 07 0.594 89 0.753 93 1.003 94 

0.2 0 .42314  0 .66594  0 .84922  1.13473 

0.1 0 .46371 0 .74295  0 .95122  1.27383 

0.0 0 .50698  0 .82209  1.05505 1.41437 

Figures 2 - 4  display results for the velocity and temperature profiles. We have treated the 
viscosity index n, combined convection parameter Z and the temperature power law exponent 
2 as parameters. We note that Z = 0 and 1 represent pure natural convection and forced 
convection, respectively. As X increases, we note that the momentum boundary layer thickness 
increases. As 2 increases, the momentum and thermal boundary layer thicknesses decrease. We 
note that 2 = 0 corresponds to isothermal boundary condition. The velocity at the porous wall 
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F igs .  2, 3. V e l o c i t y  a n d  t e m p e r a t u r e  prof i les  (Fig.  2 n = 0.5), (Fig.  3 n = 1) 
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decreases with Z and n. As 2 increases, the wall temperature gradient increases and therefore the 
surface heat transfer increases. 

Figures 5 -  7 display the variation of the local heat transfer rate (Nusselt number) with Z. As 
Z varies from 0 to 1, the heat transfer rate decreases initially, reaches a minimum and then 
increases as g approaches 1. For n = 0.5, the Nusselt number tends to vary with Z in a linear 
fashion. The heat transfer rate for pure forced convection (Z = 1) is greater than that for pure free 
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Figs. 5, 6. Local Nusselt number versus Z 
(Fig. 5 2 = 0.0), (Fig. 6 2 = 0.5) 
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convection ()~ = 0) case. As n increases, the Nusselt  number  tends to decrease. This indicates that  

pseudoplast ic  (n < 1) fluids are associated with higher heat  transfer rates when compared  to 

di latant  (n > 1) fluids. As 2 increases, the Nusselt  number  increases, thus, indicating that  

nonisothermal  surfaces are associated with higher heat  transfer rates than isothermal surfaces. 

5 Concluding remarks 

In this paper,  we have presented a boundary  layer analysis for the problem of combined 

convection from a vertical surface with variable wall temperature  and embedded in a porous  

medium saturated with Ostwald-de-Waele type non-Newtonian  fluid. The nonsimilar  parameter  

)~ is introduced and as Z varies from 0 to 1, the entire regime of the mixed convection case is 

described. The nonsimilar  boundary  layer equations are solved numerically by means of a finite 

difference scheme. It is observed that  pseudoplast ic  fluids display augmented surface heat 

transfer rates when compared  to Newtonian  fluids. This fact may  be helpful in choosing a proper  

fluid for a given practical  application.  

References 

[1] Cheng, R, Minkowycz, W. J.: Free convection about a vertical plate embedded in a porous medium with 
application to heat transfer from a dike. J. Geophys. Res. 82, 2040-2044 (1977). 

[2] Gorla, R. S. R., Zinalabedini, A. H.: Free convection from a vertical plate with nonuniform surface 
temperature and embedded in a porous medium. Trans. ASME J. Energy Res. Techn. 109, 2 6 -  30 (1987). 

[3] Gorla, R. S. R., Tornabene, R.: Free convection froln a vertical plate with nonuniform surface heat flux 
and embedded in a porous medium. Trans. Porous Media J. 3, 95-106 (1988). 

[4] Minkowycz, V~: J., Cheng, R, Chang, C. H.: Mixed convection about a nonisothermal cylinder and 
sphere in a porous medium. Numer. Heat Transfer 8, 349-359 (1985). 

[5] Ranganathan, R, Viskanta, R.: Mixed convection boundary layer flow along a vertical surface in 
a porous medium. Numer. Heat Transfer 7, 305-317 (1984). 

[6] Hsieh, J. C., Chen, T. S., Armaly, B. E: Nonsimilarity solutions for mixed convection from vertical 
surfaces in porous media. Int. J. Heat Mass Transfer 36, 1485-1493 (1993). 

[7] Chert, H. T., Chen, C. K.: Natural convection of non-Newtonian fluids about a horizontal surface in 
a porous medium. Trans. ASME J. Energy Res. Techn. 109, 119-123 (1987). 

[8] Mehta, K. N., Rao, K. N.: Buoyancy-induced flow of non-Newtonian fluids in a porous medium past 
a vertical plate with nonuniform surface heat flux. Int. J. Eng. Sci. 32, 297-302 (1994). 

[9] Nakayama, A., Koyama, H.: Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal 
body of arbitrary shape in a fluid-saturated porous medium. Appl. Sci. Res. 48, 55-70  (1991). 

[10] Mehta, K. N., Rao, K. N.: Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal 
horizontal plate embedded in a porous medium. Int. J. Eng. Sci. 32, 521-525 (1994). 

[11] Christopher, R. H., Middleman, S.: Power-law flow through a packed tube. I & EC Fundamentals 4, 
422-  426 (1965). 

[12] Dharmadhikari, R. V., Kale, D. D.: Flow of non-Newtonian fluids through porous media. Chem. Eng. 
Sci. 40, 527-529 (1985), 

Authors' addresses: Dr. Rama Subba Reddy Gorla, Department of Mechanical Engineering, Cleveland State 
University Cleveland, Ohio 44115, U.S.A., and Dr. M. Kumari, Department of Mathematics, Indian 
Institute of Science, Bangalore 560012, India 


