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Self-diffusion of small molecules in colloidal systems 
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Abstract: The self-diffusion of small molecules in colloidal systems is calculated using the 
cell model to describe the effect of varying concentration of colloidal particles. The relev- 
ant boundary conditions are found using arguments from the thermodynamics of irre- 
versible processes. From a general description of the self-diffusion in systems with spheri- 
cally symmetrical particles we derive expressions for the concentration dependence of 
the effective self-diffusion coefficient De~t for several cases of practical importance. It is 
shown that when the molecule studied is strongly attracted to the particle a minimum in 
D ~ff is expected around volume fraction 4~ = 0.35. It is also shown that the often made dis- 
tinction between free and bound molecules is often problematic and a more general des- 
cription is proposed. The obstruction effect generated by the excluded volume is dis- 
cussed both for spherical and spheroidal systems. It is pointed out that the often used for- 
mula due to Wang ((1954) J Amer Chem Soc 76:4755) is incorrect for self-diffusion and 
for the obstruction factor for spheres we obtain (1 + 0.5 ~)-1. This expresion is tested 
both by experiments on water diffusion in systems containing latex particles and through 
computer simulations and it is found valid over a wide concentration range. For prolate 
ellipsoids the obstruction factor is not greatly different from that for spheres, while for 
oblate aggregates the limking obstruction factor of 2/3 can be obtained at low concentra- 
tions. It is demonstrated that this effect can be used to distinguish between different 
aggregate shapes. It is also shown that the disorder present in a solution of colloidal par- 
ticles leads to a decrease in the obstruction effect. 
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1. Introduction 

Studies of the self-diffusion of small, solvent or 
solute, molecules have been extensively used to inves- 
tigate colloidal systems containing polymers [1-4], 
polyelectrolytes [5-7], proteins [8-10], micelles, nor- 
mal [11,12] or reversed [13]. The method has also been 
applied to microemulsions [14,15], liquid crystals 
[16,17] and gels [18], and the self-diffusion is obviously 
of importance also for the study of porous media [19]. 
The basic idea in these studies is that the interaction be- 
tween the particles, or structures, and the small mole- 
cule is reflected in the value of the diffusion coefficient. 
One main difficulty in the application of this technique 
is to find the theoretical relation between D elf and 
molecular interactions. 
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The observed change in the self-diffusion of a small 
molecule in the colloidal system relative to the ordi- 
nary liquid can schematically be attributed to two 
mechanisms. The colloidal particle excludes a fraction 

of the total volume for the diffusing molecule and 
this leads to a lengthening of the diffusion paths. This is 
often called the obstruction effect. The second factor is 
related to the direct specific interaction between the 
particle and the small molecule, which normally leads 
to a further decrease of D elf. In practic studies of self- 
diffusion are usually aimed at obtaining information 
about this specific interaction as, for example, in deter- 
minations of solvation numbers [8,10, 20]. In such 
applications it is necessary to correct for the obstruc- 
tion factor using a theoretical estimate. Recently it has 
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been demonstrated [21] that there are also cases where 
the obstruction factor as such contains interesting 
information, since it is shape dependent. 

The description of the self-diffusion in colloidal sys- 
tems poses considerable theoretical problems. The 
particles are distributed in space neither in an ordered 
nor in a totally random way and the actual diffusion 
path of a small molecule can thus be very complicated. 
In addition the particles diffuse themselves, albeit on a 
much longer timescale, the approach to these prob- 
lems that is usually adopted consists of starting from 
the infinite dilution limit and gradually incorporating 
corrections due to the finite concentration of particles. 
In this paper we use an alternative approach based on 
the cell model of liquids. In this way one can derive 
expressions that are consistent over the entire concen- 
tration range without introducing extensive calcula- 
tions. 

The paper is organized so that the cell model is first 
discussed, then we treat the particular problems asso- 
ciated with a description of self-diffusion. In section 4 a 
general solution is obtained for spherically symmetri- 
cal systems and in the following two sections this solu- 
tion is applied to the obstruction effect and models for 
specific interactions. In section 7 the treatment is gene- 
ralized to systems with spheroidal particles and in sec- 
tion 8 to polydisperse systems. Finally the main con- 
clusions are summarized. 

2. The cell model 

The cell model was originally devised as a theory of 
simple liquids [22]. In colloid and polymer chemistry 
it has been extensively used to describe systems with 
highly charged particles [23-27], where the electros- 
tatic interactions are dominating. In this case the cell 
consists of one charged particle surrounded by coun- 
terions and solvent to an extent given by the total con- 
centration. It is clear that the cell model gives a good 
description of the electrostatic effects over a wide con- 
centration range [25-27]. For charged colloidal sys- 
tems the cell model has also been used to describe the 
self-diffusion of counterions [28-34]. In this paper we 
follow this latter tradition and argue that the cell model 
is very useful for describing the self-diffusion of small 
molecules in colloidal and locally heterogeneous sys- 
tems in general [35, 36]. 

In the cell model the total volume V of the system 
containing N colloidal particles is divided into N cells 
as schematically shown in figure 1. The shape of these 
cells is furthermore idealized to a simple form as, for 

Fig. 1. Illustration of the cell model. The total volume is divided into 
cells each containing one particle surrounded by the medium in 
such a way that the sum of the cell volumes adds up to the total 
volume of the system. The picture shows the special case of spheri- 
cal particles in spherical cells 

example, a sphere. This results in a somewhat abstract 
representation of the total system in terms of cells with 
simple shapes. There is a considerable freedom in the 
choice of size and shape of the cells but there is the 
constraint that volumes of the cells Vi should add up to 
the total volume 

N 
v = y v , .  (1) 

i=1 

This implies that the concentration dependence is 
modelled through the change in the size of the cells. 
For identical colloidal particles it is customary to make 
all cells identical in size but, as we discuss in more detail 
in the last section of the paper, it could be more appro- 
priate to use a Poisson distribution of the sizes for 
noninteracting colloidal particles. However, before 
going into the complications associated with a poly- 
dispersity in cell size let us first discuss the monodis- 
perse case where Vi = V/N for all i. 

In the same way as for the sizes there is a certain 
degree of arbitrariness in the choice of the shape of the 
cells. However, the natural procedure is to make the 
shape of the cell reflect the shape of the particle so that 
for spherical particles one has spherical cells, while for 
cylindrical particles the cells are cylindrical. For less 
symmetrical particles the choice of the shape is 
somewhat more problematic. 

In the application of the cell model to diffusion 
problems a third complication arises. In the real sys- 
tem the colloidal particles themselves undergo a 
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diffusional motion, while in the cell model they are 
treated as stationary. For many applications it is rea- 
sonable to assume that diffusive motion of the small 
molecule is independent of that of the colloidal par- 
ticle. In such a case one has approximately for species a 

De(total) = D~ (fixed cell) + D(particle). (2) 

In equation (2) we have introduced an artefact in that 
the motion of the particle leads to a displacement of the 
cell without really changing the positions of the small 
molecules close to the cell boundary. However, since 
D(particle) is normally very small the second term in 
equation (2) is only important when the first term is 
small due to a strong interaction between the mole- 
cules studied and the colloidal particle. In such a case 
the error is small in equation (2). 

3. Self-diffusion in the cell model 

In the typical self-diffusion experiment we have a 
system that is at equilibrium except that some molecu- 
lar species has been labelled radioactively or through 
the nuclear spin, so that there is a gradient of the 
labelled molecules. Since there is a macroscopically 
homogeneous concentration of the molecule studied 
there is also a compensating gradient of the unlabelled 
compound. Let us denote the total concentration of 
the studied species as C. It will be assumed that C is 
constant averaged over macroscopic dimensions but C 
is allowed to vary locally due to the inhomogeneity 
generated by the colloidal particles. This means that 
the local concentrations of labelled molecules Ca can 
also vary substantially, while the relative amount of Xa 
= Ca/C  of labelled compound changes over a much 
larger length scale. 

It is assumed that the diffusional flows k, local and 
global are described by Fick's first law in a general from 

~(r-) = - D(rO C,(r-) V t ~ d k T  (3) 

where the local diffusion constant is scalar but varying 
in space. In the chemical potential/ai we include local 
potentials of mean force so that equation (3) combined 
with the equation of continuity leads to a Smolu- 
chowski equation. 

Equation (3) provides a basic equation for the calcu- 
lation of the diffusion in the cells. To obtain the globally 
averaged diffusion coefficient one needs a relation be- 
tween the local and global diffusional properties. One 

way is to identify the effective macroscopic self-diffu- 
sion coefficient through the relation 

(r 2) = 6D e~ t (4) 

where the root mean square displacement ( r2)  '/2 
should be much larger than the range of the local inho- 
mogeneities. Another alternative is to relate the aver- 
age flow to the average concentration gradient 

q- i )  = --  D eft. V (C i )  

or for a particular direction ~ 

(Ji " e~) = - D~ft . V~ ( C i ) .  

(5) 

(6) 

In applying equation (5) it is necessary to make a clear 
distinction between the case where the concentration 
is counted per total volume or only per accessible 
volume (excluding the volume of the colloidal par- 
tides). Depending on this choice the diffusion coeffi- 
cient will differ by a factor (1 - O) where �9 is the 
volume fraction of particles. Only when (C/) is calcu- 
lated relative to the total volume are the definitions of 
the diffusion coefficients in equations (4) and (5) equi- 
valent. It is essential to make this distinction [18, 30] 
and there is a considerable confusion in the literature 
concerning this particular point [4, 37]. 

In order to apply equation (5) to the calculation of 
D eE it is necessary to relate the average flow and the 
average concentration gradient to the corresponding 
local (cell) properties. For identical cells the macros- 
copic flow in the direction z is simply the average flow 
in the cell 

l j 1 f l dV - z L  . (7) 
Vcell 

Scell 

where the second equality is obtained for a stationary 
process using Gauss theorem. 

It is more problematic to obtain a relation between 
global concentration gradient and local quantities. The 
basic difficulty is that the cell model is a somewhat ab- 
stract representation of the real system and there is no 
strict geometrical relation between the real system and 
the model representation. Instead of obtaining V ( C i )  
intuitively, which is usually done, we will make a 
digression into irreversible thermodynamics to obtain 
a volume averaged quantity that can replace V (Ci) for 
the calculation of D eft . This approach was first used for 
transport phenomena in the cell model in reference 
[35]. 
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For a transport process there exists a function, often 
called a Ljapunov function [38], that is minimized at 
the steady state. In the linear regime the entropy pro- 

dS 
duction ~ -  is the proper Ljapunov function [39]. For 

the case of diffusional processes where equation (3) 
applies it is possible to find a proper Ljapunov function 
also outside the linear regime [40, 41] and 

L = JXaXbadV (8) 

is steadily decreasing as the stationary state is 
approached. Here Xb = 1 - Xa is the relative concen- 
tration CdC of unlabelled compound, and a is an 
entropy production density. Now the entropy pro- 
duction is the flow times the conjugate force so that 

To = -  ;"vuo-Pv. . (9) 

Combined with equation (3) a Gibbs-Duhem relation 
and f~ --- - ~ equation (9) results in 

XaXb To = p . (XaXb Vla~ + X]Vt.,a) 

= (/a)2. kT/CD (lO) 

The Ljapunov function for a cell may now be calculat- 
ed from equations (8) and (10) 

L~r = JXaXbodV = kJ (Ia)2/DCdV 

= - k j V . { X a [ a } d V = - k  j xa[a.dS(lla) 
Scell 

where equation (3) combined with V. [a = 0 has been 
used to obtain the third equality. Since all the cells in 
the macroscopic system are equal the Ljapunov func- 
tion for the macroscopic system becomes 

L = N .  ncell = - -  m k  I X a J  a "  d S  (11b) 
Scell 

where N is the number of calls. 
However, the Ljapunov function for the macros- 

copic system may also be written as 

qa)2 
L = V - k  Den.(C) (12) 

where V is the volume of the system and DeU the effec- 
tive macroscopic diffusion coefficient. The assertion 
that gives an explicit formula for D eu is now that the 
value of the Ljapunov function for the macroscopic 

system in the two description (11 b) and (12) shall be 
the same. Then combining equations (7), (11) and (12) 

1 ( f  z . [ ~  2 
Scell D ~ (13) 

= -  (c) .  Vc . f xo[~ 
Scell 

which shows that it is sufficient to know the flow [~ 
and the relative concentration X~ at the border of the 
cell to calculate D e~. These quantities are obtained 
through the solution of the diffusion equation for sta- 
tionary states 

~.]a = 0 ~ V(DC). VX~ + DCV2Xa = 0 

V 2 X a = - -  V X a �9 V In (DC). (14) 

This demonstrates that it is only the product of the 
local diffusion coefficient and the local total concentra- 
tion C(r-) that determines the effective self-diffusion 
coefficient. 

Since equation (14) is a second order differential 
equation two boundary conditions are needed to spe- 
cify the solution. One of these follows from the requi- 
rement that the concentrations remain finite at the cen- 
ter of the cell, or from a requirement of zero normal 
flows at the surface of a totally obstructing particle. In a 
conventional diffusion problem the second boundary 
conditions follows from a specification of the concen- 
tration or the flow at the surface of the cell. However, 
since the cell model is an abstract representation of the 
real system it is not possible to find such a boundary 
condition in a strict way. Usually one invokes an intui- 
tive argument [30, 33] but this can pose severe difficul- 
ties in more complex situations. To avoid these diffi- 
culties we again refer to the principles of irreversible 
thermodynamics and require that the boundary values 
are chosen so that the Ljapunov function of equation 
(8) is minimized under the given constraints. How this 
principle is applied in practice is demonstrated in the 
next section. 

4. Spherically symmetric systems 
The simplest application of the cell model is to sys- 

tems with spherical symmetry containing monodis- 
perse particles. It is then natural to choose the cells as 
spheres. To solve equation (14) the fraction of labelled 
compound X~ (r--) is expanded in spherical harmonics 

Xa = ~ ~ film(r ) yr~({~,~). (15) 
l=om=-I 
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Since the C and D only depend on r due to the spheri- 
cal symmetry equation (14) reduces to an ordinary dig 
ferential equation for the quantities flm 

d 
dr (rE f}m) - l(l + 1) flm = -- rE f~m ln(DC).  (16) 

The flow at the surface f~. dS can be determined once 
the fire(R) are known 

f~ . dS =- - D(R) C(R) n 2 1~ f},n(R) Y'ff dcos Odq~ 

(17) 

and the average flow in the z-direction is 

(]z) = - l,f~_ D(R) C(R) flo(R). (18) [ , )a  

For the Ljapunov function we find 

L = I X,,Xb odV = kD(R) C(R) z~ fire(R)I;m(R). 

(19) 

It is possible to show that 

R 2 D(R)  C(R) fire(R) fjm(R) ~ 0 all l, m (20) 

by observing that r E DC fire(r) fjm(r) is monotonically 
increasing with increasing r, but zero at r = 0. The ine- 
quality in equation (20) means that L is minimized by 
minimizing each term in the sum in equation (19) sepa- 
rately, since there are no couplings between the differ- 
ent terms. The only constraints are that there is a non- 
zero concentration and a nonzero flow so that f00, flo 
4= 0, while the other flm are allowed to become zero 
and they are consequently chosen as zero to minimize 
L. 

Inserting the solution for ftm into the expression for 
D ef~ in equation (13) gives 

D "~ = D(R) C(R) U(R)/C (21) 

where 

U(R) = rflo(r)fflo(r) (22) 

satifies the differential equation 

dU U 2 U ~ {ln(D(r)C(r))}" r . - - ~ - = 2 - U -  - r .  dr 

U(o) = 1 (23) 

according to equation (16). An equation equivalent to 
equation (23) has previously been derived for the spe- 
cial case of ion diffusion around a charged particle (see 
eq. (23) of ref. [30]). In equation (23) we can insert a 
number of model expressions for the concentration 
profile C(r) and the radial variation of the diffusion 
constant D(r) and obtain the effective self diffusion 
constant by simply solving the first order differential 
equation (23) for U(R) which gives D ~ through equa- 
tion (21). In the next two sections we use this proce- 
dure for a couple of cases of particular practical impor- 
tance. 

5. The obstruction factor for spherical particles 

When the colloid particle is obstructing the diffu- 
sion of the studied species but otherwise not influenc- 
ing the concentration profile nor the local diffusion 
coefficient we have a case where CD = 0 for r < b (the 
particle radius) and C(r) D(r) = C2 D2 otherwise. It is 
straightforward to find U(R) = (1 - q0/(1 + ~/2) 
observing that the flow ]a is continuous at r = b, and 

D~ = D2 C2 (1 - cO) 1 
1 + ~/2 = D2 1 + ~/2"  (24) 

To obtain the second equality we have used the con- 
vention that the average concentration is calculated 
relative to the total volume. We note that the often cit- 
ed expression for the obstruction effect due to Wang 
[8] is obtained by setting C2 = C and linearizing the 
denominator. This is normally not correct when dis- 
cussing the self diffusion. Expressions similar to equa- 
tion (24) have a long history in connection with elec- 
tromagnetic properties such as electrical permittivity, 
magnetic susceptibility and electrical conductivity 
[42-44]. The similarity between the different proper- 
ties arises from the fact that they all relate to solutions 
of the Laplace equation, but there are differences due 
to the difference in boundary conditions. 

Equation (24) and its counterpart for other proper- 
ties is usually derived on the basis of an infinite dilution 
approach, but the fact that it applies reasonable well 
also for concentrated systems has already been dis- 
cussed by Rayleigh [45]. One of the virtues of the cell 
model is that it is applicable over the whole concentra- 
tion range. One can note that the obstruction factor (1 
+ O/2)-1 gives 2/3 at �9 = 1 when the system is comple- 
tely filled with particles. Within the physical model 
this is the correct limit and one can hope that equation 
(24) is in fact good over the total concentration range. 
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Fig. 2. The effective self-diffusion coefficient for water in a PMMA 
latex. The marks O, [] and �9 represent experimental values and 
represents values from computer simulations. The theoretical esti- 
mation (eq. (24)) is the full drawn line 

To test this supposition further the water self-diffu- 
sion was measured in a system containing reasonably 
monodisperse (r - 100 run) polymethylmethacrylate 
latex particles by means of the NMR spin-echo pulsed 
field gradient method [20]. The results given in figure 2 
show that up to q~ = 0.2 there is a good agreement be- 
tween equation (24) and the experimental value of 
De~/D2. Above this concentration the measured values 
fall below the theoretical curve. However, this devia- 
tion is more likely to be an effect of the swelling of the 
particles and of a direct interaction between water and 
polymer segments on the particle surface rather than 
an effect of the approximation of the cell model. To fur- 
ther support this conclusion we performed a series of 
Monte Carlo simulations, where a test particle is per- 
forming a random walk in a face centered lattice of ob- 
structing spheres. The effective diffusion coefficient is 
evaluated using equation (4) [46]. The simulated 
values of D ~ fall right on the theoretical curve. As will 
be shown in section 8 the effect of going to a less 
ordered structure is to increase D ~ and this effect can- 
not explain the difference between the theoretical esti- 
mate and the experimental points in figure 2. 

6. The effect of specific interactions on the self- 
diffusion 

Measurements of the self-diffusion are often used to 
study the interaction between a colloidal particle and a 
small molecule. The simplest model for interpreting 
the experimental data is based on a distinction between 
free and bound small molecules so that (cf. eq. (2)) 

D = Pfree Jfree + Pbound Dbound �9 (25) 

This model implies a strong association of the small 
molecule to the particle but with weaker interactions 
the distinction between free and bound molecules 
becomes problematic. For ion diffusion equations (21) 
and (23) have been used to interpret experimental data, 
but the cell model has not been used in the general case. 

On the basis of equations (21) and (23) one can iden- 
tify two different mechanisms affecting D eft. For a con- 
stant local diffusion coefficient D(r) an inhomgeneous 
distribution C(r) gives rise to a lowering of D ~u. The 
obstruction effect discussed in the previous section 
gives an example of this mechanism, but it appears that 
it is also the basic mechanism for lowering the diffusion 
coefficient of monovalent ions in the presence of 
charged particles [31, 34]. For systems with divalent 
ions the picture seems more complex [33, 34]. In the 
other mechanism, which is often the most important 
one for solvent diffusion, the decrease in D ~ is generat- 
ed by a low local value of D(r). In equation (23) it is 
only the variation in the product D(r).  C(r) that deter- 
mines the effective diffusion coefficient. It is conse- 
quently not always easy to distinguish between the 
two mechansims. 

To illustrate the use of equations (21) and (23) we 
assume that 

D(r) C ( r ) = D : C '  r < b  (26) 
D2C2 b < r < R "  

It is straightforward to solve equation (23) in the two 
regions and match the solutions at r = b. This leads to 

1 - flcI) 1 -- D1C1/D2 C2 
U(R) = 1 + fl~P/2 ; {~ = 1 + D i C1/2D 2 C 2 

and 

(27) 

: 1 - - ~  
D eft = D2 1 - (1 - C1/C2) cI) 1 + ~cbl2" (28) 

In the limit C1 = 0 this reduces to equation (24) as it 
should. An interesting application of equation (28) is 
when the studied species is highly attracted to the par- 
ticle so that D 1 C1/D 2 C2 >> 1. If D 1 and D 2 a r e  of the 
same magnitude equation (28) reduces to 

1 1 + 2q~ (29) 
D e~ = D2 �9 C1 1 - 

1 +~72 " ~  

This shows that D e~ has a minimum around q~ -- 0.35. 
As q~ is increased above this value the diffusion within 
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the aggregates as well as the reduction of the distance 
between the aggregate and the cell boundary contrib- 
utes sufficiently to D ~ for it to increase with increasing 
~.  This result has interesting applications for micellar 
systems of both the normal and reversed type. For 
example in studies of nonionic surfactant systems 
Nilsson et al. [47] found a minimum in D ~ at around 

= 0.3 for both pentaethylene glycol dodecyl ether 
(C12E5) and octaethylene glycol dodecyl ether (C12E8) 
under conditions where nearly spherical micelles are 
expected. Similarly for reversed micelles of Aerosol 
OT Stilbs and Lindman [48] found a minimum of the 
self diffusion at �9 = 0.3-0.4. It leads too far to go into 
detailed interpretation of these data but we point out 
that there is the additional complication that the par- 
ticle diffusion is not negligible so that equation (2) must 
also be incorporated in a full description. 

To obtain a deeper understanding of the range of 
validity of equation (25) for the study of binding to the 
colloidal particle we construct a three-region model 

= 0  r < b  
D(r) C(r) = D 1 C a b < r < b + A 

=D2C2 b + d < r < R .  (30) 

Here there is an excluded region r < b, a binding 
region with D1 small and/or C1 large up to a small dis- 
tance, A, outside the particle and finally an unper- 
turbed region for r < b + A. Also for this case it is 
straightforward to solve equations (21) and (23) and 

1 
Deft ----- Pfree D2 1 + 0.5 q)2 

~ 2  -t- Y .  (0.5 -t- ~2)  
�9 = + Y. (1 -   2F/(2 + %) 

(31) 

+ 
'1" 

2 

-(z 
,.-, 1.5, 

1 
0 

Y=I 

Y=0.1 

0.1 012 013 014 0.5 
0 

Fig. 3. The effect of the mobility of the "bound" water molecules on 
the effective self-diffusion coefficient of water in a system with col- 
loidal spherical particles. Y = 0.67. (D �9 P)bo~na/(D �9 P)fr~ 

where 

D1 1 /gboun d (32) 
Y ---- D 2 " 1 + 0.5 qJ1 /9free 

q)l is (b/(b + d)) 3 and (/12 is ((b + A)IR) 3, the volume 
fraction inside r = b + A, In equation (25) Dfree is 
usually interpreted as D2/(1 + 0.5 q)2) and this is cor- 
rect only when Da is small enough to make Y in equa- 
tion (32) negligibly small. In figure 3 we have plotted 
Deff/[Pfree D2/(1 + 0.5 ~)] assuming q~2 ~ q), as a func- 
tion of the volume fraction q~ for varying values of Y. 
Except when Y is very small this ratio is concentration 
dependent. A direct application of equation (25) 
would then artificially give a concentration dependent 
Pfree" This effect has for example, been observed for 
water diffusion in polyethyleneoxide and nonionic 
micellar solutions [20]. Although retarded by the pres- 
ence of the colloidal particle the "bound" water mole- 
cule still seem/to be mobile enough to contribute sig- 
nificandy to the diffusional flow. It can be noted that a 
similar physical picture emerges from a careful analysis 
of NMR water relaxation data [49]. 

7. Cells of spheroidal symmetry 

When the colloidal particles are markedly dissym- 
metric it is no longer appropriate to use spherical cells, 
particularly at higher concentrations. It is then a useful 
generalization to consider spheroidal particles in cells 
of spheroidal symmetry. Consider the coordinates ffl, 
v and @ defined through the relations 

x = a(~21 g- 1) 1/2 sinv cos@ 

y = a(ff I -T- 1) ~/2 sinv sin@ 

z = a ffl COS 1) (33) 

where 2a is the distance between the two loci of the 
prolate ( -  sign) or oblate (+ sign) ellipsoid. The diffu- 
sion problem can be solved using the same principles 
as in the spherically symmetrical case and the expan- 
sion of Xa in terms of spherical harmonics, equation 
(15), still applies with the variables r, 0, @ replaced by 
ffl, v and @, respectively. In the differential equation 
(14) for Xa we find for the r.h.s, assuming that D * C 
only depends on ~1 

--  V X a �9 V l n ( D C )  

2 a ln(DC) flm( l) Y?(V, (34) 
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and for the 1.h.s. of equation (14) 

~2Xa : (hlh2h3)-l Z {o~l {h2h3 '~m) 1 
l, m 

0 [h2h 3 OY~I I 
+-ff~2 \ h2 tIm--~2 / 

0 2 [ha h2,  y~)} (35) 

w h e r e  ~2 -~ COS V. Here the h i a r e  the scale factors of the 
coordinate transformation 

hi = a ' k ~  ] 

h2 = a ' \ 1 _ - ~ 2 ]  

h3 = a .  (~21 T- 1) '/2 (1 - ~)'/~ (36) 

where the optional minus and plus signs refer to the 
prolate and oblate case, respectively. Using these expli- 
cit expressions for the scale factors and the properties 
of spherical harmonics we arrive at 

V2Xa=a-2(~2-F ~29)-1E{d~1 [(~2-F1) f~m] 
l,m 

_ _  1..Fl 2 

By identifying the coefficient of the spherical harmon- 
ics in equations (34) and (37) we arrive at an ordinary 
differential equation for the quantities flm 

d [(r + 1) f;m] = [l(l + 1) -Y- m21(r + 1)] [,m 
d~ 1 - 

- (r _+ 1) [~m ~ ln(DC) (38) 

for all l and m. For the cases with optional signs the 
upper sign refers to the prolate and the lower to the 
oblate case. Once the fire's have been determined 
through a solution of equation (38) the flow at the cell 
boundary is determined and 

I a. dS = - D(r C(r a(r 2 + 1) ~,mf;m(r Y'~ (39) 

where ~R is the value of ~1 at the cell boundary. Aver- 
aging over the surface of the cell leads to 

(]z) = -- D(r C(r ~ a -1/io(~R) (40 a) 

F-Y- 
(J~> = D(ffR) C(~R) V-~- z (affa)-' (r T- I) 7~ 

{til(r - f~-l(r (40 b) 

and for the Ljapunov function 

L = j X a X  b o d V  

= k D(ffn) C(ffn) a(ff~ + 1) ~ Z f*lm (~R) f~rn (~R)" 

(41) 

As in the spherically symmetrical case one can show 
that each term in the sum in equation (41) gives a posi- 
tive contribution and all [Zm are consequently chosen as 
zero except where imposed constraints require a non- 
zero term. In analogy with equation (21) the diffusion 
coefficient for the z direction is 

Dez ~ = D(~R) ~R [IO(~R) 

_ D(~R ) C ~  Uz(~n) (42) 

where U~ is determined by the differential equation 

dU~ 
r d e  1 

= (1 - + + 1)] 

d ln (DC)  (43) - 

with U~ = 1 at the center of the cell. For the diffusion in 
the x direction an expression analogous to equation 
(42) is obtained but with U~(~R) replaced by Ux(~R) 
determined through the equation 

dU. _ (1 - U,)[1 + (1 + Ux)r162 + 1)] 
~1 d~ 1 

d ln(DC). (44) 

eft eft Due to the cylindrical symmetry Dy -- D~. Equations 
(43) and (44) can now be solved once the product 
D(r C ( r  is specified. 
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As an illustrative example consider a case analogous 
to that of equation (26) 

~- D1 C1 ~1 < fib 
O(~l) C(~l) D2C2 ~b ~ ~1 ~ ~R- (45) 

The solution of equation (43) leads to 

Uz(r = y -  h(r + ~, {h(r - l} 
r -  h(r + q, h(r 

(46) 

where y = D2 C2/(D2 C2 - D~ C1) and 

( -) ( ~  + 1) ~1 arctan ~l + 1 - ~- ~l for an oblate 

h(r = (47) 

-- ( ~  -- 1) (--~!- �9 In i f1-1  ) + 1 for a prolate. 

For equation (44) the solution is 

U,(r = 1 - 2y  - h(~b) + q) [ h ( ~ )  + 1] 
1 2 y -  h(r + �9 [h(r - 1]" 

(48) 

For an isotropic system the diffusion over large dis- 
tances is obtained as an average 

DCff 1 D~fr = ~- (D~ ~ + + D; ~) 

1 c ( ~ )  =3-D2  

1 - 2y - h(r + q) [h(~R) + 1] 
2 1 -- 21~ -- h(~b) + q~ [h(~R) -- 1] 

+ Y -- h(d~b) + ~ [h(d~R) - 1]-I (49) 
r -  h(~b) + a~ h(r /" 

This is the explicit expression for the effective diffu- 
sion coefficient in this fairly complex geometry. When 
Ci --- 0 (y = 1) the obstruction effect is obtained from 
equation (49). The calculated dependence of the ob- 
struction factor Deft~D2 o n  the volume fraction q~ is 
shown in figure 4. For prolate ellipsoids there is a 
minor decrease in the obstruction factor, while for 
oblate aggregates it can reach the limiting value of 2/3 
even at fairly low concentrations. In figure 5 we show 
an example where a determination of the obstruction 
factor has been used to determine the shape of a micel- 

110 " a sphere 

b long prorate 

100- c oblate 1:5 
d ob la te  1 :10  

e ob l a t e  1 : 100 
. o  

80- 

f 
60 

o t b  2 '0  ab & s o  

obstructing volume (vol.%} 

Fig. 4. The theoretical obstruction term (D/Do) for some different 
particle shapes vs. the volume fraction obstructing particles 
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Fig. 5. The obstruction factor A(A = D/Do) "m three different �9 
tropic solutions of nonionic surfactants (see rd. [21]) 

lar aggregate. The limiting value 2/3 is obtained at low 
concentrations strongly suggesting large disclike 
aggregates. 

As with the obstruction factor for spherical systems 
the problem has also been extensively studied with 
spheroidal aggregates. For a comprehensive review 
related to dielectrical properties see reference [44]. 
Fricke derived an equation analogous to equation (49) 
for conductivity, but it is applicable to the diffusion 
problem only for small volume fractions and they do 
not approach the correct limit at q~ = 1. With the cell 
model we obtain equations that are consistent over the 
entire concentration range. 

Another application of equation (49) is for the case 
of strong binding to the particles so that C2 -* C1 and 
D2 ~ D> Then y ~ 0 and there is a considerably 
reduced diffusion rate with a minimum at intermediate 
values of ~ as shown in figure 6 a and 6 b. 
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Fig. 6 a. The effective self-diffusion coefficient for a component in a 
colloidal system with 1000 times higher concentration in the prolate 
aggregate then in the surroundings. R is the axial ratio of the aggre- 
gate, The self-diffusion coefficient is assumed to be constant in the 
system 
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Fig. 6 b. Same as in figure 6 a except that the aggregate is oblate 

8. Polydisperse systems 

So far the discussion has been based on a cell model 
with monodisperse particles in monodisperse cells. 
One virtue of the approach based on irreversible ther- 
modynamics is that the generalization to a poly- 
disperse situation follows in a straightforward way. 
Assume that there is a variation in cell volume V~ and 
in some other parameters y with a given distribution 
function n(V~, y). For each cell there is a flow in the r/- 
direction. 

( P .  45co. = y) (50) 

and an effective local diffusion constant 

y) = g(Vc, y)/O. (51) 

At the present stage the function f(Vc, y) is unknown, 
since it is not obvious how the flows in the different 

types of cells adjust relative to one another. The prin- 
ciple is again that the total Ljapunov function should be 
minimized under the given constraints. For each cell 
we have 

( X  a X b O)cdl = k f2 (Vc, y)/g(Vc, y) (52) 

using equation (11). Averaging over the total system 
the Ljapunov function is 

L = JJ n(Vc,y) f2(V~,y)/g(V~,y) dV~dy  (53) 

which should be minimized with respect to the local 
flows f(Vc, y) under the constraint of a given total flow 

(~a . E,7)tota ~ = jJ n(Vc, y) f(V~,y) dV~dy .  (54) 

Thus the integral 

jj n(Vc, y) {f2(Vc, y) /g(Vc, y) + ~ f(Vr y)} dVcdy  (55) 

should be stationary with respect to variations in f. 
Here ~ is a undetermined Lagrangian multiplier. This 
leads to the Euler equation 

n(Vr {2f/g + k} = 0 (56) 

and at optimum 

1 
f(Vc, Y) = - -2 ~ g(v~, y) . (57) 

Using the general formula of equation (11) and averag- 
ing over the total system we find the nearly self-evident 
expression 

De, = If n(Vc, y) D(Vc, y) a vcay.  (58) 

If one can determine the diffusion coefficient in each 
type of cell, i. e. g(gc, y), equation (58) gives the global 
self-diffusion coefficient. 

As a first example consider a system with poly- 
disperse hard spheres. If the cell volumes are chosen so 
that the particles occupy a constant volume fraction of 
the cells equation (58) gives the same as for the mono- 
disperse case. This follows from the fact the local diffu- 
sion coefficient only depends on the volume fraction in 
the cell so that the average in equation (58) is trivial. 

Another instructive example is obtained by consi- 
dering monodisperse spherical particles but letting the 
cell size vary. This is one way of taking into account 
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Fig. 7. The calculated obstruction factor D/Do for the cases of a size 
distribution in cell volumes but with equal size particles. The figure 
illustrates two distributions n(V~) = P(~') where ~' is the particle 
volume fraction in the particular cell. The overall particle concen- 
tration is ~' = 0.25 

the positional disorder present in a real solution of col- 
loidal particles. The result obviously depends on the 
assumed size distribution n(Vc) but for the obstruction 
effect there is always an increase in D eft , as illustrated in 
figure 7. The largest obstruction is obtained by distri- 
buting the obstruction objects regularly in space. An  
effect that is often seen also in every day life. However  
for reasonable distributions n(Vc) the increase in D e~ is 
only moderate. 

9. Conclusions 

The self-diffusion of a small molecule in a system 
containing colloidal particles has been described using 
the cell model  and the formalism of irreversible ther- 
modynamics.  The main advantages with this approach 
a r e  

i) by using the cell model  one obtains a description 
of the concentration effects that is consistent over the 
whole concentration range 0 < �9 < 1. 

ii) After the identification of the proper Ljapunov 
function for the diffusional process, the boundary con- 
ditions at the steady state flow follow through an 
objective procedure. 

iii) Through the Ljapunov function we obtain an 
objective criterion for the relation between the local 
diffusion and the averaged overall diffusion. 

iv) For several important cases the specific charac- 
teristics of the system in terms of the potential of mean 
force and the local diffusion coefficient only enter into 
a first order differential equation (eqs. (23), (43) and 
(44)). Even for a complicated potential of mean force 
one can often find a reasonable analytical or numerical 

approximation for C(r) so that a solution of the differ- 
ential equation is feasible. 

v) By using simple model  expressions for D(r) C(r) 
the qualitative behaviour of the effective diffusion con- 
stant D ef is revealed so that different mechanisms can 
be dear ly illustrated. 

vi) Through an explicit solution of a particular 
model a generalization of the often used equation (25) 
is obtained. It is demonstrated that when the "bound" 
species has a low, but non-negligible diffusion constant 
the use of equation (25) can lead to an artificial concen- 
tration dependence of the fraction of bound species. 

vii) By solving the diffusion problem for spheroidal 
obstructing particles it is shown that large oblate par- 
ticle can give an obstruction factor of 2/3 even at low 
concentrations. This effect can be used to determine 
aggregate shape. 

viii) The treatment of a polydispersity in cell 
volume reveals that the maximum obstruction factor is 
obtained for regularly arranged spheres. 
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