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1. Introduction 

This paper developed out of an attempt to understand the results of Gel'fand- 
Dikii [1] and P. van Moerbeke (unpublished version of [2]), in a unified way. 
The Korteweg-deVries equation and Toda systems are completely integrable 
Hamiltonian systems whose equations of motion are expressible in terms of the 
Lax isospectral equation. Gel'fand-Dikii and P. van Moerbeke recently genera- 
lized these two types of systems respectively, and in a strikingly analogous 
fashion from the computational viewpoint. Indeed, we shall show that the 
analogy lies much deeper, and in the realm of Lie algebra. 

We make the crucial observation that in both cases the relevant symplectic 
structure is the orbit symplectic structure of Kostant-Kirillov [12, 18]. 1 In 
addition, the splitting of a Lie algebra into a vector space direct sum of Lie 
algebras is responsible for the complete integrabitity of the above systems and 
the Lax isospectral equations associated with such systems. The last statement is 
seen from a theorem due independently to B. Kostant and B. Symes which will 
be briefly mentioned, and thus the above mentioned analogy will be made 
precise. At this point it is good to note that for the Calogero-Moser type 
integrable systems, the real compact decomposition of a complex semi-simple 
Lie algebra plays the crucial role [143. Thus integrable systems are seen to be 
related to Lie algebra decompositions. We also observe that the orbit symplectic 
structure plays a crucial role in the n-dimensional Euler spinning top problem of 
V. Arnold [11], as was observed by L. Dikii [15]. In addition, to the best of my 
knowledge, the first Lax-isospectral equation associated with a mechanical 
systems also appears in [11] in the context of the top. We also mention that 
quotient symplectic structures though Hamiltonian group actions [12], of which 

* Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the 
National Science Foundation under Grand No. MCS75-17385A01 

1 For the Toda system, this fact was also discovered by B. Kostant. Personal communication 
from B. Kostant 
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the Kostant-Kirillov construction is but an example, have been seen to play a 
role in the Moser-Calogero systems, see [13, 14]. 

We shall define the generalized Toda systems in Sect. 2, of which the simplest 
has the following form: 

lJi=2(aZ_l-a~), fii=ai(bi-bi+l), i=1  . . . . .  n, ao=a,=b,+l=O.  (1.1) 

For this system, the relevant group G is the group of lower triangular 
matrices with nonzero diagonal elements, envisioned as contained in SL(n, R). 
We identify the dual algebra of G, L~ a*, with the upper triangular matrices 
though the trace form. The orbit Hamiltonian phase space 0 a of interest is of the 
form 

Oa={[U-~AU]+IU~G},  A6~,r 

where I-B]+ denotes the matrix formed from B by setting its lower triangular 
entries equal to zero, and A is subject to certain conditions. 

For  the case of the generalized Korteweg-deVries equation, to be defined in 
Sect. 3, the relevant group G is the formal pseudo-differential symbols of 
negative type translated by the identity element 1, whose dual ~ *  we may 
identify, through a trace form to be specified, with the differential symbols of 
nonnegative type, which are identified with formal differential operators. Thus 
the large algebra in which everything takes place is the formal pseudo-differen- 
tial operators. The Hamiltonian orbit space of interest is of the same form as 0 a 
above, where the operation [ ]+ denotes the natural projection of a pseudo- 
differential symbol onto the nonnegative symbols. For the case of the Korteweg- 
deVries equation 

q, = 6 q qx - 2 q . . . .  (1.2) 

one takes as an orbit 0 a, A = - D  z +q, which, roughly speaking, is specified by 
the condition S q dx = constant. We also point out that although the formula "in 
coordinates" for the correct symplectic structure of the generalized Kortweg- 
deVries equations appears in [1], it comes about through strictly computational 
procedures, and it is our purpose to place the formula in its proper geometric 
setting. This also necessitates redoing parts of [1], so as to give complete and 
consistent proofs. 

We amplify the previous paragraph. The algebra of pseudo-differential 
operators 2 has a subalgebra consisting of those symbols which have an asym- 
ptotic description at ~ .  One may think of taking this description as a set of 
normal coordinates for the subalgebra, since one identifies symbols modulo their 
behavior on compact sets. This suggests that one should abstract the algebraic 
content of the above situation, and work in a formal setting. We work with 
formal Laurent series in a variable ~ over some formal differential ring, with the 
multiplication rule inherited from pseudo-differential operator theory. We shall 
intuitively think of the formal Laurent series as being in a real variable 

2 I am indebted to Prof. S. Sternberg for pointing out to me that in 1-20], Guillemin, Quillen, and 
Sternberg introduced an algebra of formal pseudo-differential operators which is intimately related 
to the algebra introduced here 
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embedded in a complex neighborhood of ~ .  We then define the trace functional 
(which is of course commutative) as the equivalence class of the coefficient of the 

- ~ term, where we identify two elements if their difference is a total derivative 
of a ring element. The trace functional makes possible the identification of a 
cotangent bundle, and from then on, the Korteweg-deVries case proceeds in 
perfect analogy with the Toda system case, a point which we wish to stress. The 
method also works automatically for a) the self-adjoint case, which merely 
involves a slightly different coordinization of the formal Laurent series than in 
the previous case, or b) for the case where the relevant ring is composed of 
square matrices (see [19]) whose entries are themselves differential ring ele- 
ments. In the latter case, we must take for the trace functional the equivalence 
class of the matrix trace of the coefficient of the ~- ~ term. 

We point out that the decomposition of a matrix along its diagonals has a 
place in the Fourier theory of say Z, or Z, ,  the integers and the integers modulo 
n, respectively. This decomposition is analogous to the Fourier decomposition of 
pseudo-differential operators, and strengthens the formal analogy between the 
Toda  and Korteweg-de Vries type systems, leading to Kac-Moody algebras. 

We conclude in Sect. 4 with a generalized set of so-called Lenard relations, 
which provides an alternate method of constructing all the relevant quantities in 
two examples; in addition, in the case of self-adjoint operators, the relations contain 
formal spectral information concerning the operators studied. These relations 
are essentially a consequence of the law of exponents for operators. We 
conjecture that they yield a second symplectic structure. We note that Bill 
Symes has discussed recursion relations in [8], and also that the author has 
discussed recursion relations in [5]. 

I wish to thank Bill Symes for many stimulating discussions. I am also indebted to J. Moser who 
provided the stimulus and encouragement for this line of work, along with the clarification of some 
points. In addition, my thanks extend to C. Conley and J. Robbins for helpful suggestions. I also 
wish to thank Conley for encouraging me to present these results at his seminar at the University of 
Wisconsin, Madison, even when they were still in a crude state. 

2. The Generalized Toda Systems 

As motivation, and of interest in its own right, we first discuss the Toda system 
and its generalizations, which display the relevant structures in both examples. 

The Toda system (see [21]) is most easily introduced by studying the 
8 H  8 H  

Hamiltonian system of ordinary differential equations, ~ i = ~ 7 ,  p i -  
8 x i '  

i = 1, 2 . . . . .  n, with Hamil tonian 

i = 1  i = 1  

yielding 

xi=Yi,  ~ ; i = e X t - ' - X i - - e  x ' -  . . . .  , i=1 ,  ... ,  n. 
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H. Flaschka made the important discovery [22] that if one introduces the 
change of coordinates 

b 1 a - •  �89 . . . .  ) i=1 ,  n - l ,  i=1,  n, i - - 2  , " ' ' ,  i - ~ ' 2 Y i ,  ' " ,  

then the above differential equations go over into (1.1) and moreover can be 
written as matrix differential equations in the following Lax isospectral form 

L = [n, L]. 

Here [P, L] = P-  L - L .  P, L, P being the matrices 

-bl al 0 0 
b 2 a2 ~ [ 

0 - _ bl 

0 al 0: 0 

P =  2 a2 

o - _  ol 
In addition, if one transforms the standard Poisson bracket {f, g} in (x, y) 

coordinates into (a, b) coordinates, imposing Z b i = constant, one finds, 

{f,, g} -= ~'(ai-1 f , , - ,  -- ai f,,) gb, + 2(gb, -- gb,+ ,) ai f , , ,  

where the �9 means to omit terms with undefined elements, i.e. terms involving 
a o, a,, bn+ l. One also finds [21], 

{trU, t rL k} = 0  for j, k=2,  3, ..., n, 

i.e., the Toda system, which has the 2 n - 2  degrees of freedom, b 1 . . . . .  b ,_l ,  
1 

al . . . . .  a._ 1, has n - 1  linearly independent integrals H j = _ t r b ,  j = 2 ,  . . . ,n  in 
J 

involution, and hence is completely integrable. The flow associated with Hj is 
also described by an isospectral deformation equation. 

If instead of restricting L = {Lit } to be a symmetric matrix such that L~j = 0 if 
l i - j l  > 1, we allow it to be an 'm-ogonal'  symmetric matrix, i.e., a matrix such 
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that L~i=L~i, Li j=0  if li-jl>rn, we can get new isospectral systems. Simply 
define P to be a skew-symmetric matrix whose strictly upper triangular part 
agrees with the 'm-ogonal' matrix L, and then the differential equation L 
= [P, L] defines a generalized Toda system of P. van Moerbeke, including (1.1) 
as a special case. It is these systems which we study as regards their Poisson 
structure, isospectral properties, and the involutive character of their 'spectral' 
integrals/J, j = 2, 3 . . . . .  n. 

To this end, we introduce the group G of lower triangular matrices with 
nonzero diagonal entries. Its Lie algebra 5 ~ is just the lower triangular matrices. 
Using the pairing 

(E, F ) =  tr (EF), tr(Aij)=Y-Aii , (2.1) 

we may identify the dual of 50, 50", with the upper triangular matrices. Since 
g~G acts on 50 via conjugation, it naturally acts on l*~L~* through duality. 

g: l* ~ [ g - '  l* g] +, (2.2) 

where [ ]+ denotes the projection operation of setting all terms below the 
diagonal equal to zero. This is the co-adjoint representation of G. We denote an 
orbit of this action through l 'e50* by 0=01,={[g - l /*g]+lg~G}.  From (2.2), 
the tangent space of 0~, at l*, Tt, Or, is described by 

Tt, 0t, = {[/*,/] + I/~50}, (2.3) 

and the natural symplectic 2-form co of Kostant-Kirillov [12], associated with 
the orbit space 0~, is 

co([/*, 113+, I-l*, la] + ) (1,)= < l* ,[ll, t2] > --<[/*,/~]+, Iz>. (2.4) 

It is standard that co is well defined by this relation. Let A = [Ai~ ] be the running 
variable on 5r and suppose H =H(A)=H([AJ) is a function on 5~*. We may 
uniquely identify the gradient at A of the function H =H(A) with respect to the 
pairing, VHtA, as an element of 50. And so we have 

X(H)I A = <X, VH>IA, (2.5) 

with X a vector field on 5e*, and hence identifiable as an element of 
C~(50 *, 5~ in order to compute Xn, the Hamiltonian vector field associated 
with H = H[A] through the symplectic structure co, we use the general definition 
of Xn, co(Xn, Y)=_ Y(H). We apply it to the formula 

co([A, - vn]+, [A, /]+)=<[A, /]+, VH)=[A, /] +(H), 

where Y= [A, I(A)] + in the above definition, which yields 

X H = [VH, A] +. (2.6) 

We note that the He{HI[A, VH]+=0,  for all A~OB} form an algebra, 
namely the algebra which characterize the invariants, or constants of the orbit 0 
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= 0~. The description of an orbit, 0 B, consists in finding these constants. We also 
note from (2.2, 4, 6), that the Poisson bracket { , } based upon o) is 

{H (~), H (2)} (A) =- o)(XH, ,), XH,z) ) (A) = ( A, [ VH (1), V H  (2)] ) .  (2.7) 

We now spezialize these considerations, and for that we introduce some 
notation. Let the shift operators 4, ~-~, acting on R" be defined by 

(~V)i=vi+ 1 , (~ - l v ) i=v i_  1 , v=(v  1 . . . .  , v , )TeR ", ( 2 . s )  

where we define Ui~-O if iq~{1.2 . . . . .  n}. We define ~+J=(~-+)J, j = 0 ,  1, 2 . . . . .  
In addition, we associate with a~R", the multiplication operator a- , namely 

(a . v)j = aj v j, j = 1, 2 . . . . .  n. (2.9) 

We now define the linear subspace ~'k.j of operators A by 

d k j = { A I A =  ~ a(1)'~ i, 
k~i~j 

a")=(a~) ), a~ ), ..., a(i)(,- 1-i), O, 0 . . . . .  0) r, a")~R"}. 
(2.10) 

Note alJ)------Ai, i+j, the (i, i+j)  entry in the matrix A. For example, if A 
= ~ a(i). ~i, B = ~ ~-i(b"). ) then (A, B)  = ~ (ai, bi), with ( , ) the scalar dot 

i=>O i > 0  i>0  
product in R,, ( , ), defined by (2.1). In the future, we shall omit the dot in a. 
when there is no possibility of misunderstanding. Clearly 5q = ~ / , ,  o, G c a d , ,  o, 
and f * = d o ,  ., Along with the grading inherent in the specification of the 
adk, j's, we have the projections Pk,j into the agk, j defined by Pk,j(~a")~ i) 
- -  

k<=i<j 
We shall restrict AEY*,  so that A~do , " ,  O < m < n ,  and we observe from 

(2.2) that B e d o , "  implies 0B=ado,". In addition [VH, B ] ~ d _ , ,  m. This we shall 
indicate by replacing the subscript + in (2.6) with a superscript m, i.e., we shall 
write 

X H = [ V H  , A]".  (2.11) 

Here we define [ ] "  =Po,"[  ]. Since from (2.11), [VH, A]"  only depends on the 
part of VH contained in d_, , ,  o, we may as well restrict H to depend only on the 
Ai, j's such that O < j - i < m .  Note that clearly do, , ,  is not an orbit, for if Dc01~, 
t r B = t r D .  This is a consequence of H = t r A ,  V H = I ,  implies [VH, A]m=0 in 
(2.11), and so trA is an orbit invariant. In general there must be more invariants 
and we refer the reader to [18], which discusses this problem for the special case 
of orbits of maximum possible dimensionality. 

We compute (2.11) in coordinates, using the notations (2.8)-(2.10). We have 

~?a~j), where (2.12) 
k=O j=O (~As, s+ j' 
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hence by (2.11), 

~ o  j>=o \~a ~j) / J  

~H 

and so Hamiltonian's equations are, setting A = X  n, and using (2.12), 

ci(~)=At ~_.-- ~ ~ f OH At_,jv+l-Att+,+j, OH } 

O<v<_m, O<<_t<_n-l-v. 

For example, if we set m = l ,  A~,i=b i, Aj,j+ l =a~, then the above expression 
yields for (2.11), 

~i=(ai- l  Ha, , -aiHa,) ,  ai=ai(Hb --Hb,+l), 

and since {F, H} = X n F ,  we have 

{F, H} = Z(a i_ 1H .. . .  - a  i H,,) Fb, + Z ai(Hb,--Hb, + 1) F, , 

which is nothing but the Poisson bracket of the Toda system discussed at the 
beginning of this section. In this case it is only necessary to impose the condition 
22b i=constant  to specify an orbit, assuming none of the a[s are zero, as the 
property of a i being zero is orbit invariant. 

We now make an important observation due to P. van Moerbeke in an 
unpublished version of [2] (for the periodic case, see Remark 2). We write 
every matrix M = M  + + M ~  M - ,  with M + the strictly upper triangular part, 
M ~ the diagonal part, etc. 

Theorem 1 (P. van Moerbeke). Let L be the real symmetric matrix A+(A+) r, 
A~sdo, m. Then if H=Hj . (A)=tr  f (L) ,  the Hamiltonian equation, A = [ V H ,  A] m, 
implies that L satisfies the Lax isospectral equation 

L=[P ,  L], with P=Pf=T' (L)  + - f ' ( L ) - .  (2.13) 

Moreover this implies that {Hy, Hg} =0  for all polynomial f g, i.e., the Hf are in 
involution with respect to { , }. 

Proof We give a 'functional' version of P. van Moerbeke's proof in the 
unpublished version of [2]. In the course of the proof we shall show the 
necessary fact [P, L]esd , , , , , .  

We compute, using the notation of (2.8)-(2.10), 

/ ) ' L ' - /  (?H ~?(trf(L) 0L = ~ ( f (  ),~ +~ ), l<-i<m, 
c~a "~- c~a ~i~ = f ' (L) '  ~#  i~ ( ( f ' ( L ) ,  ~o) i = 0  
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Hence if f ' ( L ) =  ~ (f'(L))~"~i+ ~ ~-' .(f '(L)) ~'', 
i=O i = 1  

~H _ 2 tC ' tL~i ) -  ~ ~C'~L ~) ,  O a ( i ) - -  t J  t )! i, O t J  t 11 i=0,  1 . . . .  m, 

and thus 

VH = [2 f ' (L ) -  + f ' (L)  ~ _,,, 

where [ ] _ m = P-,,, 0 [ ]. 
Now 0 = [ f ' ( L ) ,  L] = [ f ' ( L )  + +f ' (L )~  -, L], 

- f ' ( L ) -  

[P, L] = [ f ' (L)  + - f ' (L ) - ,  L] = [L, T'(L) ~ + 2 f ' (L ) -  ]. 

Substituting L =A +L-  we find 

[L, f ' (L)  ~ + 2 f ' ( L ) -  ] = [A + L-, f ' (L)  ~ + 2 f ' (L)-] ,  

(2.14) 

hence for P= f ' ( L )  + 

and so the former equation implies [P, L]+ = [A, f ' (L)  ~ + 2 f ' ( L ) - ]  + = [A, f ' (L)  ~ 
+ [2f'(L)]_m]". AS a consequence of (2.14) the above yields [P, L] + = [A, V/-/] m. 
By the skew-symmetry of P, we must have [P, L]~c_~,m.  We thus conclude 

= [A, VH] m implies L = [P, L], H = 1f:. 

From L=[P ,  L], P=Py when H = H : ,  we have 

d d 
dt Hg = ~  (tr g(L)) = (g'(L). L )  = (g'(L), [P, L] )  = (P,  [L, g'(L)]) = 0, 

d H:}, we have proven the as a consequence of [L, g '(L)]=0.  Since ~Hg={Hg ,  

statement concerning the involution of the H:'s. This concludes the proof of 
Theorem 1. We refer the reader to [9, 10] for theorems analogous to Theorem 1, 
concerning other finite systems. 

There is more information, namely recursion relations, or so-called Lenard 
relations to be gleaned from the companion identity to the fundamental relation 
[f ' (L) ,L]=O, namely the stronger statement, LJ+I=IJ.L 1, which we shall 
discuss in Sect. 4, but we go in the next section to the differential operator case. 
In preparation for the next section we mention immediate generalizations of the 
above discussion. 

Remark I. B. Kostant and B. Symes have independently generalized Theorem 1. 
We give an easily provable form of their generalization with a view towards the 
Kortweg-deVries type systems to be discussed in the next section. 

Theorem (Kostant, Symes). Let L be a Lie algebra which has the following vector 
space direct sum decomposition 

L = K + N ,  
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with K, N Lie algebras. Let <. , .  > be a nondegenate pairing between L, and a 
vector space we shall identify with L*. Therefore 12 has the direct sum decom- 
position 

IY = K I  + N • 

with the i being with respect to <. , .  >. We may thus naturally associate K l ~ N*, 
N• ~ K*, and therefore K ~ inherits the Kostant-Kirillov orbit symplectic structure 
when identified with N*. Under this symplectic structure, the Ad* invariant 
functions on L*, when restricted to K •  form an involutive system, to be 
interpreted as a system of commuting integrals. Moreover if f is such a function, g 
=J'[K~ has the associated Hamiltonian vector field 

X,(s) = zc K l(ad* g s), s ~K l, 

with zr K l projection onto K • along N l, and 171 g(s)EN is the gradient of g viewed 
as a function of K I ~  N*. In addition the equation ~ =Xg(S) has the following Lax 
form, 

s=ad*  s, b= -re K Vf(s)6K, (.) 

where zr~ is the projection onto K along N. In the event that < , > is a symmetric 
pairing between L and itself, then (*) becomes 

= Is, b], 

with [ , ] the Lie bracket of L. In the case that s e M c K  ~, with M thought of 
as a submanifold of N*, invariant under the co-adjoint action, then automatically 
Xg(s) ~ ~ m. 

In the case of the generalized Toda systems, one takes L semi-simple, ( , > 
the Killing form, and one uses the Isawa decomposition. A filtration of co-adjoint 
invariant manifolds yield generalizations of the m-ogonal symmetric matrices, 
and are produced by the weighting of algebra elements into levels inherent in 
picking a root basis. The weighting also generates the Isawa decomposition. The 
generalizations of one-ogonal symmetric matrices automatically give rise to 
completely integrable systems. This fact was previously discovered by Bogoyav- 
lensky [25]. In the case of the Kortweg-deVries systems, the algebra decom- 
position shall be particularly transparent. 

Remark 2. We note that Theorem 1 may also be generalized to the case where 
the matrix A is thought of as being n-periodic, which is the case considered by P. 
van Moerbeke. In that case we may either think of 

A = ~ a~i)~i+ ~ ~i.a~i), 
O < i < m  - r e < i <  - 1 

a i=( . . . ,  a~/) 1, a~ ) . . . .  ), where "k"ti)--'~k--"ti)+,, or we may represent A by an n • n matrix 
in an obvious fashion. In either case, the above representation of A is nothing 
but the Fourier representation of the operator A. This is most easily seen by 
noting the operators r have "characters" as their eigenfunctions. It is this 
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decomposition of A which will motivate the choice of an appropriate Lie 
algebra for the Kortweg-deVries type systems, and thus enable us to apply the 
considerations of Remark 1. This will be reported on elsewhere in a joint work 
with P. van Moerbeke and T. Ratu, along with a discussion of the spinning top 
[15] in this framework, which uses the Kac-Moody algebras. 

3. The Generalized Korteweg-deVries Equations 

The Korteweg-deVries equation for qsC~(R), 

qt=6qqx-2q . . . .  (3.1) 

where q describes the amplitude of water waves in a narrow channel of finite 
depth, has been described from many points of view by a hugh collection of 
investigators in recent years. Gardner [23] observed that it could be written in 
the following Hamiltonian form 

d DH 
~t q = J -  Dq' 

where J = d  DH (q + 5q~)dx, being the directional derivative of dx, H=Hz(q)=~ 3 1 2 

H with respect to q. The system is called Hamiltonian precisely because J 
defines a Poisson bracket via 

{n(q), F(q)} 
\Oq \Pq]]  

The system (3.1) was observed by Gardner et al. [23] to have a denumerable 
sequence of conserved integrals of motions with polynomial densities Pj, Hj 
=~ P~(q, q ..... , (O~U)q))dx, j=2 ,  3 .... which moreover are in involution, i.e., 

R 

{Hj, Hk}=O, j=2 ,  3, .... Actually there is a previous integral H1=~qdx, and 

since J ~ a  ~ = 0, we think of initially specifying our Hamiltonian phase space by 

constraining q such that ~qdx=constant. The existence of these integrals 
motivated Lax [24] to describe the Korteweg-deVries equation in the form 

dL 

L= -O2+q(x, t), B= -403  +2(q 0x +0xq.), 

d DHj 
and the differential equations ~ q = J ~ - q  can also be described in this form 

with B=Bj. In [1] Gelfand-Dikii showed that if 

n - 2  

L=(--it3x)n+ ~ qj(--it~x) j, 
j=O 
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dL 
then the equation ~ -= l -B ,  L], for appropriate choice of B, is a Hamiltonian 

system with an infinite sequence of involutive polynomial integrals, in complete 
analogy with the case L = - ~ 2 + q ( x ,  t). The B's can be described in a natural 
fashion. These are the generalized Korteweg-deVries equations. 

Since we wish to apply the considerations of Sect. 2 to the generalized 
Korteweg-deVries equation, we need to define the appropriate formal Lie group 
G. To this end we introduce a commutative ring R with identity over the 
complex numbers, equipped with a derivation D. One defines the 'indefinite 
integrals', 1 = R/DR, i.e. R modulo DR, and we shall use =" for the equality sign 
in I. If re: R -~R/DR =I  denotes the projection associated with I, we shall write 
n(cp) as qS, the I equivalence class of q~. We let R[bo,b 1 .. . . .  b , ] c R  denote 
the differential ring of polynomials in b o, b~ . . . . .  b, and their derivatives, similar- 
ly for I [b0, b l, ..., b,], rc [b 0, b l . . . .  , b,]. Providing the operations occurring take 
place in this smaller ring, this notation shall allow for a more detailed discrip- 
tion of events. We shall remind the reader of this point if it is pertinent. 

We now define the ring of formal pseudo-differential operators to be the 
formal Laurent series in the variable ~ over the ring R: 

~={qS= ~ ai~ilaieR}, 
-~<i<_<_N<ov 

with the rule of multiplication given by 

q~, ~162 = ~ (0~)'r 2. (3.2) 
v>O 

The ~ indicates formal series differentiation, and the �9 indicates formal series 

multiplication. Also note that since the coefficients of the formal series are R 
elements, D extends automatically to q~. In analogy to Sect. 2, we define .ffij 

= , and in the same fashion define the projections P~,~ onto the 

~/, j 'S.  
For motivation, it is useful to think of ~ as a real variable contained in a 

complex neighbourhood of o% as follows from the brief discussion in the 
introduction. We give a quick explanation of (3.2). d 

If R elements were just C ~ functions of x, and D =dxx' then the differential 

operator P ( -  i D), with P a polynomial, acts on e ixr via P ( -  iD)(e ixr = P(~). eiXr 
and clearly [PI(-iD)(P2(--iD)(eixr =(PI(~)o P2(~))' eix~, with o defined in (3.2) 
Thus ~ models the image of the algebraic isomorphism implicit in the above 
comments, P(-iD)~--, P(~), and extends the image of the isomorphism. This also 
explains why o is associative. 

The care taken in the definition of �9 was in order to define the trace 
functional ( ) :  c19~---,I, for O---=2ai~ i, by means of 

tr r = (~b) - ~_~ el ,  (3.3) 
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where a_ 1 denotes the I equivalence class of a_ 1- We now state the fundamental  
result concerning < >. 

Theorem 2. I f  [q~l, q~2] =q~l o ~b 2 -~b 2 o ~bl, we have 

< [q~, ~b2] ) - 0 .  (3.4) 

Proof. It's here that the duality between x, 4, in Four ier  theory plays a crucial 
role, as evidenced by its appearance in the rule of multiplication (3.2). It's 
immmediate  from (3.2) that 

and so projecting into I = R/DR we have 

O~ 

Clearly [~b 1, ~b2] can have no 4-1 term, which, by (3.3), concludes the proof  of 
Theorem 2. 

We also remark  that  one can prove Theorem 2 by direct computat ion,  which 
is useful for Sect. 4, but then one fails to see why our choice for < ) is really 
unique. Note  that i f~ l  =Eai~ i, ai~R[b o . . . . .  b,], etc. for q~2, the equality sign, 
- ,  in (3.4) holds in I[b o . . . .  , b,], and thus the residue coefficient of [q~l, q~2] is 
an exact derivative in b o . . . .  , b, elements. 

As a consequence of  (3.4) we make the impor tant  definition, analogous to 
(2.1) of < ,  >, 

<q~,, qSz> =<q51 o q52>. (3.5) 

By Theorem 2, < , > is symmetric in its arguments,  which is the crucial point  in 
order  that the operat ion [qS,. ] be skew-symmetric with respect to < , >. This 
played an impor tant  role in the computa t ions  of Sect. 2 (see Remark  1). 

We now single out  a ' submanifold '  of cb: 

~tn)= {~ =~.+ Z ai~ilai ER}, (3.6) 
O<-i<-n-2 

which we shall think of as being parametr ized by a o, al  . . . . .  a ,_ 2. In order  to 
define the resolvent of ~t") elements we define ~ as the ring over, R, 
= R ,  [ao, . . . ,  a ,_ 2], of formal joint  power series in the variables ( 2 - 4 " ) - 1 ,  ~. We 
then define the resolvent opera tor  R, ,  

R, :  ~")  --+ (bx, R,(q~) - 4~a, 

by requiring 

qS~ o (2 - q~) =(2  - q~) o q~a = 1. (3.7) 
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We compute q~a in the following way, writing qS=~"+~, ~bxo(,i-~b) 
= qS~ o {(2 - ~") - ~} = ~b z o (); - ~") - q5 z o ~ = 1, hence 

q5~o$ 1 
'~ 2_~. ,~_~. 

Thus ~ba satisfies an equation of the form ( I -  T )x  = y, with x = 4~a, Y = ( 2 -  ~")-~, 
xoq~ 

T(x)=(2__~n), and so q~a= ~ T~(2-~") -~. From (3.2) it's easy to see that 
j>0  

~- -1 - " +--L m + l 
4h=Y'4~,,,~(-1)" ~ ' (~" -2 )  " , m~0,  l>0,  - -  an integer, (3.8) 

n 

with (a,,,,teR,=R,,[ao, al, . . . , a ,_2]  , and so qSze~b z. Using (3.8), we mimic the 
construction of R. Seeley [7] in a formal way, namely we define for 'nice' f, 

f(~b) -= [f(2)  ~b~](~, ~,). (3.9) 

If h=h(2), by [h](x,~o) we mean the formal residue term of h at ~", i.e., the 
coefficient of the ( 2 -  ~")- ~ term of the Laurent series in ( 2 -  ~"), computed by 
formally expanding h=h(2)  about ~". Since (3.9) necessitates expanding f(2) 
about 2 = ~", this places restrictions on the choice of f In practice (3.8) is used to 
compute (3.9), and also it may be necessary to extend ~bw-,~ to include f(q~). As 
a simple example, by (3.8), (3.9), one easily computes fractional powers of 

0~=Zq~,,.tF,~,,~m(~") r=  Z A,,~.,(~"y~-'e~, 
lEO 

~  
r = s - - - ,  rL ,=  , t = - - ,  Az,~. ,=~ O=.~rfl,,,. 

n t n m 

N 
For the case s = - - ,  N e Z ,  but not a multiple of n, we have 

n 

N N 

~ = a  N" ~ AI, N~ N-t, and so (~->=AN+~,~ .~  N. (3.10) 
l>0 

Here, in order to recover the freedom one enjoys in picking a branch of a 
root, one formally adjoins to R an element a obeying the rule a2= 1. One may 

~sign (~), n-even~ 
think of a = ~ 1 n-odd ; for the purpose of motivation. In addition we now 

N 

have ~ b ~ ,  ~ an extension of ~b, q~=q~q~a- ~b. Upon interpreting ~ elements as 
Laurent series about oo, the interpretation of ~ becomes clear. Implicitly we 
have and shall be working with a modified R, i.e., R - - , R @ ~ . R ,  hence 
1--* lGa.  I, but we shall not change notation. That the trace, ( . > ,  has all of its 

0 
usual properties follows from ~ a = 0 .  In general for r a complex number 
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q~eq~("), ~bre~| where the double sum in ~, s extends over the 
z , s  

complex numbers, and the adjoined elements ~ obey the rule aT, .a~2=a~,+~ 2. 
And so if r is not a real number, or real but either irrational, an integer, or less 

1 
than - - ,  q~" has no residue term and so (q~r)=0. 

n 
1 N 1 

We can also compute ~b"_ and hence q~g=(~bg) N, by the following, more 
1 1 

natural procedure. Just look for ~b~ to have the form ~b~= ~ + ~ b~ ~-~. Then 
i=k i>O 

define ~=6~, 4+  ~ bi~-i=6k+2, k=O, 1 . . . . .  and one computes the b~ in- 
i = 0  

ductively (and uniquely) by requiring 6~,=4~+~._k, ~.-ke~C-~, . -k.  For assum- 
ing we have computed 6 k, and thus bk_2, to  compute b k_ 1, we observe, using 
induction, 

( t ~ k + b k - l ~ - ( k - 1 ) ) n = ( ( 9 - } - P n - k ) + n b k - l ~  n - k + v ,  V~-'~r ~,,-k-l"  (3.11) 

Hence if #,-k = Ck ~,--k +fl, fleS~ . . . .  k--1, just define b k_ 1=-(n-1) .Ck,  and so 
1 1 

we have computed 6k+ ~. Let ~b"~--~a4~" to obtain the 'branched'  solution. 
Similarly one computes (/5 -~ by looking for a solution of the form 

dk~ ), letting 3k=~ -~ 1+ s~ and requiring 4~3k--1 
k_-->O s = O  1 

~ - o o , - ( k + 2 ) "  If we allowed division in our ring we could compute q~g 
n - - 1  

for ~b=b"~"+ ~ a~i,b invertible; for in the above we would now have, (see 
i = 0  

1 

(3.11)), q ~ = b ~ + ~  bi~ -~, bk_~=--(nb)-~.Ck, etc. for ~b -~ The reason we 
i > 0  

go through the artifice of the resolvent is to be found in the proof of Lemma 1, 
N 

where we need a tool to compute variations in ~b g. 
We shall work with the formal Lie group G = 1 + ~ r  ~,_ ~, with formal Lie 

algebra ~ = ~ r  ~,_~. Alternatively, we shall choose to represent 5r in the 
following form 

5(~={ ~ (~- iD)  - j -1  ajla~R}, (3.12)~ 
j_->O 

where (~-iD'-~-lb=-v~>_o ~-J-~-~(J+v)(iD)~b,\,~ / j>=O. It is clear that the two 
= 

definitions of L~ are the same: in fact, 

2 ak~ -k -~= ~ (~- iD)-~-~bj  = (iD)~bj~ -~-~-~ 
k>=O j>O v U 

~>__o (3.13) 
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We must have 

) 1 ,4, ak=~ V (iD)Vbk-~' and bk=,. ~ I,, 

the second relation in (3.14) being an easy consequence of the first. We shall 

denote by ~ , j =  (~-iD)S.b~lbseR , and by ~,~ the projections onto ~k,j" 
s 

We define the dual of 5(, 5a*~--~Hom(L& I) (over the complex numbers), to be 
the differential operators, i.e., 

S * = ~  ~ ai~ilai eR } = do. o~. (3.15) 
o e > n > i > O  

For if A =  ~ alv in5 a*, B =  ~ ( ~ - i D ) - J - l  bj~L#, then 
i > O  j > O  

( A , B ) - ( A o B ) -  ~ a~bi, (3.16) 
i>O 

as easily follows from (3.14), (3.2). Note this is in complete analogy with the 
formula following (2.10). In short, [ (~- iD)  - j -~]  is due to ~J, i.e., 

(~J)* = [ (~-  iD)-J- ~], [ (~- iD) - . i -~]*=~ j , j_->0, (3.17) 

where * denotes duality under ( , ). In words, 'total integration' j +  1 times is 
dual to 'differentiation' j times. We now are in a position to state the main 
theorem of this paper. 

Theorem 3. Let O~ be the orbit through B of the co-adjoint action of G on 5~*, i.e., 
OR= {[g - lBg]+ [g~G}, where + denotes projection into do,~.  I f  B ~ o , , , ,  then 

so is A~OB, and we may write A = ~ ai r Then the (formal) Kostant-Kirillov 
i = 0  

symplectic form (o on 0 B at the point A is given by 

co([A, l~]+, [A, 12] + ) - ( A ,  [l,, 1 2 ] ) - ( [ A  , 11] +, 125, 

with 11, 12eLP, hence [A, l l ]+~T a 0 B. Let H -  H(A) "-- P(a), P(a) a polynomial in ai, 
i =0, 1 . . . .  , m, and its derivatives. Then the Hamiltonian vector-field X n induced by 
~o is given by 

X n = [ V H  , A] " -2  (3.18) 

with [ ]" = Po,, [ ], and 

VH= ~ (~ - iD)  - j -1  D H. (3.19) 
j=o Daj 

DH 
In the above ~ is the formal variational derivative of H ~H(a)  with respect 

to aj. In addition, the (formal) Poisson bracket, based on eg, { , }, is given by 
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{H, F} -- (A ,  [VII, VF]).  (3.20) 

Finally, this Poisson structure agrees with the structure o f  Gel'fand-Dikii [1] /f 
we take am=l ,  am_l=0.  We can do this as a m, am_ 1 are orbit invariants. In 
general we can think o f  the Hamihonian structure as being parametrized by the 
invariants am, a m_ 1. At  this point we may restrict our differential ring R to R m 
= R [a o, a 1,..., am], and correspondingly I m = I [% ... . .  am]. 

Before we proceed to the proof, which entails making the above statements 
rigorous, we must clarify some concepts. The setting for these concepts is the 
formal variational calculus of Gel'fand-Dikii, and we give our own version of 
some necessary aspects of it, referring the read to [1, 4] for amplification and 
further references. Given the group G = 1 + d _  ~,._ 1, we define curves on G as 
polynomial maps from the real numbers to G, i.e., functions of the form g(t)= 1 

N d dg(t) N 
-- ~ ib i - l l , .  +i=o ~ tili' l i ~ d - ~ ' - z '  and we define the derivation ~ by dtlb i=o 

We shall always employ such a definition in differentiating polynomials. Then 
dg(O) 

TGIg ~ equals the linear span of elements of the form ~ ,  with g(t) a curve and 

g(O)=g o. Given the conjugation action, g: g l ~ g g l g  -1, then Adg: ~q~176 is 
d d 

(well) defined by Ad g(l)-=-dt (g g l (t)g-1)] t = o, with g(t) a curve, g~(0)= 1, dt g~ (0) 

=l ,  and so A d g ( l ) = g l g  -1. Through the inner product ( , ), we have defined 
~ o , ~ = ~ * ~ - " ~ H o m ( ~ , I ) ,  and so it makes sense to compute the co-adjoint 
action of G in ~ * .  Let l ' e 5  a*, and we compute Ad* g(l*) as follows: 

Ad* g(l*) = (l*, Ad g(1)) = (I*, g l g-  1) = ( g -  ~ 1" g, l) 

= ( [ g - 1  l* g]+, l), and so Ad* g( l*)=[g -1 l* g]+. 

Here we have used the symmetry of ( , ), and the injective character of 
o?'*~--*Hom(L,q, I). We have also shown the necessary fact that ~w* is invariant 
under the co-adjoint action. So an orbit through B of the co-adjoint action on 
~ *  is of the form 

OB = { [g -  1B g] + [g~G}, 

and since 

d 
dt [g(t)- 1B g(t)] + [, = o = [B, l] + 

dg 
if g is a curve such that g(0) = 1, ~ -  (0) = l, we find using our previous notions 

T~On= {[B, l] + l l ~ } .  

It is also necessary to enlarge the differential ring (R, D) through the use of 
its integrals I = R/DR.  First note that I has a natural additive structure, and we 
by edict give it a free abelian multiplicative structure, denoting this by I~-oL In 
addition, we adjoin to [, without changing notation, a multiplicative identity 
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element. Thus [ equals finite sums of finite products of I elements and the 
identity element. We now define the enlarged ring of formal products and sums 

R= ci.r i -  ~ ricilcief, riER , 
( i = 0  i = 0  

with/~ getting its ring and module structure by declaring it to be a two sided 
Abelian [ and R module. Of course/~ is a differential ring, derived from R by 
considering the [ elements as constants with respect to D. Specifically define 
/5:/~--,/~ as follows: D(c.r)=c. Dr, with c~L rr and we just extend /) to /~  

A 
by linearity, yielding the differential ring (R, D). We have the enlarged integral 
class [=R/JgR, which may be identified with the ring [ \  {identity element}. 
Similarly we have the projection ~: /~-~[ ,  and ~, which is the formal pseudo- 
differential operators over the ring /~. We may apply this construction to 
R[ao,a 1 . . . . .  a,,] =R m, etc. 

Functions on 0B, R s and Is respectively shall just be the restrictions of 

Rm, l,,=lm[ao, a 1 . . . . .  am] respectively to a o . . . . .  a m such that A =  ~ ai~i~OB, 
i = O  

and similarly for RB, 1 B. Hence they shall just be composed of the 'coordinates'  
on 0 B. 

We define the vector fields on OH: 

{E 1 } z(B)-- A, ~, (~--iD)-J-l~Tj IAeOB, tyjeR B . 
j = l  

The vector fields X(B) act on R B, I B, for if X~z(B), f e R  B or I B, A~O B, define 
. c  

X(f)IA = f(c(t))lt=o, with c(t) a curve such that c(0)=A, -~(0)=X] A. As before, 

we use the usual definition for differentiating a polynomial. Since )~(B) acts on 
IB, it acts on [ B through the product rule, and hence also on /~B through the 
same rule. This definition is consistent with defining z(B)'s action on R ,  directly 
through differentiating curves. That all these operations are well-defined is 
obvious. As usual one defines for X, YeZ(B), [I-X, Y]] = X ( Y ( f ) ) -  Y(X(f)), fsRB, 
fB, /~B, etc. Then one verifies in the standard fashion that [ [ fX ,  Y]] 
= f [ [ X ,  Y ] ] - ( Y f ) X .  As a consequence of the above definition of X(f) ,  the 

d 
product rule of differentiation for dt '  and the Jacobi identity for [ , ], one 

computes ILIA,/I(A)] +, [A,/2(A)] +]] =[A, [l~, lz] + +(X 12 - Ylt)]+ez(B ), 
m--1  

where X=[A,/1]+, Y=[A,  12]+, 11= ~ ( r  etc. for 12, and Y(ll) 
m - 1  j = l  

= ~ (~-iD)-J(Y(%)), etc. for X(/2). 
j = t  

Now we defines covariant k-tensors on 0 B as multilinear maps on Ix(B)] k 
into [B, (remember that [B is a ring), multilinear over [B, and similarly for 
differential forms. Then one defines the exterior derivative d using the intrinsic 
definition: 
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k+l  

d~o(X, . . . . .  Xk+ x)= ~ (-- 1) '+ '  Xi(o)(Xl . . . . .  X l  . . . . .  Xk+ 1) 
i=1 

-1- Z ( - - 1 ) i + J o o ( [ [ X i ' X J ] ] ' X l  . . . .  , '~ i ,  " " , X j  . . . .  , X k +  1)" 
l<i<j<=n 

This definition immediately implies that d preserves differential forms, and d 2 

~ 0 .  

Of course, one may apply these considerations to a more general context, for 
instance to the 'manifold' LP*. If we parametrize 2z* by a 0,a 1 . . . .  , i.e. by 

N 
describing A*~s ~ by A = ~ a i ~i, N<  oo, then if H(A)~[+, I+ =R+/DR+, R+ 

i=0 
=R+(ao, a 1 . . . .  ), the differential ring generated by ao, a 1 . . . . .  then the above 
discussion yields 

dH(X) -  X(H), XeX(LZ*), 
N 

with X ( 5  ~ being vector fields on 5~* of the form ~ X i ~i, N < oo, Xi~/~ +. One 
i :o  

then defines the gradient of H with respect to < , >, VH, (uniquely) by requiring 

dH(X) -  (VH, X>, V H ~ .  (Note if HeI  +, VH~5:.) 

This implies by (3.16) that 

DH D 
VH= ~ (~-iD) - ~ j + ' ) -  - ~, ( -D)  k -  

j>=o Daj' Daj k>=O O(Dk aj)" 

D 
Note ~ is a derivation over [+. 

See [4] for amplication concerning related matters. In the above case the 
identity d2H =0  just says 

d2 H(Z, Y ) -  d(dH) (Y,, Z ) -  < Z, ~(VH(Y))> - (  Z 3(VH(Z)) > =0. 

0 
(since the [ Y, Z]  term cancels out), where c? = ~  is just the directional derivative, 
i.e. 

dVH A c t 
O ( V H ) [ A = ~ - (  ( ))It=o, 

c(t) a curve such that 

de(t) Y A" 
c(O) = A, - ~  ,=o = 

Thus O(VH) is a symmetric operator with respect to < , >. In coordinates we 

have the operator identy (.), all i,j. Note in particular if 
H~IB (~a i Daj 6aj Da i 
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m-2 D H  
VH= ~ (~-iD) -s-1 , AeOB, 

j=o Daj 

as a m, % - 1  are orbit invariants, which yields formula (3.19). Now we are 
prepared to give proof of Theorem 3. 

Proof of Theorem 3. We now return to 0 B, and note that the form o) given in the 
statement of the theorem is automatically multilinear over [B, hence a differen- 
tial form. One checks by a straightforward computation, like the one which went 
into the computation of [[X, Y]], that do)=0.  This involves using the formula 
for o9, do), [[X, Y]], the product rule of differentiation, and the Jacobi identity 
for [ , ] twice. From the definition 

~~ Y)]A=--dH(Y)[A =(  VH, Y)[A, A~OB, H~IB, 

and the definition of co, one immediately verifies Xn=[VH, A] m-2. Note that 
Xo~ZB, as it must be. To show that {H,F}-O)(Xn, XF)=(A,[VH, VF]), 
H, F~I n, is a Poisson bracket as stated in the theorem, it is only necessary to 
verify the Jacobi identity, but that is an immediate consequence of do)= 0, d2H 
=0. At this point we mention that, as in Sect. 2, one can give an easy direct 
proof  of the Jacobi identity for { , } on &a*, which uses only the symmetry of ( , ), 
the Jacobi identity for [ ,  ], and that 6(VH) is a symmetric operator with respect to 
( , ), [26]. However, we preferred to prove the identity using do)= 0, the precise 
statement of which we felt was worth going through some extra definitions. The 
identity do) = 0 highlights the importance of the orbit, 0 B. 

Finally we prove that { , } is indeed the bracket of Gel'fand-Dikii. We first 
note that a,~, a m_ 1 are orbit invariants, and hence may be set equal to 1, 0, 
respectively. In general, however, the bracket { , } will depend on a,,, % _  1, as 
the following computat ion will make clear. We shall compute (3.18) explicitely, 

DH 
using (3.2), and thus finish the proof  of Theorem 3. First observe, setting - -  
= Ha~, that D aj 

VH= ~ ( r  = - j - l - ,  s aj ~ ~ (i D) s Ha, , 
j>O j>O 

s>O 

hence 

[ ( 2 ; ~ - J - l - s ( J + s S ) ( ( i h , S H a ) ) O ( 2 ; a k ~ k ) l m - 2  

XH=[VH, A]m-2=I ', ', 
[__(ZakCk) o(2;~ j 1 s /J  "~-S\ s [ ~ - -  - ~ s )((iD)Ho)I 

[ m = 2 2; ((i D) Uo)((i D) ak) 
S 1) . ~ - j -  1 - s -v+k 

, = o - 2 ;  ( - 1 )  v a k((i D) v +s H . )  



238 M. Adler  

(with - j -  1 - s - v + k = r > 0, v + s = #) and using standard binomial identies we 
have, 

=,,-2~ I~ s ((iD) H~j).((iD) - ar+j+,+ 0 U 

k -~: v s (-1) ar+j+t~+l((1D)~UHaj ) 
(3.21) 

~-2 X, t~ ((iD)(Ha.ar+j+u+O) 

= ~ r + p  
r=o - -2  a~+j+u+l((_iD)UH,j) ~=o 

kt 

The sum in the brackets is understood to extend over all nonnegative 
integers with the proviso that only terms with a j, j = 0, 1 . . . . .  m, can appear. This 
formula agrees with the formula of Gel'fand-Dikii [1] if we set % =  1, a,,_ ~ =0, 
i.e., in the setting of q~(m), (3.6), and so Theorem 3 is proven. 

Remark 3. In fact in [1], Gel 'fand-Dikii arrived at this formula from com- 
putational considerations which will become apparent in Theorem 4, and then 
they proceeded to verify by a difficult computat ion that (3.21) in fact yielded a 
Poisson bracket via 

{G, H}-= d~t H' with H the Hamiltonian in (3.21). 

Every vector field, when viewed as acting on I B, can be uniquely written 

DF 
X ( F ) - N T i ~ a .  ., F~I  B. So (3.21)just says that every Hamiltonian vector X H 

when acting on I B is of the form 

x,,= 2 [(J)" 
D 

i = o  i D a  i ' 

) w h e r e - - = (  - -  , 
T 

..., - -  , J = A - A * .  
Da \ D a  o Dam_ 2 

In the above A is the ( m - l ) •  matrix differential operator with 
components 

A* is the dual of A with respect to the natural inner product on R~ m- ~, 

m--2 

v, were"-1) ,  (v, w) "- ~ ~ e I ,  ( -  is not complex conjugation) 
i = 0  

and the remark after (3.21) concerning summation applies above. For m =2,  A 
DH 

= ~ 2 + a  o, X u = - 2 i D  . - ~ a  o, which yields the well-known Poisson structure of 
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Gardner for the Korteweg-deVries equation. This was mentioned at the be- 
ginning of the section. Equivalently the Poisson bracket is given by 

m - 2  

Remark  4. It is interesting to study the orbit of ~ ' +  ~ a i ~i under the group G. 
i=0 

We claim that tim-2, ~m-3 are always orbit invariants. A typical element of G is 
of the form 1 - x ,  x ~ d _  ~,._ l, i.e., x = ~ xj ~-J, and so we compute (using (3.2)) 

j> - I  

that under the action of G 

6 A = ( ( 1 - x )  A(1 + x + x 2 + . . . ) ] + - A = [ [ A , x ] + -  {1 + x + x 2 + . . . } ] +  

=(clDxI)~,m-2+(c2x1DxI+C3D2xI+C4Dx2)~m-3+~, rl~do.m_4, 

with cl, c2, Ca, c4, constants depending on m. The above shows that t~am_2, 
s 

6a m_ 3~DR, and so the assertion is proven. In fact more is true, namely (A") ,  
1 < s < _ m - 1  are also orbit invariants, which in particular implies the above 
assertion. This will be proven in Corollary 1 at the end of this section. In the 
case of the Korteweg-deVries equation, an orbit of - D 2 + q  is specified by ?/ 
=constant,  and so the apparent one-dimensional degeneracy of the Gardner 
structure comes from the representation of an orbit by q. This phenomena is 
well known in the Toda system, where as previously discussed in Sect. 2, one has 
the similar orbit relation, trace A =constant.  

Remark  5. Suppose we had instead defined 

j=0  

i.e. we coordinize 4~ (m~ by these new a]s. Then as our arguments have shown, 
(3.10) defines a Hamiltonian structure. Of course we have to compute VH, as in 
(3.18), which means we must compute the dual of the t l i=~J+ (~ - iD )  j, 0<j__< oo 
in ~ .  The computation of the dual of ~J depended on inverting the first relation 
in (3.14), but in fact, it was only necessary to invert that linear, strictly triangular 
relation up to degree m + 1 to compute the Hamiltonian structure from (3.18). 
This is always a trivial matter, since m is finite, and the relation to be inverted is 
upper triangular. In the above manner we can compute the Hamiltonian 
structure of cb(') in the coordinates of the 'formally self-adjoint operators', i.e., 
with the above coordinization of ~b ~m~. Although the results of this section and 
the next do not depend on the coordinization of 4 ~(m~, certainly the formulas 
involving coordinates are coordinate dependent. In the case of the formally self- 
adjoint operators, we have extra reality conditions if we require the a]s to be 
real. For  instance, the Poisson bracket and traces, (3.10), must then be real, that 
is up to an inessential factor. For  the rest of the paper, we shall mean either of 
the two coordinatizations by our expression q~('), unless otherwise stated. For  
the 'self-adjoint' case, we have for J ,  the symplectic matrix operator, for m = 3, 
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[D, , which applies to the Boussinesq equation,  see [5, 6]. Fo r  m = 4, one 

can show 

J =  - 1 / 2 D  , k = - l / 2 D a + a 2 D + D a 2 . ,  see [5]. (3.22) 

0 

Remark 6. If we had  chosen the coefficient ring of �9 to be ML(n, R), the ring of n 
x n matr ices over  R, then we would have to redefine for q~s~, (see (3.3)). 

tr ( b - m a t r i x  trace ~ i eI .  This extends definition (3.3). All the construct ions and 
arguments  of  this section apply  to this case. For  instance, analogous  to formula  
(3.17), we have that  (Eii ~k),, where E u is the matr ix  with its i, j componen t  unity, 
all other  elements zero, equals ( { -  iD) -k- 1 Eji. The  Ha~ is the mat r ix  such that  

DH 
[ H a ~ ] j t = ~ ,  which would have to be subst i tuted in (3.21). Also 1 should be 

interpreted to mean  the n x n identity matrix.  In addition, one may  specialize the 
coefficients of  A to lie in some ring of matrices,  which amoun t s  to changing the 
base ring to that  ring of matrices.  As an example  we note that  the orbit  

[1 0] is up symplect ic  s tructure associated with the opera to r  A =  0 - 

to a constant,  the D a r b o u x  structure, i.e., the Hami l ton ian  vector  fields 
DH D DH D 

X H  ~ - -  Dq "Dr Dr "Dq" 

We now pursue the result analogous  to Theo rem 1, but  first some brief 
N 

observat ions.  Suppose  H - { A ~ ) ,  v = - - ,  N an integer. We need to compute  VH. 
n 

First we write A = [2 ~ ~b~]~z,~, ), by (3.19), and so H - - < [ 2  ~ ~b~] 1~, r In addition, 
d~oa _ 

by (3.7) we have 6g0x =(bxo 6A o (bx, d2 -q~#, with 6 indicating an increment,  
and so 

6 H -  < [2" ~b~ o 6A o q~](4, ~-)> - ( [)." ~2] 1(~, ~"), hA) + <(~ {. } > 

4 ~ ] ~ , , . ) , A > =  - 2 ~ 
(~, r 

�9 q~j<~,~. + [a~{ �9 =<[v.1 ~-~ 4~]<~,~~ 

=<vA ~-l, 6A>. 

In  the above  we have  repeatedly used that  a perfect derivative can have no 
residue term. We thus have 

V<A~>=(vA-1)_(,,_l), Ar  ~(m}, (3.23) 

where ( . ) - . = P - , , o ( "  ), and so can conclude:  
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L e m m a  1. 

u+~ ( N + m ] t A ~ )  (3.24) V(A m ) = \  m / t  -(m-it" 

The computa t ional  equivalents of Lemma  1 can be found in Gel 'fand-Dikii  [1], 
but  of course proved and viewed in a different fashion. We can now prove the analog 
of Theorem 1, namely 

N + m  m 
Theorem 4 (Gel'fand-Dikii). I f  H = H  N -  (A  " ), Aeq) (~), then the Hamil- 

N + m  
tonian equation, A = [VH, A] m- 2, implies the Lax isospectral equation 

N 

A = [A, PN], PN = (Ag) +, 

with ( )+ as usual indicating projection onto do, ~. 
involution with respect to the Poisson bracket. 

(3.25) 

N 

In addition, the (A ~) are in 

Proof Theorem 4, like Theorem 1, depends on the crucial observation [A S, A] 
= 0  for all s. This is a consequence of the definition o f f ( L )  by residues (3.8) and 

the well-known functional equat ion of the resolvent qSzl -qS~ = q~, o ~bx2, which 
;~l -~2 

implies A~.At=AS+t It is also an immediate  consequence of the inductive 
N N N 

method of computing A s, if s is rational. Since A~=(Ag)+ +(Ag)_, with ( )_ 
N N N 

denoting projection into d ~,_ 1, we have 0 =  [A ~, A] = [(Am)+ +(Ag)_, A], and 
N N 

so [(Ag)_, A] = [A ,  (Ag)+]. We thus have 

N N 

[A, (Ag)+] = [(A'~)_(m_ 1), A] + [0_,, ,  A], (3.26) 

where O r ,  is contained in s 1 6 2  We now project (3.26) onto do.  a ,  using 
P0, ~, observing that 

N N 

[A,(A;?')+]edo,~, [ O ~ , A ] e d _ ~ , , _ ~ ,  and [(AY')_(~_~),A]esr . 

N N 

, , A ]  " - 2 ,  Thus after project ion onto  d o o,. we arrive at [A, (A~)+] =[(A")_I ,  ._ 1, 
which is a remember  of dO, m-2, and so as a consequence of L e m m a  1, the first 
part of  Theorem 4 is proven. 

We now prove the involut ion statement,  namely that 

N K 

{(A#,), (Ag)}  =0,  N, K integers, 

where { , } is the Poisson bracket,  (3.20), i.e., we show that the traces of A are 
in involution. We first make  the critical observat ion 

( f ro  . . . .  ~o,  oo) = 0  (d~- ~o, - 1, ~ -  ~, - 1) =0.  (3.27) 
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N K d _N /~ 
By the Hamiltonian formalism, {(Ag), (Ag)} =~t~(Am),  with H = ( A g ) ,  i.e. 

N K N 

{(Ag), (A~)} = (A, V (A~) )  (by the definition of gradient) 
N'  N'  

=c  <[A, P~], ( A m ) _ ( m  _ 1)5  = r  <[A, PK], (Ag) - ) 

since [A, P K ] e d  o ,,-2, see (3.165, c = - - ,  N - m  
" m 

N' N'  

=c([A,  Pr],(A;)) (by (3.27))=(P K, [A; ,A] )  =0.  

This completes the proof of Theorem 4. 

Remark 7. In Remark 1 we discussed an abstract Lie algebra theorem which 
contained Theorem 1 as a special case. This abstract theorem can be adapted to 
the setting of our formal Lie algebra over a differential ring. In fact, the proof of 
the Kostant-Symes Theorem in our setting only requires the machinery develop- 
ed in the proof of Theorem 3, and otherwise formally proceeds as if one were in 
the case of an ordinary Lie group. 

Using the notation of Remark 1, one takes cb=L=L*,  K = K •  
- N  • N -  =d_~ ,_~ ,  with ( , 5 given by (3.3). The ad* invariant manifolds are just 

the q~tm). One uses the method of proof of Lemma 1 to show Vn(A ~5 = vA ~-t, and 
thus the crucial statement [A, vA "-1] =0, is nothing but the ad* invariance of 
the function (A").  Similarly V ]r(Av) = v [A v- 1] -, V IN ( A ~) = v [A"- 1 ] +, and so 
by the abstract theorem ,4=nK[VK(A~),A] implies A=[-A, VN(A')] 
=[A,v[AV-1]+], and moreover the (AV)IK and hence (AV)[~)  from an in- 
volutive system of functions. The only point requiring care is that the function 
(A ~5 is not everywhere defined as it is for the matrix case. Thus using the 
Kostant-Symes Theorem we have sketched another proof of Theorem 4. 

Remark 8. B. Symes has tried to generalize Theorem 4 to the case of more than 
one space variable without success. In this case, take for R a differential ring with n 
commuting derivations D~, i=  1 . . . .  , n, and I = R / S  D~ R, while for �9 take formal 
series over R in formal roots of polynomials of the formal variables ~.  i 
--1, . . . ,n.  Use (3.2) for the rule of multiplication, thinking of v as a multi- 
vector v=(v 1 .... ,v,), and use the usual multi-vector notation. If ~b~ ,  ~b 
= E aihi(~) , with hi(() homogeneous of order i in (. One defines 

- ~ < i < N < ~  

tr~b=(~b)--" jh_ ,df2(0 ,  where by , I f (0df2 (0  we mean integrate f(~) over the 
unit sphere 2r = 1 with the usual polar measure, for the moment thinking of 
r ". That  ([q~l, ~b2]) = 0  is seen by using (3.2) and expressing the divergence 
formula in polar coordinates. One can in fact duplicate all the constructions of 
this section, but Theorem 4 fails because we have no Lie algebra decomposition 

= L = K + N, One again can take N to be the formal Lie algebra of smoothing 
operators, but the operators of homogeneity greater than or equal to zero don't 
from a Lie algebra, as they do in the case of one variable. This seems to be the 
crucial obstruction towards extending Theorem 4, at least from the point of view 
of Lie algebra. 
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Corollary 1. I f  Aeeb  ('), (Am>, s = l ,  2 . . . . .  m - - I ,  are orbit invariants and con- 
sequent ly  ?t,,_ 2, gt,,_ 3 are orbit  invariants. 

N 
P r o o f  Since PN=(A;)+, and PN=O for N a negative integer, we have [A, P N] 
=0.  And so in Theorem 4, for H N, N < 0 ,  A=0,  hence A = [ I 7 H  N, A]m-2=0.  
But by (3.20), [VH,  A ] " - 2 = O  is a necessary and sufficient condition for a 

s 

function H to be an orbit invariant, and so we conclude that (A, ) ,  s = 1, 2 . . . . .  
m - 1 ,  are orbit invariants. 

re- 2 

To see that a,,-2, ft,,-3 are orbit invariants, observe that A = ~ ' +  ~ a~ ~ 
i = 0  

hasN weight m if we assign ~ weight 1, and a i weight m -  i. From the definition of 

A ~ (3.9), it is easy to see A g has weight N if we further define D j a  i to have 
N 

weight j + ( m - i ) ,  i.e., D to have weight one. Thus if (A~>--/~N, equality being in 
I m, E N can be taken to have weight N + 1, and so we must have 

1 2 

(A'n> "--Claim_2, <A~>~C2~lm_3, 

c~, c~ being (nonzero) constants which can be computed explicitly. One expects 
that the algebra formed by the invariants of the corollary provide a complete list 
of 'generic' orbit invariants, i.e. those which can be expressed as 1~ elements. 

4. Lenard Relations 

From the considerations of the previous two sections, we are in a position to 
compute recursion relations, or so-called Lenard relations for various quantities 
of interest. The reader may see [5] for instance, where such relations are 
discussed. The skew-symmetry of such relations can be used to prove involution 
statements concerning integrals. We first consider the setup in Sect. 3. The 
crucial tool in these relations is the identity A S . A = A  S+1, which plays such an 
important role in Theorems 1, 4 in the weaker form [A', A 1] =0. 

We decompose (/) in the usual way, namely Be(/) implies B =B+ + B ,  with 
B+~Lf* =~'o, ~, B 6 5 q = d  ~._ 1. We thus have, with A6q ~l"), 

N N N N 

(A;+ 1)+ =(Ag ' A)+ =(AT')+. A + ((Ag)_ �9 A)+. 

We write, using Lemma 1, 

N N 

(A~) - = ( A~ ) - (n - I) + 0 _ n = VHU -t- 0 _ n, 

with 0 , ~ _  ~, _ , .  The above yields, again using the notation of Theorem 4, 

PN+n =Pu A + (  VHN'  A)+ + E o, (4.1) 
N 

with E o equaling the coefficient of the ( ~ - i D ) - "  term of (Ag)_, i.e., the 
N 

coefficient of the component of ( (Ag)_-  VH N) in s~'_,, _,. In addition by 
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N 

Theorem 2, the ~- ~ coefficient of [(A n)_, A] is an exact derivative, identically in 
N 

the coefficients of (An)_, A. By the rule of multiplication (3.2), the coefficient of 
the 3-~ term of the bracketed expression is of the form (up to a constant 
multiple), 

N 

DEo+.~((A")_(,_I))=DEo+~(VH N) (by Lemma 1), 

N N 

but since [A g, A] =0, hence [(An)_, A]_ =0, both sides of the above equation 
must equal zero. Here .~(VH ~) just depends on the coefficients of VH N, A, and 
their derivatives. Thus the term ,~(VH N) is an exact derivative in the coefficients 
of VII x, A, i.e., ~.(HXa)=D.~'(VHU), and in fact .~'(-) is easily computable. We thus 
have E o =--.9.'(VHN), from which we deduce, using (4.1) and a little com- 
putation involving (3.2), 

iD-1 
PN+n=PNA +~9(VHU), ~k(VH)=(VH" A)+ + - - ( P o ,  o([VH, A]~)). (4.2) 

n 

DH 
We note that the coefficients of ffeS/o, oo are polynomial functions of Da~' 

O<i<n-2, and their derivatives. We view ~( . )  as an A dependent operator 

We now bracket (4.2) with A, yielding 

[A, P~' + n] = [A, PN]' A + [A, ~h (VHN)]. (4.3) 

By Theorem4, [A, Pu]=A=Y \ --D-a-a] with J = A - A *  the matrix differen- 

tial operator which determines Hamilton's equation (see Sect. 3), and ~f  defined 
by (Z o ) 

X = A - i  n . 

t~--2 

We define the ( n -  1) • ( n -  1) matrix differential operator J / b y  

and since [A, Pu +,] = J \---D--a--a }' (4.3), (4.4) implies 

Jr \ Da ] \-D~---a !" (4.5) 

This is the standard form of Lenard recursion relations, since J//, J are matrix 
differential operators. We also note that equation (4.2) is equivalent to 

P~+n,=~ ~h~,~A '-~, r O<s<_n-1, Pu=0, N<0. 
~=o (4.6) 

We observe that (4.4), (4.5), (4.6) are enough to establish [A, PN] = 3V( j  VHN), 
i.e., Theorem 4, and we shall think of three equations as the Lenard relations. 
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One computes 

( D H t  ~" Daa =[A(VH(A))+-(A(VH)), A] ~"-2~ 

lV~ n 1 ( ~ ' A  +~wl~. ~o~! (-iD)~-I(P~176 

We also note that Eq. (4.5) immediately implies Corollary 1. 

Remark 9. The self-adjoint case discussed in Remark 5 may be done in precisely 
the same way as above, but has some novel features. To fix ideas, let (R, D) 

( d )  "-2 
= C~ (real line), ~x . For if A = P ( ~ ) = ~ " +  y'  (a~S+(~-iD)~a~), with a~ real, 

j = O  
and if ~ formally satisfies P ( - i D ) O = 2 0 ,  then by the self-adjointness of A, we 
have 

- D 2  s 
( O f f ) '  ~asas= [((iD) ~) ~* +I)((iD)S ~)*], j = 0 ,  1 . . . . .  n - 2 ,  (4.7) 

where * denotes complex conjugation. From Eq. (4.5) one infers the identity 

/r  a] - D~a " (4.8) 

Remark 10. One conjectures from computational evidence that J / i n  fact defines 
a symplectic structure, like its counterpart J .  One also conjectures that in (4.4), 
the projection operator, [ 1 ("- 2), is unnecessary, i.e., that the right side of (4.4) is 
automatically contained in do , ,_  2, even before projection. 

Examples. For the self-adjoint case, A = - D  2 + a  o, we have 

at=D, J/l= - �88  tP(v)=l(2vD-(Dv)). 

These formulas are well known. For 

A=iD3 +i(al D+ Da l " )+a 0, 

we have 

1 3 M1 = 3 [ D  +alD+Dal" )  

M2=aoD+-}(Dao), M3=aoD+~(Dao) 

M _ l  rn5 4 - ~ u ~  +5a lD3 + D3 (5 a~ )  �9 +(8a~-3(D2at))D+D(8a~-3(D2al)) '] ,  

[] i 
vl = �89 {2 iv2 D2 +(v -i(Dv2)) D +5(8al  v2 +(D2 v2-D vl) }. 

I// /3 2 1 
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These formulas for J ,  Jg have independently been found by H. McKean [6]. 
For 

A =D4 +(a2 D 2 + D  2 a 2 �9 ) +  i(a I D + D a  I �9 ) +a  o, 

J l l ,  J12, J13] 
J = , J 2 1 ,  J22, J23 , 

J31, J32, J33] 

where (as in (3.24)), 

J l l  = J 1 2 = J z l = J z 3 = J 3 2 = 0 ,  

Jr3 =J3 t  =D,  J22 = - � 8 9  

[ M l l ,  M12, m13]  

J~  = [M21, M22, M231 
L M 3 1 ,  M32. M33] 

J33  = - � 8 9  D3 +(a2 D + Da2 �9 ), 

and letting D 2 ~ t  = @", etc., we have (where * denotes the formal real adjoint) 

M , , = ~ D 3 + � 8 8  M ~ 2 = M * t = � 8 8 1 8 9  ,, 

MI3__~ A~ 1 1 5 1 3 5 , 2 ,7 ,, - = - ~ D  + ~ a 2 D  + z a 2 D  + t~ a2 + a o ) D + (  ja ' ' '  + ~3 ao),, 
1 r-z it "" 22--2 t 4 ~ h / / "  -- 1 JX /35 q _ l _ [ a 2 D 3 W D 3  a2 ] _ ~ i_ta 2 + a o _ a 2 ) O + O ( a 2 + a o _ a 2 ) . ~  ]} 

M 2 3 =  A ~ 2 =  _ a ~  D 3 3 , D 2 - 1  . . . .  
- -  - -~a,  - - (a ' i+ �89189 

M33=~DT+�89  ', , , ~ 3 + D 3 i a ~ _ a , ,  1 - -az- -  ~ao) u 2--~ao) ' ]  
1 ,,~t r2  3 2 1 ,r,t  r2  3 2 

+[(~a 2 - a  2 +~a~ + a 2 a o ) D + D ( z a  2 - a  2 +za~ +a2ao) ]. 

while 
I v , \  

I~t(/)) ~-~- (/) //72 } =1/)3 0 3 - � 8 8  D e + [�88 1 +iv'2)+c/)t v3] D 

\ v 3 /  
+ � 8 8 1 8 9  + v ; ' ) - 2 ~ b ,  v'3 + 3 i 4 2 v z - i ( a ,  v2]. 

n 2 
These formulas are computed from (4.1)-(4.4). In the case A =~"+  ~ a~ ~, 

~=o 
one can use the above formulas to get general formulas for d/Z, J ,  O, but since in 
the self-adjoint case, one must compute the dual of ( r  iD)J+ r = tl s by hand (up 
to order ~-"-~), one computes de', J ,  O separately for each n. 

Remark 11. The relations of this Section also apply to the systems of Sect. 2. We 
derive relation (4.2) for these systems which imply relations of the form (4.4), 
(4.5), (4.6). 

We shall use the notation of Theorem 1. Observe 

L ~ - (L N) + - (L ~ ) -  + (LN) ~ + 2 (L N)- = PN + BN, 

where 

PN =(LN) § - (L~)  - ,  

B u = (LN) ~ + 2 (I2 '4) - = V(HN) + 0.,, 
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/ 1 N + , \  
by (2.14), where Hu = ~ - ~ i -  A / ,  and 0 , , ~ 4  .... _ ,. From this we conclude 

PN+ 1 =LN+ 1 _BN+ 1 =(PN + BN)" L--BN+ 1 

=PN" L +(BN" L ) - B s +  1 

=[PNL+ V(HN)" L ] + [ 0  m. L - B N + I ] ,  

hence, remembering (PN + 1) + ~ d l , , ,  we have shown 

(IN +, ) + = (PN L) + + [ V(HN). L] + - (PN L) + - A (V(HN)). (4.9) 

The above defines the function A(.). Taking the negative transpose of the 
above equation, we have PN+I=(LPN)-+AT(V(HN)),  where we have used p r =  
--PN, LT = L. We have by Theorem 1, 

(PN L) _, - (LPN) _, = [PN, L] _, = ([A, VH r'] + )T (4.10) 

where ( )_m=P_m, 0(),  and so (4.9), (4.10), and the expression for P~++l imply 

PN +, = PN" L + ~(V(HN)), 

with ~(VHa) = ( V H .  A) + - ( ( A  VH)+) T +�89 A]0 ). Thus a relation of the form 
(4.2) has been established as claimed. Note ~(VH) is skew-symmetric precisely if 
H(A) is an orbit invariant. We also note that the conjectures of Remark 10 are 
relevant in this case. From (4.4), we compute, using the analogous terminology, 

J~( ,~ (c~)~) )=(Ld)+t~7"L)+ ,  ~ =~(VH). 

We give the results for the Toda system, i.e., Ai, i=bi.  Ai.i+ 1 =ai. all other 
Ai, js  equal to zero. Define Eij = 1 if j = i + 1, zero otherwise and similarly for E T. 

Let ~/~, J act on the vector , H = H ( a ,  b), H , =  ~a ~ . . . . .  etc. for 
H b. Then we have Hb 8a._ 1 

[ s l p= 
k - S  , 0.+~_1' 

0, ,  0,+~ the n•  and ( n + l ) •  zero matrices respectively, and [S]o 
= ( - 8 i j  + Eq)ai, i=O, . . . , n -  l, j=O, . . . ,n.  

[ '{/1 "/#3] 

where 

[J / / , ] i j -  aiai+l (Eij-E{j) ,  i , j=O, n - l ,  , , . ~  

[~[2]ij = 2 a 2(Eij - ET), i, j = 0 , . . . ,  n, 

[ ~ 3 ] i i = a i ( b i + l E o - b i b i j ) ,  i = 0  . . . . .  n - l ,  j = 0  . . . . .  n. 
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F i n a l l y  if w = ( u  o . . . . .  u , _  1, Vo . . . . .  v , )  r ,  t h e n  we h a v e  

1-~ (w)] , i  = �89 aij(a,  ui - a~-1  u,_  1) - a , ( E , j  v, - t ~  v, + O, i , j = 0 ,  1 . . . . .  n. 
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