
Arch. Math. Logic (1993) 32 : 305-319 A~hive for 

Mathematical 
logic 

�9 Springer-Verlag 1993 

Maximal chains in and ultrapowers of the integers 

Saharon Shelah 1,. and Juris Stepr~ns 2,.  

1 Institute of Mathematics, The Hebrew University, Jerusalem, Israel and Putgers University N.J. 
2 Department of Mathematics, York University, 4700 Keele Street, North York, 
Ontario, Canada M3J 1P3 

Received May 7, 1992/in revised form January 21, 1993 

Summary. Variou~s questions posed by P. Nyikos concerning ultrafilters on ~ and 
chains in the partial order (a;, <* )  are answered. The main tool is the oracle chain 
condition and variations of it. 

1 Introduction 

In [5] various axioms related to maximal chains in ultrapowers of  the integers were 
classified and studied. The purpose of  the present paper is to answer several of  the 
questions posed in that paper and to pose some new ones. 

The notation and terminology of  this paper will adhere as much as possible to 
accepted standards but some of  the main points are listed here. The relation a C* b 
means that la\bl < 1~ 0 while f <*  g means that f and g belong to "co - or, perhaps, 
Aw where A _c w is infinite - and f(n) < 9(n) for all but finitely many integers 
n. If  f(n) < g(n) for all but finitely many integers n then this will be denoted by 
f <*  9. By a chain in ~oco will be meant a subset of ~w which is well  ordered 
by <* and consists of  nondecreasing functions. In the next section the effects of  
modifying this definition of  a chain will be discussed. A subset Y ___ ~cJ will be said 

to be unbounded if  for every f E ~co there is 9 E Y such that 9 f *  f .  The least 
cardinality of  an unbounded subset of ~~ is denoted by b while the least cardinality 
of  a cofinal subset of  ~w is denoted by 0. The term ultrafilter will be reserved for 
ultrafilters on co which contain no finite sets. A P-poin t  is an nltrafilter on w, ~;, such 
that for every ~/~ c [~]~0 there is B C ~J such that B C* A for every A E ~ .  If  
~" is a filter then O *  will denote the dual ideal to O .  

* The first author is partially supported by the basic research fund of the Israeli Academy. The 
second author is partially supported by NSERC and was a guest of Rutgers University while the 
research on this paper was being done. The authors would also like to thank P. Nyikos for his 
valuable comments on early versions of this paper. This is number 465 on the first author's list of 
publications 
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If O is an ultrafilter then the integers modulo ~( will refer to the ultrapower of 
the integers with respect to O and will be denoted by ~w/~4. If O is an ultrafilter 
then ~ C ~ will be said to be unbounded modulo O if, letting [ f ]~  represent the 
equivalence class of f E ~~ in ~ / O ,  the set {[f]e~:f  E ~ }  is unbounded in the 
linear order ~ / O .  The least ordinal which can be embedded cofinally in a linear 
ordering L is denoted by cof(L) - cof(~w/O) will be an important invariant of O 
in the following discussion. 

For reference, here are Nyikos' axioms (throughout ~ refers to a maximal chain 
of nondescending functions in ~ and O refers to an ultrafilter) 
- Axiom 1 (VO) (V~) ( ~  is unbounded modulo O) 
- Axiom 2 (3~ )  ( V O ) ( ~  is unbounded modulo 0 )  
- Axiom 3 ( 3 0 )  (V~) ( ~  is unbounded modulo 0 )  
- Axiom 4 ~ O )  ( ~ )  ( ~  is unbounded modulo 0 )  
- Axiom 5 (V~ ~) ( 3 0 )  ( ~  is unbounded modulo 0 )  
- Axiom 5.5 (30)(cof(Ww/O) = b) 
- Axiom 6 ( ~ )  ( 3 0 )  ( ~  is unbounded modulo O) 
- Axiom 6.5 ( 3~ )  ( 3 0 )  (cof(~) = cof(~w/O)) 
Various implications and non-implications between these axioms are established in 
[5]. As well, it is observed that Axiom 2 is equivalent to the equality b = ~. 

2 N o n - m o n o t o n e  f u n c t i o n s  

The definition of chains as <*-increasing sequences of nondecreasing functions in 
the axioms which appeared in [5] may appear to be somewhat arbitrary and one may 
wonder what results if chains are defined differently. For the record, therefore, the 
following definitions are offered. 

D e f i n i t i o n  2.1. If ~/~ is a subset of ~w then by a (<*, J~)-chain will be meant a subset 
of ~/~ which is well ordered by <*. By a (=<*, J~)-chain will be meant a subset of 
which is well ordered by <*. For the pruposes of this definition the most important 
subsets of ~w are: the nondecreasing functions, which will be denoted by  JU, the 
strictly increasing functions, which will be denoted by Y ,  and ~w. 

If x C {<*, <-*} then Axiom N ( x , ~ )  will denote the Axiom N with ~ being a 
variable ranging over (x, .~)-chains - so Axiom N is the same as Axiom N(<*  ,JU). 

Fortunately, many of these axioms turn out to be equivalent and others are simply 
false. The following simple observation of Nyikos can be used to see this. 

Lemma 2.1. There is a mapping fi  : ~ w ---+ ~ ~ such that 
- f i ( f )  is strictly increasing for every f c ww 
- f <= f i ( f ) f o r  every f E ~~ 

- if f <= 9 and f ~=* 9 then f i ( f )  <* fi(9) 
- i f f  is nondecreasing and f (n )  < 9(n) then f i ( f )  (n) < 9(n) (n + 1) + n 

Define f i ( f ) (n )  = ( ~  f ( i ) ) + n .  It is easy to check that f <* f i ( f ) a n d  Proof. 
\ i = 0  / 

that f i ( f )  is strictly increasing. If f -< 9 and f 4 "  g then there is some m E w 
such that f ( i )  < 9(i) for all i >= m. Since there are infinitely many k c w such that 

M ra  

f ( i )  =~ g(i) is follows that there is some M > m such that ~ 9(i) > ~ ( f ( i )  - 9(i)). 
Hence f i ( f )  (3") < fi(g) (J) for all j => M. i=0 i=0 
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Finally observe that if f i n )  < 9(n) and f is nondecreasing then f ( i )  < 9(n) for 
each i =< n. Hence ~ ( f )  (n) < f (n )  (n + 1) + n < 9(n) (n + 1) + n. [] 

<* A consequence of Lemma 2.1 is that given any (= , ~w)-chain (f~ :~ C ~} there is 

a (<*,SP)-chain {f~ :~ E )~} such that f~ =< f~ for each ~ E )~. Consequently, Axiom 
N(<*,5~) ,  Axiom N(<*, . /U),  Axiom N(<*,~w),  Axiom N(__<* ~w), Axiom 
N(<* ,  J )  and Axiom N( __<*, ./U) are all equivalent for N E {2, 4, 6, 6.5 }. Therefore, 
from now, if N ~ {2, 4, 6, 6.5}, then Axiom N will be used to denote any and all of 
the Axioms N ( x , ~ )  where x ~ {<*, <* _- },  

Another consequence of Lemma 2.1 is that given any (<*,~/ ')-chain {f~ :~ E ~} 

there is a (<*,~7~)-chain {f~:~ ~ .k} such that f r  f~ for each ~ ~ A and, for each 
ultrafilter ~ and 9 ~ ~w, the function g is an upper bound for {f~:~ E )~} modulo 

if and only if 9 " (n + 1) + n is an upper bound for {f~:~ ~ ~} modulo O.  

Consequently, Axiom N(<* ,  5~), Axiom N(<* ,  ~1/'), Axiom N(__<*, 5 ~) and Axiom 
N ( < * , ~ )  are all equivalent for N ~ {1, 3, 5}. Moreover, Axiom 3(<*, ~w) and 
Axiom 3( <*,  ~w) are obviously both false because if ~; is any ultrafilter then it is 
possible to choose X C w such that X ~ ~ and then find, using Lemma 2.1, a 
(<*,~w)-chain ~ such that f (n )  = 0 for f E ~ and n E X. It follows from this 
that Axioms 1(<*, ~w) and 1(=<*, ww) are also false. Therefore, from now on Axiom 

<* N can be used to denote any and all of the Axioms NCG ./~) where x E { , =<* }, 
~ ( ~ , J ' r  and N E (1,3}. Also the notation Axiom 5(.~ ~) can be used to 

denote any and all of Axiom 5(<*,.Y), Axiom 5(<*,./U), Axiom 5(=* ,5  ~) and 
Axiom 5(<*, ~4/'). 

It is worth noting that Axiom 5(dS/') is not equivalent to Axiom 5(<*, ~w) or 
Axiom 5(_ <*, o~w). The reason for this is that it will been shown, in Theorem 2.4, that 
Axiom 2 implies Axiom 5(JU); but the same is not true of Axiom 5(<*, ~w) since 
the next result shows that Axiom 5(<*, ~w) fails assuming 2 ~o =- R1. It is obvious 
that Axiom 2 holds if 2 r = R~. The following definition will be used to establish 
this and appears to be central in the context of non-monotone functions. 

Definition 2.2. If ./~ G ~w then define gbb(~) to be the set of all X C w such that 
{ f  I X : f  E J~} is bounded. 

Notice that .Yb(~) is an ideal and that . ~ ( ~ )  is proper if and only if ~ is an 
unbounded subset of ~w. It is also worth observing that if ~ G ~w and ~ is an 
ultrafilter and ~ is unbounded modulo ~d then ~ M Jbb(~) = 0. 

Lemma 2.2. l f  there is a sequence {X~ :~ E wi} of subsets of w such that 
- X~ C* X ,  if ~ ~ 
- X v \ X  ~ is infinite if~ E 71 
- there exists a family {g~:{ E Wl} C Ww such that for every f ~ ww there is ~ c w 1 

such that 9~ I X~+I \X  r f *  f F X~+I \X  ~ 
then there is an unbounded (<*, ~w)-chain, ~ ,  such that Ybb(~) contains {{n E 
w : f ( n )  >= n } : f  E ~} .  

Proof. Let {X~ : r E w 1} and {9~: r E w 1 } satisfy the hypothesis of the lemma and, 
without loss of generality, assume that g~(n) >= n for all ~ and n. Let {h~ : (  E wl} be 
a <*-increasing sequence of functions such that h~(n) < n for all n E w. A standard 
induction argument can now be used to construct {f~ : ~ E w 1 } such that 
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-- f~ Icd\Z~+l  = h f Fco\X~+l 
- if ~ E z/ then f~ =< * Iv 

- i f ~ E ~ T t h e n f ~ F X r  f v [ X ~  
- fr FXr162 = g~ FXr 
and this clearly suffices. [] 

Notice that col is crucial to the proof of Lemma 2.2 and can not be replaced 
by a larger cardinal. The reason is that the inductive construction relies on the 
fact that if { fn :n  E w} is a family of partial functions from co to co such that 
f~ =* fn+l F dom(f~) then, there is a single function f such that f,~ C* f for each 
n E co, A Hausdorff gap type of construction shows that this is not possible if w~ is 
replaced by some larger cardinal. It is for the same reason that 0:1 appears in the next 
corollary. 

Corollary 2.1. If ~ =- R 1 then there is an unbounded (<*, wco)-chain, 4 ,  such that 
Ybb(~) contains {{n ~ co:f(n) --> n} : f E 4} .  

Proof. Let {Xr C col} be any sequence of subsets of w such that X~ C* X v. 
X v \ X r  is infinite if ~ E ~7. Then {g~:~ E col } can be any dominating family. [] 

The next result shows that if ~ = ~1 then Axiom 5(<*, wco) fails. 

Theorem 2.1. If ~ = ~1 then there is an unbounded (<*, wco)-chain which is bounded 
modulo any ultrafilter. 

Proof. Use Corollary 2.1 to find an unbounded chain ~ C wco such that ~b(~) 
contains {{n E co:f (n) >= ~} : f  E ~}.  If ~ is any ultrafilter such that ~ is 
unbounded modulo ~ then it must be that ~" N {{n E co:f (n) > n} : f  E 4 }  = 0. 
Then, it is clear that the identity function is an upper bound for ~ ,  [] 

It seems that Axiom 5(<* ~U, Ww) is very strong and Axiom 5(=<*,wco) is 
potentially even stronger, nevertheless, Axiom 5(<*, ~co) is consistent and does not 
imply Axiom 1. This is implied by the next sequence of results. The question of 
which of the axioms are implied by Axiom 5(_ <*,  wco) is mostly open however. 

The Open Colouring Axiom was first considered by Abraham et al. in [1] and later 
strengthened by Todorcevic [8]. 

Definition 2.3. The Open Colouring Axiom states that if X C R and Y C [ X ]  2 is 
an open set 1 then either there is Y E [X] ~ such that [y]2 C ~" or there exists a 
partition of X = U x ~  such that [Xn] 2 ~ ~" = 0 for each n E co. ]~ can be replaced 

new 
by any second countable space in the statement of the Open Colouring Axiom. 

Theorem 2.2. If the Open Colouring Axiom holds and {(h~, 9a) : a E A} satisfies 
- /k is a regular cardinal greater than col 
- dom(h~) = dom(g~) = X~ for ~ E A 
- if ~ E r] then X~ C* X~ 
- i fn  E X~ then g~(n) <= h~(n) 
- i f~ E rl then g~ <=* gv I X~ <=* h~ 
then there exists a function f:co ---+ co such that g( <=* f F X(  for all ~ E ~. 

1 Here [X] 2 can be thought of as the set of points in .~2 above the diagonal 
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Proof. To begin, identify A with the subspace of the reals {(h( ,9~) :~ E A} - t h e  

reals are being considered as (~co)2 or, in other words, the irrationals. Define 

V = {{c~,/3} C [A]2:c~ c / 3  and (Yn)(g~(n) > ha(n))  } 

and observe that V is open. From the Open Colouring Axiom it follows that there 
are only two possibilities. 

The first is that there is a partition A = U x ~  such that [X] 2 A V = 0 for each 
r~Ctz 

n E w. In this case there must be some n ~ co such that X~ is cofinal in A. Choose 
E A such that U Xn = U x n  and let f (n)  = min{hn(n) : r  / c ~}. Now, if /3 > 

nc~ nEA 
and n E X~ then there is some ~7 E ~ such that n E X n and hence n E dora(f) .  
Moreover, if r/ E ~ and n E X n then g~(n) <= hn(n) and so g~(n) < f(n). So f is 
the desired function. 

The second possibility is that there is X E [A] ~ such that IX] 2 C V. Since 
A __> co; it is possible to choose some ~ E A such that X C_ ~. It is then possible to 
choose M E w, g : M  --+ co and Y E [X] ~1 such that 
- if r] E Y then X n \ M  c_ X~ 
- if r I C Y and n E X n \ M  then g~(n) <= g~(n) < hn(n ) 
- g n I M = g  
Then if # E r /and {#, ~} E [y]2 and n E Xu A Xn it must be that either n > M or 
n < M.  In the first case it follows that n E X~ and so 9n(n) <= 9~(n) < hu(n). In 
the second case it may be concluded that gn(n) = g(n) = g,(n) <= h~(n). It follows 
that {#, ~7} ~ V which is a contradiction. [] 

T h e o r e m  2.3. The conjunction of Axiom 2 and the Open Colouring Axiom implies 
Axiom 5(<= *, ~ co). 

Proof. To begin, recall that it was shown in [5] that Axiom 2 implies that b = ~. 
Hence it is possible to choose a (__<*, wco)-chain {dr c 0} which is also a dominating 

family in ~co. Also, if ~ is any (__<*,~~ then ~ is of  the form {9( :~ E ~}. 

Define E(r/ ,~) = {n E co:9~(n) _-> dn(n)}. 
Next, let {9)l~ :~ E ~} be a sequence of elementary submodels of (H(c+),  4) such 

that 
- 193I~[ < ~ for each ~ ~ 

- {g~:~ ~ ~} E 9)ln and {d~:~ ~ ~} E g)in for each r /E  
- r /E  9)In 
- 9)l v ~ 9)~r for each r /E  ~ E 0 
and let #(~) = g)~ ~ O. Define ~ to be the filter generated by 

{E(#(~), #(~ + 1)):~ E 0 and ~ is odd} 

and observe that if 3 "  is a proper filter then ~ will be cofinal in ~co modulo ~ for 
any ultrafilter extending ~ .  

Hence it suffices to show that ~ is proper. To this end let . ~  be the filter generated 
by 

{E(#(~),  #(~ + 1)):~ E 0 and ~ is odd} 

and prove by induction that each ~oo is proper. Moreover, it will be shown by induction 
that ~oo N J b ( ~ )  = ~. I f  0 = 0, ~ is odd or 0 is a limit then there is nothing to do 
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so suppose that 6 = 6' + 1, where 6 '  is odd, and that See, is a proper filter such that 

Notice that .~ ,  C 9)I o, because d is odd. Therefore it suffices to show that for 

each B E Ybb(~) + there is some 0 E ~ such that E(#(d ) ,O)n  13 E gb(~) + -- 
the reason being that the elementarity of 931e,+l will guarantee that E(#(6 ' ) ,  # ( d  + 

1)) N B E ~ ( ~ ) +  for each B E .~b(~) +. Elementarity also assures that it may 
as well be assumed that B E 9310,. But if there is some /3 E ~ ( ~ ) +  such that 
E ( p ( d ) ,  0) N/3  E ~ ( ~ )  for each 0 E c then it is possible to find h o such that 
- dom(h 0) = / 3  N E ( # ( d ) ,  0) for each 0 E 
- ho(n) >= 9o(n) for every n E B n E ( p ( d ) ,  0) and for each 0 E 
- 9~ F dom(h0) _-<* ho for each 0 E ~ E c 
It follows that {(ho, 9o FB n E(p(d),  0)):0 E ~} satisfies the hypothesis of  Lemma 
2.2. Since the Open Colouring Axiom is being assumed, there is a function f E ~w 
such that 9o <=* f I B N E ( # ( 6 ' ) ,  0) for each 0 ~ ~. It follows that for each 0 E ~ there 
are only finitely many n E B such that 9o(n) > max{do,(n), f (n )}  contradicting that 
/3 ~ ~(~). [] 

Notice that it is shown in [8] that the Proper Forcing Axiom implies the hypothesis 
of  Theorem 2.3. Moreover it is a Corollary that Axiom 5(<*,  ~co) does not imply 
Axiom 1 because it is easy to check that Martins'  Axiom - and hence the Proper 
Forcing Axiom - implies that Axiom 1 fails. In particular, it is possible to inductively 
define a (<* ,  Y) -cha in  no member  of which dominates the exponential 2 function. 

It has already been mentioned thtat the next lemma can be used to show that 
Axiom 5(JU) is not equivalent to Axiom 5(_  <*  , ~~ or Axiom 5(<*,  ~aJ). It will also 
be used in the proof of Theorem 3.2 but also has some interest on its own since it 
provides a sufficient condition for Axiom 5 ( S )  to hold. Thus, it will be used to show 
that Axiom 2 implies Axiom 5(UK'). 

L e m m a  2.3. l f  ~ is regular and {c~:~ E ~} C ~~ is <=* increasing and, moreover, 
{c( I A:~ E ~} is unbounded in Aw for each A E [co] ~~ then there is an ultrafilter 
such that {e( :~ E ~} is cofinal in waJ/~. 

Proof. Let ~ C_ ~a~ be a cofinal family in ~co of cardinality ~. Let {9)l( :~ E ~} be 
an increasing sequence of elementary submodels of  

(H(c+), {c~ :~ E 0}, ~ ,  c) 

such that 93l~ n 0 = c~(~) E c for each ~ E c and U 9J[~ D 2 - this is possible 
because 0 is regular. Let ~c~ 

= {{n ~ w : f ( n )  < %(~)(n)} :~ E ~ and f ~ 931~} 

and note that it suffices to show that this is a base for a filter. 
That ~r has the finite intersection property can be established by induction. Let 

/ 3 ( ( , f )  = {n E a~:f(n)  < %(~)(n)} for ( E c and f e 9Jr( and suppose that 
I n -/gl = R0 for each ./~ e [~4] "~ - the case m = 1 is an easy consequence of 
elementarity. Now let 

{B(~0, f0), B ( ~ ,  f~), . . . ,  B(~r~ , fro)} E [ ~ ] ~ + l  

2 The exponential function is not crucial here but some quickly growing function must be used. 
For example, although the identity function is strictly increasing it can not be used because it is the 
minimal strictly increasing function 
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and suppose that ~/ ~ ~i+1 for each i. If (m-1 = ~ then {fro--l, fro} C ~ m  and so 
the elementarity of 9Jt~,,~ ensures that there is some g E 9)l~,~ such that f m - j  <=* g 
for each j E 2. Hence B(~0, f0) f~ B((1, f~) . . .  B(~m, f ,O contains 

B(~0, f0) (h B(~l, f l )  N . . .  ~/3(~m_2, fro--2) (q B(~m, 9) 

and this set is infinite by the induction hypothesis. 
On the other hand, if ~m-1 E ~m then 

13 = B(~0, f0) f~ B(~I, f l )  f l . . .  V/B(~m_l, fro-A) 

is infinite by the induction hypothesis and, moreover, B belongs to 9X~,~ because all 

the parameters defining it do. Since {c~ r B:  ( E o} is unbounded in Bco it follows that 

there must be some # E 9Yt~r ~ such that fm I B ~* ca I B and so fm I B ~* c~(~) IB. 
Since B(~0, f0) n B(~A, f l )  N . . .  A B(~m, f,~) = B N B(~,~, f , 0  this is enough. [] 

Theorem 2.4. Axiom 2 implies Axiom 5(J/'). 

Proof In [5] it is shown that Axiom 2 is equivalent to the equality b = 0. Since b is 
regular it follows that 0 is regular. Moreover, if ~ C_ ~oco is an unbounded (<*,~A/')- 
chain then cof(~)  = 0. Since ~ consists of nondecreasing functions it is clear that 
{c I A:c  E ~ }  is unbounded for each infinite set A. Hence, by Lemma 2.3, it follows 
that there is an ultrafilter ~ such that ~ is unbounded modulo ~4. [] 

3 Oracle chain conditions and locally Cohen partial orders 

It will be shown that there is a model of set theory where Axiom 6.5 fails. This 
answers the first two questions in Problem 5 of [5]. C. Laflamme has remarked that 
in some models of NCF (see [2] for any overview of this area) Axiom 6.5 fails as 
well because it is possible to provide a classification of chains in these models. The 
restriction to chains does not play an important role in this theorem and, in fact, the 
theorem is slightly stronger than required - at least formally - because of this. 

Theorem 3.1. There is a model where cof(~~ = co2 for every ultrafilter ~ but 
every unbounded subset of~co has an unbounded subset of size IR 1 . 

Proof The plan of the proof is to start with a model V in which 0* and Qo (C~ 
1 2 

- in other words, the trapping of subsets of Co2 occurs at ordinals of cofinality Col in 
Co2 - both hold. In this model a finite support iteration {(]?~,Q~):~ c Co2} will be 
constructed along with a sequence of oracles [6] {gJt~ :~ E Co2} - more precisely, 
9X~ is a I?uname for an oracle. The oracles will be chosen so that if {9n:~7 E col } 
is a ]?uname, guessed by the 0~o2(col) sequence, for an unbounded subset of ~co then 
9Jt~ is chosen so that if Q is any partial order satisfying the 9Xuchain condition then 
forcing with Q does not destroy the unboundedness of {9n:~ E col}" Provided that 
I?~o /I?~ satisfies the 9Xuchain condition, it will follow that every unbounded subset 

2 
of ~co has cofiuality a; 1 because every unbounded subset is reflected at some initial 
stage by the Qoz(col) sequence. The rest of the result will follow once it is shown 
how to construct Q( satisfying the 9Xcchain condition and adding an upper bound 
to any given sequence from some ultrapower of the integers. 

The construction of {(I?~,Q():~ E Co2} and {ff)Z~:~ E Co2} is, of course, done 
by induction. If ~ is a limit then ]?~ is simply the direct limit of {l?u: # E ~}. The 
construction of 931~ and Q~ does not depend on whether or not ~ is a limit. 



312 S. Shelah and J. Stepr~ns 

Given I?~, use the results of p. 124 to 127 of [6] to find a l?~-name for a single 
oracle 9I~ such that if Q satisfies the ~-chain condition then it satisfes the ffJt~ chain 
condition for each # E ~. Let C~ be the set guessed by the 0~2(col) sequence at ~. If 
C~ is not a I?~-name for an unbounded subset of ~w then let 9Jt~ = 92~. Otherwise, 
use Lemma 2.1 on p. 122 of [6] to find an oracle 9)I such that if Q satisfies the 
grt-chain condition then the subset C~ c_ ~c~ remains unbounded after forcing with 
Q. The use of Lemma 2.1 requires checking that if C C_ ~w is an unbounded chain 
then adding a Cohen real will not destroy its unboundedness. This is a result of the 
folklore which can be found in [7]. Then use the results of p. 124 to 127 of [6] to 
find a single oracle 9)1~ such that any Q which satisfies the 9)1c-chain condition will 
also satisfy the 9)t-chain condition and the 9I~-chain condition. 

Suppose that the 0~2(c01) sequence has also trapped a filter ~4~ - which is an 
ultrafilter in the intermediate generic extension by ]?~ - and an increasing sequence 

{f~: # E co 1 } in the reduced power of the integers modulo ~4~. (So it is being assumed 
that, by some coding, the 0w2(aJ1) sequence traps triples of sets - the first component 
of the triple at ~ is a candidate for C~ in the construction of TJt~ while the second and 

third components are candidates for the ultrafilter ~4~ and the sequence {f~ :# E col}.) 
The only thing left to do is to construct Q~ satisfying the 9Jt~-chain condition and 

adding an upper bound for { f~:/~ E ca 1 } in the reduced power modulo ~ .  
Let 9Jt~ = {Mg :/z E c~1}. The partial order Q( is constructed by induction on co 1 

in VP~ - it will be similar to the forcing which adds a dominating real but with extra 
side conditions. In particular, a sequence of partial functions {S~, :# E Wl} c_ ~w is 
constructed by induction on w 1 and Q~ is defined to be the set of all pairs (F, F)  

such that F:k  --+ a~ is a finite partial function and F E I/z] <~~ The ordering on Q~ 
is defined by (F, F) =< (F' ,  F ' )  provided that F C F ' ,  F C F '  and F'(j)  > ST(j) for 
"7 E F and j E (dom(S.r) \ dom(F)). Moreover, the functions S** will be constructed 

so that dom(Sj,) E q~({ and S',(j) > f~(j)  for each j E dom(S~). It is easy to see that 

{(F, F):  # ~ F} is dense in Q~ for every # E V and so if G is Q~ = Q~I generic 

over VPr then IS{F:(3F)((F,F) E G)} is an upper bound for { J J :#  E co~} in the 
reduced power with respect to ~g.  It therefore suffices to construct {Su:#  E c~1} so 
that for every # E Oal, every dense open subset of Q~ which belongs to M~ remains 

predense in Q~+~. This, of course, will ensure that Q{ = Q ~  satisfies the 92R~-chain 
condition. 

Suppose that {S~, :# E r/} have been constructed. Let ./~ be the set of all of 
the dense open subsets of Q~ which belong to My - this includes all those dense 
open subsets of Q~ which belong to Me some 4 E ~1. Choose h E ~~ to be some 
function which dominates all members of My; in other words, if 9 E ~~ V/M n 

then g =<* h. Let {(Ai,(Fi, l~i)):i E w} enumerate ~ • Q~. Now choose, by 
induction on w, integers {Ki: i  ~ w} such that Ki < Ki+~ and K 0 = 0. Given 
K~, def ine/~ D Fj for each j < i such that if dom(Fj) C_ K i then dom(F~) = Ki, 
(Fj, I~j) <= (fi~j, I'j) and ff'r => h(k) if k E dom(_P~\Fj). Now choose (Fj,  F j ) i  i ~ Aj 
such that (Fj,Fj)i i >= ( ~ ,  F). Let Ki+ 1 be such that dom(Fj) C Ki+ ~ for each j =< i. 

Let X,~ = [.J [K2i+,~, K2i+,~+l) for m E 2 and note that there exists rn ~ E 2 
i@co 

such that X m, ~ ~4r Let S~ = h I X,~,; the reason being that ~ is an ultrafilter in 
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V?r and X 0 E V~r To see that this definition of Su ensures that every dense open 

subset of Q~ which belongs to Mg remains predense in Q~+I let (F, F) E Q~+I and 

let D E M ,  be dense open in Q~. It follows that (F, F \{#} )  E Qua. To simplify 
notation assume that m = 1. Choose j such that dora(F) C K2j and such that 

(D, (F, F \{#} )  = (Ak, (Fk, Fk)) for some k < 2j. Since dom(F 2J) _C K2j it follows 
- 2j that Fs (n) ~ h(n) if n E dom(F2J\Fk). M o r e o v e r  [K2j  , K2j+I ) N dom S~ = O. 

Hence (/72j, F 2j) is compatible with (F, F). [] 

The methods of the previous theorem can also be used to show that it is consistent 
that Axiom 6 holds but Axiom 5.5 fails. In establishing this it will be helpful to 
introduce the following definition. 

D e f i n i t i o n  3.1. A partial order (17, =<) will called locally Cohen if for every X E [17]~0 
there is Y E [17]~0 such that X C_ Y and Y is completely embedded in l? - in other 
words, if A C_ Y is a maximal antichain in the partial order (Y, < nY • Y) then it is 
also maximal in (17, <). 

The notion of locally Cohen partial orders has already been isolated and inves- 
tigated by Just in [4] who refers to locally Cohen partial orders as harmless. The 
motivation of Just was that any locally Cohen forcing satisfies the oracle chain con- 
dition for every oracle. 

Let S(A) be the canonical partial order for adding a scale of length A in %o 
with finite conditions. To be precise, a condition p belongs to S(A) if and only if 
p:Fp • np --~ co is a function and Fp E [A] <~~ and np C co. The ordering on 5(A) is 
< defined by p < q if and only if: 
- p C _ q  
- if {~, r/} _C/'p and ( E r/then q(r/, m) > q(~, ra) for every ra E nq\np 

It should be noted that S(A) is also the finite support iteration of length A of the 
partial orders {D(~):~ E A} where D(~) is the finite condition forcing for adding a 
nondecreasing function - which wil be denoted by c~ - which dominates all the reals 

Lemma 3.1. For any ordinal ;~ the partial order S()O is locally Cohen. 

Proof. Given X E [I?] s~ let Y E [)q~0 be any set such that S(Y) _D X - S(Y) can 
be defined for any set of ordinals in the same way that S(A) is defined for an ordinal 
A. To see that g(Y) is completely embedded in S(A) let A c_ S(Y) be a maximal 
antichain in S(Y). If p E S(),) then let F ~ = F M Y and p' = p I F~ • Since 
p' E g(Y) there must be some q E A such that q~ = p~ tO q E S(Y) and p < q~. Define 
qH:(Fq U Fp) X nq ~ co by 

{ q'(~,j) if ~ E Y 

q"(~, j )  = max{q'0?, j ) : r / E  Y M ~} if j ~ np and ~ ~ Y 

p(~,j)  if ~ Y a n d j E n p  

It is easy to check that p =< q". [] 

Theorem 3.2. There is a model of set theory where 
_ 2 ~ 0  = R 2 

- b = l R  1 

- there is a an unbounded (<*, ~~ of length w e 
- the cofinality of any ultrapower of the integers is co2 
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Proof. As in the proof of  Theorem 3.1, let V be a model of set theory where 0*  1 and 
0~2(w 1) are both satisfied. Let H be g(w2) generic over V and define He = H N S(~). 
Let e~(n) = (UH)(~,  n) and observe that {c~ :~ E w2} C_ ~w is increasing with 

respect to =<* and {c( :~ E w2} is not bounded. I f  an oracle chain condition forcing 
extension of V[H] can be found which preserves the unboundedness of  {cr E co2} 
and in which the cofinality of  any ultrapower of  the integers is w 2 then the result will 
follow because b = R 1 is easily preserved by the oracle chain condition. 

To do this, construct {(17~, Q~):~ E w2} and {931~ :~ E co2} exactly as in the proof 
of Theorem 3.1 except that 99I~ is chosen to be an oracle in the model V[G, H~] 
where G is generic over 1?~. There is no problem in doing this because g(~) is locally 
Cohen and hence satisfies the 991, chain condition for each # E ~ - indeed, S(() 
satisfies any oracle chain condition. It is therefore easy to use Claim 3.3 on p. 127 of 
[6] to obtain TA( exactly as in the proof of  Theorem 3.1. 

Let G be 1?~o2 generic over V[H]. Exactly as in the proof of  Theorem 3.1, it can 
be shown that the cofinality of any ultrapower of  the integers is w 2 while b = R 1 in 
V[G, H]. On the other hand, the fact that {c~ :~ E co2} is unbounded follows from 
genericity and the fact that 5(4 + 1) = S(~)* ID({xr : (  E ~}) - so e~ is not dominated 
by any function from V[G~, H~] where G~ is the restriction of G to I?~. [] 

Corol la ry  3.1. Axiom 6 does not imply Axiom 5.5. 

To see that the model constructed in Theorem 3.2 is a model of Axiom 6 but not 
of Axiom 5.5 observe first that Axiom 5.5 fails because b = R 1 while the cofinality of 
any ultrapower of the integers is w 2. On the other hand, there is a (__<*, ~w)-chain of 
length w 2 __> ~. Using Lemma 2.1 it is possible to construct from this a (<*,  S~)-chain, 
~ ,  of  nondecreasing functions. From Lemma 2.3 it follows that there is an ultrafilter 
~;  on co such that ~ '  is cofinal in the ultrapower of  the integers modulo O .  This is 
the statement of Axiom 6. [] 

The partial order g()0 can be modified to yield a model where Axiom 4 holds yet 
Axiom 5.5 fails. Recall that Lemma 2.1 implies that to do this it is only necessary to 
find a model of Axiom 4(__<, ~w) and the failure of  Axiom 5.5. 

T h e o r e m  3.3. If set theory is consistent then there is a model of set theory where 
<* b = R 1 yet for every ultrafilter ~4 there is a (=  ,~w)-chain of length co 2 which is 

cofinal in ~ w / ~ .  

Proof. It wilt be shown that, assuming 0~2(wl), there is a locally Cohen partial order 
17 such that if G is 1? generic then cof (~co /~)  = w 2 for every ultrafilter ~4 in V[G]. 
The fact that I? is locally Cohen will guarantee that b = R1 in V[G]. 

To construct P some preliminary bookkeeping is required. Let {D~ :~ E w2} be a 
0~2(Wl) sequence and let {9~ :~ E w2} enumerate names for elements of  ~w which 
arise from countable chain condition forcing partial orders on w 2. Also, if Q is any 
partial order of  size R 2 and satisfying the countable chain condition then any subset of 
the reals in a Q generic extension has a name of size N2. Consequently, it is possible 
to use subsets of w e to code such names for sets of  reals. If  S is some name - in a 
suitable partial order - for a subset of [w] ~0 then c ( .~)  will denote the subset of  co 2 
which codes it while if X C_ co 2 then d(X) will denote the name it codes. The details 
of the coding will not be important. Define a partial order -~ on w e by ~ -~ r / i f  and 
only if c(D~) = c(D n ~ ~). 

Now construct I? as a finite support iteration of {17~:~ E We} such that 17~+~ = 
17( * C~ x I ~  where C~ adds a Cohen real, A~ :w --+ 2 and D~ is some partial order 
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which has yet to be defined. At the same time, construct a partial function 69 : ~2 --* ~2 
so that if # is in the domain of (9 then 1 I~-~, "d(D u) is an ultrafilter" and 69(#) is 

the minimum ordinal such that 69(#) ~ {69(7): 7 -< #} and such that go(u) is a 1?u 
nanle. 

Given 1?n' define D n by p E D o if and only if 
- p = ( s p ,  

-- f p  C ~Cd 
- / ~ p  E [~]<~o 
- if 3' E Fp then 3' -< ~] 
and p < q is defined to hold if and only if 

- s ; c s q  

- if 7 E FB, A~ l {k }  E d(D~), AT(n) = k and n E dom(fq\fp) then fq(n) >= 
max{ge(~(n)  , FT(n) } where, for any ~ E c~ 2, Fr is the generic function added by the 
partial order De - to be precise, F~ -- U{fp :p E G} where G is D~ generic. 

If  it is possible to extend 69 to include ~7 in its domain then do so - there is no 
ambiguity here because an extension, if it exists, is unique. 

Let I? = 17~2" It will soon be shown that 17 satisfies the countable chain condition. 

However, first suppose that G is 17 generic over V and that ~ is the 17 name for 
an ultrafilter in V[G]. There is then a stationary set, S(~ ' ) ,  such that if ~ E S(~() 
then 1 I~-~, "d(c(~) M ~) is an ultrafilter". It will be shown that {F~ :~ E S(~ ' )}  

is a (__<*,~aJ)-chain which is cofinal in ~w/~4. The fact that it is a __<* increasing 
sequence is an immediate consequence of  the definition of  D~. 

To see that it is cofinal in ~~ let 9 E ~~ Then, assuming that 17 has the 
countable chain condition, there is some 0 E w 2 and p E c~ 2 such that 9u is a 
170 name for g. It follows that there is some ~ E S (~ ' )  such that # = 69(~). Let 
71 E S(~4)\(~ + 1) and note that C -~ r/. Hence, the partial order IDn adds a function 

which dominates gu on A~l{k}  for some k E 2 and, moreover, A~-I{k} E Dn. 
It remains to be shown that 17 satisfies the countable chain condition and that 

b = lqj after forcing with 17. Both these facts will follow once it has been shown 
that I? is locally Cohen. To this end, it is worth observing that I? has a dense set 
of  conditions which are somewhat determined - a condition p will be said to be 
somewhat determined if the support of  p is Z p E [w2] <~0 and there is an integer n(p) 
such that 
- for each ~r E Z p M dom(69) there is h~ '~':n(p) ~ 2, h~'~:n(p) --~ a; and 
z~ p'cr E [0"] <1% such that p Icr I~-~ "p(cr) = ( hp'~', '"lhP'Cr' AP'~ 
- A~, ~ c {r E Sp  n ~ : ~  -~ ~r} 
- for each a E SP  and ~- E ~P such that cr -< 7- there is k(p, or, ~-) E 2 such that 

A~ {k(p, or, ~-)} E d(D,.)" p [7-IF~, " -~ 
- for each o- ~ S p and 7- E SP such that a -< 7- there is Mr (a )  ~ w and 
Gp(o):Mp(cr) -+ o~ such that p I a I~-~o "9o(,~)IMp(o-) = Gp(cr)" and, moreover, 
h~'~(i) = 1 + k(p, a, 7-)mod2 provided that i ~ n(p)\Mp(cr). 
The fact that the set of  somewhat determined conditions in I? w is dense in 1?w will 
be proved by induction, but an extra induction hypothesis is necessary. What will be 
shown by induction on ~/is that, given 
- pE1?~  
- any finite set W of maximal elements of -< M(~/• 7) 
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- any function v : W  ---+ 2 
- any function a : W  ---+ w 2 such that ga(o is a I?~ name for each ( E W 
there is a determined condition q - the fact that q is determined is witnessed by 
n(q) - with the additional properties that for each ~ E W there is M(~) E w 
and G(~) :M(~)  --* w such that q I~ I~-~, "9a(O [M(~)  = G(~)" and, moreover. 

h~'((i) = v(~) provided that i E n(q) \M(~) .  
If  7 = 0 this is trivial and if 7 is a limit ordinal then it follows from the fact 

that a finite support iteration is being used. Therefore, suppose that the fact has been 
established for 7 and that p = (pF7,(ho,  h l , F ) )  E 17,+1. Suppose also that W,  
v : W  ~ 2 and a : W  --+ w 2 have been given so that W i s  a finite set of maximal 
elements of  ~ N(7 + 1) 2. Notice that -~ N(7 + 1) 2 has at most one maximal element, 
7, which is not maximal in -< N(7 x 7). It is, of course, possible that some maximal 
element in -~ N(7 x 7) is no longer maximal in -< n(7 + 1) 2. If  there is such a new 
non-maximal element, then denote it by 0; if not, then the following argument is a 
bit easier and so it will be assumed that 0 exists. Find q _>_ p 17 and H 0 : I 0 --+ 2 and 
H1 :I1 ~ w as well as k E 2 and A E [7] s0 such that 
- q I~-~ "h 0 = H 0 and h 1 = H i "  

- q Ik~, "g~(v) II0 = G" for some G : I  o ~ w (if 7 ~ W this can be ignored) 
- q Ik~ ,  " F  = A "  

- q II-~, "A~-l{k} E d(Dv)"  
That it is possible to arrange for the first two clauses follows from the fact that ga(v) 
is a I?v name and so any information about it can be obtained without changing h 0 
or h a. To satisfy the last clause, use the fact that 0 -~ 7, which follows because 0 is 
no longer maximal in -~ N(7 + 1) 2. 

Now define W '  = (W\{7})U{0}  and observe that W '  is a set of  maximal elements 
in -4 N(7 x 7). Define v'  = v I W '  U {(0, k + 1 mod2)} and a '  = a I W '  U {(0, O(0))} 
and observe that both a I and v ~ are still functions of  the right type. Then use the 
induction hypothesis on 7 to find q/ => q which is somewhat determined and such 
that this is witnessed by n(q ~) and, such that for each ~ E W t there is M(~) E w 
and G(~):M(~)  ---+ w such that q' I~ Ik~,r "9a,(~)IM(~) = G(~)" and, moreover, 

h~'~(i) = v'(~) provided that i E n(q) \M(~) .  Without loss of generality, n(q') > I o 
and n(q') >= 11. 

Then let p '  = (q', (h~, hi, F))  where h~ :n(q ')  ~ 2 is the extension of H 0 to n(q') 
such that h~o(i) = v(7) if i E n(q ' ) \ [  o and h~ is the extension of H 1 such that 

h'l(i ) ----- max({f,y(i):7 -< 7 and "7 E F}  U {G(O('y)) (i): 7 -~ 7 and "7 E/~} 

for i E n(q~)\I1. Notice that maximum is taken over actual integers rather than names 
for integers. The definition also respects the requirements of extension in the partial 
order ]?v" Defining M(7)  = I 0 and G(7) = G satisfies the extra induction hypothesis. 

To see that ]? is locally Cohen let X E []?]~0. Let 9)~ be a countable elementary 
submodel of  ( H ( w 3 ) , ] F , { D ~ : ( C  w2},O,X) .  It suffices to show that ]? N 9Yt is 
completely embedded in ]?. To see that this is so, let A __ ]? N 9Yt be a maximal 
antichain in ]? N 0Jr and let p ~ ]?; without loss of  generality p can be assumed to be 
somewhat determined and, moreover, it may be assumed that this is witnessed by n(p). 
Let p '  be defined so that dom(p') = dom(p) N 93I and p'(~) = (h~ '~, h p'~, Z p N ~ N 9Jr) 
for ~ E dom(pt). Note tha tp  ~ ~ 9"Jtn]?. Hence there is q~ ~ A and q ~ I?N93I such that 
q __> q~ and q >= pt - without loss of generality it may be assumed that q is determined 
and this is witnessed by n(q). It must be shown that p and q are compatible. 
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As in the proof  that S(A) is locally Cohen, for ~r E dom(p) \  dom(q) extend h~ '~ 
to h~ by defining 

h~(m) = m a x ( { h ~ " ( m ) : T  -< cr and T E dora(q)} 

U {Gq(T)(ra):T -< cr and T E dom(q) and m E Mq(T) 

and A,_(m) A? k(q, "r, ~r)}) 

for m E n(q)\n(p), recalling that Gq(~), Mq(~) and k(q, ~, rl) are witnesses to the 
fact that q is somewhat determined. This will certainly assure that if  T and p are in 
the domain of  q and ~- --< cr -< ~ then h~'"(m) <-_ hq(m)  =< hql'O(m) - the fact that 

h~(m) <= hq'O(m) follows from the definition of  the third coordinates in pl. Also, 
9o(.~)(m) < h~((ra) if A~.(m) A~ k(p, T, a) will be true if ra E M(T) by construction. 

Next, if  (r C dom(p)\9)t ,  7 E dom(p) A 9)I and ~r -< r then define h~(m) = 
1 + k(p, a, T)mod 2. I f  this can be done then, if  m => n(p), it is not necessary f o r  
hq"~(m) to be greater than go(,,)(ra). If there is no T E dom(p) fq 93I such that cr -4 r ,  

do not extend h p'" at all. Notice that in this last case it is still possible that there is 
some 7 E dom(q) such that ~r -~ T. However,  because it is only necessary for hq'~(m) 
to be greater than 9o(~)(m) in case cr E A q'~-, this will cause no problems because 
z~ q''r C ~f~ if  7- E 0Jr. 

What  must be checked, though, is that no conflict arises as a result of  this definition 
of  h i .  After  all, it is conceivable that ~r -< z and a -< T I but k(q, or, T) + k(q, ~7, T~). 
To see that this does not happen, suppose that cr -~ T, a -< Z ~, k(p, a, T) 5~ /~(p, a, T I) 
and {% 7-/} _C 93L It follows that if  

= sup{0:0  -< "r and 0 -4 T t and 0 E dom(@)} 

then ~ C 99l. Hence ~r E ~ and so there is some 0 ~ such that 0 / -< z,  0 / -< r I and 
0 E dom(O) such that a C 0/. Hence A~I{0}  is measured by the ultrafilter d(Do, ). 
Since d(Do, ) C_ d(D~.) and d(Do,) C_ d(D,.,) it follows that k(p, cr, T) = k(p, ~r, T/). 
[] 

4 Open  quest ions  

Table 1 of  implications and non-implications summarizes the known results about the 
axioms discussed in this paper. The key to understanding Table 1 is that 
- if  there is a " ~ "  in the entry in the row headed by Axiom R and the column 
headed by Axiom C then Axiom R implies Axiom C 
- if  there is a " ~ "  in the entry in the row headed by Axiom R and the column 
headed by Axiom C then Axiom R is known to be consistent with the negation of  
Axiom C 
- if  there is a question mark in the entry in the row headed by Axiom R and 
the column headed by Axiom C then it is not known whether Axiom R implies 
Axiom C 

Not all the reasons for the assertiona made in Table 1 are contained in this paper. 
Some will be found in [5] and others must be deduced by modus ponens. Table 2 
contains a guide to reasons for the various assertions in Table 1. 

A "T" in the row corresponding to Axiom R and the column corresponding to 
Axiom C in Table 2 indicates that the fact that Axiom R implies Axiom C is a trivial 
implication - by trivial is meant something which can be deduced by considering 
the quantifiers in the relevant axioms. An "N" in that entry means that either the 
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implication or non-implication can be found in [5]. The enumeration of the following 
list corresponds to the numbered entries in Table 2. So, for example, the second entry 
of this list refers to Theorem 2.4 because this is the reason there is an " ~ "  in Table 1 
in the row corresponding to Axiom 2 and the column corresponding to Axiom 5(._dF). 

Table 1. Table of implications 

Axiom 1 2 3 4 5 _<* ~ova 5 <* ~ova 5./K" 5.5 6 6.5 

1 ~ ~ ~ ~ ? ? ~ ~ ~ 

5 <* '~ y~ ? ? ? ? ~ ~ ~ ~ 

5.5 # r # # # # 9 => => =>. 

6 # :# # :# # :# #- # :=~ =~ 

6.5 :# :# # :# # ~6- :# # ? 

Table 2. Table of references 

Axiom 1 2 3 4 5 <* ~va 5 <* ~ova 5 .~  5.5 6 6.5 

1 T T T T ? ? T N T N 

2 N T 1 T 1 1 2 N T N 
3 N N T N 9 9 T N T N 
4 N N N T 3 3 T 4 T N 
5 =<* oova 10 ? ? ? T T T N T N 

5 <* ~ova 10 ? ? ? ? T T N T N 

&d/" N N N N 9 9 T N T N 
5.5 5 5 5 5 9 9 ? T N N 

6 5 5 5 5 6 6 8 7 T N 
6.5 5 5 5 5 6 6 5 5 ? T 

(1) Theorem 2.1 
(2) Theorem 2.3 
(3) The fact that Axiom 4 does not imply Axiom 5(<*,  %o) follows because it 

has been shown that Axiom 2 does not imply Axiom 5(<*,%0)  in Theorem 2.1 and 
the fact that Axiom 2 implies Axiom 4 follows from an inspection of the quantifiers 
involved. Modus ponens yields the rest. 

(4) Theorem 3.3 
(5) The antecedent of the implication is implied by Axiom 5 ( S / )  so the non- 

implication follows from modus ponens because Axiom 5(JK') does not imply the 
conclusion. 

(6) The antecedent of the implication is implied by Axiom 4 so the non- 
implication follows from modus ponens. 
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(7) Corollary 3.1 
(8) Axiom 5(JU) implies Axiom 5.5. 
(9) 2 r = ~1 is known [3] to imply Axiom 3 and Lemma 2.2, shows that Axiom 

5(<* ,  ~ )  fails under this assumption. For  the rest, use modus ponens. 
(10) See the remarks following Theorem 2.3. 
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