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Summary. A forward error analysis is presented for the Bj6rck-Pereyra 
algorithms used for solving Vandermonde systems of equations. This analy- 
sis applies to the case where the points defining the Vandermonde matrix 
are nonnegative and are arranged in increasing order. It is shown that for a 
particular class of Vandermonde problems the error bound obtained de- 
pends on the dimension n and on the machine precision only, being 
independent of the condition number of the coefficient matrix. By compar- 
ing appropriate condition numbers for the Vandermonde problem with the 
forward error bounds it is shown that the Bj6rck-Pereyra algorithms in- 
troduce no more uncertainty into the numerical solution than is caused 
simply by storing the right-hand side vector on the computer. A technique 
for computing "running" a posteriori error bounds is derived. Several 
numerical experiments are presented, and it is observed that the ordering of 
the points can greatly affect the solution accuracy. 

Subject Classifications: AMS(MOS): 65G05, 65F05; CR: G1.3. 

I. Introduction 

A Vandermonde matrix may be defined in terms of a set of distinct scalars 
c%,e 1 .. . .  , ~ . ~  by 

V = V(~ o, ~1 . . . . .  ~,) = ~o 

The associated linear systems 

Primal: 

Dual: 

1""1  / 

.~1 .~n ~ ( n +  1) • (n+ 1). 

~ . . .  ~."_1 

(1.1) 

Vx = b, (1.2) 

Vr  a =  f ,  (1.3) 
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arise in a variety of applications. Some examples are polynomial interpolation, 
numerical differentiation [15], approximation of linear functionals [3, 4, 14] 
rational Chebyshev approximation [2, 8], and polynomial root finding [19]. In 
some of these applications many Vandermonde systems may have to be solved, 
so an efficient method is desirable for their solution. 

The standard method for solving dense systems of linear equations, Gauss- 
ian elimination, requires O(n 3) arithmetic operations and O(n 2) elements of 
storage when applied to (1.2) or (1.3). Several authors have attempted to 
exploit the structure of the Vandermonde matrix in order to derive more 
efficient solution methods. Lyness and Moler [15] derive via Neville interpo- 
lation an algorithm for solving the dual system (1.3); the algorithm has an 
operation count of approximately 1 3 5n (M+2A),  where A denotes an addition 
or subtraction and M a multiplication or division, and it requires �89 n 2 elements 
of storage. Ballester and Pereyra [3] show how the primal system (1.2) can be 
solved in �89 and �89 z elements of storage by using re- 
cursion formulae that enable the LU factors of V to be computed in O(n 2) 
operations (see also [9]). Still more efficient algorithms are derived by Bj6rck 
and Pereyra [5], for both the dual and the primal problems; these algorithms 
have an operation count of �89 and require no storage over 
and above that needed for the points ei and for the right-hand side, which is 
transformed into the solution vector. More recently, Tang and Golub [18] 
have derived a block decomposition method that is well suited to parallel 
computation and to the solution of interpolation problems with complex 
conjugate interpolation points where the coefficients of the interpolating poly- 
nomial are real. For the block size 1, the method of [18] is similar, but not 
equivalent, to the Bj6rck-Pereyra algorithms. 

To the author's knowledge no rounding error analyses have been published 
for the algorithms cited above. Such analyses are desirable in order to reveal 
potential instabilities in the algorithms and to enable the user to estimate the 
accuracy of computed solutions. These considerations are especially pertinent 
when solving Vandermonde systems, for it is widely appreciated that Vander- 
monde matrices tend to have large condition numbers K(V) [I1, 12], where 
K(A)=IIA[[ [IA-l[I is the condition number of A with respect to inversion. 
Indeed, large values for ~c(V), and inaccurate computed solutions to (1.2) and 
(1.3), have been observed in practical problems [2, 8]. It is known, however, 
that accurate solution of a Vandermonde system is not necessarily precluded 
when ~c(V) is large. Bj6rck and Pereyra [5] present a test problem for which 
their algorithm gives a very accurate computed solution, even though the 
associated Vandermonde matrix has a large condition number. They state in 
[5] (see also [13, p. 123]): 

"I t  seems as if at least some problems connected with Vandermonde sys- 
tems, which traditionally have been considered too ill-conditioned to be at- 
tacked, actually can be solved with good precision". 

In this paper we present an a priori rounding error analysis of the Bj6rck- 
Pereyra algorithms for the case where the points ei are real, nonnegative and 
arranged in increasing order. This analysis, in Sect. 2, provides an element-wise 
bound for the vector of relative errors in the computed solution. The impli- 
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cations of the bound are explored in Sect. 3. In part icular  it is shown that  for a 
part icular  class of Vandermonde  problems the bound  depends only on n and 
on the machine  precision, being independent  of the condit ion number  ~c(V). 
Our  analysis therefore provides an explanat ion for the phenomenon ,  observed 
in [5], of highly accurate  computed  solutions. 

In Sect. 4 condit ion numbers  are derived for systems (1.2) and (1.3), appro-  
priate to the situation where the data  (C(o,C( 1 , . . . , %  and the r ight-hand side 
vector) are subject to small relative perturbat ions.  By compar i son  with the 
error analysis it is shown that  if the points c( i are nonnegat ive  and in increasing 
order, then the Bj/3rck-Pereyra a lgor i thms introduce no more  uncertainty into 
the numerical  solution than is caused simply by storing the r ight-hand side 
vector  on the computer .  

The  practical computa t ion  of error  bounds  is considered in Sect. 5. Here,  a 
" runn ing"  error bound  technique is described that  is applicable to any distri- 
but ion of the points. Numer ica l  experiments  are presented in Sect. 6 in order 
to illustrate the error analysis and to investigate several interesting questions 
raised in the preceding sections. 

To  conclude the introduction,  we state the a lgori thms to be analysed. For  a 
derivat ion of the algori thms,  see [5] or [13 Sect. 5.6], and for Algol 60 
procedures  see [5]. Our  nota t ion  follows that  of [5] except that  we adopt  the 
convent ion that  an element 'z![ )' (j ' th element at the k'th stage) not formally 
defined in an a lgor i thm takes the value 'zj(k-l)', that  is, undefined elements 
retain their value from the previous stage. 

Algori thm L Primal (Vx  = b). 

Stage I : d} ~ = bj (j = 0 . . . . .  n) 

For  k = 0  to n - 1  

Stage I I :  

Ld~ + " =  d} k ) -  % d~k ~ , (j = n, n -- l . . . . .  k + 1) 

x(n) _ (n) j - d j  ( j = 0  . . . . .  n) 

For  k = n - 1  t o 0 s t e p  - 1  

(k+  1) 
x~.k + D xj  

O~j --  (Xj_k_ 1 

L X(f) __v.(k+�89 y(k+�89 

. (o) (j = 0 ,  n). The solut ion is xj = ~j .... 

Algori thm 2. Dua l  (V r a = f )  

Stage I: c~~ ( j = 0  . . . . .  n) 

For  k = 0  to n -  1 

Stage l l :  

( j = k +  1, . . . ,n)  

( j = k  . . . . .  n - l )  

p(k) __ re(k) 

]cqk+a)= ~j ~j -x  ( j = n , n - - 1  . . . . .  k + l )  
L g ( ~ j - - C t j - k - 1  

a(n) = c(n) j j ( j = 0  . . . . .  n) 

(1.4) 

(1.5a) 

(l.5b) 

(1.6) 



616 N.J. Higham 

F o r k = n - 1  t o 0 s t e p - 1  

a~k+ 1) 1). (1.7) ta~'--~k+l'--~k---j ~+ 1 ( j = k  . . . .  , n -  

The solution is aj = a~ ~ (j = 0 . . . . .  n). 
Note that stage I of Algorithm 2 is the standard method for evaluating 

divided differences ~k)_ (Ck - - f [ ~ 0  . . . . .  k])" It is hoped that the analysis presented 
here will, in particular, be of help in understanding the propagation of round- 
ing errors in divided difference schemes. 

The reader may find it helpful to visualise the Bj6rck-Pereyra algorithms in 
terms of a "flow diagram", as illustrated in Table 1.1 for the dual algorithm. 
An ' • ' denotes a component  that has (potentially) changed from the previous 
step. 

Table 1.1. Dual 

j f :  c~O~ c (1) ... c ( . -  l)c(.) a~.- 1) a~n- 2~... a ~l)a(o) = a 

0 X 

1 x x 

2 X X , 

n - I  x x . . . •  

/~ X X . . .  X 

Stage I 

X 

X X 

X 

Stage I1 

X 

X X 

X X 

. . .  X • 

2.  E r r o r  A n a l y s i s  

In this section we perform an a priori rounding error analysis for Algorithms 1 
and 2. The analysis is a forward error analysis, rather than the backward type 
more commonly applied to linear equation solvers; we therefore bound directly 
the error in a computed solution rather than show that the computed solution 
is the exact solution of a perturbed problem. 

We will assume that the points c~ i in (1.1) are real numbers satisfying 

0 < ~ o < ~ 1  < ... <~, .  (2.1) 

This assumption assures the validity of certain sign properties upon which our 
analysis relies. The requirement that the points are in increasing order can 
always be  satisfied by a simple re-ordering of the columns of the primal 
system, or the rows of the dual. However, it is important to realise that 
Algorithms 1 and 2 are not invariant under such permutations: the rounding 
errors committed, and the way in which they propagate, depends on the 
ordering of the points. For example, in stage I of the dual algorithm, c~ 1) (j 
=1 . . . . .  n) depends on the ordering 7t, where g=( rQ  is a permutation of the 
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integers O, 1, ..., n, through 

c~,)=f,D-- f ~ - i  

We c o m m e n t  further on assumpt ion  (2.1) in Sect. 3. 
To begin, we present  two prel iminary lemmas  which display some impor-  

tant  sign propert ies  of the Vande rmonde  systems, and of Algor i thms 1 and 2. 
The modulus  of a vector  or matrix,  respectively, is defined by Ixl=(]xil), IA] 
=([aJ). 

L e m m a  2.1. Let the points ot i satisfy (2.1). I f  ( - 1 )  i b i > O and ( -1) i f />0,  for all i, 
then 

]g-'bl=lV-lllbl, 
Ir-r fl=lr-TI Ifl. 

Proof Let V -  1 = (w~j) 0 < i,j < n. It is well known [20] that  

wij = ( -  i) "-1 a,-3(%,. . . ,  cti- 1, cq+ 1,..., ~,) ( e l -  %) , (2.2) 
k=O 
k * i  

where ak(y x ... . .  y,) denotes the sum of all distinct products  of k of the argu- 
ments  Yl , - . . ,Y,  (that is, a, is the k' th e lementary symmetr ic  function). F r o m  
(2.1) and (2.2), if w~j*O, 

sign(wij ) = ( -  1) " - j  x 1 x ( -  1) "- i  = ( -  1) i+j. 

Thus, in the inner product  ( V - l b ) ~ =  ~ w~jbj, every nonzero te rm has the 
j=O 

same sign, ( -  1) i+j x ( -  1 ) J = ( -  1) ~, so that I(V- 1 b)il = ~ ]wiil Ibil, as required. 
Similarly for V - r f  []  ~=o 

Thus, if the componen t s  of  b and f al ternate in sign, cancellat ion through 
subtract ion cannot  occur in forming the products  V - l b  and v - T  f, the so- 
lutions to the pr imal  and the dual Vande rmonde  systems respectively. In our 
error analysis we will exploit the fact that  a similar " n o  cancel la t ion"  p roper ty  
holds for solution via Algor i thms 1 and 2. 

L e m m a  2.2. Let the points ~i satisfy (2.1) and let the vectors b and f satisfy 
( -  1)ibi>O, ( -1)if i :>O, for all i. 

7hen, in Algorithm 1, 

( j (k+�89 -1 )  xj , 

and in Algorithm 2, 

(--1)J d~k~>o} k 
( _  1)Jx~k) > 0 = 0  . . . . .  n, j = O  . . . . .  n, 

k = O  .. . .  ,n, j--O .. . . .  n. 
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Hence all additions~subtractions in Algorithms 1 and 2 are in fact additions of 
numbers with the same sign. 

Proof A straightforward induction using (1.4)-(1.7) and (2.1). [] 

Wd are now ready to perform the rounding error analysis. We assume that 
the floating point arithmetic satisfies [6, p. 9] 

f l ( x o p y ) = ( x o p y ) ( 1  +e), I~l<u, (2.3) 

where op = +, - ,  * or / ,  and u is the unit roundoff. 

Theorem m.3. Suppose Algorithms 1 and 2 are carried out in floating-point 
arithmetic with unit roundoff u, where the data c~i, bi, fl (i=O .. . . .  n) are floating- 
point numbers. Assume the points ct i satisfy (2.1). Then, provided no overflows are 
encountered, the algorithms run to completion, and the computed solutions ~c, fi 
satisfy 

Ix - :~l < 5 n u  IV- ~11bl + O(u2), 

la -~11 < 5 n u IV- rl Ifl + O(um). 

Proof We will prove the result for the dual algorithm only; the proof for the 
primal is very similar, but slightly longer due to the form of (1.5). To simplify 
the presentation we will omit index ranges from equations and inequalities. 

First, note that in the absence of overflow, Algorithm 2 must run to 
completion, because assumptions (2.1) and (2.3) guarantee that f l ( ~  i -  c~j):t=0 for 
all i:t:j, ensuring the successful evaluation of (1.6). 

Let c~ k) and ti~ k) denote the computed intermediate quantities in Algorithm 
2, and define 

3~  k) ---- C A(k)j - -  _ j  , C  (k) (2.4) 

/l(k)_ ^(k)_ (k) (2.5) j - - a j  a j  . 

Our approach is to find recurrence relations satisfied by the errors ($f), r-j u(-k) and 
thence to majorise [($f)[, [#f)] in terms of the solution to a related Vander- 
monde system. 

First, we obtain recurrences for ($)k) and #x~ k). From (1.6) and (2.3), 

= (  ~k)-~k)-I ] ( l+e i ) ( l+em)( l+e3)  , le, l__<u, i=1,2,3,  
\O~j  - -  (Z j _  k - -  1 l 

--  ( C~jk)--C~jk)-I ) ( I - t - q ) ,  i I I I < 3 u + O ( U m ) .  (2.6) 
\ ~ j  - -  O~j_ k -- 1 / 

Substituting for c~ k) from (2.4), and using (1.6), we find 

.~(k) r~(k) \ 

O~j - -  ~ j _  k - 1 (~j - -  O~j _ k -- 1 ] 
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Taking modul i  gives 

I ,~ + '~1 __<(1 + 3 u) I~ + I aS~-~ 11 + 3u Ic~ + 1) I + O(u2). (2.7) 
~ j  - -  ~ j -  k -- 1 

Similarly, f rom (1.7) and (2.3), using (2.5), 

d(k) . ' ,  ((~ + 1 ) _ f / (~k a~k211))) j = J l  

/ ~ ( k + l )  rv , ~ ( k + l ) ( l  d- = ~  - - ~ k . i + l  t . _ e l ) ) ( l + e z ) ,  ]r i = 1 , 2 ,  
(k+ 1) (k+ 1) =(aj +~ j  --~k(a~211)-klt)k++l))(1 q-~l))(1 q-~32) 

= (a}k) + p(ff + 1) _ ~k/'t~++l '))(1 d- g2) 

- -  O~k(a(~2, l ) -[-/[/~k++ll) ) F, 1 "4- O ( U 2 ) ,  ( 2 . 8 )  

Thus, 
~(k,_ ,~(k+ , ,_  ~k ~ 1 , +  ~2(a~' + ~ +  1,_ ~k ~ 1 , )  j -- r-j 

- - ~  ( a ( k + l )  ~, ~+1 + ~ ) ) q + O ( u : ) ,  

which gives, on taking moduli ,  

I~k)l = >~+ 1, I + ~k I ~2)~1 + u{la~l + ~ La~2,'~l 
+ I /~  + 1)1 + 2 ~k I/t~++l')l } + O(U2), 

and this weakens to 

]p~)l<(l + 2u)(ll~Sk+ l)l+~klla}~++l')l)+u(la}k)l+o~kla~+llq)+O(u2). (2.9) 

Now define 
g , - - ( -  1)' IfL i = 0  . . . . .  n, (2.10) 

and let t'j-(k), ~J-(k) denote  the values f rom stage I and stage II respectively of 
Algor i thm 2 with g as r ight-hand side. By L e m m a  2.2 there is no cancellat ion 
in the evaluat ion of Algor i thm 2 for g. 

Hence,  
_(k+ 111 [P}k)l+lpSk)-l[ 

[t'j I-- , (2.11) 
O~j-- O~j_k_ 1 

Iq~) l -  _(k+l) I --[~/j + 0~k [q~+ll)[. (2.12) 

Using (2.10)-(2.12) and (1.6), (1.7) it is easy to show by induction that  for all j 

and k, Ic~k)l < IP~)l, (2.13) 

[a~k)[ < [q~)l. (2.14) 

Relat ions (2.11)-(2.14) are the key to the result. 
�9 (k) may  be bounded  as follows: We claim that  the errors 6~ k) and ~j 

laSk)l < 3 k u IpSk)l + 0(uZ), (2.15) 

I/~)l < (5 n - 2 k) u Iq~kJI + O(u2). (2.16) 
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These inequalities are proved by induction on k. By definition, 6}k)--0; there- 
fore, using (2.7) and (2.13), 

[ 6~.x)[ < 3u ]c~ 1)] + O(u 2) < 3u [p}l)] + O(u2). 

Assume (2.15) holds for k. Then from (2.7), using (2.13) and (2.11), 

[t~k+ 1)[ ~(1 § 3u) 3ku ([p}k)~+lp}k) 1_[) + 3ulp~+ l)[+O(u 2) 

=((1 + 3u) 3k + 3)ulp}k+l)[§ 2) 

= 3(k + 1) u Ip~ ~+'1 + O(u2). 

This proves (2.15). The bound (2.16) is the same as (2.15) for k=n. Assuming 
(2.16) is true for k+  1, we have from (2.9), (2.14) and (2.12), 

[#~k)[ <(1 + 2u)(5 n -  2(k + 1))u(lq~ + ~)1 + C~k Iq~ '*l )  

+ u(lq~k)l + ~kl q~11)1)+ O(u 2) 

<(1 + 2u) (5n-  2 k -  2) u Iq~k)l +2u Iq~)l + O(u 2) 

= ( 5 n -  2k) u Iq~k)l + O(u2), 

completing the proof of (2.16). 
Finally, we take k = 0  in (2.16) to obtain 

la~- ajl = I~~ _-< 5n u I q~~ + 0(/22), 

and we observe from (2.10) and Lemma 2.1 that 

Iq(~ gl=lV rllgl 

=lV-7"l Ifl. [] 

Theorem 2.3 bounds componentwise the absolute error in the computed 
solution. The following corollary bounds a norm-wise measure of the relative 
error, and will be used for comparison purposes in Sects. 3 and 4. 

Corollary 2.4. Under the hypotheses of Theorem 2.3, 

IIx-~lloo <=5nulllV-Xllb[llo~ ~_O(u2), 
I[xll ~ HxlP 

Ila-,ill~ < 5nu IIIV-r[Iflll~ ~-O(u2). 
Ilall ~ Ilall 

3. Implications of the Error Analysis 

Now we discuss in detail the implications of Theorem 2.3, with particular 
reference to the primal algorithm (analogous comments apply to the dual). 
Throughout this section it is assumed that condition (2.1) is satisfied. 
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First, we show why Theorem 2.3 may, from one viewpoint, be regarded as 
very satisfactory. Consider the "ideal" situation where V -1 is known exactly, 
with f l (V-1)=-V -1 and fl(b)=-b, and suppose the solution to the primal 
system is computed as ~ = f l ( V - ~ x b ) .  Then, using the standard rounding 
error analysis for inner products [13, p. 36], the error in ff can be bounded by 

Ix - e l  __<n u Iv- '1  ]b[ + O(u2); 

this is the same bound as in Theorem 2.3, except for the unimportant  constant 
factor 5. 

Consider now the case where, in Algorithm 1, 

(-1)ibi~O, i = 0  . . . . .  n. (3.1) 

From Lemma 2.1, IV- 111bl = I V -  1 b[--Ixl, whence Theorem 2.3 yields 

I x -  El _-< 5n u Ixl + O(u2). (3.2) 

Thus, to first order in u, the relative error in computed nonzero components of 
x is bounded by a quantity independent of the condition number k(V), and the 
bound is about as small as could possibly be expected! We have therefore 
identified a class, (3.1), of Vandermonde systems for which the Bj6rck-Pereyra 
algorithm is guaranteed to provide high accuracy. 

An interesting application of (3.2) is to the computat ion of V-X via Algo- 
rithm 1 with b=el, O<=i<=n, where the identity matrix I,+~=[eo,e I .... ,e,]. 
Denoting the computed V-1 by X = [2 o, 21 . . . . .  2,] we have 

Id( - V -  I r < 5 n  u IV-11 q- O(U2), ( 3 . 3 )  

which shows that, contrary to what one might expect, V-1 can be computed 
with high relative accuracy, however ill-conditioned the matrix V. It should be 
mentioned that this approach to computing V -1 requires O(n 3) operations, 
whereas Traub [20] gives a method requiring only O(n z) operations. However, 
[20] does not contain a rounding error analysis, and it can be shown that 
Traub's O(n 2) algorithm must involve subtraction of like-signed numbers, sug- 
gesting that a result of the form (3.3) will not hold. 

In Corollary 2.4 the key quantity in the bound for the primal algorithm is 

IIIv-~l IbllP~ 
O(V,b) = 

Ilxlt 
Note that 

where 
l<=O(V.b)<=?(V), 

~ ( v ) =  II IV- ' l  IVl II + <=k+(V). (3.4) 

To gain insight into O(V,b) it is helpful to consider V and Ib[ fixed, with 
different distributions of sign(bl). In general, as these signs vary, the solution x 
varies in norm. For the distribution of alternating signs we have seen that 
ILxl[ ~ attains the maximal value ttIV-11 [b[l[~, so that 0(V, b)= 1. However, there 
may be sign distributions for which 0(V,b)>>l. For example, for n = l ,  with 
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0<~o<~1~Cr and b= [1 , ao ]  r, x = [ 1 , 0 ]  r and O(V,b)=(oq+~o)/(oq-%). Note 
that O(V,b) can be large only when there is severe cancellation by subtraction 
in the product x = V- 1 b. 

Loosely, we can say that O(V,b) is large or small if the system Vx=b has 
respectively a "small solution" or a "large solution". 

We stress that the results of Sect. 2 are valid for the case 0<~0 < .-. < a .  
only. For some alternative orderings of one-signed points, our results hold with 
suitable modification (for example, 0 > % >  ... >~,). However, for distributions 
containing both positive and negative points, suitable analogues of the results 
on which our analysis is based, Lemmas 2.1 and 2.2, do not hold. In particular, 
for a given [bl there does not always exist a sign distribution S=diag(_+ 1) such 
that no genuine subtraction of like-signed numbers occurs in Algorithm 1 for 
the right-hand side S[bl. An example is given by the case n = l ,  % < 0 ,  a l > 0 ,  
fo4 =0, f l  4 =0, in the dual algorithm; see Table 2.1. 

Table 2.1. Dual 

j f=c (~ C(1) = al  1 ) a(O) 

0 fo fo-%( f l - f~  ) 
"~X1 - - ~ 0 "  

L-fo  
l fl 

To avoid subtraction in forming c(l 1), we require that f i f o < 0 ;  but then, (fl  
- fo) / (~1-%) has opposite sign to f0 and subtraction occurs in forming a(o ~ 
Interchanging ~o and ~1 does not help. For  a case such as this, the technique 
used to prove Theorem 2.3 is not applicable, because a suitable majorising 
Vandermonde system (corresponding to the right-hand side g in (2.10)) cannot 
be constructed. 

Finally, we use Corollary 2.4 to compare the BjSrck-Pereyra primal algo- 
rithm with Gaussian elimination applied to (1.2), for the case where the points 
~i satisfy (2.1). Let 2 denote the computed solution from Gaussian elimination. 
To obtain an a priori bound for the error IIx-2ll, it is necessary to appeal to a 
backward error analysis. A particularly strong backward error result, given in 
[7], can be employed if we assume that pivoting is not used. For V is totally 
positive when the points ~i satisfy (2.1), that is, all the minors of V are 
nonnegative [10, p. 99]. Applying the results of [7] for Gaussian elimination 
without pivoting on a totally positive, nonsingular matrix, we have 

(V+E)s IEI<~IVI, e=4nu+O(u2), (3.5) 

provided u is sufficiently small. (Here we have taken into account the errors 
which may be incurred in forming V from the ~i). A sharp bound for IIx-s 
can be obtained by applying the perturbation theory of [17, Theorem 2.4] to 
(3.6); this yields 

Ilx-~7 tl o~ < 4 n  u II IV- al [VL Ixl tl ~ +O(u2), (3.6) 
Ilxll ~ ILxll 
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Ignoring the unimportant constant factors 4 and 5, we see that the forward 
error bound (3.6) for Gaussian elimination is larger than the bound in Corol- 
lary 2.4 for Algorithm 1 by the factor f2(V, b), where (see (3.4)) 

I ~  ~2(v,, b)l = 
IIIV-lllVllxlll+ < 

II I V -  Xl Ibl II + = ? ( v ) : ~  k + ( v ) .  

This comparison between bounds on the respective forward errors suggests, 
though it does not prove, that the computed solution from Algorithm 1 will 
usually be at least as accurate as that from Gaussian elimination, and may, in 
cases where ~(V,b) is relatively large, be far more accurate. 

We remark that the assumption of no pivoting is "fair" to Gaussian 
elimination in the sense that if any form of pivoting is used, it does not seem 
possible to obtain an a priori backward error result as strong as (3.5). 

4. Condition Numbers 

Theorem 2.3 gives a bound for the difference between the true and the com- 
puted solutions to the machine problem: the problem defined by the machine 
numbers ~i,~,J~. The machine numbers may be subject to uncertainty, for 
example through rounding errors in converting to floating point (e.g., ~i 
=fl(l/(1 +i))) or through rounding and truncation errors in computing the 
data (e.g., fi=fl(exp(cQ)), so the machine problem may differ from the problem 
whose solution is required. It is therefore desirable to understand the sensi- 
tivity of Vandermonde systems to perturbations in the data, that is, the 
conditioning of problems (1.2) and (1.3). By combining knowledge of the 
conditioning with the error analysis of Sect. 2, one can obtain bounds for the 
" t rue"  error. A further, and equally important reason for investigating the 
conditioning is to determine whether Algorithms 1 and 2 introduce any more 
uncertainty into the computed solution than can be attributed to an inexact 
machine problem. 

It is clear that the standard perturbation results for a linear system A x=b, 
and the associated condition numbers, are applicable to Vandermonde sys- 
tems; indeed much interesting work has been focussed in this direction (see, for 
example, [-11, 12]). However, insofar as these results apply to general linear 
systems they do not take account of the structure of the Vandermonde matrix 
and so may be pessimistic. Note, for example, the rigid conditions to be 
imposed on a perturbation 6V if V+6V is to be a Vandermonde matrix. 

In this section we derive condition numbers for the dual and the primal 
Vandermonde systems. No restrictions are placed on the points c~/. We use the 
same metrics in which to measure perturbations in the data and in the 
solution, and hence the same definition of condition number, as Skeel [-17, 
Sect. 2]. Thus a perturbation 6~ in the vector ~ of data (which consists here of 
the points c~ i together with the right-hand side b or f )  is measured by the 
smallest ~ such that 
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and the corresponding perturbation 6x in the solution is measured norm-wise 
by 

Ilxll o~ 

The associated condition number is defined by 

lim sup 

We consider first perturbations in the right-hand side alone. In this case the 
special structure of V confers no advantage. 

Lemma4.1 [17]. Let A x = b  and A(x + 6 x ) = b + 6 b ,  where ]6b[ <__~ ]bl. Then 

116xl[~ _<e ]IIA-II Ibl ilo~ 

Ilxl/oo - Ilxll~ ' 

with equality for suitable choice of 6b. 

Proof The bound follows from 16xl = [ A -  1 6bl  < e I A -  1l Ibl. Equality is attained for 
(~b)j=sign((A-1)kj)elbjl, where II IA-111bl  Fl~--(IA-111bl)k. [] 

We conclude that condition numbers for (1.2) and (1.3) with respect to 
relative perturbations in the right-hand sides are, respectively, 

I l l V - l i l b l l l ~  
/]l-- 

Ilxll o~ 

I I I g - r l  I f l l l ~  
D I =  

liall oo 

Since these are the same quantities that appear in the bounds of Corollary 2.4, 
it follows that for the distribution (2.1), ignoring the second-order terms and 
the factors 5n in Corollary 2.4, Algorithms 1 and 2 introduce no more un- 
certainty into the numerical solution than was already present if the machine 
right-hand side vector were subject to relative errors of the order of the unit 
roundoff 

Next, we consider perturbations in the points ~. For the primal system, V 
= V(~ o .. . .  , ~,), let 

Vx=b;  (4.1) 

~=~j(l+ej), I~jl<e, j = O  . . . . .  n; 

V ( ~  O, . . . ,~n) ~ V"~ 6 V  = V.Jc W--~ 0(e2); 

(V + 6V) (x + 6x) = b. (4.2) 

It is easy to check that we can take 
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I o~ 
W= [2~o c~ 

Ln % ~; 
where 

From (4.1) and (4.2), 

"'" ~ nOo( n ] 
2e.. ~2 [ =  H.  Vdiag(~i), 

�9 . .  n~.o~A 

H. = diag(0, 1,2 . . . . .  n). 

,Sx = - ( V - 1  ,SVx  + V -  i 3 V S x ) ,  

625 

which, provided that 11V-IbV]I < 1, implies 

II v -  x ~rxll II v -  1 6 r x l l  (4 .3)  
1 + [~- -  i-5-V]] < n3xll _-< I -11V - 1  ( ~ V I ]  ' 

Now 
H r - 1  3VII = O(e), 

and 
lIW - 1  (~Vxl[ = IIV - 1  W x  H + O(c2),  

so  

II r -1 6rxH 
- II v - 1  Wx II + O(e2) .  

+_llv -16vii 

Substituting in (4.3), we obtain 

116xll IIv -1 Wxrl 
- ~_ 0 (~2 ) .  

Ilxll Ilxll 

Therefore, the required condition number is an attainable bound for 
]IV -1 Wx]]~o/(e I]x]]oo) that is independent of the individual ~j. This bound can 
be computed with the aid of the following lemma. 

Lemma 4.2. L e t  A e l I  " • ", z e ]R " a n d  ] @ < e , j = 0 ,  . . . ,n. T h e n  

1[ A diag(e) z i[ co <-- ~ l[ [A[ [ z lll ~o, 

w i t h  e q u a l i t y  f o r  s u i t a b l e  c h o i c e  o f  ~ ,  j = 0 . . . . .  n. 

Proo f .  The bound follows from I A d i a g ( ~ i ) z l < i A l e l l z l = e i A l i z l .  Equality is 
attained for ej=sign(ak2 z)e,  where 

I l l A t l z t l l o ~ = ( M t l Z l ) k  �9 []  

Applying the lemma to the expression 

II V -  ~ W x  II o~ = II V - 1 H ,  Vdiag(~ 3 x I[ o~ 

we deduce the condition number for the primal system with respect to relative 
perturbations in the cr i, 

I I I r - i  g .  rllxlllo~ 
P2 = Ilxtl 
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In similar fashion one can show that the condition number for the dual 
problem with respect to relative perturbations in the ~i is given by an attain- 
able upper bound for II V-T W r all ~/(e IlalJ ~). Applying Lemma 4.2 once again, 
we find the condition number  

IIIV-rllVr H. alll~ 
D 2 -- 

Ilall 

The following bounds on the condition numbers are easily derived. Recall 
from (3.4) that 7(V)= IIIV-~l IVlll~ < ~ ( v ) .  We have 

1__< P~ _< ?(V), O=<P2=<nT(V ) , 

I <=DI <=y(vT), O<=D2 <=nT(Vr). 

The lower bounds are attainable for suitable choice of the Vandermonde 
system; this follows from Sect. 3 for P~ and D1, and for P2 and D z is shown by 
the examples 

Pz = 0  for x = e o =  [1,0 . . . . .  0 ]  T , c% = 0  (P~ = 1), 

D 2 = 0  for a = e  o (D 1 = IIg-Tlk| 

The upper bounds for P~ and D 1 are attainable, but those for Pz and D 2 are 
not. 

Unfortunately, there does not appear to be any straightforward relationship 
between P~ and P2, or between D 1 and D 2, so it is difficult to compare 
theoretically the effect of perturbations in the points el with the effect of 
perturbations in the right-hand side. 

5. Running Error Bounds 

Practical experience with Algorithms 1 and 2 [5] shows that the computed 
solutions obtained on different problems can vary greatly in accuracy, and the 
analysis of Sect. 3 indicates that wide variation is possible even for fixed V with 
different right-hand sides. Clearly, estimates of the error in a computed so- 
lution are desirable. 

Suppose the points c~ i satisfy (2.1) and consider Algorithm 1. Theorem 2.3 is 
applicable and provides a bound for the error I x - 2 1  in terms of q~=lV-~l Ib]. 
F rom Lemma 2.1 it follows that ~b may be evaluated efficiently as the modulus 
4~ = lyl of the solution to the additional Vandermonde system 

V y = c ;  c i=(-1) i [b i l ,  i = 0  . . . . .  n. 

However, the main purpose of the a priori bonds of Theorem 2.3 is to give 
insight into the numerical behaviour of Algorithms 1 and 2, and one would 
not expect the bounds always to be accurate, because of the many inequalities 
used in their derivation. 

We now present an alternative, a posteriori technique for bounding the 
error, which is applicable to any distribution of the points. The technique is 
essentially the same as that used in [1, 16] for bounding the error in evaluating 
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a polynomial by Horner 's  scheme. The idea is to compute "running" bounds 
�9 (k) in the proof of Theorem 2.3, using versions of Eqs. (2.7) for the errors 6~ k), ~'J 

and (2.9) that contain the computed quantities c~ k), fi~), rather than their exact 
(and hence unknown) counterparts c} k), a} k). The majorisation in the second part 
of the proof of Theorem 2.3 is not carried out, so, to first order, the running 
bounds are no larger than those provided by Theorem 2.3. 

The running bounds are computed concurrently with the main solution 
~(k) process, since they make use of the intermediate computed quantities c~ k), u t 

o r  ~jk), ~(k) j .  
The bounds are defined by the following recurrences, whose straightforward 

derivation (cf. [1, 16]) is omitted. 

For Algorithm 1 

Stage I :  

Stage I I :  

For Algorithm 2 

Stage I : 

A<k+ 1)_ A~k)+ I~kl A~-)I q-16~ k+ 1)1 + I~k ~;)11 j -- 

M ~ + O  - M)  k+l, t_21~+~)l 
I~j-%-k-al 

(5.1) 

(5.2a) 

(5.2b) 

A(k) + A(k) i~k+ 
A(k+1)_ j j -1  +3  - 1)1 (5.3) 

i I%-%-k-xl 
Stage I I  : 

m~)..~, m~k+ 1)_}_ ]CXk ] m(k+j+ 11) ~_ ]~)[ _~_ ]~k I~̀ k+j+ 11) . (5.4) 

The index ranges are understood to be those defined in the respective algo- 
rithms, and in both cases initial values are defined by 

A(.~ = 0  ) 3 "--0 
M ( , ) _  A(,)~j - , . . . .  n. j -- j ; 

The final error bounds are, for z = x (Algorithm 1) or z = a (Algorithm 2). 

Iz-21 < u Im(~ + o(uZ). (5.5) 

The running bounds are slightly more expensive to evaluate than the 
bounds based on Theorem 2.3, due to the terms involving c~ k), "iz(k)' ~k)~i~(k) in 
(5.1)-(5.4). 

Some numerical experiments to compare the running bounds with the a 
priori bounds of Theorem 2.3 are reported in the next section. 

6. Numerical Experiments 

Several numerical experiments have been carried out using a Fortran 77 
program on a CDC computer  with unit roundoff u = 2 - 4 s ~ 3 . 5 5  x 10 -15. The 
following questions were investigated. 
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1) How much smaller are the running error bounds than the a priori 
bounds? 

2) Are the running error bounds realistic estimates of the error? 
3) Is the ordering in (2.1) demonstrably superior to other orderings? 
4) Are the answers to questions 2) and 3) valid for general points ~, or just 

for nonnegative points? 
Numerical results for the first question may be summarised as follows. We 

ran a wide variety of dual and primal test problems for points satisfying (2.1), 
with 5 < n_< 30. In every case the a priori bound of Theorem 2.3 was larger in 
every component than the running bound (5.5) (as expected - see Sect. 5), 
usually by approximately the same factor for each component. The largest 
ratio of components was 1.76 x 104, with ratios of orders 10 2 and 103 occurring 
frequently. 

To investigate the remaining questions the following approach was adopt- 
ed. Each test problem was formed and solved, and the running error bound 
computed, in single-precision arithmetic. The single-precision numbers defining 
the machine problem were converted to double-precision and the problem then 
solved entirely in double-precision arithmetic. The difference between the com- 
puted single- and double-precision solutions was used to form an approxima- 
tion e to the relative error, 

ei = 5q(dp) , i = 0  . . . . .  n; 

for all problems of interest (that is, those with 2(sp) having some correct digits) 
e can be expected to give the relative error correct to single precision. 

Six test problems are reported in detail. The first two are taken from [5], 
with the points, which are in decreasing order in [5], rearranged in increasing 
order. 

1 1 
Primal: al-n_i+ 3, bi=~-; (6.1) 

1 
Dual: a i = n _ i +  2, fi=T,(cq), (6.2) 

where T,(x) is the Chebyshev polynomial of degree n. Problem (6.2) is to 
recover the coefficients of a Chebyshev polynomial from function values at the 
points a~. The remaining problems are 

( [(i+�89 
Primal: ~,_i=�89 1 +cos \ ~ 1 / ,  b =e , ;  (6.3) 

i 1 
2; (6.4) Dual: a i=  n, f i - l + 2 5 e l  

[(i+�89 b=e.; (6.5) Primal: ~ . _ i - - c o s \  n + l  l '  

2i 1 
Dual: a i = - l + - - ' n  b~=2~-" (6.6) 
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Table 6.1. Problem 6.1 
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n qx~l Increasing order Random order 

min max Mi/e i ei/u Mje  i ei/u 
max max max max 

5 4.6E l 3.6E3 1.1 E2 2.6 1.8E2 6.0 
10 6.3E2 1.6E9 2.9E2 1.0E 1 1.8E4 3.8E4 
15 7.0E3 8.6E 15 9.5E2 1.8E! 3.6E7 1.2E 10 
20 7.0E4 2.5E23 3.5E4 1.7EI 1.5E14 9.7E14 
25 6.6E5 2.5E31 7.0E4 2.1 El 5.2E11 1.2E26 
30 5.9E6 6.9E39 3.4E4 2.4E I 4.1 E24 1.6E29 

Table 6.2. Problem 6.2 

n 1all Increasing order Random order 

min max Mi/e i el/u Mi/e i el/u 
max max max max 

5 6.2E-13 2.0El 1.0E3 I.IE12 5.2E1 1.9E13 
10 1.4E-8 5. l E2 2.5 E 1 1.7 E 13 3.4E 1 1.8E 15 
15 6.9E-7 4.8E7 3.3E1 8.9E11 I.|E3 2.9E14 
20 5.2E-2 4.4E16 9.2E1 1.2E12 1.1E6 7.0E13 
25 5.6E-3 4.6E24 7.6 2.8E15 1.2E6 IAE18 
30 4.5 2.6E35 2.3E1 2.3E13 2.8E6 4.6E15 

The points  in (6.3) and  (6.5) are the Chebyshev in te rpo la t ion  points  [6, p. 243], 
for the intervals  [0, 1] and  [ - 1 ,  1] respectively,  and  in both cases the p rob lem 
is to compute  the last co lumn of V-a .  

In each test, the p rob lem was solved twice, first with the poin ts  in the 
given, increasing order ,  and then with a r andom order ing  (depending on n, but  
the same for each problem).  The results are given in Tables  6.1-6.6, in which 
M i denotes  the i ' th c o m p o n e n t  of the running  er ror  bound.  No te  that,  ideally,  
M i / e  i -  1 (exact  bound)  and e l ~ u -  1 (minimal  relat ive error). 

We  make  the fol lowing comment s  and observat ions  on Tables  6.1-6.6. 
(a) The tendency of V a n d e r m o n d e  matr ices  to be extremely i l l -condi t ioned  

(in the sense of a large s t anda rd  condi t ion  number  to(V)) is evident  from the 
l a rge -normed  solut ions,  which are p roduced  from r igh t -hand  sides with ele- 
ments  of o rder  1. 

(b) F o r  the increasing order ,  Tables  (6.1) and  (6.3) i l lustrate  well the phe-  
nom enon  of  highly accura te  compu ted  solutions.  F o r  p rob lem (6.3) the high 
accuracy  is p red ic ted  by the a pr ior i  bound of Th e o re m 2.3 (see (3.1), (3.2)). 
However ,  in p rob l em (6.1) the a pr ior i  bound  was between 10 and  20 t imes 
larger  than the running  bound,  which itself was a modera te ly  pessimist ic  
es t imate  of the error,  as can be seen from Table  6.1. 

(c) The qual i ty  of the running  bounds  as es t imates  of the error  is somewha t  
variable.  In p rob lems  (6.2), (6.3), (6.4) and  (6.5), for the increasing order ing,  the 
running  b o u n d  provides  a sharp  est imate,  but  in p rob lems  (6.1) and  (6.6) it is 
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Table6.3. Problem 6.3 

n Ixil 

min 

n 4.4E1 
10 1.4E4 
15 6.6E6 
20 3.9E9 
25 2.6E12 
30 1.9El5 

m a x  

N.J. Higham 

Increasing order Random order 

Mi/ei el/u Mi/ei ei/u 
max max max max 

1.6E2 1.3E1 4.3 4.0El 5.8 
9.5E4 6.3 8.5 2.3E4 2.0E 1 
6.7E7 1.1E 1 1.1 E1 7.3E5 4.7E2 
5.2E10 8.5 1.8El 1.6E7 1.2E4 
4.3E13 6.1 2.3E1 2.6E12 1.1E4 
3.7E16 1.2El 2.2E1 1.5Ell  4.9E4 

Table 6.4. Problem 6.4 

n tall Increasing order Random order 

rain max Mi/e i eJu Mi/e i ei/u 
max max max max 

5 1.0 1.6El 7.5 3.2E1 2.7E1 7.8E! 
10 9.2E-1 2.8E3 1.1E3 4.8E1 1.3E3 2.1E3 
15 2.0E- 1 !.3E6 4.3 1.9E4 4.8E3 5.2E5 
20 2.5E-2 3.6E8 5.2 1.0E6 2.4E5 3.6E7 
25 2.8E-3 7.4E10 1.4 3.0E9 3.0E8 2.3E10 
30 2.8E-3 t.l  E13 1. l E1 4.4EI0 3.6E9 3.3E 12 

Table 6.5. Problem 6.5 

n Ixil Increasing order Random order 

min max Mi/e i e ju  M j e  i ei/u 
max max max max 

5 1.4 5.2 6.3 5.8 4.4E 1 5.8 
10 1.3EI 9.3E1 6.1 9.7 4.6E3 3.9E 1 
15 2.0E3 2.0E3 6.5 1.1El 3.3E6 1.3E3 
20 3.7E3 5.0E4 8.4 1.6E 1 2.7E6 1.4E4 
25 7.8E4 1.3E6 8.5 2.5E1 1.7Ell 6.3E3 
30 1.7E6 3.5E7 9.2 2.2E1 9 .1El l  2.0E6 

Table 6.6. Problem 6.6 
e 

n jail Increasing order Random order 

min max Mi/e i el/u Mile i ei/u 
max max max max 

5 2.5E-2 3.1 1.5E2 7.4 9.7E2 2.7E2 
10 2.6E-3 2.2 1.5E3 5.1E3 1.1E4 1.7E5 
15 3. l E-4 1.7 4.5E7 1.4E3 1.6E7 8.4E7 
20 3.9E-5 1.5 1.2E6 3.0E7 1.0E6 6.2E 1 l 
25 5.1E-6 1.4 4.6E6 7.7E10 5.6EI0 6.5E14 
30 1.2E-6 1.2 8.6E7 3.5E13 4.8E13 2.1E17 
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quite pessimistic. For  the random ordering the running bound is completely 
unreliable as an error estimate. 

(d) The maximum componentwise relative error is, in every case, larger for 
the random ordering of points than for the increasing ordering. The ordering 
clearly can have a profound effect on the relative error: in problem (6.1), for n 
=20, 25, 30, the increasing ordering yields approximately 14 correct significant 
digits, the random ordering none. 

7. Conclusions 

Our investigation has provided several new insights into the numerical be- 
haviour of the Bj6rck-Pereyra algorithms for solving Vandermonde systems. 
The rounding error analysis in Sect. 2 gives theoretical support to the obser- 
vation of Bj/Srck and Pereyra that their algorithms sometimes produce surpris- 
ingly accurate solutions to ill-conditioned systems. The analysis requires that 
the points el be nonnegative and be arranged in increasing order. We identified 
certain sign properties that are essential to the analysis (Lemmas 2.1 and 2.2), 
but which do not hold for general orderings of the points, or for distributions 
containing both positive and negative points. 

The numerical results of Sect. 6 demonstrate clearly that the ordering of the 
points can have a profound influence on the accuracy of the computed solution 
(see, in particular, Table 6.1). The combined theoretical and numerical evidence 
presented here leads us to conclude that the increasing order is a sound choice, 
though we suspect that the best ordering (that is one that minimises the error 
in the computed solution, or an a priori bound on the error) may be problem- 
dependent. We have been unable to discern numerically any major difference 
in the behaviour of the Bj6rck-Pereyra algorithms for the cases of nonnegative 
points and general points ~i. 

In summary, we make the following recommendations for use of the 
Bj6rck-Pereyra algorithms. 

(1) Order the points c~i in increasing order. 
(2) If error estimates are required, compute concurrently with the main 

solution process the running error bounds of Sect. 5. These bounds can 
overestimate the error by many orders of magnitude, but they may be useful 
for verifying that correct digits have been obtained. 

(3) If the machine data el, and b or f, is contaminated by small relative 
errors, use the condition numbers of Sect. 4 to estimate the corresponding 
additional uncertainty in the computed solution. 
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