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This paper is concerned with the implementation of parallel programs on 
networks of processors. In particular, we study the use of the network 
augmenting approach as an implementation tool. According to this approach, 
the capabilities of a given network of processors can be increased by adding 
some auxiliary links among the processors. We prove that the minimum set of 
edges needed to augment a line-like network so that it can accommodate a 
parallel program is determined by an optimal path cover of the graph represen- 
tation of the program. An optimalpath cover of a simple graph G is a set of ver- 
tex-disjoint paths that cover all the vertices of G and has the maximum possible 
number of edges. We present a linear time optimal path covering algorithm for 
a class of sparse graphs. This algorithm is of special interest since the optimal 
path covering problem is NP-complete for general graphs. Our results suggest 
that a "cover and augment" scheme can be used for optimal implementation of 
parallel programs in line-like networks. 

KEY WORDS:  Cacti; distributed systems; graph covering; mapping; 
network computers. 

1. INTRODUCTION 

A network computer (NC) is a set of autonomous, loosely-coupled 
processors, communicating via an interconnection network to solve a 
mutual problem. Advances in VLSI technology have greatly widened the 
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variety of design techniques for NCs. It is now technically possible and 
economically feasible to construct a NC by interconnecting thousands of 
processors, using components available in most hardware laboratories/m) 
Moreover, users can interconnect VLSI processors to assemble NCs 
tailored to their specific applications. (3) 

Mapping processes to processors is one of the most fundamental 
activities concerning the processing of parallel programs in N C s .  (4 1o) A 
good mapping results in a good correspondence between the interaction 
pattern of the processes and the interconnection paths among the 
processors. Such a correspondence is necessary in order to minimize the 
communication overhead in the system, which results in performance 
degradation. (1~) The mapping problem arises when the logical interconnec- 
tion structure of a parallel program differs from the physical interconnec- 
tion architecture of the intended NC. 

A parallel program is viewed as a program graph: the vertices represent 
the participating processes, and the edges connect processes that com- 
municate during the execution of the program. Similarly, a NC is modeled 
by the underlying interconnection network, where the vertices represent the 
processors and the edges represent the communication lines connecting the 
processors. In our model, each process is to be mapped to a processor in a 
1-1 fashion, and each edge in the program graph is to be mapped to a path 
in the network. In order to minimize the communication overhead, we 
seek to minimize the maximal distance in the network between images of 
vertices that are adjacent in the program graph. 

This mapping problem is NP-complete in many of its formulations. (12) 
Motivated by the NP-completeness of the problem, some researchers have 
devised suboptimal mapping algorithms. (4'6'8) Others have shown that in 
certain restricted cases, optimal solutions can be efficiently found (9'1~ (all 
these works except Ref. 4 allow clustering of processes, that is, mapping 
several processes to a single processor). Another approach to the mapping 
problem is to use a configurable architecture that can be adjusted to match 
a given program. ~13) 

In this paper we study the use of the network augmenting approach as 
a tool for mapping. According to this approach, the capabilities of a given 
NC can be increased by adding some auxiliary edges that decrease the 
distances between the processors. (14'15) In particular, mapping programs to 
augmented NCs is likely to result in improved performance. 

A fundamental problem that stems from the augmenting approach is 
to find the minimum number of additional edges required to ensure the 
existence of a "good" mapping. Let G -- (V a, EG) be a program graph; an 
optimal path cover of G is a set of vertex-disjoint paths that cover all the 
vertices of G and has the maximum possible number of edges. We prove 
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that a minimum set of edges needed to augment a line-like NC so that it 
can accommodate a program graph G is determined by an optimal path 
cover of G. Our proof is constructive: given an optimal path cover of G, we 
rigorously describe how to optimally augment the NC. The reason for con- 
sidering a line-like NC rather than, say, a cube, is best expressed using the 
following quotation from Kung's fundamental surveyor6): 

One-dimensional linear arrays represent the simplest and also the most fun- 
damental geometry for connecting processors... For a large number of important 
algorithms, this simple structure is all that is needed for communication. 

Notable line-like NCs are the WARP ~17) and the ESL. ~18) The class of 
parallel algorithms suitable for implementation on line-like NCs includes 
algorithms for sorting,/19) data-structure manipulation, ~16) recurrence 
evaluation, ~2~ and various graph problemsJ 21) 

Our result suggests that a "cover and augment" scheme can be used 
for optimal implementation of parallel programs in line-like NCs. The 
feasibility of this scheme essentially depends on the existence of efficient 
algorithms for optimal path covering. Although this problem is NP-com- 
plete even for planar graphs (by a simple reduction from the planar 
Hamiltonian path problem/22)), there are classes of graphs where it can be 
solved efficiently. Optimal path covering algorithms for trees and directed 
acyclic graphs are presented in Refs. 23 and 24, respectively. These 
algorithms, however, are applicable only to acyclic graphs. Motivated by 
the fact that program graphs may definitely contain cycles, we present an 
efficient optimal path covering algorithm for a class of graphs that contain 
cycles. Specifically, we consider 1-cacti, defined to be simple undirected 
graphs where no vertex lies on more than one cycle. Being sparse, such 
program graphs are natural candidates for implementation on line-like 
NCs. Our algorithm finds an optimal path cover of a given 1-cactus, G, in 
time linear in the size of G. 

The rest of this paper is organized as follows. In Section 2, we define 
some graph theoretic notions used throughout the paper. In Section 3, we 
establish a connection between network augmentation and covering a 
program graph. An optimal covering algorithm for 1-cacti is presented in 
Section 4. Finally, a summary is given in Section 5. 

2. D E F I N I T I O N S  

Let H =  (VH, EH) and G = (Va, E6) be two simple undirected graphs 
satisfying IV/41/> IV61. A set E =  {e=(vi ,  vj)] vi, vie VH, eCE~i} is an 
augmentation of H with respect to G if adding the edges in E to E H makes G 
isomorphic to a subgraph of H. For brevity, such an augmentation is also 
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referred to as a (G, H)-augmentation. Figure 1 shows an augmentation of a 
line with respect to the star graph g l ,  4. The additional edges are dashed; 
these edges together with the thick edges induce a graph isomorphic to 

gl.4. 
Let F(G, H) be the set of all (G, H)-augmentations. The augmenting 

number of H with respect to G is the size of the smallest augmentation in 
F(G, H). This number is denoted by A(G, H), and is formally defined to be 

A(G,H)= rain {}El} 
E~ F(G,H) 

Let E be a (G, H)-augmentation. If IEI = A(G, H), then E is an optimal 
( G, H)-augmentation. 

A path in a graph G =  (Vc, EG) is either a single vertex ve  Vc or a 
sequence of distinct vertices (vl, v 2 ..... vk) where (vi, ve+t)~Ec for 
1 ~< i~< k -  1. Given a path p, the number of vertices in p is denoted by JPl. 
A path cover of G is a set of vertex-disjoint paths which cover all the 
vertices of G. Henceforth, we use the term cover as an abbreviation for path 
c o v c r .  

Let SG be a cover of G. We say that SG employs an edge e e EG if some 
path in $6 includes e. Let n(Sc) denote the number of edges employed by 
SG, and let d(G) be the set of all covers of G. The covering number of G, 
denoted by C(G), is defined to be 

C(G)=  max {n(S)} 
S~A(G) 

A cover SG satisfying n(SG) = C(G) is an optimal cover of G, that is, a cover 
employing the maximum possible number of edges. 

3. A U G M E N T I N G  A LINE-LIKE N E T W O R K  

In this section we establish a connection between network augmen- 
tation and covering a program graph. A line is a simple undirected graph 
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Fig. 1. Augmenting a line with respect to K1.4; a. K1,4; b. The augmented line. 
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H=(VH,  En) where Vu={Vl,  V2 ..... vlv,~l} and En={(v~,vg+l)ll<~ 
i < ] Vn] }. The next theorem shows that the augmenting number of a line, 
H, with respect to a given program graph, G, is related to the covering 
number of G. The proof is constructive: given an optimal cover of G, we 
rigorously describe the construction of an optimal (G, H)-augmentation, 
and vice versa. 

T h e o r e m  1. L e t H = ( V u ,  EH) b e a l i n e a n d l e t G = ( V  G,E6) b e a  
simple undirected graph, where ]VG[ ~< ]VH[. Then A(G, H) = ] E d  - C(G). 

Proof. We assume in the proof that [VG[ = ]VH[. The case where 
IV~[<IVHL is similar. Let VH={vl,  v2 ..... vlv, l }, and let EH= 
{(vi, re+l) l1 ~<i<IVHI}. Let S t =  {s 1 ..... s k} be an optimal cover of G. For 

�9 ~ ' where l =  ]si]. each path s '~S~, denote the vertices of s i by s ,  ..... s) 
Without loss of generality, we assume that s'l ..... s't is the order by which 
these vertices appear along s ~. 

Define a function 

f :  V G--* V H by f(s~)= U m 

where 1 <~i<~k, 1 <~j<~ ]sq and 

m = j +  ~ ls"l 
O < n < i  

Let f 1: VH ~ V6 be the corresponding inverse function. Next, augment H 
with the set of edges {(vi, vj)] vi, vjs VH, ( f - l ( v i ) , f  l(vj))eEa, 
(vi, vj)CEH}. Observe that exactly lEaf -n(Sc)  edges are added, each of 
which corresponds to an edge not employed by the cover. Moreover, the 
images of all vertices adjacent in G are now adjacent in the augmented line, 
so the addition of edges is in fact a (G, H)-augmentation. It follows that 
A ( G, H) <~ lEG[ - n( S G ) = I EGI -- C( G ). 

We now establish the reverse inequality (hence equality). Let E be an 
optimal (G, H)-augmentation. By definition of a (G, H)-augmentation, 
there exists an adjacency-preserving 1-1 function mapping the vertices of G 
to the vertices of the augmented line. Let p: Va --* Vu be such a function. 
Consider the 1-1 mapping p ' : E a ~ E H t J E ,  defined to be p'((v~,vj))= 
(p(vi), p(vj)) for all (v~, vj) ~ Ea. By the optimality of E, each edge in E is 
the image, under p', of an edge in EG. Thus, there exists a set S _  E/~ where 
IS[ = l E a f -  [E[ and each edge in S is the image, under p', of an edge in 
Ea. Observe that S contains all the edges of a path cover of G. It follows 
that C(G)>~ [S[ = lEa]- IE] = ]Eal-A(G, H), so A(G, H)>~ l E e ] -  C(G). | 
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Fig. 2. 

(a) 

(b) 

An augmentation and an optimal cover; a. The graph G; b. The augmented line. 

Figure 2 exemplifies the first part of the proof. Consider the graph G, 
shown in Fig. 2.a. The thick edges in G are employed by an optimal cover 
of G, namely, {(Sll, sJ2, s13, s14, s15, s16), (s21)}. The augmented line, where 
f(slj)=vj for 1 ~<j~6 andf(szl)=V7, is shown in Fig. 2.b. 

4, AN O P T I M A L  C O V E R I N G  A L G O R I T H M  

We have shown in the previous section that once an optimal cover of 
a graph, G, is known, we can efficiently find an optimal augmentation of a 
line with respect to G. Thus, it is useful to have efficient optimal covering 
algorithms for classes of program graphs that are candidates for implemen- 
tation on line networks. Unfortunately, the optimal cover problem is NP- 
complete even for planar graphs (by a reduction from the planar 
Hamiltonian path problem~22)). However, we now develop an efficient 
optimal covering algorithm for 1-cacti, that is, simple graphs where no 
vertex lies on more than one cycle. 

The idea behind the algorithm is to repeatedly delete edges from the 
input 1-cactus without affecting its covering number. The resulting graph 
eventually reduces to a set of isolated paths, which constitutes an optimal 
cover of the input 1-cactus. The exact characterization of the edges that can 
be deleted from the 1-cactus without affecting its covering number is given 
in the following lemmas. This characterization is complete, in the sense that 
as long as the 1-cactus, G, has not reduced to a set of isolated paths, at 
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least one lemma can be used to delete some edge(s) from G. The algorithm 
specifies the order by which these lemmas are to be applied such that the 
cover is found in linear time. We note that each of these lemmas is, in fact, 
applicable to any graph satisfying the requirements of the lemma. In 
particular, the lemmas may apply to cacti--graphs where no edge lies on 
more than one cycle--but they do not provide a complete framework for 
covering such graphs, as they do for 1-cacti. 

Observe that an optimal cover can be equivalently defined as a 
cover where the total number of paths is minimum. This follows from 
the fact that the number of edges employed by a cover plus the number of 
paths in that cover is equal to the number of vertices in the graph. Thus, 
maximizing the number of edges employed by a cover is equivalent to 
minimizing the number of paths in that cover. The number of paths in a 
cover is called the size of the cover, and the size of an optimal cover of G is 
denoted by n(G). The observation is heavily used in the algorithm: Given a 
1-cactus, G, the algorithm finds a minimum size cover of G which, 
equivalently, is an optimal cover. 

Def in i t ion .  Let G = (VG, EG) be a graph. A trail starting at vl E V G 

is a path p =  (vl, v2 ..... vk) containing two or more vertices, where the 
degree of vi is two for 1 < i < k and the degree of vk is one. 

L e m m a  1. L e t G = ( V  G,EG) be a graph. Let vl~ VG be a vertex of 
degree three or more which is the start-point of a trail (vl, v2 ..... vk) and is 
adjacent to a vertex w r v2 of degree one or two. Then G' = (VG, E~) where 
E~ = E~ -- {(vl, x) [ (v~, x) e Ea,  x r {v2, w} } satisfies ~(G) = ~(G'). 

Proof. Clearly ~(G)~< ~(G'). To prove the reverse inequality (hence 
equality), we show that every optimal cover of G defines an equal-size 
cover of G'. 

Let Sa be an optimal cover of G. If no edge in E =  
{(Vl, x)[  (v~, x ) e  E~, x ~ {v2, w}} is employed by S~ we are done since SG 
is also a cover of G'. Otherwise, suppose that m edges in E are employed by 
Sa; observe that m e { 1, 2 }. In this case, it is easily verified that there exists 
an equal-size cover of G which employs m edges from the set 
{(Vl, V2) , (U1, W)} but no edge from E. This latter cover is also a cover of 
G'. | 

Def in i t ions .  A crown is a graph consisting of a single cycle which 
satisfies 

1. At least one vertex on the cycle is of degree two. 

2. Each vertex on the cycle is either of degree two or of degree three, 
being the start-point of a trail. 
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Given a crown C, the cycle underlying C is denoted by C ~ and the 
degree of each vertex v in C is denoted by~degc(V). Let C be a crown that is 
a proper subgraph of a graph G. We say that C is an end-cycle of G 
(denoted C cz G) if there exists a vertex v, called the separator, on C ~ such 
that degc(v) = 2 and v separates C from G. If each vertex u on C ~ satisfies 
degc(U) = 2, then C is an end-cycle of order 2. If each vertex u on C ~ (except 
for the separator) satisfies degc(u)= 3, then C is an end-cycle of order 3. 
Figure 3 shows a graph with two end-cycles; the left-hand end-cycle is of 
order 3 and the right-hand one is of order 2. 

L e m m a  2. Let G = (V a, Ea) be a graph. Let C be a subgraph of G 
which is either an isolated cycle or an end-cycle of order 2 (in both cases, 
let C ~ be the cycle underlying C). Let vl, v2,..., vk be the vertices on C ~ 
(starting from the separator, if such exists). Then G'= (Va, E'a) where 
Eb = EG - { ( / ) 1 , / ) 2 ) }  satisfies ~(G') = re(G). 

ProoL Clearly n(G) ~< 7r(G'). To prove the reverse inequality we show 
that every optimal cover of G defines an equal-size cover of G'. 

Let SG be an optimal cover of G. If (vl, v2) is not employed by Sc then 
we are done. Otherwise, some other edge e on C ~ is not employed by So. It 
is easily seen that by modifying S~ to employ e rather than (Vl, v2), one 
obtains an equal-size cover of G which does not employ (Vl, v2). This latter 
cover is also a cover of G'. | 

Def in i t ions .  Let G= (V~, Ea) be a graph. Let Pl = (vl ..... vk) and 
P2 = (ul,..., ul) be two vertex-disjoint paths in G, where (vk, ul)~ Ea. Then 
Pl II P2 is the path (vl,..., vk, u~,..., ut), obtained by appending P2 to Pl. 

( 

Fig. 3. A graph with end-cycles. 
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Given a path, say Pl = ( V l  . . . . .  Vk) , we define p1-1 to be the path (vk,..., Vl), 
obtained by reversing Pl.  

Let C be an end-cycle of order 3 in a graph G. We say that C is an 
even (odd) end-cycle of order 3 if the number of vertices on C ~ is even 
(odd). 

k e m m a  3. Let G = ( V c ,  Ec) be a graph. Let C ~  G be an even 
end-cycle of order 3, where vl, v2 ..... v~ are the vertices on C ~ starting from 
the separator. Then G' V ' = ( G, EG) where E c = E G -  {(v~, v2)} satisfies 
~(6')-- ~(c). 

Proof. Clearly rc(G)~.~,zt(G'). To prove the reverse inequality, we 
show that every optimal cover of G defines an equal-size cover of G'. Let 
SG be an optimal cover of G. If (v~, v2) is not employed by Sc then we are 
done. Suppose then that (vl, v2) is employed by a path 
P =  ( .... vl, v2,...)e So. I f p  covers vertices not in C, let p'  be the prefix o f p  
covering those vertices. An equal-size cover of G, denoted by SG, is defined 
by modifying SG to cover C and the vertices in p'  as follows. Let tj be the 
trail starting at vj, 2 <~j<~k. The vertices in C are covered using the paths 
Pl ..... Pk/2, where pi=t2i  111 tzi+t for l <<,i<,(k/2)-1, and Pk/2 covers tk 
and yr. I fp '  is not empty, then Pk/2 extends to cover the vertices in p'. The 
optimality of 5'G follows from the following two facts. First, SG covers C 
and the vertices in p'  using k/2 paths, which is minimum since at least k/2 
paths must be used to cover the k -  1 end-vertices of the trails t j, 2 ~< j ~< k. 
Second, S'6 covers the rest of the vertices using the same number of paths 
as in S c. Since Sc does not employ (Vl, V2) , it is also a cover of G'. II 

k e m m a  4. Let G = (VG, EG) be a graph. Let C = G be an odd end- 
cycle of order 3, where vl, v2 ..... vk are the vertices on C ~ starting from the 
separator. If v~ is a start point of a trail in G, then G' - -  (VG, E~) where 
E~ = E c - {(Vl, v2) } satisfies ~(G') = ~(G). 

Proof. The proof is similar to that of Lemma 3. Clearly g(G) ~< g(G'). 
To prove the reverse inequality, we show that every optimal cover of G 
defines an equal-size cover of G'. Let SG be an optimal cover of G. If 
@1, v2) is not employed by Sc then we are done. Suppose then that @1, v2) 
is employed by a path p = (..., vl, v2,...) ~ SG. Let tj be the trail starting at 
vj, 1 <~j<~k. I f p  covers vertices that are not in C or t~, let p '  be the prefix 
of p covering those vertices. An equal-size cover of G, denoted by SG, is 
defined by modifying S~ to cover C, the vertices in tl and the vertices in p'  
as follows. The vertices in C are covered using the paths p~,..., P~+~)/2, 
where pi = t2~-~ ]] t2i+~ for 1 ~< i ~< (k + 1 ) / 2 -  1, and P~k+ 1)/2 covers tl. If p'  
is not empty, then P~k+l)/2 extends to cover the vertices in p'. The 
optimality of $6 follows from the following two facts. First, SG covers C, 
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the vertices in t I and the vertices in p'  using ( k +  1)/2 paths, which is 
minimum since at least (k + 1)/2 paths must be used to cover the k end- 
vertices of the trails t i, 1 <<.j<~k. Second, S'~ covers the rest of the vertices 
using the same number of paths as in SG. Since SG does not employ 
(Vl, v2), it is also a cover of G'. | 

Recall that no vertex of a 1-cactus belongs to more than one cycle. 
Thus, a 1-cactus containing an end-cycle must contain at least one end- 
cycle where one edge incident to the separator is leading to all other cycles 
(if such exist). In the following lemma we consider such end-cycles where 
the degree of the separator is three. 

Lemrna 5. Let G = (VG, Ec)  be a graph. Let C cz G be an odd end- 
cycle of order 3, where vl, v2,..., vk are the vertices on C ~ starting from the 
separator. If the degree of Vl is three and the edge separating C from G is 
e = (w, Vl) , then G ' =  (VG, E~) where E~ = E c -- {e} satisfies 7z(G') = ~(G). 

ProoL Clearly 7r(G)<<.~(G'). To prove the reverse inequality, we 
show that every optimal cover of G defines an equal-size cover of G'. Let 
SG be an optimal cover of G. If e is not employed by Sc then we are done. 
Suppose then that e is employed by a path p = (..., w, vl ,...) e SG, where p' is 
the prefix of p terminating in w. An equal-size cover of G is defined by 
modifying SG to cover C and the vertices in p'  as follows. Let tj be the trail 
starting at vj, 2<~j<<.k. The vertices in C are covered using the paths 
Pl,..., P(~-1)/2, where p l = t 2  -1 II(v~)ll tk and, if k > 3 ,  pi=t2 i_ l  -~ II t2i for 
2 ~< i ~< ( k -  1 !/2. Also, the path p e SG is replaced by p'. The optimality of 
$6 follows from the following two facts. First, ,~6 covers C and the vertices 
in p'  using (k + 1 )/2 paths, which is minimum since at least (k + 1)/2 paths 
must be used to cover the vertices of p'  and the k -  1 end-vertices of the 
trails t j, 2 ~< j ~< k. Second, Sc covers the rest of the vertices using the same 
number of paths as in SG. Since $6 does not employ (v~, v2), it is also a 
cover of G'. | 

A basic, simple version of our covering algorithm is given next. A 
faster version is outlined in a later paragraph. Informally, the basic 
algorithm repeatedly applies Lemmas 1-5 to the input 1-cactus, G, trans- 
ferring the isolated paths thus created to a set SG. Eventually, $6 con- 
stitutes an optimal cover of G. At any given time during execution of the 
algorithm, the graph induced by the yet-uncovered vertices of G is denoted 
by G'. The graph G' is updated whenever any of Lemmas 1-5 is applied to 
it, or when a nonempty set of isolated paths is transferred to SG. The latter 
task is performed by a procedure named Transfer-Paths. 

Def in i t ions .  Let G = ( V c ,  EG) be a graph. By applying any of 
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Lemmas 1-5 to a vertex or an end-cycle in G we mean the deletion of the 
edge(s) considered in that lemma. 

A vertex vl e VG is a fork if the degree of vl is three or more, at least 
one trail (vl, v2,..., vk) starts at v~, and Vl is adjacent to a vertex w ~ v2 of 
degree one or two. 

Basic Optimal Covering Algorithm for 1-Cacti. 

Input: A 1-cactus G = (V c, EG). 
Output: A set of paths So, forming an optimal cover of G. 
Method: 

1. Initialize Sc ~ ~ ,  G' ~ G. 

2. Transfer-Paths. 

3. While G' contains forks, do 
Choose a fork v. 
Apply Lemma 1 to v. 
Transfer-Paths. 

od 

4. If G' contains a subgraph C which is either an isolated cycle or an 
end-cycle of order 2, do 

Apply Lemma 2 to C. 
Transfer-Paths. 
Go to step 3. 

od 

5. If G' contains an even end-cycle of order 3, C, do 
Apply Lemma 3 to C. 
Go to step 3. 

od 

6. If G' contains an odd end-cycle of order 3, C, where the separator is 
the start-point of a trail, do 

Apply Lemma 4 to C. 
Go to step 3. 

od 

7. If G' contains an odd end-cycle of order 3, C, where the degree of the 
separator is three, do 

Apply Lemma 5 to C. 
Transfer-Paths. 
Go to step 3. 

od 

8. Stop. 

The following argument establishes the correctness of the algorithm. 
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The reader can verify that, given a 1-cactus G which is not a set of isolated 
paths, at least one of the conditions tested in Steps 3-7 is satisfied. 
Whenever one of these conditions is satisfied, some edges are deleted from 
G. Since the isolated paths are removed from G (being transferred to Sa), 
eventually Va is empty, and the algorithm terminates. Moreover, upon ter- 
mination, SG is a cover of the input 1-cactus. Since the algorithm deletes 
edges from G only by applying Lemmas 1-5, upon termination PSal = rr(G). 

The basic algorithm can be implemented in O(I Val 2) time. A DFS can 
be applied at each step to each connected component, in order to find a 
fork or to detect an end-cycle if no fork exists. Determining the type of an 
end-cycle C can be done by re-traversing each vertex on C in an order 
reversed to that of the DFS. Transferring the isolated paths to Sc can also 
be done using DFS. The time complexity of DFS is O ( IEd )  and each 
application of the DFS results in a deletion of at least one edge, so the 
overall runtime of the algorithm is O(IEcl 2) time. Since G is a planar graph 
(being a 1-cactus), EG= O(I Val). Thus, the time complexity of the basic 
algorithm is O(I Val 2). 

Having described the basic algorithm, we next outline a linear time 
algorithm for optimal covering of 1-cacti. Each connected component in 
the input 1-cactus, G, is scanned using DFS. Immediately before 
backtracking from a vertex v the following rules are used: 

1. If v is a fork, Lemma 1 is applied. The disconnected paths are trans- 
ferred to Sa. 

2. Suppose that a back-edge of the DFS enters v, i.e. v is on a cycle, R, 
in the/input graph. By now, if no edge in R has yet been deleted, R 
underlies a crown. The DFS is temporarily suspended, and the 
remaining edges of R are re-traversed to determine if it is still a cycle. 
If some edge on R has been previously deleted, the vertices in R (and 
the trails starting on R, if any exist), are covered by repeatedly 
applying Lemma 1 and transferring isolated paths to $6 (in certain 
cases, there may not be a need to apply Lemma 1 at all). Otherwise, 
that is, if R now underlies a crown, H, an appropriate edge-deletion 
is performed according to the type of H. The vertices on H are then 
covered by repeatedly applying Lemma 1 to the remains of H and 
transferring isolated paths to Sc (in certain cases, there may not be a 
need to apply Lemma 1 at all). When this is done, the DFS is 
continued from v. 

Figure 4 illustrates an execution of the latter algorithm. The numbers 
indicate the order in which the DFS scans the vertices. Thick edges belong 
to the DFS tree. At point I, when backtracking from vertex 5, Lemma 1 is 
applied to vertex 5 and the path (6, 5, 7, 8) is being transferred to the cover 
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I 

Fig. 4. An execution of the algorithm. 

$6. Lemma 2 is applied at point II to delete the edge (3, 9). At point III 
(backtracking from 16) Lemma4 is applied to delete the edge (16, 18). 
Then Lemma 1 is applied to vertex 20 and we add the path (19, 18, 20, 21) 
to SG. When the DFS is ended (point IV, back at vertex 1), Lemma 3 is 
applied to delete the edge (1, 13). Then Lemma 1 is applied to vertex 10 
and the paths (12, 11, 10, 13, 14, 15) and (17, 16, 1, 2, 3, 4, 9) are being 
transferred to SG. 

The optimality of the cover obtained using this algorithm follows from 
Lemmas 1-5. The time complexity of this algorithm is inherited from that 
of the DFS, which is O(]EG])= O(]V6] ). Thus, we have established the 
following: 

T h e o r e m  2. Given a 1-cactus G = (Vc, EG), an optimal cover of G 
can be found in O(] VG]) time. 

Corol lary  1. Given a 1-cactus G = ( V c ,  EG) and a line 
H =  (VH, E , )  where IV6] ~< I V ,  I, an optimal (G, H)-augmentation can be 
found in O(l V~i) time. 

Proof. Immediate, by Theorems 1 and 2. | 

5. S U M M A R Y  

We have shown that the augmenting number of a line-like NC with 
respect to a given program graph G is uniquely determined by the size of 
an optimal path cover of G. This gives rise to a "cover and augment" 
scheme for implementing parallel programs on computer networks. 



14 Pinter and Wolfstahl  

We have also presented an algorithm for finding an optimal cover of 
1-cacti. Being sparse, 1-cacti program graphs are natural candidates for 
implementation on line-like NCs, and this algorithm may come useful 
when augmenting a line to accommodate such programs. 
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