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Given a program written in a simple imperative language (assignment 
statements, ./or loops, affine indices and loop limits), this paper presents an algo- 
rithm for analyzing the patterns along which values flow as the execution 
proceeds. For each array or scalar reference, the result is the name and iteration 
vector of the source statement as a function of the iteration vector of the 
referencing statement. The paper discusses several applications of the method: 
conversion of a program to a set of recurrence equations, array and scalar 
expansion, program verification and parallel program construction. 
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1. I N T R O D U C T I O N  

It is a well known fact that scientific programs spend most of their running 
time in executing loops operating on arrays. Hence if a restructuring or 
optimizing compiler is to do a good job, it must be able to do a thorough 
analysis of the addressing patterns in such loops. If taken in full generality, 
the analysis problem is intractable. In this paper, we consider a class of 
programs for which this analysis is possible: programs with so-called static 
control and affine indices. There are reasons to believe that a large propor- 
tion of all numerical programs belongs to this class, and that many more 
may be converted to it by appropriate preprocessing. The analysis of 
addressing patterns in this class may be reduced to the solution of 
parametric systems of linear inequalities in integers, for which the author 
has devised an efficient algorithm/1~ 
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The central problem to be solved here is the following: given an array 
cell, which of several statements is the source of the value contained therein 
at a given instant in the execution of a program. Most of the time, the 
statement will be embedded in a loop nest. Hence, we will require not only 
the name of the source statement, but also the values of the loop counters 
at the time the value of interest was generated. This information may be 
packaged as a source j~mction, as the source will depend on the iteration 
vector of the destination. We will give here a solution for programs with 
f o ~  loops as the only control statement. As a particular case, our method 
gives a general solution to the problem of the source of scalars, which may 
be seen as degenerate arrays with no indices. A knowledge of the source 
function allows one to solve many problems which include automatic 
translation to single assignment form, array and scalar expansion, dead 
code elimination, and various questions connected to the construction of 
programs for vector and parallel processors. 

1.1, Out l ine  

Section 2 describes the simple programming language we will use for 
giving examples and the necessary restrictions on its indexing functions and 
loop limits. We will also introduce the sequencing predicate as a compact 
notation for deciding which of two statement instances is executed first. 
Section 3 is the central part of the paper; here we give a detailed account 
of the dataflow computation. Section 4 outlines in Varying detail several 
applications of the technique. Section 5 lists some previous results which 
may be seen as particular cases of the methods we have introduced in 
Section 3. 

In the conclusion, we give some empirical evidence on the complexity 
of the algorithm and point to several possible extensions. The parametric 
integer algorithm, which is a basic component of the present method, is 
summarized in the Appendix. For a more detailed presentation and proofs 
the reader is referred to the previously quoted paper. ~ 

1.2. Notat ions 

Bold letters will denote vectors or vector valued functions; ]a] is the 
dimension of vector a. a [ i . . j ]  is the subvector of a built from components 
i to j. a[ i ]  is a shorthand for a [i.. i]. Familiar operators and predicates like 
+ and ~> will be tacitly extended to vectors. The sign ~ will denote lexical 
ordering of vectors. Large letters witl usually denote sets; N will be the set 
of nonnegative integers. If A is a matrix, A ~ will be its generic element, A ~. 
its generic row and A.j its generic column. 
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2. THE PROGRAM MODEL 

In this section, we will first describe the syntax of the source language. 
We will then discuss the restrictions we superimpose on this syntax. In the 
following development, we will distinguish between statements, which are 
syntactic parts of the program text, and operations, which are actions 
inducing modifications of the computer store. Most often, a statement will 
be executed several times, giving rise to many distinct operations. We will 
introduce the sequencing predicate as a means of specifying the execution 
order of operations. 

2.1. The Source Language 

The source language may be seen either as a static PASCAL or as a 
rationalized FORTRAN. In fact, our work is not about any particular 
language, but about the static subset of most programming languages, i.e., 
about what happens when all memory allocation has been taken care of. 
Data types will be restricted to integers, reals, and n-dimensional arrays of 
integers and reals. The only simple statements we will consider will be 
scalar and array assignments. The only control constructs will be the 
sequence and the f o r  loop. We will extend the language in order to allow 
conditional expressions (~ la Algol 60), which are necessary for the expres- 
sion of index calculations (see e.g, Section 3,3), The syntax will be: 

<conditional expression> := if <boolean expression> 

then <expression> 

else <expression> 

Note the absence of gore ' s ,  of conditional statements, of wh i l e loops 
and of procedures. 

2.2. Restrictions 

To be able to analyze array accesses inside loops, one must have some 
knowledge of the iteration count of these loops. The simplest case is when 
limits are known numerical values. This, however, is much too restrictive, 
since many programs use variable limits (matrix and vector dimensions, 
discretization size, etc.) and even non-rectangular loop nests: consider for 
instance the prevalence in numerical analysis of triangularization algo- 
rithms (like those of Gauss or Cholesky). To extend the class of tractable 
programs, we will introduce the notion of static control. 
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To recognize a static control program, one must first identify its struc- 
ture parameters: a set of integer variables which are defined only once in 
the program, and whose value depends only on the outside world (through 
an input statement) or on other already defined structure parameters. 
A program has static control if all its loops are f o r  loops whose limits 
depend only on structure parameters, numerical constants and outer loops 
iteration counters. The analysis technique which is presented here is 
applicable only if all loops have increment I, and if all limits are affinc 
functions. For similar reasons, all indices will be restricted to affine 
functions of the loop counters and the structure parameters. 

We will use the fact that in a correct program, array indices are always 
within the array bounds. Hence, two array references address the same 
memory location if and only if they are references to the same array and 
their indices are equal. This restriction is not too severe if we note, first, 
that it is good programming practice to debug a program before submit- 
ting it to an optimizing or restructuring compiler, and also that the 
methods of this paper may be used as a highly efficient array access 
checker.t2 

This hypothesis will allow us to ignore array declarations. As a conse- 
quence, our technique will be equally applicable to languages which enforce 
constant array bounds- -For t ran ,  Pascal, C,~..--and to those which do not. 

2.3. The Sequencing Predicate 

Values in array elements are produced by execution of statements. 
Hence we need a notation to pin-point a specific execution of a statement, 
or operation. Our first need is an unambiguous designation of a statement 
in a program. Neither the text of the statement nor its position in the 
program syntax tree will serve, since there may be several statements with 
the same text, and since the program may be modified by a restructuring 
compiler. Hence we will use a set of arbitrary statement names, which will 
be denoted by letters such as r, s, etc. In a practical application, a natural 
choice for these names may be pointers to records containing the statement 
descriptions. In the balance of this paper, we will mostly be interested i~ 
simple statements. However, some discussions will be clearer if all 
statements, compound or simple, are named. 

In our source language, the only repetitive construct is the f o r  loop. 
Hence, an operation is uniquely defined by the name of the statement and 
the values of the surrounding loop counters (the iteration vectort3~). A pair 
such as (r, a) whose components are a statement name and an integer 
vector will be called an (operation) coordinate. To denote a statement 
instance, a coordinate must satisfy two conditions: 
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�9 the dimension of a must be equal to the number of loops sur- 
rounding r; 

�9 all components of a must be within the corresponding loop limits. 

With each loop t we may associate a pair of inequalities: 

lb, <~ a <~ uh,, 

where a is the loop counter of r If a statement r is embedded in a loop nest 
t~, t~ ..... tN, in thai order, then the iteration vector a of r must satisfy: 

Vp:(1 <~p<~N) lh, ,<~a[p]~ub,, , .  (1) 

(1) may be summarized in matrix form as: 

e r (a )~0 .  (2) 

where er is an affine vector-valued function. Formula (2) will be called the 
existence predicate of r. Notice that we do not suppose that lb, <~ ub,. In 
accordance with the Pascal convention (and with the "modern" interpreta- 
tion of Fortran 130 loops), a loop whose limits violate this inequality will 
not be executed at all. 

Consider for example the program sketch in Fig. 1. Figure 2 describes 
its iteration domain. The existence predicate of statement s2 may be writlcn 
a s ;  

l 
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- 1  1 

0 - I  

0 

( 
J 

f 
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- 1  
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One should not infer from Fig. 2 that all statements have iteration 
domains which lies in the same euclidean space. As a counter-example, 

for i:=l to n 

begin for j := 1 to i-I do SI; 

for j := i+l to n do S2; 

e n d  ; 

Fig. 1. A sample program, 
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�9 �9 Q �9 �9 �9 

�9 �9 ~ �9 �9 �9 

$ 2  

t �9 * Q t ;  �9 

i 

Fig. 2. The iteratk)n domain of program 1. 

consider the program of Fig. 3. As shown in Fig, 4, sr has a one-dimen- 
sional iteration domain, while s2 has a two-dimensional one. 

Finally, one should not confuse the iteration domain, which is 
spanned by loop counters, and the data space, which is spanned by array 
indices. In many cases, those two spaces are identical (or rather, 
isomorphic) as in: 

for i := I to n do 

for j := I to n do 

x[i,j] := 0.: 

but this is not always true. tn the case of the program in Fig. 5, the itera- 
tion domain is two.dimensionat while the data space is or*e-dimensional. 
Conversely, in: 

for i := I I;o n do %[i,i] :-- I.; 

the data space is a one-dimensional subspace embedded in a two-dimen- 
sional space. 

The preceding discussion leads to a spatial description of loops. Such 
a point of view goes back to the work of Kuck; see a|so Padua and WoLfe's 
review articleJ 4~ Usually, loops are explained from a temporal point of 
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for • := I to n do 

begin 

x[i] :=0. ; {sl} 

for j := I to i do 

x[i] :: x[i] + u[i,j] * y[j] {s2} 

end ; 

Fig. 3. An imperfectly nested program. 

view: iteration i is executed just before iteration i +  I. We must seek a way 
to reconcile those two aspects. This may be done by defining a sequencing 
predicate on the iteration domains. The sequencing predicate is a strict 
total order on the set of operation coordinates; it is written: 

(r, a) -< (s, b). 

and expresses the fact that (r, a) is executed before (s, b). The sequencing 
predicate depends only on the source program text. Our present aim is to 
give a simple expression for it. 

I 
/ . . . . .  

8 1  i 

Fig. 4. The iteration domain of program 3. 
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for k := 0 to 2*n do 

c[k] : =  0.;  {st} 

f o r  i := 0 t o  n d o  

:for j := 0 to n do 

e[ i+j ]  := c[ i+j]  § a [ i ] *b [ j ] ;  {S2} 

Fig. 5. The product of Iwo polynomials. 

Suppose first that r and s are statements in the outermost statement 
list of the program, a and b necessarily are the zero dimensional vector [].  
(r, [])<~(s,  [ ] )  iff r precedes s in the program text. Let T~, be a Boolean 
which is true iff r textually precedes s; in this case: 

(r, []) '<6% [ ] ) =  T~.,.. 

Note that T ,  is false and that if r ~ s then T,~ = -1 T~,. 
Next, suppose that r and s are the same statement. In this case, 

according to the familiar semantics of f o r  loops, (r, a)-<(r, b) iff a is 
lexicographically smaller than b. 

In the general case, there is an innermost loop t whose body contains 
both r and s. Let N~ be the depth of this loop. In the body of t, there are 
two statements r' and s' such that r is r' or is textually inside r', and s is 
s' or is inside s'. Obviously: 

(r, a ) <  (s, h ) ~  (r', a[1 ..Nr,.]).<(s', b[l  ..Nrs] ) 

Now, if a[1..Nr.,.] :~b[l . .N , ] ,  (r', a) and (s', b) belong to distinct itera- 
tions of loop r In this case, their order is given by a lexical comparison of 
a[ l . .N,~]  and b[1..N,s]. Otherwise, if a[1..N,.,.] = h [ I  ..Nr,], then (r', a) 
and (s', b) belong to the same iteration of t, and their order is the textual 
order T~.~, = T~.,.. Putting all this together: 

(r, a)-< (s, b ) = - a [ l  . .N~,] <~b[l .. N,,,.] 

v (a[ l  ..Nr.,.] = b[1..N~.~] A T,,). (3) 

Knowledge of Nrs (a matrix of Integers) and T,.,. (a matrix of 
Booleans) is all that is needed to sequence all operations in a program. 

When lexicographic order is replaced by its definition, the sequencing 
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predicate becomes a disjunction of N,.~+ 1 affine predicates which will be 
written as <p: 

( r , a ) - < ~ , ( s , b ) = ( a [ l . . p ]  = b [ 1 . . p ]  A a [ p +  1] < b [ p +  1]), O < ~ p < N ~ .  

The version for p = N~.~ is: 

(r, a)-<p (s, b ) -=a [ l  . .Nr,] = b [ 1  .. N~.,] ^ T~,. (5) 

One may notice that operations which stand in the relation -<p to 
each other have exactly p identical coordinates in their iteration vectors. 
In Allen and Kennedy's paper, (5) if two such operations give rise to a 
dependence, one says that this dependence is at depth p +  l, while if 
p = N,,, the depth is said to be infinite. With a slight displacement of the 
origin, we will say that -<p is the sequencing predicate at depth p, depths 
ranging from 0 to Nr~. 

Consider again the program of Fig. 3. The sequencing between sj and 
s2 is given by N~,. z = 1 and T~,~ 2 = true. Hence: 

(st, i) '< (s2, i ' ,  j ' )  = - i < i '  v i =  i'. (6} 

Similarly, the sequencing between two instances of s2 is given by: 

(s2, i , j ) - < ( s ~ ,  i ' , j ' ) = - i < i  ' v ( i = i '  ^ j < j ' ) ,  (7) 

since T,.2~ is false. 
These results may be summarized by Fig. 6. In this diagram, we have 

, / e .  

i 

i �9 .t I 

Fig. 6. The sequencing predicate of loop 3. 
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only represented essential edges of the -< relation. All other edges may be 
recovered by using the transitivity of -<. 

3. DATA FLOW ANALYSIS 

3.1. Some Notation 

Suppose that we are given a program conforming to the restrictions of 
Section 2.2. Let t be a statement in which an array M is used. Let b be the 
iteration vector of t; the indices of M are affine functions of b. In vector 
form, the reference to M may be written M[g(b)].  

Consider for instance the reference to v [ i ,  k] in: 

for i ;= i to n do 

for j := l.to i-i do 

for k := i+l to n do 

vii,k] := v[j,k]-v[i,k]*v[j,i]/v[i,i]; 

The surrounding loop counters are i, j and k. The indexing function, g, is 
given by: 

g ( i , j , k )  = 
I 0 0 

0 0 I 

The indexing function is exactly what is needed to connect the iteration 
domain to the data space. 

We are interested in finding the source of the value of M[g(b)].  Let 
sl, s2,...,s~ be the statements which produce a value for M, and let 
al ,  a2 ..... a ,  be their iteration vectors, s; is of the form: 

M[f,(a,.)] : . . . .  . 

The source is a coordinate, or rather a function of b which gives a 
coordinate when evaluated, which will be called the source function of 
M[g(b)] .  
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3.2. F o r m a l  S o l u t i o n  

If the source of M[g(b ) ]  is an instance of ,% there is a unique ai such 
that this instance is (si, ai). This ai is a function of b, which will be called 
K~,,. The real source is the latest operation (si, K,.,,(b)): 

V/4: i, (.sl/, K,:j,(b))-< (s,, K.,.,(b)) 

The correct value of i may depend on b. In particular, K,,,(b) may be 
undefined for some values of b. We will postulate that an undefined opera- 
tion (written as 3_) comes earlier than any other operation: 

Vt, b: • -< (t, b). 

The conditions on K~,,(b) are: 

�9 Firstly, (s~, K,,,(b)) must produce a value for M[g(b) ] :  

f,(K.,,,(b)) = g(b) 

�9 Secondly, (.% K~,,(b)) must precede (t, b): 

(s,, K,,,(b)) < (t, b); 

�9 Thirdly, K,,,(b) must be a legal coordinate: 

e,.,(K,,,(b)) >~ 0. 

�9 Lastly, (.% K,.,,(b)) must be the latest coordinate which satisfies all 
conditions: 

f~ (u )=g(b)  ^ (sj, u ) ~  (t, b) ^ e , , , ( u ) ~ > 0 ~ u  << K.~,,(b); 

in summary,  letting max~ denote the lexicographic maximum of a set 
of integer vectors: 

K~,,(b) = max ~ Q.,:(b) (8) 

where Q,.,,(b) is the set: 

Q,,,(b) = {u I fi(u)= g(b), (s,, u)<: (t, b), e,.,(u)>10} (9) 

with the convention that the lexical maximum of the empty set is L. 
Now, since -< is a disjunction of N,,, + I linear predicates, Q~,, is the 

union of N,,, + 1 disjoint polyhedra, indexed by p, 0 ~< p ~ N,,,: 

P b Q.,.,,( )={ulfi(u)=g(b),(si, u)~p(t,b),e,.(u)>-o}, (10) 

K~,(b) = max ~ Q.P,(b). (I I ) 

82~/20/I-3 
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Finally, if max.< is the maximum according to the sequencing 
predicate, then the source is given by: 

" (12) S=max< { ( s i ,  K.,,,(b))I i= 1 ..... n, p=0,..., N,,,}. 

To avoid multiple indices, we will renumber all possible candidates at 
all depths with a new index.j. L will stand for the cardinality of the set of 
possible sources. Equation (12) will be rewritten as: 

S =  max.<{(%, K](b))I.j= 1, L}. (13) 

Let us go back to the example in Fig. 5. Consider the problem of 
finding the source of c [ i + j  ] in statement s 2. There are two candidates, s~ 
and s2 itself, and as a consequence, two functions K.,.,,, and/f.~2:,.,' 

Consider for instance the set Q.,.2.,.2(i,.j). Its elements are two-dimen- 
sional integer vectors (i', j ' )  which satisfy the following constraints: 

�9 the index equation, i '  + j ' -  i + j ;  

�9 the sequencing constraint i' < i v (i' = i ^ .j' < j). One sees that 
the second term in the disjunction is incompatible with the index 
equation. 

�9 the limit constraints 0 ~< i '  ~< n, 0 ~ . j '  ~< n. 

Examination of Fig. 7 shows that Q,.2.,.2(i, j )  is empty if i = 0 or.j = n. If not 
empty, its lexical maximum is the vector ( i -  l , . j+  1). This implies that to 
represent K,2.,. 2, we will need a conditional: 

K.,.2~2(i, ./) = i f  (i>: 1 ^ . j<n)  then ( i+  I , . j -  I ) else _1.. (14) 

The case of the other candidate is simpler; we always have: 

K.,, ,2(i, j )  = (i + j).  

Now, it should be clear from an examination of the program in Fig. 5 
(or from the fact that N.,.,.,. 2 = 0 and that T,,.~ 2 is true), that all operations 
(s,, k') precede all operations (s 2, i', j ' ) .  It follows that the source is given 
by K,.~.,~(i, j )  provided this quantity is defined. Hence, the final result is: 

S ( i , j ) = i f ( i > . l  ^ j < n ) t h e n ( s 2 ,  i+ l , j - l ) e l s e ( s j , i + j ) .  (15) 

To obtain this result, we have relied a lot on Fig. 7 and geometrical 
intuition. Now this works fine on one- and two-dimensional problems, but 
is quite difficult and error prone in three dimensions, and is impossible 
beyond. Furthermore, a computer has no geometrical intuition at all. Our 
aim now will be to solve this problem in a general, systematic fashion and 
to implement the corresponding algorithm. 
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Q .... (2,4) 

Q,1,2(2,1) 

Fig. 7. 

�9 

O,~,~(2, I) 

\ 4 

Computing the source function for the program of Fig. 5. 

3.3. Evaluation Techniques 

3.3. 1. Direct Dependences 

In this section, we will focus first on one particular candidate 
(s i, g j (b))  at a given depth p. When the original program conforms to the 
restrictions of Section 2.2, all terms in formula (10) are linear equalities or 
inequalities. In fact since indexing functions are atone, the first term is a 
linear system whose dimension is the rank of array M. The last term is 
simply a set of linear inequalities. The second term is given by Eqs. (4) or 
(5). If the depth p is less than N,,,, then it is the conjunction o f p  equalities 
and one inequality. For p = N,,,, it is made of equalities only and does not 
exist if Ts: is false. 

As a consequence, Qj(b) is the set of integer vectors which lie inside 
a polyhedron. Finding its lexical maximum is a Parametric Integer 
Program (a PIP). (1) A short description of an algorithm for solving PIP 
problems is given in the Appendix. The parameters are the components of 
b and the structure parameters. Note that the components of b are not 
arbitrary; they must satisfy various constraints, among which is: 

e,(b) i> O, 
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to which may be added any available information on the structurc 
parameters. These inequalities form the c o n t e x t  of the parametric integer 
problem. 

To express the solution, we need the concept of a quasi-affine form. 
Such a form is constructed from the parameters and integer constants by 
the operations of addition, multiplication by an integer, and division by an 
integer. The solution is then expressed as a multistage conditional expres- 
sion. The predicates are of the form f(b)>~0, where f is quasi-affine. The 
leaves are vector of quasi-affine forms or the "undefined" sign, 2. Such an 
expression will be called a quasi-affine selection tree (quast for brevity). 

This definition may be summarized by the following grammar: 

form ::= integer 
I parameter 
I integer �9 form 
t form + integer 
I form + form 

vector ::= (form[, form] ...) 
quast ::= • 

I vector 
I if form ~> 0 then quast else quast 

The result of this analysis is the direct dependence between the 
definition by .% and the use in t. Direct dependences were first defined by 
Brandes. ~6~ The presence of a _1_ sign in a direct dependence indicates that, 
for some values of the loop counters, the reference in t is not defined by 
statement Si. 

Formula (14) is a quast in this sense (notice that integer division is 
not used here). Integer division appears when analyzing programs which 
access arrays with strides greater than one, as in: 

s := 0.; 

for i := i to n do 

x[2* i -1 ]  := 1. ;  {S1} 

for k := I to 2*n-1 do 

s := s * x[k]; {S2} 

The direct dependence from z [2"~ -1  ] in s', to x [k ] in ,v2 is given by the 
following quast: 

q = i f 2 ( ( k + l ) + 2 ) - ( k + l ) > ~ 0 t h e n ( k + ] l  - 2 e l s e S .  
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This formula expresses the fact that x [ k ]  is not defined when k is 
even. 

3.3.2. Combining the Direct Dependences 

Consider now the problem of evaluating Eq. (13). This will be done in 
a sequential manner, by introducing: 

S,,= max_< {(Sj, K / (b ) ) l j=  1 ..... n}, 

S0=a-. 

Obviously, S = S L  and we have the recurrence: 

S .=max .<{S .  i, (s,,, K.(b))} (16) 

We are thus led to the evaluation of: 

S =  max.< { T, (s,,, K,,(b)) }, (17) 

where T is an arbitrary quast. There are three cases, according to the form 
of T: 

�9 T=_L; in this case: 

S =  (s,,, tt',,(h)). (18) 

�9 T = i f  n(b) then T~ else T2; in this case: 

S = i f n ( b )  (19) 

then max<{ Tt, (s., K.(b)) } 

else max.<{ T2, (s., K.(b)) }. 

�9 T = ( r ,  I(b)) where r is a statement name and I is a quasi-affine 
form; then: 

S =  if (r,/(b))-< (s., K,,(b)) then (s., K,,(b)) else (r, I(b)). (20) 

In this formula, the sequencing predicate is to be expanded with the help 
of Eq. (3). 

These rules (and their symmetric counterparts, as the max operator is 
commutative), are the basic tools for computing source functions. The 
result may be simplified by removing dead leaves (i.e. leaves which are 
governed by incompatible predicates) and by applying the rule: 

if p then x else x = x. (21) 
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The computation of Eq. (15) was an example of the use of these rules, with: 

T = i f  (i~> ! ^ j<n)then (s2, i +  l , j -  1) else _L, 

and: 

(s,, K,,(b))= (s,,.i+j). 

One first applies Eq~ (19) to  get: 

S = i f ( i ~  ! ^ j<n) 

then; max .< { (s2, i + 1, j -  1 ), (s:l, i +.j) } 

else max.~ { • (s j, i + j)  }. 

The first branch of the conditional is computed with the help of 
Eq, (20) and the fact that (st, i + j ) - <  (s2, i + I, j -  1). The second branch 
is an instance of Eq. (1.8). The result Eq. (15) follows. A more comprehen, 
sive example wiB be presented later. 

3.3:3. A.voidin9 Unnecessary Work 

While this algorithm always gives a complete anff correct solution, in 
many cases, it is possible to reduce the amount  of work by predicting the 
value of the sequencing predicate. 

Suppose we have: found two well defined direct dependences 
(s,,, Kin(b)) ad (s,, g,(b)),  respectively a t  depth Pm and: p,, for the same 
referefice in operation (t, b). Suppose that the depths are different, and for 
instance that p,, < p, .  From the definitions of Eqs. (4) and: (10) i t  follows 
that 

K. , (b ) [ l  .. p, . ]  =-b[  1.. p . , ] .  (22) 

K.,(b)[p,.  + 1 ] < b[pm + 1 ]; (23) 

x,(b)[l . ,  p,]:= bUl..p,,], 

and hence: 

X,,(b)E1.. p , , ]= K,(b)[ 1.. p,,] = b[~., p~]. (24) 

Now, all structured languages have the following property: given two 
loops, either they have disjoint bodies, or one of them includes the: other, 
In our case, there are loops at depthp, ,  which include s,,. and; t, and  s, and 
t. The bodies of these loops, cannot be disjoint; and; since they have the 
same depth, they are identical. This is tantamount to saying that: 

N~..~,, ~ p,, { 25) 
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Consider now the sequencing predicate: 

(sin, K.,tb))-< is., K,,(b)) 

= Km(b)[ 1 .. N .......... ] ,~ K,,(b)[ 1 .. N,,,,~,,] 

v (K,,,(b)[1..N .......... ] = K,,(b)[1 ..N.~,,,.~,,] ^ T~,,,.,~,)- 

When evaluating this formula, there are two cases. Firstly, Eq. (25) 
may be strict. From Eq. (23) we deduce thpt the first disjunct is true. If 
Eq. (25) in fact is an equality, then the first disjunct is false [remember that 
<~ is the s t r ic t  lexical order] and the value of the sequencing predicate 
simply is T,. ~o. In both cases, we may compute the sequencing predicate 
without any reference to the actual values of the direct dependences. This 
result may be used in at least three ways: 

�9 When computing the direct dependence, use of Eq. (24) allows one 
to reduce the number of unknowns in the parametric integer 
problem] 

�9 When evaluating Eq.(20), there is no need to expand the 
sequencing predicate unless both dependences are at the same 
depth. 

�9 Most importantly, before embarking on the evaluation of Eq. (16), 
one may check whether (s,, K,(b)) occurs earlier than all leaves of 
S,  _ ~ or not. In the first case, the evaluation of K,,(b) is useless. 
One easily sees that this situation is most likely to occur if the 
candidate list is ordered by decreasing depth. 

3.4. Summary 

Let us summarize the algorithm. For a given reference to an array or 
scalar M in a statement s, construct the candidate list from all pairs (r, p )  
where r is a statement which modifies M and p, 0~<p~<Nr.,., is the 
dependence depth. Set S =  _L. Order the candidate list by decreasing depth. 

For each candidate, test if there is a possibility that it will contribute 
to the final source function. If not, discard the candidate. Otherwise, com- 
pute the direct dependence by applying the PIP algorithm in Eq. (10). Use 
Eqs. (18)-(20) to update the value of the source function and simplify. 

The algorithm may appear to be highly complex; there are, however, 
techniques to reduce the amount of work involved. Most of the time, the 
algorithm will be embedded in a restructuring compiler, ~4~ which will start 

2 Note  tha t  in the favorable  case when there are no u n k n o w n s  left, one still ha~ I~ use the I ' IP  

a lgo r i thm to check tha t  the obvious  so lu t ion  meets the inequal i t ies  cons t ra in t s  of Eq. (lOJ. 
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by computing the dependence graph of the program. In fact, there is a flow 
r b  dependence between statements r and s at depth p if the set Qr.~( ) is not 

empty for some legal value of b. Conversely, if there is no dependence, 
Q['.(b) is empty, 

P K~. , , (b )  = • 

and the value of S, as computed by Eq. (16), does not change. Hence the 
only candidates to be considered are those which correspond to flow 
dependence edges. There are fast approximate methods for the calculation 
of dependences, ~7~ and more precise methods ~8~ which are still faster then 
a PIP computation, 

Scalar references are analysed in the same fashion as array references, 
the only difference being that the index equations fi(u)= g(b) in Eq. (9) 
now disappear. At first glance, this may be thought of as an important sim- 
plification. We have found, in fact, that directly expressing the solution 
without the help of the PIP algorithm is highly complicated: for instance, 
one cannot simply say that the latest execution of a loop is the one that 
correspond to the loop upper limit, since the loop may not be executed at 
all. As a consequence, we use the general algorithm whatever the rank of 
the reference. 

4. APPLICATIONS 

4.1. Conversion to Single Assignment Form 

Single assignment programs have been proposed by several 
authors~9,10~ as a means of specifying algorithms for highly parallel systems. 
Another point ~11, iz~ is that since a memory cell in such a program is defined 
only once, its contents may be considered as a "variable" in the mathemati- 
cal sense and subjected to the familiar algebraic and analytic manipula- 
tions. 

The following algorithm may be used to convert a static control 
program to single assignment form: 

1. Compute the source function for all rhs references; 

2. For each statement s, declare a new array M~ and replace the left 
hand side of s by Ms[a],  where a is the iteration vector of s; 

3. Replace all rhs references by the corresponding source function 
with the following modifications: 

--replace a leaf of the form (s,/(b)) by Msl-l(b)], 

---replace a void leaf _L by the original rhs reference. 
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To justify the last prescription, note that a void source indicates that 
the corresponding memory cell has not been defined anywhere in the 
program. As a consequence, its value still is the one it had at the program 
start. 

The result of this transformation may be presented as a set of 
recurrence equations, with all a priori sequencing left out. 

Consider for instance the version in Fig. 8 of the Gauss-Jordan 
elimination algorithm (declarations and input/output statements omitted). 
Let us first detail the computation of the source of a [,j ,  k] in s~..s'~ and 
s 2 both are possible sources. Hence, there will be two direct dependences. 
A standard dependence analysis will show that all dependences are at 
depth 0. As a consequence, there are only two candidates, which are given 
by the PIP algorithm: 

K I = i f i - . / > ~  2 then ( i -  I, j, k)else  _1_, (26) 

K 2 =if.j>~ 1 then ( . j -  !, j, k) else A_. (27) 

The problem is now to evaluate the recurrence of Eq. (16). Obviously'. 

$1 = if i - j > ~  2 then (s~, i -  1, j, k) else _L. 

The first step in computing $2 is to apply rules (18)-(20) to obtain the 
interim result: 

S~= if i - j > 2  

then if j > 2 

then if (sl,i - 1, j ,k)  ~ (s2,j  - 1 , j ,k)  

then ( s u , j -  1,j,k) 

else (s t , i  - 1,j,k) 

else ( s l , i -  1,j,k) 

else if j > I 

then ( s2 , j -  1, j ,k)  

else A_ 

Examination of the original program gives: 

(s l ,  i -  1, j , k ) - <  (sz, j -  1, i, k ) - ~ i -  1 <<,j- I 
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for i i= 1 to n do 

begin 

for j := I to i-i do 

for k ~= i+I to n do 

u[ j ,k ]  -: U[j,k]~-a{i.,k]*~[],i]/u[i,i]:;  

for  j := i§ %6 n do 

for  k := i+1 tO n do 

U [j  ,k'l " U[J ,k]~%l[i',]~]il~U[J ,:i] l u l l ,  i] ; 

Fig. 8. A version ofthe :Gauss-Jordat~ algorithm. 

{S2) 

t h e n  (s2,. j  - t , ] , k )  

e l s e  3_ 

Similar,calculations to r  all other rhs refefehcesgives the :LAU form 
of Fig.  ~9. This :resutt :is quite  i~v61ved, and may b e  Simplified in several 
ways. H0wever,  we do not a d v o c a t e  that~sueh a code:  be u sed  for actual 
computiiig, but~rather as-a starting point(for:further analysis and optimiza- 
tion.~Hence, simplification:per~.se~may n o t b e  wor th the  effort. 

4:2. Array:and :Scatar'.Ex~o~a nsio n 

Parailel or  vector :execution of  a ~ program ~may! be  frustrated:: by  :alloca- 
t ion  of the same-memory,ce i l to  unrelated values. This is called an output 
dependence/4) Transforming t h e  p rogram tO single assignment style 

: removes all such dependences,,,at, the cost ~ of~ a large ~increase in memory 

S~ = i f  i - j > 2  

'then (sl , i- ' l . , j ,!k) 

else i f  j > 1 

which is !false whe~n i - j ~ >  2: this i's a ease of,elimination ~of a dead :leaf, 
Next Comes an application Of ~Eq, (,2~1), and the final Tesult is: 
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t < i < n , l  < j < i - l , i +  l < k < n :  

43 

u l [ i , J , k ]  = i f  ( i - J - 2  >= O) then u l [ i - l , j , k ]  

e l s e  i f  ( j - 2  >= O) 

then u 2 [ j - l , j , k ]  

else u[j  ,k] 

- u 2 [ i - l , i , k ]  / u 2 [ i - l , i , i ]  * 

i f  ( i - j - 2  >= O) then u l [ i - l , j , i ]  

else if (j-2 >= O) 

then U 2 [ j - l , j  , i ]  

else u[j ,i] 

l < i < n , i +  l < j < n , i +  l < k < n :  

U2[i ,J ,10 = ( i f  i ' 2  >" 0 then u 2 [ i - l , j , k ]  e l se  a [ j , k ] )  

- (if i-2 >= 0 then u2[i-l,l,k] else all,k]) 

* (if i-2 >= 0 then u2[i-l,j,i] else a[j,i]) 

/ (if i-2 >= 0 then u2[i-l.i,i] else a[i,i]) 

Fig. 9. The single assignment form of program 8. 

usage. In many cases, such expansion is useless and should not be done. 
For instance, on most vector computers, innermost loops are the only ones 
which are susceptible of vector mode execution: In other cases, the output 
dependence is accompanied by a true dependence, which cannot be 
eliminated by expansion. The problem of deciding which lhs should be 
expanded and/or renamed is highly dependent on the target computer and 
will not be addressed here. We will suppose that we are given a list of 
modified lhs, the new lhs for operation (s, a) being M~[f(a)]. Most often, 
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f will be a selection operator  on the components of a. One then applies the 
algorithm of Section 4.1, with step 3 modified in the following fashion: 

3' Replace all rhs references by the corresponding source function 
with the following modifications: 

- - rep lace  a leaf of the form (s,/(b)) by M,[f(l(b))] if the Ihs of s 
has been modified, and by the original rhs if s is untouched. 

- - rep lace  a void leaf 2_ by the original rhs reference. 

Obviously, a rhs all of whose sources are untouched is not modified by 
this prescription. 

Note, not all renaming and expansion are legitimate. When one needs 
a value, one must take care that it has not been overwritten some time 
before. There is a precise solution to this problem. To check that a value 
produced by (s, K(b)) with Ihs M,.(f(a)) is still available at (t, b), one 
should test that for all statements r with Ihs M~[h(c)] the following 
problem: 

h(e) = f(b), 

(s, K(b))-< (r, c)-< (t, b), 

e~(c) >~ O, 

has no solution in c in the context e,(b)>/0. There are many cases in which 
this calculation is not necessary. Let us note the case in which M.~ is used 
only in s, and the one in which all uses of M~ have as indices a supersct 
of the indices of the original lhs. 

4.3. Program Checking and Optimization 

Here we will suppose that we are given a program complete with 
initializations and input/output statements. These statements are easily 
included in the present framework. For instance, an output statement may 
be modelled as a statement with rhs references but no Ihs. The first step in 
the verification of such a program is to check the sources for the presence 
of the 2- sign, which indicates access to an undefined memory cell. 

When computing a source, one may refine the polyhedron Q(b) by 
adding linear constraints expressing the fact that all indices are within the 
array bounds. The 2- sign will in that case pin-point an out-of-bound 
access. Most often, the 2_ sign will appear inside a conditional whose 
predicate gives a condition on the structure parameters which must bc 
checked for the program to run correctly. Adding a runtime test for this 
condition is a simple matter. 



Dataflow Analysis of Array and Scalar References 45 

Knowledge of the source functions allows very precise detection of 
dead code. Certainly all output statements are useful code and should be 
marked accordingly. If statement t is marked, all statements which occur in 
sources for rhs references in t are useful. When this process (which is 
nothing more than a graph traversai algorithm) terminates, unmarked 
statements are dead code. 

Finally, the single assignment form of a program is an invaluable help 
in checking that the program has the desired behaviour. Consider for 
instance two very similar pieces of code: 

for i: = 1 to n do a[i] := a[i+l] {I} 

for i:= 1 to n do a[i] := a[i-1] {2} 

Their single assignment transcriptions are widely different: 

for i:= 1 to n do A[i] := a[i+l] {1} 

for i: = I to n do 

A[i] := if i-i >= 0 {2} 

then A [i-l] 

else a[i-l] 

where A is a new array. 
In the case of {2}, the assignment: 

A[i3 : =  A[i-l] 

may be considered as a recurrence in the usual mathematical sense and 

solved to yield: 

Al'i] = a Fo ]  

4.4. Parallel Program Construction 

An obvious idea is to summarize the source function by a graph. There 
is an edge from s to t for each occurrence of s in a source of a rhs reference 
in t. This gives the dataflow graph of the original program. It is obtained 
from the usual dependence graph t4~ by removing output dependences, anti- 
dependences and spurious flow dependences. This graph may be submitted 

828/20/I-4 
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to classical parallelization and vectorization algorithms} 1.~ One still has to 
expand some variables to reconstruct a correct program. 

Another approach is to consider the source functions as synchroniza- 
tion constraints (a statement which uses a given value may not start 
executing until the source statement has terminated), and to attempt the 
construction of a parallel program which meets all of them. This approach 
is reminescent of the methodology for the automatic or semi-automatic 
design of systolic arrays, ~4~ and leads to the consideration of timing func- 
tions or schedules. The use of timing functions for the construction of 
parallel program has been advocated in several papers} 15 ~7~ The outcome 
of this research will be reported elsewhere. 

5. RELATED WORK 

This paper is related to work in two different areas: one is standard 
dataflow analysis, ~8~ which is used as a basic technique by many optimizing 
compilers, and the other is the specification and compilation of dataflow 
languages. 

Standard dataflow analysis is both more and less comprehensive than 
the present one. Its range of applicability is wider, since it deals with 
unstructured programs. However, it is a static theory (all executions of a 
statement in a loop are lumped as one), and, as such, applies only to 
scalars (or to arrays considered as a whole). An example is the determina- 
tion of use-def chains. To each use (rhs occurrence) of a variable x is 
associated a list of definitions of x which may be the source of the current 
value of x.  Use-def chains are computed by iteratively solving propagation 
equations. In our framework, use-defchains could be obtained by computing 
the frontier of the source functions and removing all informations about 
iteration vectors. 

In a similar context, a technique for conversion to static single assign- 
ment form has been advocated by Cytron et aU jg~ Here again, the source 
program is not required to be structured, and only scalars or arrays taken 
as a whole are considered. The paper is concerned with the most economi- 
cal insertion of so-called C-functions (i.e., multiplexors} at join points in the 
control graph. When this is done, it is possible to rename alt variaMes and 
to obtain a single assignment program. 

Dataflow architectures are one of several ways of exploiting single 
assignment programs. Each architecture has a machine language, which in 
general is presented as  a dataflow graph. One of the problems in this field 
is how to provide a more user-friendly interface, either in the form of a 
high-level parallel language, or by translating conventional language to 
dataflow. Our work is certainly relevant to this aim. A recent paper, ~2~ 
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gives an algorithm for translating V()~(~RAN to dataflow graphs. Here again 
the problem is with arrays. A dataflow machine has no difficulty in executing 
the flowgraph equivalents of d o a l l  or d o a e r o s s  loops. Detecting such 
loops, however, must use classical techniques like dependence analysis. 

Dependence analysis is mainly used by parallelizing and vectorizing 
compilers. There is a flow or true dependence between two statements if the 
first one is a possible source for a value which is used by the other. 14'7j 
There are other kinds of dependences: anti- and output-dependences, which 
indicate memory sharing, and control dependences, which summarize the 
control flow in the source program. 

One may say that a flow dependence is a very imprecise approxima- 
tion to the source function. Some more precise descriptions are the 
dependence direction vectors, tTJ the dependence vectors,~2~l the dependence 
cone t22~ and the direct dependences. "1 

Scalar expansion t4~ is the particular case of the prescnt problcm in 
which the modified variable is a scalar which is expanded to a vector. If 
one restricts oneself to innermost loops, the problem has a very simple 
solution. 

CONCLUSION 

The main result of this paper is the description of an algorithm for the 
dataflow analysis of programs with array references and f o r  loops. It has 
been implemented partly in Lisp and partly in C, and runs on several com- 
puters ranging from a personal computer to a DEC Vax 11/780. No effort 
has been made (at the time of writing) to optimize the code (the Lisp to 
C interface is especially clumsy). 

Table I gives some quantitative results for a set of small to medium 
kernels. For each program we give the line count, the number of assign- 

Table I. Some Kernels and their Dataf low Analysis 

lines lhs rhs level leaves ( 'PU 

across I 0 4 5 1 8 0.6 
burg 27 I I 20 2 41) 5.6 
relax 11 1 4 3 I 0 1.7 
gosser ! 9 5 11 3 20 2.8 
choles 21 6 8 3 12 2.6 
lanczos 55 23 31 3 54 12.6 
jacobi 50 31 60 4 92 81.9 

i 
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ment statements (lhs), the number of rhs references and the maximum 
nesting level. The results are the number of leaves in the source quasts 
(which characterizes the complexity of the solution), and the CPU time in 
seconds on a low-end SPARC station. One may observe that the source 
functions are quite simple: about two leaves per rhs reference. As to the 
CPU time, the main controlling factor seems to be the maximum nesting 
level in the program. The time per leaf goes from 75 ms for a one level 
program to 890 ms for a four level program. While these values may be 
somewhat reduced by converting the Lisp part of the program to C, we do 
not expect more than one order of magnitude improvement. It seems clear 
that the method will be applied only to small kernels or to larger programs 
whose running time is highly critical (e.g., library modules). 

We have described several applications of our technique; the reader 
will probably be able to add several new items to the list. Most of these are 
especially interesting in the context of automatic parallel program con- 
struction and will be developed with this kind of application in mind. Some 
of these methods will require further study to become operational; these 
unsolved points have been noted where appropriate. 

Extending the technique to languages with fewer restrictions than we 
introduced in Section 2.2 would be highly interesting. Some estimate of the 
applicability of our technique may be deduced from the statistics of Zhiyu 
Shen et aL ~23) The main difficulty is nonlinear indices. In this paper, which 
analyses more than 100000 lines of code, about 53% of all indices are 
found to be linear, about 13 % are partially linear, and the remaining 34 % 
are non-linear. An index is classified as partially linear as soon as it 
contains a variable which is not a loop counter. Some of these unknown 
variables may be eliminated by forward substitution. Some others are 
structure parameters. Hence we expect that the only significant failure 
cause will be the use of an array element as an index, which account for 
about 7 % of all cases. 

Before being submitted to a dataflow analysis, a program must be put 
in structured form. There are technique for the elimination of gobo's f24~ 
and for the detection of induction variables, ttsl which then allows one, in 
favorable cases, to reconstruct unit increment f o r  loops and to delete 
extraneous variables by forward substitutionf 25 27~ 

We expect that the handling of conditionals (by the familiar device of 
reducing them to guards on assignment statements) would not be too dif- 
ficult, Conditionals whose predicate depends only on loop counters should 
be handled as restriction on the iteration domains of the controlled 
statements, while loops may perhaps be handled, in the context of 
parallel program construction, as loops with an unbounded iteration 
domain. On the other hand, linearity restrictions are crucial for the 
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applicability of the method, and we do not envision at the present time any 
trick for dispensing with them. 

Lastly, the analysis of programs with procedure and function calls is 
a very difficult problem. If we restrict ourselves to the handling of small 
kernels, a few tricks should do the job: identify those function calls which 
act as operators (no argument is modified, no global variable is accessed). 
Other subroutine calls should probably be inlined. 

A C K N O W L E D G  M ENTS 
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reproduced 1281 by permission of ACM. 

A. THE P A R A M E T R I C  INTEGER A L G O R I T H M  

A.1. The Basic A lgor i thm 

A parametric integer program (PIP) may be formulated in the following 
way. Let F(z) be the set of integer points inside a convex polyhedron: 

F(z)= {xlSx + t ( z )~  N}/Kz+h~ N, (28) 

where S and K are matrices and t(z) is an integer vector whose components 
are affine functions of the integer vector z. z is constrained by the set of 
inequalities 

K z + h e N ,  

the context of the problem. As a matter of convenience, we will suppose 
that both S and K are such that they restrict x and z to non-negative 
integer values. In particular, the first Ixl rows of S will generate the 
constraint x ~ N. 

The problem is to decide for which values of z is F(z) empty, and if 
not, to compute its lexical minimum, as a function of z. The solution is 
given by the following algorithm: 

Algor i thm N 

1. Determine the signs of the components of t(z) in the context 

K z + h ~ N ,  

by solving non-parametric auxiliary integer programs. The sign 
may be positive, negative or unknown. 
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2. If there is a negative t;(z), then either: 

2.1. All elements of S~. are negative. In this case, F(z) is empty, 
and the solution is _1_. 

2.2. There is at least a positive Sg/; a pivoting step is executcd, 
giving a new problem (S ' ,  t ' (z)) .  The solution of the initial 
problem is the same as that of the new problem in the old 
context. In that case, keep track of D, the product of the 
pivots. 

3. If all t~(z) are positive, select the earliest row i such that one of S 0 
or the coefficients in t~(z) is not integral, if no such row exists (ip~ 
particular if D = 1 ), the solution has been found; it is given by thc 
first Ix[ components of t(z). If such a row exists, let q be a new 
parameter. Add: 

0~< ( ( - D t , ( z ) )  m o d  D)-qD<~ D -  1, 

to the context. Let m be the number of rows in S. Add to S the 
new row m + 1 with the following coefficients: 

SI,,, + i ~/= (( DSii) mod D)/D, 

t,,,~ i ( z )  = ( - ( ( -  Dti(z)) mod D)/D) + q, 

. 

and start again at step 1. 

In the remaining case, select a t~(z) whose sign is unknown; let x 
and x_  be respectively the solutions of (S,  t (z) )  in the contexts 

K z + h ~ N ,  ti(z) >~ 0, 

and 

K z + h ~ N ,  ti(z) < 0, 

respectively. The solution of the initial problem is: 

i f t i ( z ) > / 0 t h e n  x +  e l s e x  . 

This algorithm is guaranteed to terminate (1). The result is a multilevel 
conditional expression whose predicates and leaves are affine functions of 
the parameters. The new parameters like q above may be replaced by their 
expressions as integer quotients of affine forms. 
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This algorithm is not entirely deterministic; there are many equivalent 
solutions to the same problem. Experience has shown that a few simple 
heuristics suffice for selecting a well behaved solution. First of all, awfid 
splitting (case 4) at all cost (e.g., by grouping the case t i ( z ) = 0  with thc 
positive or negative case if the other case does not exist). If forced to split, 
select a row with all coefficients negative, which implies that x = _L. This 
algorithm has been implemented both in Lisp and C; these codes have been 
used to run all examples in this paper. 

A.2. The  Lexical M a x i m u m  

in many cases of interest, one has to compute a lexical maximum 
rather than a minimum. Sometimes, a transformation from one problem 
to the other is in evidence. We favor, however, the following systematic 
procedure. 

A l g o r i t h m  M 

Referring back to Eq. (28), introduce a new "very large" parameter m 
and solve: 

u = min ~ G(z, m)/Kz + h ~ N, 

where 

G(z, rn )=  {yl0~<y~<m, - S y + S I m + t ( z ) ~ N } .  

Compute  3 v = m I -  u and prune the solution by replacing all tests in 
whose predicate m has a positive coefficient by their true branch and con- 
versely. A leaf in which rn occurs with a positive coefficient is associated to 
a range of the parameters where F(z) is unbounded. This case will never 
occur in the problems we are interested in. 

It is easy to prove that v is the required maximum; it is also easy to 
devise methods to do the pruning "on line," so as to keep the extra com- 
putation to a minimum. For instance, in step (1) of Algorithm N, if m 
occurs with a positive sign in ti(z), the ith line may be taken as positive. 
We have found in practice that in cases where we need to compute both 
the maximum and the minimum of the same set, both algorithms have 
operation counts of the same order of magnitude, and neither of them is 
systematically longer than the other. 

3 1 is the vector all of whose components are I. 
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