
International Journal of Paralh,l Programming. Vol. 20. No. I, 1991

Dataflow Analysis of Array
and Scalar References

Paul Feautr ier t

Received December 1990; revised September 1991

Given a program written in a simple imperative language (assignment
statements, ./or loops, affine indices and loop limits), this paper presents an algo-
rithm for analyzing the patterns along which values flow as the execution
proceeds. For each array or scalar reference, the result is the name and iteration
vector of the source statement as a function of the iteration vector of the
referencing statement. The paper discusses several applications of the method:
conversion of a program to a set of recurrence equations, array and scalar
expansion, program verification and parallel program construction.

KEY W O R D S : Dataflow analysis; semantics analysis; array expansion.

1. I N T R O D U C T I O N

It is a well known fact that scientific programs spend most of their running
time in executing loops operating on arrays. Hence if a restructuring or
optimizing compiler is to do a good job, it must be able to do a thorough
analysis of the addressing patterns in such loops. If taken in full generality,
the analysis problem is intractable. In this paper, we consider a class of
programs for which this analysis is possible: programs with so-called static
control and affine indices. There are reasons to believe that a large propor-
tion of all numerical programs belongs to this class, and that many more
may be converted to it by appropriate preprocessing. The analysis of
addressing patterns in this class may be reduced to the solution of
parametric systems of linear inequalities in integers, for which the author
has devised an efficient algorithm/1~

~ Laboratoire MASI, Universit6 P. et M. Curie, 75252 Paris Cedex 05, France (e-mail:
feaut rier (a~ masi.ibp.fr).

23

0885-7458/91/0200-0023106.50/0 cr 1991 Plenum Publishing Corporation

24 Feautrier

The central problem to be solved here is the following: given an array
cell, which of several statements is the source of the value contained therein
at a given instant in the execution of a program. Most of the time, the
statement will be embedded in a loop nest. Hence, we will require not only
the name of the source statement, but also the values of the loop counters
at the time the value of interest was generated. This information may be
packaged as a source j~mction, as the source will depend on the iteration
vector of the destination. We will give here a solution for programs with
f o ~ loops as the only control statement. As a particular case, our method
gives a general solution to the problem of the source of scalars, which may
be seen as degenerate arrays with no indices. A knowledge of the source
function allows one to solve many problems which include automatic
translation to single assignment form, array and scalar expansion, dead
code elimination, and various questions connected to the construction of
programs for vector and parallel processors.

1.1, Out l ine

Section 2 describes the simple programming language we will use for
giving examples and the necessary restrictions on its indexing functions and
loop limits. We will also introduce the sequencing predicate as a compact
notation for deciding which of two statement instances is executed first.
Section 3 is the central part of the paper; here we give a detailed account
of the dataflow computation. Section 4 outlines in Varying detail several
applications of the technique. Section 5 lists some previous results which
may be seen as particular cases of the methods we have introduced in
Section 3.

In the conclusion, we give some empirical evidence on the complexity
of the algorithm and point to several possible extensions. The parametric
integer algorithm, which is a basic component of the present method, is
summarized in the Appendix. For a more detailed presentation and proofs
the reader is referred to the previously quoted paper. ~

1.2. Notat ions

Bold letters will denote vectors or vector valued functions;]a] is the
dimension of vector a. a [i . . j] is the subvector of a built from components
i to j. a[i] is a shorthand for a [i.. i]. Familiar operators and predicates like
+ and ~> will be tacitly extended to vectors. The sign ~ will denote lexical
ordering of vectors. Large letters witl usually denote sets; N will be the set
of nonnegative integers. If A is a matrix, A ~ will be its generic element, A ~.
its generic row and A.j its generic column.

Dataflow Analysis of Array and Scalar References 25

2. THE PROGRAM MODEL

In this section, we will first describe the syntax of the source language.
We will then discuss the restrictions we superimpose on this syntax. In the
following development, we will distinguish between statements, which are
syntactic parts of the program text, and operations, which are actions
inducing modifications of the computer store. Most often, a statement will
be executed several times, giving rise to many distinct operations. We will
introduce the sequencing predicate as a means of specifying the execution
order of operations.

2.1. The Source Language

The source language may be seen either as a static PASCAL or as a
rationalized FORTRAN. In fact, our work is not about any particular
language, but about the static subset of most programming languages, i.e.,
about what happens when all memory allocation has been taken care of.
Data types will be restricted to integers, reals, and n-dimensional arrays of
integers and reals. The only simple statements we will consider will be
scalar and array assignments. The only control constructs will be the
sequence and the f o r loop. We will extend the language in order to allow
conditional expressions (~ la Algol 60), which are necessary for the expres-
sion of index calculations (see e.g, Section 3,3), The syntax will be:

<conditional expression> := if <boolean expression>

then <expression>

else <expression>

Note the absence of gore ' s , of conditional statements, of wh i l e loops
and of procedures.

2.2. Restrictions

To be able to analyze array accesses inside loops, one must have some
knowledge of the iteration count of these loops. The simplest case is when
limits are known numerical values. This, however, is much too restrictive,
since many programs use variable limits (matrix and vector dimensions,
discretization size, etc.) and even non-rectangular loop nests: consider for
instance the prevalence in numerical analysis of triangularization algo-
rithms (like those of Gauss or Cholesky). To extend the class of tractable
programs, we will introduce the notion of static control.

26 Feautrier

To recognize a static control program, one must first identify its struc-
ture parameters: a set of integer variables which are defined only once in
the program, and whose value depends only on the outside world (through
an input statement) or on other already defined structure parameters.
A program has static control if all its loops are f o r loops whose limits
depend only on structure parameters, numerical constants and outer loops
iteration counters. The analysis technique which is presented here is
applicable only if all loops have increment I, and if all limits are affinc
functions. For similar reasons, all indices will be restricted to affine
functions of the loop counters and the structure parameters.

We will use the fact that in a correct program, array indices are always
within the array bounds. Hence, two array references address the same
memory location if and only if they are references to the same array and
their indices are equal. This restriction is not too severe if we note, first,
that it is good programming practice to debug a program before submit-
ting it to an optimizing or restructuring compiler, and also that the
methods of this paper may be used as a highly efficient array access
checker.t2

This hypothesis will allow us to ignore array declarations. As a conse-
quence, our technique will be equally applicable to languages which enforce
constant array bounds- -For t ran , Pascal, C,~..--and to those which do not.

2.3. The Sequencing Predicate

Values in array elements are produced by execution of statements.
Hence we need a notation to pin-point a specific execution of a statement,
or operation. Our first need is an unambiguous designation of a statement
in a program. Neither the text of the statement nor its position in the
program syntax tree will serve, since there may be several statements with
the same text, and since the program may be modified by a restructuring
compiler. Hence we will use a set of arbitrary statement names, which will
be denoted by letters such as r, s, etc. In a practical application, a natural
choice for these names may be pointers to records containing the statement
descriptions. In the balance of this paper, we will mostly be interested i~
simple statements. However, some discussions will be clearer if all
statements, compound or simple, are named.

In our source language, the only repetitive construct is the f o r loop.
Hence, an operation is uniquely defined by the name of the statement and
the values of the surrounding loop counters (the iteration vectort3~). A pair
such as (r, a) whose components are a statement name and an integer
vector will be called an (operation) coordinate. To denote a statement
instance, a coordinate must satisfy two conditions:

Dataflow Analysis of Array and Scalar References 27

�9 the dimension of a must be equal to the number of loops sur-
rounding r;

�9 all components of a must be within the corresponding loop limits.

With each loop t we may associate a pair of inequalities:

lb, <~ a <~ uh,,

where a is the loop counter of r If a statement r is embedded in a loop nest
t~, t~ tN, in thai order, then the iteration vector a of r must satisfy:

Vp:(1 <~p<~N) lh, ,<~a[p]~ub,, , . (1)

(1) may be summarized in matrix form as:

e r (a)~0 . (2)

where er is an affine vector-valued function. Formula (2) will be called the
existence predicate of r. Notice that we do not suppose that lb, <~ ub,. In
accordance with the Pascal convention (and with the "modern" interpreta-
tion of Fortran 130 loops), a loop whose limits violate this inequality will
not be executed at all.

Consider for example the program sketch in Fig. 1. Figure 2 describes
its iteration domain. The existence predicate of statement s2 may be writlcn
a s ;

l

- 1 0

- 1 1

0 - I

0

(
J

f

--1

+ >0.
- 1

n
k

One should not infer from Fig. 2 that all statements have iteration
domains which lies in the same euclidean space. As a counter-example,

for i:=l to n

begin for j := 1 to i-I do SI;

for j := i+l to n do S2;

e n d ;

Fig. 1. A sample program,

28 Feautrier

�9 �9 Q �9 �9 �9

�9 �9 ~ �9 �9 �9

$ 2

t �9 * Q t ; �9

i

Fig. 2. The iteratk)n domain of program 1.

consider the program of Fig. 3. As shown in Fig, 4, sr has a one-dimen-
sional iteration domain, while s2 has a two-dimensional one.

Finally, one should not confuse the iteration domain, which is
spanned by loop counters, and the data space, which is spanned by array
indices. In many cases, those two spaces are identical (or rather,
isomorphic) as in:

for i := I to n do

for j := I to n do

x[i,j] := 0.:

but this is not always true. tn the case of the program in Fig. 5, the itera-
tion domain is two.dimensionat while the data space is or*e-dimensional.
Conversely, in:

for i := I I;o n do %[i,i] :-- I.;

the data space is a one-dimensional subspace embedded in a two-dimen-
sional space.

The preceding discussion leads to a spatial description of loops. Such
a point of view goes back to the work of Kuck; see a|so Padua and WoLfe's
review articleJ 4~ Usually, loops are explained from a temporal point of

Dataflow Analysis of Array and Scalar References 29

for • := I to n do

begin

x[i] :=0. ; {sl}

for j := I to i do

x[i] :: x[i] + u[i,j] * y[j] {s2}

end ;

Fig. 3. An imperfectly nested program.

view: iteration i is executed just before iteration i + I. We must seek a way
to reconcile those two aspects. This may be done by defining a sequencing
predicate on the iteration domains. The sequencing predicate is a strict
total order on the set of operation coordinates; it is written:

(r, a) -< (s, b).

and expresses the fact that (r, a) is executed before (s, b). The sequencing
predicate depends only on the source program text. Our present aim is to
give a simple expression for it.

I
/

8 1 i

Fig. 4. The iteration domain of program 3.

30 Feautrier

for k := 0 to 2*n do

c[k] : = 0.; {st}

f o r i := 0 t o n d o

:for j := 0 to n do

e[i+j] := c[i+j] § a [i] *b [j] ; {S2}

Fig. 5. The product of Iwo polynomials.

Suppose first that r and s are statements in the outermost statement
list of the program, a and b necessarily are the zero dimensional vector [].
(r, [])<~(s, []) iff r precedes s in the program text. Let T~, be a Boolean
which is true iff r textually precedes s; in this case:

(r, []) '<6% []) = T~.,..

Note that T , is false and that if r ~ s then T,~ = -1 T~,.
Next, suppose that r and s are the same statement. In this case,

according to the familiar semantics of f o r loops, (r, a)-<(r, b) iff a is
lexicographically smaller than b.

In the general case, there is an innermost loop t whose body contains
both r and s. Let N~ be the depth of this loop. In the body of t, there are
two statements r' and s' such that r is r' or is textually inside r', and s is
s' or is inside s'. Obviously:

(r, a) < (s, h) ~ (r', a[1 ..Nr,.]).<(s', b[l ..Nrs])

Now, if a[1..Nr.,.] :~b[l . .N ,] , (r', a) and (s', b) belong to distinct itera-
tions of loop r In this case, their order is given by a lexical comparison of
a[l . .N,~] and b[1..N,s]. Otherwise, if a[1..N,.,.] = h [I ..Nr,], then (r', a)
and (s', b) belong to the same iteration of t, and their order is the textual
order T~.~, = T~.,.. Putting all this together:

(r, a)-< (s, b) = - a [l . .N~,] <~b[l .. N,,,.]

v (a[l ..Nr.,.] = b[1..N~.~] A T,,). (3)

Knowledge of Nrs (a matrix of Integers) and T,.,. (a matrix of
Booleans) is all that is needed to sequence all operations in a program.

When lexicographic order is replaced by its definition, the sequencing

Datafiow Analysis of Array and Scalar References 31

predicate becomes a disjunction of N,.~+ 1 affine predicates which will be
written as <p:

(r , a) - < ~ , (s , b) = (a [l . . p] = b [1 . . p] A a [p + 1] < b [p + 1]), O < ~ p < N ~ .

The version for p = N~.~ is:

(r, a)-<p (s, b) -=a [l . .Nr,] = b [1 .. N~.,] ^ T~,. (5)

One may notice that operations which stand in the relation -<p to
each other have exactly p identical coordinates in their iteration vectors.
In Allen and Kennedy's paper, (5) if two such operations give rise to a
dependence, one says that this dependence is at depth p + l, while if
p = N,,, the depth is said to be infinite. With a slight displacement of the
origin, we will say that -<p is the sequencing predicate at depth p, depths
ranging from 0 to Nr~.

Consider again the program of Fig. 3. The sequencing between sj and
s2 is given by N~,. z = 1 and T~,~ 2 = true. Hence:

(st, i) '< (s2, i ' , j ') = - i < i ' v i = i'. (6}

Similarly, the sequencing between two instances of s2 is given by:

(s2, i , j) - < (s ~ , i ' , j ') = - i < i ' v (i = i ' ^ j < j ') , (7)

since T,.2~ is false.
These results may be summarized by Fig. 6. In this diagram, we have

, / e .

i

i �9 .t I

Fig. 6. The sequencing predicate of loop 3.

32 Feautrier

only represented essential edges of the -< relation. All other edges may be
recovered by using the transitivity of -<.

3. DATA FLOW ANALYSIS

3.1. Some Notation

Suppose that we are given a program conforming to the restrictions of
Section 2.2. Let t be a statement in which an array M is used. Let b be the
iteration vector of t; the indices of M are affine functions of b. In vector
form, the reference to M may be written M[g(b)].

Consider for instance the reference to v [i , k] in:

for i ;= i to n do

for j := l.to i-i do

for k := i+l to n do

vii,k] := v[j,k]-v[i,k]*v[j,i]/v[i,i];

The surrounding loop counters are i, j and k. The indexing function, g, is
given by:

g (i , j , k) =
I 0 0

0 0 I

The indexing function is exactly what is needed to connect the iteration
domain to the data space.

We are interested in finding the source of the value of M[g(b)]. Let
sl, s2,...,s~ be the statements which produce a value for M, and let
al , a2 a , be their iteration vectors, s; is of the form:

M[f,(a,.)] :

The source is a coordinate, or rather a function of b which gives a
coordinate when evaluated, which will be called the source function of
M[g(b)] .

Dataflow Analysis of Array and Scalar References 33

3.2. F o r m a l S o l u t i o n

If the source of M[g(b)] is an instance of ,% there is a unique ai such
that this instance is (si, ai). This ai is a function of b, which will be called
K~,,. The real source is the latest operation (si, K,.,,(b)):

V/4: i, (.sl/, K,:j,(b))-< (s,, K.,.,(b))

The correct value of i may depend on b. In particular, K,,,(b) may be
undefined for some values of b. We will postulate that an undefined opera-
tion (written as 3_) comes earlier than any other operation:

Vt, b: • -< (t, b).

The conditions on K~,,(b) are:

�9 Firstly, (s~, K,,,(b)) must produce a value for M[g(b)] :

f,(K.,,,(b)) = g(b)

�9 Secondly, (.% K~,,(b)) must precede (t, b):

(s,, K,,,(b)) < (t, b);

�9 Thirdly, K,,,(b) must be a legal coordinate:

e,.,(K,,,(b)) >~ 0.

�9 Lastly, (.% K,.,,(b)) must be the latest coordinate which satisfies all
conditions:

f~ (u)=g(b) ^ (sj, u) ~ (t, b) ^ e , , , (u) ~ > 0 ~ u << K.~,,(b);

in summary, letting max~ denote the lexicographic maximum of a set
of integer vectors:

K~,,(b) = max ~ Q.,:(b) (8)

where Q,.,,(b) is the set:

Q,,,(b) = {u I fi(u)= g(b), (s,, u)<: (t, b), e,.,(u)>10} (9)

with the convention that the lexical maximum of the empty set is L.
Now, since -< is a disjunction of N,,, + I linear predicates, Q~,, is the

union of N,,, + 1 disjoint polyhedra, indexed by p, 0 ~< p ~ N,,,:

P b Q.,.,,()={ulfi(u)=g(b),(si, u)~p(t,b),e,.(u)>-o}, (10)

K~,(b) = max ~ Q.P,(b). (I I)

82~/20/I-3

34 Feautrier

Finally, if max.< is the maximum according to the sequencing
predicate, then the source is given by:

" (12) S=max< { (s i , K.,,,(b))I i= 1 n, p=0,..., N,,,}.

To avoid multiple indices, we will renumber all possible candidates at
all depths with a new index.j. L will stand for the cardinality of the set of
possible sources. Equation (12) will be rewritten as:

S = max.<{(%, K](b))I.j= 1, L}. (13)

Let us go back to the example in Fig. 5. Consider the problem of
finding the source of c [i + j] in statement s 2. There are two candidates, s~
and s2 itself, and as a consequence, two functions K.,.,,, and/f.~2:,.,'

Consider for instance the set Q.,.2.,.2(i,.j). Its elements are two-dimen-
sional integer vectors (i', j ') which satisfy the following constraints:

�9 the index equation, i ' + j ' - i + j ;

�9 the sequencing constraint i' < i v (i' = i ^ .j' < j). One sees that
the second term in the disjunction is incompatible with the index
equation.

�9 the limit constraints 0 ~< i ' ~< n, 0 ~ . j ' ~< n.

Examination of Fig. 7 shows that Q,.2.,.2(i, j) is empty if i = 0 or.j = n. If not
empty, its lexical maximum is the vector (i - l , . j+ 1). This implies that to
represent K,2.,. 2, we will need a conditional:

K.,.2~2(i, ./) = i f (i>: 1 ^ . j<n) then (i+ I , . j - I) else _1.. (14)

The case of the other candidate is simpler; we always have:

K.,, ,2(i, j) = (i + j).

Now, it should be clear from an examination of the program in Fig. 5
(or from the fact that N.,.,.,. 2 = 0 and that T,,.~ 2 is true), that all operations
(s,, k') precede all operations (s 2, i', j ') . It follows that the source is given
by K,.~.,~(i, j) provided this quantity is defined. Hence, the final result is:

S (i , j) = i f (i > . l ^ j < n) t h e n (s 2 , i+ l , j - l) e l s e (s j , i + j) . (15)

To obtain this result, we have relied a lot on Fig. 7 and geometrical
intuition. Now this works fine on one- and two-dimensional problems, but
is quite difficult and error prone in three dimensions, and is impossible
beyond. Furthermore, a computer has no geometrical intuition at all. Our
aim now will be to solve this problem in a general, systematic fashion and
to implement the corresponding algorithm.

Dataflow Analysis of Array and Scalar References 35

Q (2,4)

Q,1,2(2,1)

Fig. 7.

�9

O,~,~(2, I)

\ 4

Computing the source function for the program of Fig. 5.

3.3. Evaluation Techniques

3.3. 1. Direct Dependences

In this section, we will focus first on one particular candidate
(s i, g j (b)) at a given depth p. When the original program conforms to the
restrictions of Section 2.2, all terms in formula (10) are linear equalities or
inequalities. In fact since indexing functions are atone, the first term is a
linear system whose dimension is the rank of array M. The last term is
simply a set of linear inequalities. The second term is given by Eqs. (4) or
(5). If the depth p is less than N,,,, then it is the conjunction o f p equalities
and one inequality. For p = N,,,, it is made of equalities only and does not
exist if Ts: is false.

As a consequence, Qj(b) is the set of integer vectors which lie inside
a polyhedron. Finding its lexical maximum is a Parametric Integer
Program (a PIP). (1) A short description of an algorithm for solving PIP
problems is given in the Appendix. The parameters are the components of
b and the structure parameters. Note that the components of b are not
arbitrary; they must satisfy various constraints, among which is:

e,(b) i> O,

36 Feautrier

to which may be added any available information on the structurc
parameters. These inequalities form the c o n t e x t of the parametric integer
problem.

To express the solution, we need the concept of a quasi-affine form.
Such a form is constructed from the parameters and integer constants by
the operations of addition, multiplication by an integer, and division by an
integer. The solution is then expressed as a multistage conditional expres-
sion. The predicates are of the form f(b)>~0, where f is quasi-affine. The
leaves are vector of quasi-affine forms or the "undefined" sign, 2. Such an
expression will be called a quasi-affine selection tree (quast for brevity).

This definition may be summarized by the following grammar:

form ::= integer
I parameter
I integer �9 form
t form + integer
I form + form

vector ::= (form[, form] ...)
quast ::= •

I vector
I if form ~> 0 then quast else quast

The result of this analysis is the direct dependence between the
definition by .% and the use in t. Direct dependences were first defined by
Brandes. ~6~ The presence of a _1_ sign in a direct dependence indicates that,
for some values of the loop counters, the reference in t is not defined by
statement Si.

Formula (14) is a quast in this sense (notice that integer division is
not used here). Integer division appears when analyzing programs which
access arrays with strides greater than one, as in:

s := 0.;

for i := i to n do

x[2* i -1] := 1. ; {S1}

for k := I to 2*n-1 do

s := s * x[k]; {S2}

The direct dependence from z [2"~ -1] in s', to x [k] in ,v2 is given by the
following quast:

q = i f 2 ((k + l) + 2) - (k + l) > ~ 0 t h e n (k +] l - 2 e l s e S .

Dataflow Analysis of Array and Scalar References 37

This formula expresses the fact that x [k] is not defined when k is
even.

3.3.2. Combining the Direct Dependences

Consider now the problem of evaluating Eq. (13). This will be done in
a sequential manner, by introducing:

S,,= max_< {(Sj, K / (b)) l j= 1 n},

S0=a-.

Obviously, S = S L and we have the recurrence:

S .=max .<{S . i, (s,,, K.(b))} (16)

We are thus led to the evaluation of:

S = max.< { T, (s,,, K,,(b)) }, (17)

where T is an arbitrary quast. There are three cases, according to the form
of T:

�9 T=_L; in this case:

S = (s,,, tt',,(h)). (18)

�9 T = i f n(b) then T~ else T2; in this case:

S = i f n (b) (19)

then max<{ Tt, (s., K.(b)) }

else max.<{ T2, (s., K.(b)) }.

�9 T = (r , I(b)) where r is a statement name and I is a quasi-affine
form; then:

S = if (r,/(b))-< (s., K,,(b)) then (s., K,,(b)) else (r, I(b)). (20)

In this formula, the sequencing predicate is to be expanded with the help
of Eq. (3).

These rules (and their symmetric counterparts, as the max operator is
commutative), are the basic tools for computing source functions. The
result may be simplified by removing dead leaves (i.e. leaves which are
governed by incompatible predicates) and by applying the rule:

if p then x else x = x. (21)

38 Feautrier

The computation of Eq. (15) was an example of the use of these rules, with:

T = i f (i~> ! ^ j<n)then (s2, i + l , j - 1) else _L,

and:

(s,, K,,(b))= (s,,.i+j).

One first applies Eq~ (19) to get:

S = i f (i ~ ! ^ j<n)

then; max .< { (s2, i + 1, j - 1), (s:l, i +.j) }

else max.~ { • (s j, i + j) }.

The first branch of the conditional is computed with the help of
Eq, (20) and the fact that (st, i + j) - < (s2, i + I, j - 1). The second branch
is an instance of Eq. (1.8). The result Eq. (15) follows. A more comprehen,
sive example wiB be presented later.

3.3:3. A.voidin9 Unnecessary Work

While this algorithm always gives a complete anff correct solution, in
many cases, it is possible to reduce the amount of work by predicting the
value of the sequencing predicate.

Suppose we have: found two well defined direct dependences
(s,,, Kin(b)) ad (s,, g,(b)), respectively a t depth Pm and: p,, for the same
referefice in operation (t, b). Suppose that the depths are different, and for
instance that p,, < p, . From the definitions of Eqs. (4) and: (10) i t follows
that

K. , (b) [l .. p, .] =-b[1.. p . ,] . (22)

K.,(b)[p,. + 1] < b[pm + 1]; (23)

x,(b)[l . , p,]:= bUl..p,,],

and hence:

X,,(b)E1.. p , ,]= K,(b)[1.. p,,] = b[~., p~]. (24)

Now, all structured languages have the following property: given two
loops, either they have disjoint bodies, or one of them includes the: other,
In our case, there are loops at depthp, , which include s,,. and; t, and s, and
t. The bodies of these loops, cannot be disjoint; and; since they have the
same depth, they are identical. This is tantamount to saying that:

N~..~,, ~ p,, { 25)

Dataflow Analysis of Array and Scalar References 39

Consider now the sequencing predicate:

(sin, K.,tb))-< is., K,,(b))

= Km(b)[1 .. N] ,~ K,,(b)[1 .. N,,,,~,,]

v (K,,,(b)[1..N] = K,,(b)[1 ..N.~,,,.~,,] ^ T~,,,.,~,)-

When evaluating this formula, there are two cases. Firstly, Eq. (25)
may be strict. From Eq. (23) we deduce thpt the first disjunct is true. If
Eq. (25) in fact is an equality, then the first disjunct is false [remember that
<~ is the s t r ic t lexical order] and the value of the sequencing predicate
simply is T,. ~o. In both cases, we may compute the sequencing predicate
without any reference to the actual values of the direct dependences. This
result may be used in at least three ways:

�9 When computing the direct dependence, use of Eq. (24) allows one
to reduce the number of unknowns in the parametric integer
problem]

�9 When evaluating Eq.(20), there is no need to expand the
sequencing predicate unless both dependences are at the same
depth.

�9 Most importantly, before embarking on the evaluation of Eq. (16),
one may check whether (s,, K,(b)) occurs earlier than all leaves of
S, _ ~ or not. In the first case, the evaluation of K,,(b) is useless.
One easily sees that this situation is most likely to occur if the
candidate list is ordered by decreasing depth.

3.4. Summary

Let us summarize the algorithm. For a given reference to an array or
scalar M in a statement s, construct the candidate list from all pairs (r, p)
where r is a statement which modifies M and p, 0~<p~<Nr.,., is the
dependence depth. Set S = _L. Order the candidate list by decreasing depth.

For each candidate, test if there is a possibility that it will contribute
to the final source function. If not, discard the candidate. Otherwise, com-
pute the direct dependence by applying the PIP algorithm in Eq. (10). Use
Eqs. (18)-(20) to update the value of the source function and simplify.

The algorithm may appear to be highly complex; there are, however,
techniques to reduce the amount of work involved. Most of the time, the
algorithm will be embedded in a restructuring compiler, ~4~ which will start

2 Note tha t in the favorable case when there are no u n k n o w n s left, one still ha~ I~ use the I ' IP

a lgo r i thm to check tha t the obvious so lu t ion meets the inequal i t ies cons t ra in t s of Eq. (lOJ.

40 Feautrier

by computing the dependence graph of the program. In fact, there is a flow
r b dependence between statements r and s at depth p if the set Qr.~() is not

empty for some legal value of b. Conversely, if there is no dependence,
Q['.(b) is empty,

P K~. , , (b) = •

and the value of S, as computed by Eq. (16), does not change. Hence the
only candidates to be considered are those which correspond to flow
dependence edges. There are fast approximate methods for the calculation
of dependences, ~7~ and more precise methods ~8~ which are still faster then
a PIP computation,

Scalar references are analysed in the same fashion as array references,
the only difference being that the index equations fi(u)= g(b) in Eq. (9)
now disappear. At first glance, this may be thought of as an important sim-
plification. We have found, in fact, that directly expressing the solution
without the help of the PIP algorithm is highly complicated: for instance,
one cannot simply say that the latest execution of a loop is the one that
correspond to the loop upper limit, since the loop may not be executed at
all. As a consequence, we use the general algorithm whatever the rank of
the reference.

4. APPLICATIONS

4.1. Conversion to Single Assignment Form

Single assignment programs have been proposed by several
authors~9,10~ as a means of specifying algorithms for highly parallel systems.
Another point ~11, iz~ is that since a memory cell in such a program is defined
only once, its contents may be considered as a "variable" in the mathemati-
cal sense and subjected to the familiar algebraic and analytic manipula-
tions.

The following algorithm may be used to convert a static control
program to single assignment form:

1. Compute the source function for all rhs references;

2. For each statement s, declare a new array M~ and replace the left
hand side of s by Ms[a], where a is the iteration vector of s;

3. Replace all rhs references by the corresponding source function
with the following modifications:

--replace a leaf of the form (s,/(b)) by Msl-l(b)],

---replace a void leaf _L by the original rhs reference.

Dataflow Analysis of Array and Scalar References 41

To justify the last prescription, note that a void source indicates that
the corresponding memory cell has not been defined anywhere in the
program. As a consequence, its value still is the one it had at the program
start.

The result of this transformation may be presented as a set of
recurrence equations, with all a priori sequencing left out.

Consider for instance the version in Fig. 8 of the Gauss-Jordan
elimination algorithm (declarations and input/output statements omitted).
Let us first detail the computation of the source of a [,j , k] in s~..s'~ and
s 2 both are possible sources. Hence, there will be two direct dependences.
A standard dependence analysis will show that all dependences are at
depth 0. As a consequence, there are only two candidates, which are given
by the PIP algorithm:

K I = i f i - . / > ~ 2 then (i - I, j, k)else _1_, (26)

K 2 =if.j>~ 1 then (. j - !, j, k) else A_. (27)

The problem is now to evaluate the recurrence of Eq. (16). Obviously'.

$1 = if i - j > ~ 2 then (s~, i - 1, j, k) else _L.

The first step in computing $2 is to apply rules (18)-(20) to obtain the
interim result:

S~= if i - j > 2

then if j > 2

then if (sl,i - 1, j ,k) ~ (s2,j - 1 , j ,k)

then (s u , j - 1,j,k)

else (s t , i - 1,j,k)

else (s l , i - 1,j,k)

else if j > I

then (s2 , j - 1, j ,k)

else A_

Examination of the original program gives:

(s l , i - 1, j , k) - < (sz, j - 1, i, k) - ~ i - 1 <<,j- I

42 F|

for i i= 1 to n do

begin

for j := I to i-i do

for k ~= i+I to n do

u[j ,k] -: U[j,k]~-a{i.,k]*~[],i]/u[i,i]:;

for j := i§ %6 n do

for k := i+1 tO n do

U [j ,k'l " U[J ,k]~%l[i',]~]il~U[J ,:i] l u l l , i] ;

Fig. 8. A version ofthe :Gauss-Jordat~ algorithm.

{S2)

t h e n (s2,. j - t ,] , k)

e l s e 3_

Similar,calculations to r all other rhs refefehcesgives the :LAU form
of Fig. ~9. This :resutt :is quite i~v61ved, and may b e Simplified in several
ways. H0wever, we do not a d v o c a t e that~sueh a code: be u sed for actual
computiiig, but~rather as-a starting point(for:further analysis and optimiza-
tion.~Hence, simplification:per~.se~may n o t b e wor th the effort.

4:2. Array:and :Scatar'.Ex~o~a nsio n

Parailel or vector :execution of a ~ program ~may! be frustrated:: by :alloca-
t ion of the same-memory,ce i l to unrelated values. This is called an output
dependence/4) Transforming t h e p rogram tO single assignment style

: removes all such dependences,,,at, the cost ~ of~ a large ~increase in memory

S~ = i f i - j > 2

'then (sl , i- ' l . , j ,!k)

else i f j > 1

which is !false whe~n i - j ~ > 2: this i's a ease of,elimination ~of a dead :leaf,
Next Comes an application Of ~Eq, (,2~1), and the final Tesult is:

Dataflow Analysis of Array and Scalar References

t < i < n , l < j < i - l , i + l < k < n :

43

u l [i , J , k] = i f (i - J - 2 >= O) then u l [i - l , j , k]

e l s e i f (j - 2 >= O)

then u 2 [j - l , j , k]

else u[j ,k]

- u 2 [i - l , i , k] / u 2 [i - l , i , i] *

i f (i - j - 2 >= O) then u l [i - l , j , i]

else if (j-2 >= O)

then U 2 [j - l , j , i]

else u[j ,i]

l < i < n , i + l < j < n , i + l < k < n :

U2[i ,J ,10 = (i f i ' 2 >" 0 then u 2 [i - l , j , k] e l se a [j , k])

- (if i-2 >= 0 then u2[i-l,l,k] else all,k])

* (if i-2 >= 0 then u2[i-l,j,i] else a[j,i])

/ (if i-2 >= 0 then u2[i-l.i,i] else a[i,i])

Fig. 9. The single assignment form of program 8.

usage. In many cases, such expansion is useless and should not be done.
For instance, on most vector computers, innermost loops are the only ones
which are susceptible of vector mode execution: In other cases, the output
dependence is accompanied by a true dependence, which cannot be
eliminated by expansion. The problem of deciding which lhs should be
expanded and/or renamed is highly dependent on the target computer and
will not be addressed here. We will suppose that we are given a list of
modified lhs, the new lhs for operation (s, a) being M~[f(a)]. Most often,

44 Foautrier

f will be a selection operator on the components of a. One then applies the
algorithm of Section 4.1, with step 3 modified in the following fashion:

3' Replace all rhs references by the corresponding source function
with the following modifications:

- - rep lace a leaf of the form (s,/(b)) by M,[f(l(b))] if the Ihs of s
has been modified, and by the original rhs if s is untouched.

- - rep lace a void leaf 2_ by the original rhs reference.

Obviously, a rhs all of whose sources are untouched is not modified by
this prescription.

Note, not all renaming and expansion are legitimate. When one needs
a value, one must take care that it has not been overwritten some time
before. There is a precise solution to this problem. To check that a value
produced by (s, K(b)) with Ihs M,.(f(a)) is still available at (t, b), one
should test that for all statements r with Ihs M~[h(c)] the following
problem:

h(e) = f(b),

(s, K(b))-< (r, c)-< (t, b),

e~(c) >~ O,

has no solution in c in the context e,(b)>/0. There are many cases in which
this calculation is not necessary. Let us note the case in which M.~ is used
only in s, and the one in which all uses of M~ have as indices a supersct
of the indices of the original lhs.

4.3. Program Checking and Optimization

Here we will suppose that we are given a program complete with
initializations and input/output statements. These statements are easily
included in the present framework. For instance, an output statement may
be modelled as a statement with rhs references but no Ihs. The first step in
the verification of such a program is to check the sources for the presence
of the 2- sign, which indicates access to an undefined memory cell.

When computing a source, one may refine the polyhedron Q(b) by
adding linear constraints expressing the fact that all indices are within the
array bounds. The 2- sign will in that case pin-point an out-of-bound
access. Most often, the 2_ sign will appear inside a conditional whose
predicate gives a condition on the structure parameters which must bc
checked for the program to run correctly. Adding a runtime test for this
condition is a simple matter.

Dataflow Analysis of Array and Scalar References 45

Knowledge of the source functions allows very precise detection of
dead code. Certainly all output statements are useful code and should be
marked accordingly. If statement t is marked, all statements which occur in
sources for rhs references in t are useful. When this process (which is
nothing more than a graph traversai algorithm) terminates, unmarked
statements are dead code.

Finally, the single assignment form of a program is an invaluable help
in checking that the program has the desired behaviour. Consider for
instance two very similar pieces of code:

for i: = 1 to n do a[i] := a[i+l] {I}

for i:= 1 to n do a[i] := a[i-1] {2}

Their single assignment transcriptions are widely different:

for i:= 1 to n do A[i] := a[i+l] {1}

for i: = I to n do

A[i] := if i-i >= 0 {2}

then A [i-l]

else a[i-l]

where A is a new array.
In the case of {2}, the assignment:

A[i3 : = A[i-l]

may be considered as a recurrence in the usual mathematical sense and

solved to yield:

Al'i] = a Fo]

4.4. Parallel Program Construction

An obvious idea is to summarize the source function by a graph. There
is an edge from s to t for each occurrence of s in a source of a rhs reference
in t. This gives the dataflow graph of the original program. It is obtained
from the usual dependence graph t4~ by removing output dependences, anti-
dependences and spurious flow dependences. This graph may be submitted

828/20/I-4

46 Feautrier

to classical parallelization and vectorization algorithms} 1.~ One still has to
expand some variables to reconstruct a correct program.

Another approach is to consider the source functions as synchroniza-
tion constraints (a statement which uses a given value may not start
executing until the source statement has terminated), and to attempt the
construction of a parallel program which meets all of them. This approach
is reminescent of the methodology for the automatic or semi-automatic
design of systolic arrays, ~4~ and leads to the consideration of timing func-
tions or schedules. The use of timing functions for the construction of
parallel program has been advocated in several papers} 15 ~7~ The outcome
of this research will be reported elsewhere.

5. RELATED WORK

This paper is related to work in two different areas: one is standard
dataflow analysis, ~8~ which is used as a basic technique by many optimizing
compilers, and the other is the specification and compilation of dataflow
languages.

Standard dataflow analysis is both more and less comprehensive than
the present one. Its range of applicability is wider, since it deals with
unstructured programs. However, it is a static theory (all executions of a
statement in a loop are lumped as one), and, as such, applies only to
scalars (or to arrays considered as a whole). An example is the determina-
tion of use-def chains. To each use (rhs occurrence) of a variable x is
associated a list of definitions of x which may be the source of the current
value of x. Use-def chains are computed by iteratively solving propagation
equations. In our framework, use-defchains could be obtained by computing
the frontier of the source functions and removing all informations about
iteration vectors.

In a similar context, a technique for conversion to static single assign-
ment form has been advocated by Cytron et aU jg~ Here again, the source
program is not required to be structured, and only scalars or arrays taken
as a whole are considered. The paper is concerned with the most economi-
cal insertion of so-called C-functions (i.e., multiplexors} at join points in the
control graph. When this is done, it is possible to rename alt variaMes and
to obtain a single assignment program.

Dataflow architectures are one of several ways of exploiting single
assignment programs. Each architecture has a machine language, which in
general is presented as a dataflow graph. One of the problems in this field
is how to provide a more user-friendly interface, either in the form of a
high-level parallel language, or by translating conventional language to
dataflow. Our work is certainly relevant to this aim. A recent paper, ~2~

Dataflow Analysis of Array and Scalar References 47

gives an algorithm for translating V()~(~RAN to dataflow graphs. Here again
the problem is with arrays. A dataflow machine has no difficulty in executing
the flowgraph equivalents of d o a l l or d o a e r o s s loops. Detecting such
loops, however, must use classical techniques like dependence analysis.

Dependence analysis is mainly used by parallelizing and vectorizing
compilers. There is a flow or true dependence between two statements if the
first one is a possible source for a value which is used by the other. 14'7j
There are other kinds of dependences: anti- and output-dependences, which
indicate memory sharing, and control dependences, which summarize the
control flow in the source program.

One may say that a flow dependence is a very imprecise approxima-
tion to the source function. Some more precise descriptions are the
dependence direction vectors, tTJ the dependence vectors,~2~l the dependence
cone t22~ and the direct dependences. "1

Scalar expansion t4~ is the particular case of the prescnt problcm in
which the modified variable is a scalar which is expanded to a vector. If
one restricts oneself to innermost loops, the problem has a very simple
solution.

CONCLUSION

The main result of this paper is the description of an algorithm for the
dataflow analysis of programs with array references and f o r loops. It has
been implemented partly in Lisp and partly in C, and runs on several com-
puters ranging from a personal computer to a DEC Vax 11/780. No effort
has been made (at the time of writing) to optimize the code (the Lisp to
C interface is especially clumsy).

Table I gives some quantitative results for a set of small to medium
kernels. For each program we give the line count, the number of assign-

Table I. Some Kernels and their Dataf low Analysis

lines lhs rhs level leaves ('PU

across I 0 4 5 1 8 0.6
burg 27 I I 20 2 41) 5.6
relax 11 1 4 3 I 0 1.7
gosser ! 9 5 11 3 20 2.8
choles 21 6 8 3 12 2.6
lanczos 55 23 31 3 54 12.6
jacobi 50 31 60 4 92 81.9

i

48 Feautrier

ment statements (lhs), the number of rhs references and the maximum
nesting level. The results are the number of leaves in the source quasts
(which characterizes the complexity of the solution), and the CPU time in
seconds on a low-end SPARC station. One may observe that the source
functions are quite simple: about two leaves per rhs reference. As to the
CPU time, the main controlling factor seems to be the maximum nesting
level in the program. The time per leaf goes from 75 ms for a one level
program to 890 ms for a four level program. While these values may be
somewhat reduced by converting the Lisp part of the program to C, we do
not expect more than one order of magnitude improvement. It seems clear
that the method will be applied only to small kernels or to larger programs
whose running time is highly critical (e.g., library modules).

We have described several applications of our technique; the reader
will probably be able to add several new items to the list. Most of these are
especially interesting in the context of automatic parallel program con-
struction and will be developed with this kind of application in mind. Some
of these methods will require further study to become operational; these
unsolved points have been noted where appropriate.

Extending the technique to languages with fewer restrictions than we
introduced in Section 2.2 would be highly interesting. Some estimate of the
applicability of our technique may be deduced from the statistics of Zhiyu
Shen et aL ~23) The main difficulty is nonlinear indices. In this paper, which
analyses more than 100000 lines of code, about 53% of all indices are
found to be linear, about 13 % are partially linear, and the remaining 34 %
are non-linear. An index is classified as partially linear as soon as it
contains a variable which is not a loop counter. Some of these unknown
variables may be eliminated by forward substitution. Some others are
structure parameters. Hence we expect that the only significant failure
cause will be the use of an array element as an index, which account for
about 7 % of all cases.

Before being submitted to a dataflow analysis, a program must be put
in structured form. There are technique for the elimination of gobo's f24~
and for the detection of induction variables, ttsl which then allows one, in
favorable cases, to reconstruct unit increment f o r loops and to delete
extraneous variables by forward substitutionf 25 27~

We expect that the handling of conditionals (by the familiar device of
reducing them to guards on assignment statements) would not be too dif-
ficult, Conditionals whose predicate depends only on loop counters should
be handled as restriction on the iteration domains of the controlled
statements, while loops may perhaps be handled, in the context of
parallel program construction, as loops with an unbounded iteration
domain. On the other hand, linearity restrictions are crucial for the

Dataflow Analysis of Array and Scalar References 49

applicability of the method, and we do not envision at the present time any
trick for dispensing with them.

Lastly, the analysis of programs with procedure and function calls is
a very difficult problem. If we restrict ourselves to the handling of small
kernels, a few tricks should do the job: identify those function calls which
act as operators (no argument is modified, no global variable is accessed).
Other subroutine calls should probably be inlined.

A C K N O W L E D G M ENTS

This work has been supported by DRET under contract 87/280
and by PRC C 3 of the french CNRS. Part of Section 2.3 has been
reproduced 1281 by permission of ACM.

A. THE P A R A M E T R I C INTEGER A L G O R I T H M

A.1. The Basic A lgor i thm

A parametric integer program (PIP) may be formulated in the following
way. Let F(z) be the set of integer points inside a convex polyhedron:

F(z)= {xlSx + t (z)~ N}/Kz+h~ N, (28)

where S and K are matrices and t(z) is an integer vector whose components
are affine functions of the integer vector z. z is constrained by the set of
inequalities

K z + h e N ,

the context of the problem. As a matter of convenience, we will suppose
that both S and K are such that they restrict x and z to non-negative
integer values. In particular, the first Ixl rows of S will generate the
constraint x ~ N.

The problem is to decide for which values of z is F(z) empty, and if
not, to compute its lexical minimum, as a function of z. The solution is
given by the following algorithm:

Algor i thm N

1. Determine the signs of the components of t(z) in the context

K z + h ~ N ,

by solving non-parametric auxiliary integer programs. The sign
may be positive, negative or unknown.

50 Feautrier

2. If there is a negative t;(z), then either:

2.1. All elements of S~. are negative. In this case, F(z) is empty,
and the solution is _1_.

2.2. There is at least a positive Sg/; a pivoting step is executcd,
giving a new problem (S ' , t ' (z)) . The solution of the initial
problem is the same as that of the new problem in the old
context. In that case, keep track of D, the product of the
pivots.

3. If all t~(z) are positive, select the earliest row i such that one of S 0
or the coefficients in t~(z) is not integral, if no such row exists (ip~
particular if D = 1), the solution has been found; it is given by thc
first Ix[components of t(z). If such a row exists, let q be a new
parameter. Add:

0~< ((- D t , (z)) m o d D)-qD<~ D - 1,

to the context. Let m be the number of rows in S. Add to S the
new row m + 1 with the following coefficients:

SI,,, + i ~/= ((DSii) mod D)/D,

t,,,~ i (z) = (- ((- Dti(z)) mod D)/D) + q,

.

and start again at step 1.

In the remaining case, select a t~(z) whose sign is unknown; let x
and x_ be respectively the solutions of (S, t (z)) in the contexts

K z + h ~ N , ti(z) >~ 0,

and

K z + h ~ N , ti(z) < 0,

respectively. The solution of the initial problem is:

i f t i (z) > / 0 t h e n x + e l s e x .

This algorithm is guaranteed to terminate (1). The result is a multilevel
conditional expression whose predicates and leaves are affine functions of
the parameters. The new parameters like q above may be replaced by their
expressions as integer quotients of affine forms.

Dataflow Analysis of Array and Scalar References 51

This algorithm is not entirely deterministic; there are many equivalent
solutions to the same problem. Experience has shown that a few simple
heuristics suffice for selecting a well behaved solution. First of all, awfid
splitting (case 4) at all cost (e.g., by grouping the case t i (z) = 0 with thc
positive or negative case if the other case does not exist). If forced to split,
select a row with all coefficients negative, which implies that x = _L. This
algorithm has been implemented both in Lisp and C; these codes have been
used to run all examples in this paper.

A.2. The Lexical M a x i m u m

in many cases of interest, one has to compute a lexical maximum
rather than a minimum. Sometimes, a transformation from one problem
to the other is in evidence. We favor, however, the following systematic
procedure.

A l g o r i t h m M

Referring back to Eq. (28), introduce a new "very large" parameter m
and solve:

u = min ~ G(z, m)/Kz + h ~ N,

where

G(z, rn)= {yl0~<y~<m, - S y + S I m + t (z) ~ N } .

Compute 3 v = m I - u and prune the solution by replacing all tests in
whose predicate m has a positive coefficient by their true branch and con-
versely. A leaf in which rn occurs with a positive coefficient is associated to
a range of the parameters where F(z) is unbounded. This case will never
occur in the problems we are interested in.

It is easy to prove that v is the required maximum; it is also easy to
devise methods to do the pruning "on line," so as to keep the extra com-
putation to a minimum. For instance, in step (1) of Algorithm N, if m
occurs with a positive sign in ti(z), the ith line may be taken as positive.
We have found in practice that in cases where we need to compute both
the maximum and the minimum of the same set, both algorithms have
operation counts of the same order of magnitude, and neither of them is
systematically longer than the other.

3 1 is the vector all of whose components are I.

52 Feautrier

REFERENCES

I. Paul Feautrier, Parametric integer programming, RAIRO Rcchcr~'he Op~;ratiomlelh'.
22:243 268 (September 1988).

2. N. Suzuki and D. Jefferson, Verilication decidability of Pressburger array programs,
Proes. r Cons on TCS, Waterloo (1977).

3. David J. Kuck, The Structure of Computers and Computations, J. Wiley and Sons,
New York (1978).

4. D. A. Padua and Michael J. Wolfe, Advanced compiler optimization for supercomputers,
('A('M~ 29:1184-1201 (December 1986).

5. J. R. Allen and Ken Kennedy, Automatic translation of FORTRAN programs to vector
form, ACM TOPLAS, 9(4):491 542 (October 1987).

6. Thomas Brandes, The importance of direct dependences fi)r automatic parallelization,
ACM Int7. Conf on Supercomputing, St. Malo, France (July 1988).

7. Michael J. Wolfe and Utpal Banerjee, Data dependence and its application to paralJcJ
processing, IJPP, 16:137-178 (1987).

8. Nadia Tawbi, Alain Dumay, and Paul Feautrier, PAl": un parallt31iscur automatiquc pour
FORTRAN, Technical Report 185, MASI (1987).

9. L. G. Tesler and H. J. Enea, A language design for concurrent processes, S,/C(',
pp. 403 408 (1968).

10. J. C. Syre, D. Comte, and N. Hifdi, Pipelining, parallelism and asynchronism in the LAU
system, lnt 7. Conf. on Parallel Processing (! 977).

11. Jacques Arsac, La construction de programmes structurOs, Dunod, Paris (1977).
12. E. A. Ashcrofl and W. W, Wadge, Lucid, the Data-[low Programming Language, Academic

Press (1985).
13. J. R. Allen and Ken Kennedy, Automatic loop interchange, Proc. of the ACM SIGPLAN

Compiler Conference, pp. 233 246 (June 1984).
14. Patrice Quinton, Mapping recurrences on parallel architectures, 3rd IntL Con./'. on Super-

computing, Boston (May 1988).
15. Paul Feautrier, Asymptotically efficient algorithms for parallel architectures, ted.),

M. Cosnard and C. Girault, Decentralized Systems, pp. 273-284; IFIP WG, Vol. 10, No. 3,
North-Holland (December t989).

16. William Pugh, Uniform techniques for loop optimization, ACM Conf on Supercomputing,
pp. 341-352 (January 1991).

17. Lee-Chung Lu, A unified framework for systematic loop transformations, SIGPLAN
Notices, 26:28-38 (July 1991); 3rd ACM SIGPLAN Symp. on Principles and Practice o]
Parallel Programming.

18. A. V. Aho, R. Sethi, and J, D. Ullman, Compilers: Principh's, Techniques and 7'ools,
Addison-Wesley, Reading, Massachusetts (1986).

19. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck, An efficient method of computing static single assignment form, Proc. 16th ACM
POPL Conf., pp. 25-35 (January 1989).

20. Micah Beck, Richard Johnson, and Keshav Pingali, From control flow to dataflow, J. of
Parallel and Distributed Computing, 12:118-129 (1991).

21. Leslie Lamport, The parallel execution of DO loops, CACM, 17:83-93 (February 1974).
22. Francois lrigoin and R6mi Triolet, Supernode partitioning, San I)iego, Califi~rnia, Prm'.

15th POPL, pp. 319-328 (January 1988l.
23. Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew, An empirical study tm array subscripls

and data dependencies, lnl'l. Con/'. on Parallel Processing, Vol. II, pp. 145 152 (1989).
24. Brenda S. Baker, An algorithm for structuring programs, J. o/ the Af'M, 24:98 120

(1977).

Dataflow Analysis of Array and Scalar References 53

25. Zahira Ammarguellat, Restructuralion des programmes I,()RTRAN en vue de leur
parallhlisation, Ph.D. thesis, Universit4 P. el M. Curie, Paris (December 1988).

26. Zahira Ammarguellat, Normalization of Program ('ontrol I"low, Technical Report 885,
(' S R D (May 1989).

27. Pierre Jouvelot and Babak Dehbonei, A unified semantic approach for the veclorization
and parallelization of generalized reductions, ACM Press, I'roc,~'. o l t h c 3rd Int'l. ('tm/~ on
Supercomputing, pp. 186 194 (1989).

28. Paul Feautrier, Array expansion, A (' M Int'l. ('on.If on ~;upercr St. Malo (1988).

