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Dynamic storage allocation is a vital component of programming systems 
intended for multiprocessor architectures that support globally shared memory. 
Highly parallel algorithms for access to system data structures lie at the core of 
effective memory allocation strategies as well as solutions to other parallel 
systems problems. In this paper, we investigate four algorithms, all based on the 
first fit approach, that provide different granularities of parallel access to the 
allocator's data structures. These solutions employ a variety of design techni- 
ques including specialized locking protocols, the use of atomic fetch-and-C, 
operations, and structural modifications. We describe experiments designed to 
compare the performance of these schemes. The results show that simple algo- 
rithms are appropriate when the expected number of concurrent requests per 
memory is low and the request pattern is not bursty. Algorithms that support 
finer granularity access while avoiding locking protocols are successful in a 
range of larger processor/memory ratios. 
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1. INTRODUCTION 

Dynamic storage allocation is a vital component of programming systems 
intended for multiprocessor architectures that support globally shared 
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memory. As the number of processors in such machines grows significantly, 
the development of highly parallel allocation mechanisms becomes 
increasingly important. In this paper, we investigate four algorithms, all 
based on the first fit approach, ~1) that provide different granularities of 
parallel access to the allocator's data structures. We describe experiments 
designed to compare the performance of these four schemes. 

In essence, this is a concurrent data structure problem focusing on the 
parallel manipulation of the list that represents the available blocks of 
storage. There is a substantial body of literature, known primarily within 
the database community, that deals with specialized concurrency control 
algorithms for various search structures. ~2-7) The need for better perfor- 
mance in providing operating system services for tightly-coupled multi- 
processors suggests that similar techniques must be adapted for parallel 
access to system data structures (e.g. freelists, priority queues, and mapping 
tables). 

To our knowledge, the problem of parallel memory allocation has not 
been given the attention it deserves. Stone ~8) describes an algorithm for first 
fit allocation using the fetch-and-add instruction. This solution uses what 
are essentially read and write locks placed on the freelist at the granularity 
of individual blocks. It resembles two of our solutions in its use of the 
fetch-and-add instruction and locking granularity. However, it is based on 
a different list structure (unordered) and different lock semantics. The 
paper fails to specify the details of how to search and modify the queue of 
free blocks (not a trivial aspect of the problem). It also gives no measure 
of the increase in external fragmentation over sequential first fit or of the 
increased length of search paths that intuitively should result from conflicts 
between processes in this approach. These are some of the questions that 
our project addresses. A parallel version of the buddy system using fetch- 
and-add has also been developed/9) A study comparing the performance of 
three distinctly different allocation schemes on a small-scale multiprocessor 
is described in Ref. 10. Two of the algorithms considered allow absolutely 
no parallelism and so, the results are not very informative. In addition, we 
are interested in multiprocessing environments that scale to many more 
processors. Finally, Ford m) has proposed algorithms for dynamic memory 
management inspired by optimistic concurrency control techniques/12) 
Unfortunately, the performance analysis in Ref. 11 does not capture what 
the dynamic behavior of the optimistic allocation scheme might be on a 
medium to large-scale parallel processor. 

The model of computation assumed in our algorithm design is a 
shared memory MIMD multiprocessor with atomic fetch-and-~ instruc- 
tions. ~13) This model is fairly general; it can encompass architectures with 
different memory/processor configurations (separate memory modules or 
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memories residing at processor nodes) and different communication 
technologies (busses or switching networks, with or without combining). 
Concrete examples of machines that satisfy these requirements include the 
BBN Butterfly t14) and the IBM RP3. ~15) 

The target environment for experimental evaluation of our algorithms 
is the Butterfly family of multiprocessors built by Bolt, Beranek, and 
Newman. Experiments have been run on 64 nodes of the 120-node 
Butterfly ~t4) at the University of Rochester and on the 64-node Butterfly 
Plus C16) at Duke University. These machines are classified as shared 
memory MIMD nonuniform memory access (NUMA) architectures. The 
two designs are basically similar: A system consists of up to 256 processor 
nodes, based upon MC680x0 microprocessors, connected by a switching 
network that provides logarithmic time communication between any two 
processors. All memory in the machine resides on the individual nodes, but 
any processor can access any memory location through the switch. The 
major difference between the two designs lies in the memory architecture; 
in particular, the Butterfly Plus has a much wider gap between local and 
remote memory access times than the original Butterfly. 

The motivation for this work grew out of experience with the Uniform 
System package, (17) the most heavily used programming system for the 
Butterfly. The Uniform System provides tools for process management and 
allows processes to share a large common address space. It provides an 
application program with mechanisms to spread its sharable data 
throughout the machine. Within the Uniform System approach, there is 
usually only one process per processor. Shared storage is obtained through 
calls to the memory allocator which, at the time this project began, did not 
allow any concurrent access. Thus, one of the goals of this work has been 
to demonstrate the potential benefits of an allocation scheme that offers 
more parallelism and influence the development of future systems. In fact, 
recent releases of the Uniform System have adopted an improved algorithm 
very similar to the one that our experiments show should be the best in this 
environment. 

In the next section, we present each of the four different algorithms 
under consideration. This includes details of the freelist structure used in 
those solutions and pseudocode for the more complex algorithms. In 
Section 3, we describe the design of the experiments used to evaluate the 
performance of these algorithms and the results of those experiments. 
Finally, we conclude with observations about algorithm design techniques 
for this particular class of problems. 
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2. A L G O R I T H M S  

In this section, we present a number of different approaches to parallel 
first fit memory allocation. The interface to the memory allocator consists 
of two calls, Allocate and Deallocate. In response to an allocation request, 
the system gives the caller a pointer to a contiguous region of memory of 
the exact size requested. Deallocation returns a region of memory to the 
freelist used by the allocator. The goal of our algorithms is to support 
concurrent allocate and deallocate requests generated by the multiple 
processors sharing the memory pool. 

In order to guide and evaluate alternative design decisions, it is helpful 
to understand the usage patterns of these calls. Assumptions made about 
the relative frequency of use determine which aspects of the operations are 
important to optimize. The distribution of the sizes of requested blocks also 
influences design decisions, especially with regard to the storage of data 
used by the allocation routines to describe a free block and maintain the 
freelist structure. Typically, such bookkeeping information requires several 
words of storage. If allocation requests tend to be large, then this informa- 
tion can be stored within the free blocks rather than in an auxiliary data 
structure. 

We have not yet done a detailed study to characterize actual usage 
patterns. However, we have informally surveyed applications programs 
that have been developed at Duke and the University of Rochester (e.g. 
circuit simulation, image analysis, and numerical analysis code) and found 
that applications programs tend to have either a few very large allocations 
(e.g. an entire shared matrix) or, more commonly and successfully, several 
moderate size allocations (e.g. the rows of a scattered matrix, < 2 K  bytes). 
By contrast, programs designed to experiment with parallel algorithms 
contain many allocations under 64 bytes (e.g. instrumentation variables, 
linked list records, and locks), but these examples are not considered typi- 
cal. The application code serves as our model for the distribution of request 
sizes, with emphasis on the moderate range. Until the nature of the true 
workload of a particular system is discovered, any recommendations about 
which algorithms are to be preferred may turn out to be inappropriate for 
that environment. 

For this study, we focus on usage patterns within a single multiprocess 
application. One commonly observed pattern is for an application to make 
numerous allocation requests during its execution and then release memory 
all at once at termination. This implies that deallocations (if done 
individually) will come in clusters and may significantly compete among 
themselves for access to the freelist; whereas allocations may be spread over 
a longer period of time. This clustered pattern of allocations and dealloca- 
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tions has been observed in most Uniform System applications. This may at 
least partially be an artifact of early implementations of the Uniform 
System in which freeAIl was the only construct available for deallocating 
storage. The prevalence of this style implies that it may be worthwhile to 
consider ways o f  reducing the degree of interaction among concurrent 
deallocate requests (e.g. deferring the coalescing of adjacent free blocks). 
Allocations in practice also often occur in one burst at initialization time. 
For  these patterns, allocation and deallocation phases rarely interfere with 
each other. 

A likely alternative pattern is to have an equal number of allocate and 
deallocate requests scattered throughout the execution of the program 
(with the obvious constraint that space must be allocated before it can be 
released). In this case, there is no basis upon which to optimize a particular 
interaction between operations, but concurrency between allocation and 
deallocation operations is more important than in the previous case. 

2.1 Freel ist  Data  S t r u c t u r e  

Available memory is represented as a set of linked lists. Each list 
represents a pool of contiguous memory locations within a single memory 
module from which allocations can be made. The nodes of these list struc- 
tures describe blocks of contiguous free memory and they are ordered by 
address of the starting location of the block. Initially, each list consists of 
a single large block. Simple calculations and comparisons on addresses can 
be used to find neighboring blocks and decide whether two free blocks are 
adjacent. Associated with each block is header information including size, 
the next pointer, and whatever additional bookkeeping is required by a 
particular allocation scheme. The next field of the last block is nil. For 
most of this discussion, the header data are assumed to reside within the 
free block itself. Under this assumption, the nodes of the freelist are 
synonymous with the blocks of available memory. This implies a minimum 
length allocation unit that is larger than one word. The freelist has an array 
of designated nodes called free. Each element of free appears to be a block 
with size of zero and physical location not adjacent to any location in the 
memory pool it controls. These characteristics assure that it can never be 
allocated or merged with another block. Figure 1 gives an example of a 
freelist with three lists, ten free blocks (white) and eight allocated regions 
(shaded). 

The purely sequential procedures for the allocate and deallocate 
operations serve as a basis for the parallel solutions being developed. These 
sequential operations are briefly outlined as follows. 

The procedure for  allocating a region of size n is to choose a list and 
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Fig. 1. Freelist data  structure. 

search it until a block of sufficient size or the end of the list is encountered. 
In this study we assume that the choice is random although an actual 
system may support other policies for choosing a list (e.g. allowing the user 
to explicitly control the site at which an allocation attempt should be made 
or trying to scatter allocations as evenly as possible throughout the 
machine). 

In our approach, if the request is not satisfied within the randomly 
chosen list, a retry is performed using another list. At each node of the 
structure, a routine called TryToAlloeate is executed which returns a 
pointer to an appropriately sized chunk if one can be cut off the end of the 
current block. If the entire free block is needed (i.e. size of current block 
is n), then its node is removed from the freelist by DeleteAfler. Figure 2 
shows two allocation requests directed to list i. The initial state for the first 
call (i.e. a request for 5 units) is given as Fig. 2a which is the same as 
freer0] of Fig. 1. Figure 2b shows a chunk of size 5 removed from block A 
leaving a block of size 5. Next, suppose a request for 20 units is made. 
Figure 2c shows the TryToAlloeate routine leaving a block of size zero 
when the entire block B is required and then a call to DeleteAfter removes 
the node from the list. 

To deallocate memory, the appropriate list is searched for the point in 
the ordered list where the newly freed block should be reincorporated. If 
the new block is adjacent to the following free block, they are merged by 
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s Allocate (20, addr) : TryToAllocate (B, 20, addr); De[eteAfter (A, B) 

Fig .  2. A l l o c a t i o n  r e q u e s t s .  

deleting the following block (DeleteAfler) and continuing with a combined 
block. An attempt is made to append the new block on the end of the 
preceding block (TryToAppend). If that is unsuccessful, the new block is 
inserted as a separate node in the list (lnsertBetween). Figure 3 illustrates 
a sequence of deallocation requests starting from the portion of the freelist 
given by Fig. 3a which shows the block X being released by the first call. 
In Fig. 3b, X has merged with the following free block, C. The procedures 
DeleteAfter and InsertBetween are involved in reaching this state. Figure 3b 
also shows the next block to be released, block Y. Figure 3c gives the state 
after appending Y onto block A (TryToAppend). Finally, block Z is to be 
freed. This block can not be merged with either of its neighboring free 
blocks and is inserted as a separate node in the freelist of Fig. 3d 
(InsertBetween). 

Each of our parallel solutions entails the specification of the six 
procedures mentioned, namely Allocate, Deallocate, TryToAIlocate, 
TryToAppend, DeleteAfter, and InsertBetween. 

2.2. Monolithic Lock Approach 

The simplest approach to memory allocation on a multiprocessor is to 
perform allocation and deallocation serially. This is the approach used in 
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b) Deallocate (X,5) : DeleteAfter (B, C); InsertBetween (B, D, XIC) 
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free[i] i 

A B C Z D 
c) Deallocate (Y,5) : TryToAppend (A, Y) 

size: 15 ~ size: 20 ize: 10 3 ize: 10 nil 

A B C Z D 

d) Deallocate (Z,3) : InsertBetween (C, D, Z) 

Fig. 3. Deallocation requests. 

the original implementation of the Uniform System. In essence this is like 
placing a single exclusive lock on the freelist as a whole for the duration of 
the operation. Another interpretation is that the allocation routines are 
protected as entries into a monitor. This solution has been included 
primarily for comparison purposes and is referred to as algorithm 1. The 
changes to the sequential procedures are minimal, so we do not need to 
present pseudocode. Basically, the first statement in each of the procedures, 
Allocate and Deallocate, exclusively locks the freelist structure and the last 
action performed unlocks it. 

An obvious variation on this scheme is to exclusively lock each 
individual sublist separately. The lock is placed after calculating the index 
of the list to be used. This approach (called algorithm 2) spreads out com- 
petition for locks. For allocation, the choice of list can be influenced by the 
length of waiting time for the lock at a particular candidate list. If the 
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number of processes making memory requests and the number of sublists 
from which memory may be allocated are equal, the expected number of 
users of a given sublist will be one and most lock requests will be granted 
immediately. This is the level of concurrency apparently called for in the 
Uniform System and it is essentially the approach that has been incor- 
porated into recen't releases. 

2.3. Algor i thms Based Upon Finer Granular i ty  of  Access 

The two solutions presented in this section are based on techniques 
developed for concurrent access to database index structures such as 
B-Trees and hash tables. These techniques include specialized locking 
protocols, the use of atomic fetch-and-~ operations, and structural 
modifications that reduce the need for locking. Locks are placed on 
individual nodes of the data structure. Thus, processes working in different 
regions of the same sublist (i.e. involving disjoint sets of nodes) can coexist 
without locking conflicts. The motivation behind these node granularity 
algorithms is to support higher degrees of concurrency where there may be 
many processes operating with a sublist. 

Actually, these solutions go somewhat further than just reducing the 
granularity of locking and permit limited concurrent sharing of individual 
nodes. A common strategy in these solutions is to allow processes which 
are searching the freelist structure to use information in nodes concurrently 
accessed by other searching processes. Thus, efforts to find and reserve a 
large enough block of memory (in Allocate) or to locate the appropriate 
place in the list to reinsert a range of addresses (in Deallocate) are perfor- 
med either with no locking or with compatible (read) locks. Not until there 
appears to be a need to change links between nodes does a process attempt 
to exclude other processes from the one or two nodes involved in structural 
modifications (i.e. by placing incompatible locks while inserting or deleting 
a node). The two solutions differ in the mechanisms used to ensure the 
structural integrity of the freelist. 

The first node granularity algorithm (algorithm 3) uses two kinds of 
locks (read-locks and write-locks) and employs a technique that involves a 
particular pattern of lock requests and releases called lock-coupling. In a 
lock-coupling protocol, a process continues to hold a lock on one compo- 
nent of the structure until it acquires a lock on the next component 
(assuming some ordering) and then the previous component may be 
unlocked. The idea behind lock-coupling is that the presence of a process 
moving through the data structure can always be detected by other pro- 
cesses via incompatible lock requests. This property can be used to ensure 
that structural information needed by a searching process does not become 
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invalid or inaccessible as a result of a concurrent update. Thus, a process 
wanting to delete a node from the freelist (possibly because the entire block 
has been allocated) must request a write-lock on the predecessor of the 
node to be deleted and then on the node itself. This forces the removal of 
the node to be delayed until processes relying on old information (and 
holding read-locks) have moved on (releasing locks as they leave). The 
write-lock also blocks processes just arriving in this vicinity until the new 
structural state is in place. 

The overhead of placing a read-lock at every node and the delays 
caused by the presence of incompatible locks are the costs incurred by 
searching processes in the lock-coupling approach. The final solution (algo- 
rithm 4) eliminates the need for lock-coupling by modifying the freelist data 
structure to provide temporarily valid paths through deleted list nodes. The 
key idea is to remove the header information from the allocatable memory 
space and maintain a separate linked list structure. This permits a block of 
memory to be released for use by the requesting process while temporarily 
retaining the header node so that its next pointer can provide a path back 
into the freelist. 

Soution 4 avoids all locking overhead during the searching phase. 
Since there is no mechanism to prevent processes that hold pointers to a 
node which is being deleted from proceeding with the access, the node 
remains available and acts as a detour on the search path. However, in 
order to do modifications, structural information used must be correct. A 
pointer that is acquired without a lock can not be trusted and must be 
verified, once a lock is acquired, before structural modifications can be 
made. Deleted nodes are given a size field of zero to prevent allocations or 
adjacency tests from succeeding since they no longer represent a block of 
free space. 

Garbage collection of deleted nodes is delayed until there are no pro- 
cesses that might possibly still need the structural information contained in 
them. The mechanism used to delay garbage collection ensures that none 
of the nodes present when a process begins a search pass through a sublist 
can disappear until it completes that pass, whether or not that process 
actually needs the nodes deleted in the meantime. 

2.3.1. Intranode Operations 

Both of these solutions use essentially the same procedures, 
TryToAlloeate and TryToAppend, for changing the size of a node in the 
freelist. These operations use the fetch-and-add and fetch-and-store instruc- 
tions applied to the size field describing the block to allow concurrent 
attempts to add or remove space in it. Thus, explicit locks are not needed 
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for concurrently reserving space or appending adjacent space onto the end 
of an existing free block. 

The key idea underlying these algorithms is to atomically reserve some 
portion of the block by decreasing the size field using the fetch-and-~ 
instructions. The TryToAllocate procedure reduces the size field by the 
amount of the request and is considered successful if it produced a non- 
negative size value in that atomic step. TryToAppend atomically makes the 
size field negative to prevent concurrent operations upon the size value 
from being successful. This allows a nonnegative value returned from the 
atomic operation to be considered the stable and true size. Then, if the old 
block proves to be adjacent to the new block, the size of the combined 
block can be accurately calculated. 

The one subtle point in the functioning of these routines is the restora- 
tion of the size field when the routine is unsuccessful. The possible values 
that the size field can assume are classified as valid and invalid values 
(defined slightly differently in the two solutions). The fetch-and-r opera- 
tion may transform the contents of the size field from a valid value to an 
invalid value, from an invalid value to another invalid value, or from one 
valid value to another valid value (this last possibility occurs only in 
TryToAilocate). The unique process that made the valid to invalid 
transition among the set of all processes concurrently manipulating the size 
of a node has the sole right to restore the size field to the last valid value 
seen (i.e. the truth). This is done by a direct assignment. The key assertion 
used in arguing for the correctness of the manipulations on the size field is 
that, at any point in time, there is at most one process authorized to 
perform such an assignment on a node. This approach avoids some race 
conditions which could occur if each process that produced an invalid 
value were to apply an inverse operation to undo its own contribution to 
the invalid size. 

2.3.1.1. Code and Discussion. The pseudocode procedures follow. 
They are presented in the form used by solution 3. The small adjustments 
made for solution 4 are described later. In this version, the valid size values 
are defined as "greater than zero." 

int TryToAllocate(B, request, N) 

node *B; /*pointer to freelist node*/ 

int request; 

node **N; /*pointer to allocated memory block*/ 
{ 

int oldsize; 
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/*if it doesn't look promising, don ' t  touch B->s ize* /  

if (B->size < request) return FAIL; 

/* Atomically decrease B's size */ 

oldsize ~ FetchAndAdd(13->size,-request);  

/* If there was sufficient space, talc. starting address 

of region to be given to caller */ 

if (oldsize > ~  request) { 

*N ~- B + (oldsize - request); 

return SUCCESS; 

} 

/* Insufficient space, we made the size invalid in trying, 

restore size */ 

if (0 < oldsize) B->s ize  ~--- oldsize; 

return FAIL; 

} 

int TryToAppend(B, N) /* N onto B */ 

node *B, *N; 

{ 
int  oldsize; 

/* If apparently not adjacent, don' t  touch B's size */ 

if (B -4- B->s ize  ! ~  N) return FAIL; 

/* Atomically decrease B's size */ 

oldsize : FetchAndStore(B->size,  -1); 

/* If the two blocks" were adjacent when we tried, 

merge them */ 

if (B + oldsize ~ N) { 

B->s lze  ~ oldsize -4- N-:>size; 

return SUCCESS; 

} 
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/* if they weren't adjacent, 

we made the size invalid in trying, restore size */ 

if (0 < oldsize) B->size ~ oldsize; 

return FAIL; 
} 

After TryToAllocate reduces the size by the requested amount in 
line 2, testing the previous size value that is returned by the fetch-and-add 
instruction indicates whether or not there is sufficient space available 
(line 3). The pointer given to the caller in the case of a successful allocation 
is based on the old size returned from the fetch-and-add (line 4). It is 
possible for multiple concurrent requests to succeed within the same large 
block. If there is not enough space, the fetch-and-add results in a negative 
value being stored in the size field and the attempt fails. A TryToAllocate 
call that produces a negative value when the previous value was greater 
than zero is responsible for restoring the original size (line T). Other 
concurrent processes that negate the size field still further (even those with 
smaller requests that could have been allocated space from this block) 
simply fail and rely on the first unsuccessful attempt to fix the size field 
since they have no information about the correct size. A TryToAIlocate call 
that fails because of seeing an invalid size field may cause the request to 
search farther down the freelist than it would under sequential computa- 
tion. The initial test (line 1) to see if the size of the block is greater than 
the request serves to avoid unnecessarily producing a negative value of size 
which could interfere with more promising concurrent requests. In all prac- 
tical situations, this test represents a performance enhancement. However, 
without it, one can construct a pathological execution sequence of only two 
processes involving one process with a request too large to satisfy that 
denies another process with a small request from ever seeing free memory 
as the two processes proceed together in searching the freelist. 

TryToAppend uses the fetch-and-store instruction to force the size field 
to take on a negative value (line 2). The first test for adjacency of blocks 
reduces interference with the size field by processes with poor prospects of 
successfully appending (line 1). Note that an execution sequence can be 
constructed such that more than one process executing TryToAppend can 
get past this point in the code. However, at most one process emerges from 
the fetch-and-store having seen a positive value for the old size and it either 
appends if the blocks are still adjacent (line 4) or it restores the old size if 
they are not adjacent (line 7). If the size field is negative when the fetch- 
and-store is executed, the TryToAppend call fails and an opportunity to 
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merge blocks may be missed. Thus, there is potentially greater fragmenta- 
tion because of concurrency. However, this situation arises when there are 
parallel TryToAliocate calls (either by directly making the size value 
invalid or by enabling a second TryToAppend call to get past line 1). In 
usage patterns with distinct allocation and deallocation phases, this inter- 
action is not a serious problem. 

Because of the process interactions mentioned earlier, allocation algo- 
rithms using these routines are not strictly first fit and are not serializable 
in a traditional sense. 

2.3.2. Algorithm with Read-locks and Write-locks 

In this lock-coupling solution, two different lock types may be used so 
that processes can share a node by placing locks on it which are com- 
patible. These locks are used for controlling interactions among processes 
that involve structural modifications of the freelist. The goal is for a process 
to hold the fewest locks and the least restrictive locks possible at each step 
of the operation. 

The basic idea behind the Allocate and Deallocate procedures is to 
employ lock-coupling with read-locks from each node visited during the 
search of the freelist to its successor. The structure modifying procedures, 
DeleteAfter and InsertBetween, use write-locks for two purposes. Whenever 
the next pointer of a node is to be modified, the calling process must hold 
a write-lock on that node. The write-lock requested on a node being 
deleted is meant to ensure that other processes attempting to access that 
node have left before it is allowed to disappear (and the header information 
in it destroyed). Thus, the lock-coupled read-locking performed in Allocate 
and Deallocate interacts with the write-locking in DeleteAfter and 
InsertBetween to ensure that the effects of concurrent updates are seen. 

The following table describes the compatibility relationships between 
lock types. When a lock request is made on a node of the freelist, the exist- 

T a b l e  I. 

Lock Request Existing Locks 

Read-Locks 
& no waiting 
Write-Locks 

Write-Lock 
or waiting 
Write-Lock 

Read-Lock yes wait 
Write-Lock wait fail 
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ing locks held by other processes and whether there is a waiting write-lock 
request are inspected to determine if the new request will be granted 
(possibly after waiting for incompatible locks to clear) or will fail. 

There are five operations available for manipulating locks: ReadLock, 
ReadUnlock, WriteLock, WriteUnlock, and Purge&WriteLock. The 
semantics of ReadLock and ReadUnlock are obvious from the com- 
patibility table. The WriteLock procedure upgrades the calling process's 
existing read-lock to a write-lock when there are no other processes 
holding locks on the node and WriteUnlock downgrades the lock back to 
a read-lock. Purge & WriteLock preempts any write-lock request that is 
waiting for read-locks to be released and makes a new write-lock request 
on behalf of the calling process. 

These locking semantics are more complex than those usually 
associated with read-locks and write-locks. A write-lock request that con- 
flicts with an existing lock may wait (blocking the process) or fail (return 
without acquiring the lock). In addition, a waiting write-lock request may 
be converted into one that returns failure, even after a substantial time 
spent waiting. These semantics capture particular interactions between 
processes. Allowing only one process to wait on a write-lock request for 
read-locks to clear (causing other write-lock requests to fail) prevents a 
deadlock situation from developing when multiple processes, each already 
holding a read-lock, want to modify the same link. The preemption of wait- 
ing write-lock requests in Purge & WriteLock favors a more urgent request 
over a less important one. 

2.3.2.1. Code and Discussion. The pseudocode and a more 
detailed discussion of the interactions among processes are given here. 

int Deallocate(N, size) 

node *N; 

int size; 
{ 

node *F, *Fnext; 

unsigned searching; 

int i; 

N->size = size;/*build header info within block*/ 

i = ChooseList(N); 
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19 

2O 
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22 

23 

24 

25 

26 

while (TRUE) { 

searching ~ TRUE; 

F ~ &free[i]; 

ReadLock(F); 

/* Find the point to reinsert N into the free list */ 

while (searching && F->nex t  !~--~- nil) { 

Fnext ~-~ F->next ;  

if (Fnext > N) { 

searching ~ FALSE; 

/* Attempt to merge N with the following block */ 

if (N + N->size ~ Fnext) 

if (DeleteAfter(F, Fnext) = =  SUCCESS) 

N->size -~- N->size + Fnext->size; 

} 
else { 

ReadLock(F-> next); 

ReadUnloek(F); 

F ~ Fnext; 

} 
} 

/* Only F is read-locked at this point */ 

/* Attempt to merge N with the preceding block */ 

if (WryToAppend(F, N) = =  SUCCESS) { 

ReadUnlock(F); 

return SUCCESS ; 

} 

/* Insert N into the list */ 

if (InsertBetween(F, F->next ,  N) = =  SUCCESS) return SUCCESS; 

} 

int Allocate(size, N) 

int size; 

node **N; 

{ 
node *F, *Fnext; 
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1 while (TRUE) { 

2 F ~--- &free[RandomIndex0]; 

3 ReadLock(F); 

4 while (F->next ! =  nil) { 

5 Fnext ~--- F->next;  

6 if (TryToAllocate(Fnext, size, N) ~---= SUCCESS){ 

/* N is a proper suffix o fF->nex t  */ 

if (*N f~- Fnext) { 

Read Unlock(F); 

return SUCCESS; 

} 
/* If the entire F->next  block was allocated, 

remove it from the free list */ 

if (DeleteAJ'ter(F, Fnext) = ~  SUCCESS){ 

ReadUnlock(F); 

return SUCCESS; 

} 
/* Undo the effect of TryToAllocate 

and go on down the freelist */ 

15 Fnext->size ~ size; 

16 } 
17 ReadLock(F- > next); 

18 ReadUnlock(F); 

19 F ~ Fnext; 

20 } 
21 ReadUnlock(F); 

22 } 
} 

The Allocate procedure completes the picture of  process interactions 
based on the size field of  a block. In this solution, a size field of  zero is 
interpreted as invalid by the TryToAllocate and TryToAppend routines. 
For  example, a TryToApgend call that  reads a zero in the fetch-and-store 
instruction does not  find the blocks adjacent and does not  restore the old 
size. A size of  zero indicates that a process executing the Allocate procedure 
has reserved the entire block and is now responsible for the size value. The 
block is either being deleted or the size is being restored within Allocate 

7 

8 

9 

10 

11 

12 

13 

14 

828/17/4-2 
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(line 15). In each of the three cases in which an ass ignment  of a part icular  
value is made  to the size field (as opposed  to a fetch-and-q~), the existing 
size must  be invalid and there is exactly one process capable  of mak ing  the 
change (i.e. the one that  saw the last valid value). 

int DeleteAfter(pred, del) 

node *pred, *del; 

{ 
1 if (WriteLoek(pred) = =  FAIL) 

2 return FAIL; 

3 ReadLock(del); 

pred->next ~ del->next; 

5 WriteUnlock(pred); 

6 Purge&WriteLock(del); 

7 WriteUnlock(del); 

8 ReadUnlock(del); 

return SUCCESS; 

} 

int InsertBetween(pred, suce, ins) 

node *pres, *succ, *ins; 
{ 

if (WriteLock(pred) = =  FAIL) { 

ReadUnlock(pred); 

return FAIL; 
} 

ins->next = suee; 

pred->next ~ ins; 

WriteUnlock(pred); 

ReadUnloek(pred); 

return SUCCESS; 
} 
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Consider the interaction between one process executing DeleteAfter 
(call it process d) and another process during its searching phase 
(process s). Let the node to be deleted be referred to as node N and its 
predecessor be node P. Imagine that s holds a read-lock on node P and has 
already read its next pointer which leads to N. The deleting process, d, 
must write-lock P before modifying its next pointer and making the value 
that s saw obsolete. The granting of this lock request is prevented by the 
read-lock held by s. That lock is not released until s has either completed 
its requested operation using N, failed trying to write-lock P while d's lock 
request is waiting, or acquired a read-lock on N to continue its search. 
Thus, the pointer remains valid as long as it is needed. Similarly, d places 
a read-lock on N to protect the validity of its next field while modifying P's 
next field to point to N's successor. At this point N can only be seen by 
processes that acquired the pointer to it and locked it before it was 
removed. Finally, d acquires and then immediately releases a write-lock on 
N before returning from DeleteAfter to ensure that all processes relying on 
N's contents and holding read-locks on it have moved on. This gives d 
exclusive access to N. 

The interaction between a searching process and a process executing 
lnsertBetween is relatively simple. As in the previous case, the inserting 
process must acquire a write-lock on the predecessor node before changing 
its next pointer and this conflicts with read-locks held by searching 
processes depending on this value. 

Structural modifications involving the same node in the list (i.e. as an 
argument to DeleteAfter or InsertBetween) are applied serially because of 
the locking protocol. Consider the case of two processes both trying to 
insert a block at the same place between P, the intended predecessor node, 
and N, the successor. Both of these processes already hold a read-lock on 
P and now make a request for a write-lock on P. Assuming no other 
processes in the vicinity of P, one of these processes waits for the write-lock 
because of the other's read-lock. The second write-lock request (by the 
other process) fails and causes the insertion attempt to be aborted, 
releasing the read-lock. This prevents a deadlock situation and avoids the 
need to reevaluate the proper placement of the block to be inserted once 
a writeqock has been acquired. Two attempts to delete the same node can 
arise because of one process doing an allocation of the exactly the size of 
the block in question and another process deallocating and trying to merge 
an adjacent block. As before, the second write-lock request on the pre- 
decessor fails. Similar arguments hold for mixing processes making 
concurrent calls to InsertBetween and DeleteAfter at node P. At most one 
write-lock request succeeds. 

Interactions involving neighboring nodes are also interesting. Consider 



322 Ellis and Olson 

three directly linked nodes in the freelist, A, B, and C, such that the next 
pointer of node A leads to B and the next pointer of B leads to C. There 
are two processes, d and u. Process d is trying to delete node B by 
executing DeleteAfter(A,B). It holds a read-lock on A prior to the call. 
Imagine that d has successfully gained the write-lock on A, the read-lock 
on B, and has changed A's next pointer, making B unreachable through the 
freelist. Process u is trying to perform some update after node B (i.e. either 
DeleteAfter(B,C) or InsertBetween(B,C,X)). It holds a read-lock and has 
requested a write-lock on B which is waiting on d's read-lock. Process d 
now needs to momentarily write-lock node B to ensure that there are no 
processes still requiring its header information. Unfortunately, there is 
already a waiting write-lock on B. Since the deletion operation is in a sense 
committed to finishing, preemption is used to prevent deadlock (i.e. the use 
of the Purge & WriteLoek operation). Process u's write-lock request that 
was waiting now fails, eventually leading to the release of the read-lock 
on B. 

2.3.3, Algorithm with Separate Header Lists 

The lock-coupling of the previous solution is used to ensure that struc- 
tural information needed by a searching process does not become invalid 
or inaccessible as a result of a concurrent update. An alternative, which 
eliminates the locking overhead experienced by searching processes at 
every node, is to permit a degradation in the quality of the list structure 
seen by processes. Processes can be allowed to follow obsolete pointers if 
deleted nodes remain available and provide information to help such "lost" 
processes find a path back into the freelist. A problem with retaining 
deleted nodes when they reside within the free memory blocks them- 
selves is that a fully allocated block can not be immediately used by the 
requesting process. This suggests the strategy of separating the header 
information from the allocatable memory space. A portion of memory is 
now reserved for headers and not available for allocation. As a side effect, 
smaller allocation units are now possible since blocks do not have to be 
large enough to accommodate all of the header information. The new 
problem of allocating and deallocating header nodes is much simpler than 
the original allocation problem because they are of a fixed size and not 
constrained by address ordering. Figure 4 shows the freelist structure with 
the separate header space. Each header node includes an address field 
containing a pointer to the starting location of the free memory block. A 
header node that has been deleted from the freelist (~.e. it represented a 
block that has been either allocated or merged into another block) but is 
still available to searching processes is given a size field of zero. This 
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Fig. 4. Freelist with separate headers. 

prevents allocations (in TryToAllocate) and adjacency tests (in TryTo- 
Append) from succeeding. Zero is now considered a valid size. The previous 
size is restored on unsuccessful TryToAllocate and TryToAppend calls if it 
was greater than or equal to zero and the new value is negative. All of the 
memory in a block can be allocated even when the at tempt to delete the 
header node does not succeed. Thus, nodes with a size field of zero can be 
left in the actual freelist as well as among the deleted, but still accessible, 
nodes. 

This solution uses two different kinds of locking. The first type of lock 
is a write-lock placed on individual header nodes. These write-locks are 
used to control interference among the structure modifying operations. In 
this solution, a process places no locks on individual header nodes until it 
tries to change the structure of the sublist it has chosen to search. A 
searching process does not use incompatible read-locks to detect the 
presence of another process performing DeleteAfter  or InsertBetween in its 
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immediate vicinity. The data structure can change between the time a 
searching process reads a next pointer in a node and the time it acts upon 
this information by accessing the indicated node. A newly inserted node 
may be skipped or the destination may already be deleted by the time the 
process arrives. Structural changes, however, must be based on an accurate 
view of the current state. This means that a process attempting to modify 
the structure must reassess what the current structural relationships 
actually are after acquiring its write-locks. 

The operations available for manipulating write-locks are WriteLock 
and WriteUnlock. Calls to WriteLoek can fail for one of two reasons: the 
node may be already write-locked by some other process (i.e. write-locks 
are incompatible with other write-locks) or it may have been deleted. An 
attempt to place a write-lock on a node implies that the node is to be 
involved in some structural change which is obviously inappropriate for a 
node that has already been deleted from the list. 

The second type of locking actually represents a mechanism for 
triggering garbage collection of deleted header nodes. This mechanism may 
be implemented by reference counts associated with certain components of 
the sublist structure; however, locking terminology captures the interac- 

available block header list 

Fig. 5. 

linked lists of removed headers 
awaiting garbage collection 

Details of versions. 
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tions in a concise way. Thus, we define two lock types that are employed 
at the granularity of a whole sublist: self-compatible read-locks (i.e. totally 
compatible with the read-locks of other processes) and exclusive GC-locks. 
These locks are used to protect a version of the sublist from garbage collec- 
tion. Specifically, none of the header nodes present when a process acquires 
its read-lock on the sublist can disappear until after that lock is released. 

These versions are represented by lists of nodes that have been 
removed from the freelist and are waiting to be destroyed. Two lists are suf- 
ficient. One represents the current version which consists of very recently 
deleted nodes (i.e. those deleted from the freelist structure since this list was 
designated current). Read-lock requests are made to the current version. 
Thus, each process is associated with the version which was current at the 
time it acquired its read-lock. The other (passive) list contains nodes that 
will be freed by a background GarbageColleetor process as soon as all 
processes holding read-locks on the old version release them (i.e. when a 
request to place a GC-lock can be granted). Once the deleted nodes on the 
passive garbage list have been reclaimed, it is again possible to swap the 
roles of two lists. This approach is similar to the garbage collection 
mechanisms in Refs. 18 and 19. Figure5 shows the data structure 
associated with versions, including the lists of header nodes awaiting 
garbage collection. 

Note that the write-locking protocol is distinct from the read-lock/ 
GC-lock scheme. They are locking different kinds of things in the data 
structure and there are no compatibility constraints between them. 

2.3.3.1. Code and Discussion. The procedures, TryToAlloeate and 
TryToAppend, must be modified slightly for this new freelist structure. In 
particular, the addresses of the freelist nodes and the memory blocks they 
describe are no longer the same and address calculations are based on the 
address field of the header node. The substitutions for the designated lines 
in the previous code bodies are given here: 

(line 0 in TryToAlloeate) 

block **N; /*pointer to memory block*/ 

(line 4 in TryToAllocate) 

*N = 13-> address + (oldsize- request); 

(line 7 in both TryToAlloeate and TryToAppend) 

if (0 < =  oldsize) B->size = oldsize; 

(line 1 in TryToAppend) 

if (B->address + B->size != N->address) return FAIL; 
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(line 3 in TryToAppend) 

if ((oldsize!=0) && (B->address + oldsize = =  N->address)) { 

There are three operations available for manipulating the two lock 
types associated with garbage collection: ReadLoek, ReadUnloek, and 
GCLoek. The call to ReadLoek returns a pointer to the current version. 
This number is supplied subsequently as an argument in the matching 
ReadUnloek call. ReadLoek always succeeds since it is directed at the 
current version and there are no incompatible locks held on this version. 
It essentially increments .a reference count ( f ree[ i ] .current~readcount)  
within a critical section. GCLoek is directed at the passive version and its 
primary function is to wait until all the read-locks held on this version are 
released. No new read-lock requests are made for a version that could have 
an outstanding GC-lock request. Therefore, there is no need to hold a 

GC-lock and so, no need to explicitly release one. The GCLoek procedure 
essentially waits until the reference count (free[-i].current ~ other--* read- 
count) is zero. 

For the moment, we will ignore the issue of garbage collection and 
assume that deleted header nodes are always available if a process attempts 
to access one. The pseudocode procedure bodies for Allocate and 
Deallocate are given here. ReadLoek and ReadUnloek calls are the only 
evidence of garbage collection appearing in these routines. 

int Deallocate(n, size) 

block *n; 

int size; 

{ 
node *F, *N; 

int i; 

version *myversion; 

1 i = ChooseList(n); 

/*allot and init a new header for block n*/ 

N = GetHeader(i); " 

3 N->size = size; 

4 N->address = n; 

5 while (TRUE) { 
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6 

7 

8 

9 

10 

F - ~  &free[i]; 

ReadLock(F, &myversion); 

if (DeallocPass(N, F, myversion, i) = - ~ -  SUCCESS) 

return SUCCESS; 

} 
} 

int DeallocPass(N, F, myversion, i) 

int i; 

node *F, *N; 

version *myversion; 

{ 
unsigned searching, locked; 

node *Fnext; 

int oldsize; 

searching ~ TRUE; 

locked = FALSE; 

/* Find the point to reinsert N into the free list */ 

while (searching && (Fnext = F - > n e x t  !~-~ nil)) { 

if (Fnext->address  > N->address)  

searching ~ FALSE; 

else F ~ Fnext; 

} 

10 

i1 

12 

Fnext  ~--- F-:>next;  

if (Fnext !---~ nil) { 

/* At tempt  to merge N with the following block */ 

if (N- > address + N- ~> size ~ Fnext-  > address) 

if (WriteLock(F) ! =  FAIL) ( 

locked ~ TRUE; 

/* now that  F is locked, is Fnext  still the 

successor?*/ 

13 if (F- > next ~ Fnext) 
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!4 

15 

16 

17 

kf (DeleteAfter(F, Fnext, i, &oldsize) 

= =  SUCCESS) 
N->size - -  N->size + oldsize; 

18 

19 

20 

21 

22 

23 

/* Attempt to merge N with the preceding block */ 

if (WryWoAppend(F, N) = =  SUCCESS) { 

/*enqueue N on garbage list*/ 

remove(N, i); 

if (locked) WriteUnlock (F); 

ReadUnlock(myversion, i); 

return SUCCESS ; 
} 

24 

25 

26 

27 

28 

29 

if (locked == FALSE) 

if (WriteLock(F) = =  FAIL) { 

ReadUnlock (myversion, i); 

return FAIL; 

} 
/*F is now locked, so F->nex t  is stable*/ 

Fnext = F->next ;  

3O 

31 

32 

33 

34 

/*Did an insertion occur?*/ 

if ((Fnext ! =  nil) && 

(Fnext- > address < N- > address)){ 

WriteUnlock(F); 

ReadUnlock(myversion, i); 

return FAIL; 

} 

35 

36 

/* Insert N into the list */ 

InsertBetween(F, Fnext, N, i, myversion); 

return SUCCESS; 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 
18 

19 

20 

21 

22 

int Allocate(size, n) 

int size; 

block **n; 

( 
node *F, *Fnext; 

version *myversion; 

int i, oldsize; 

while (T~UE) { 
F ----- &free[i ---~ RandomIndex0]; 

ReadLock(F, &myversion); 

while (Fnext ---~ F - > n e x t  ! ~  nil) { 

if (WryToAllocate(Fnext, size, n) ~-~-  SUCCESS){ 
/* n is a proper suffix of block in Fo>nex t  */  

if (*n ! =  Fnext~>address)  ( 

ReadUnloek(myversion, i); 

return SUCCESS; 

} 
/* If the entire F - > n e x t  block was allocated, 

remove it from the free list */  

if (WriteLock(F) !-~-~ FAIL){ 

/ * F  is locked- is Fnext  still the 

sueeessor?*/ 

if (Fnext ---~-~- F - > n e x t )  

DeleteAfter(F, Fnext, i, &oldsize); 

WriteUnlock(F); 
} 
ReadUnloek(myversion, i); 

/*if  a t tempt  to delete fails, leave Fnext  

in list with zero size*/ 

return SUCCESS; 
} 
F ~ Fnext; 

} 
ReadUnlock(myversion, i); 

} 
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Aside from the changes made necessary by the modified data structure, 
the fundamental way in which this solution differs from the previous one 
is in the inability of a process to trust the structural information it reads 
from a node until it has placed a write-lock on that node. In particular, it 
is necessary to be sure that Fnext (the node to be deleted) is still the direct 
successor of F before calling DeleteAfter (line 13 in DealloePass and line 12 
in Allocate). Another example is the need to make sure that the place 
between F and F -*  next is still appropriate for inserting a header node 
describing the block at address n (line 30 in DeallocPass). A concurrent 
InsertBetween call may have inserted a node following F for a block with 
an address less than n. Because of this need for this extra checking after the 
write-lock is in place, the WriteLock calls on F have been moved out of 
DeleteAfter and InsertBetween. If a write-lock is acquired in an attempt to 
merge with the following block (line 11 in DealloePass), it is held for the 
possible subsequent call to InsertBetween in order to eliminate the potential 
for more interference. This explains the purpose of the flag, locked, which 
indicates whether a write-lock has already been granted or not. If 
the DeleteAfter call is successful (line 14 in DeallocPass), this call to 
DealiocPass is guaranteed to succeed. In particular, the condition in line 30 
can never be satisfied in that case. No write-locks are required for the 
attempt to merge with the preceding block (lines 18-23 in DeallocPass) 
because the second adjacency test in TryToAppend (line 3--after size has 
been made invalid) accurately captures the relevant structure even if it has 
been undergoing changes. 

Write-locks are held during executions of DeleteAfter and 
InsertBetween to prevent direct interference by another update and to 
check whether the node is garbage. Since searching processes may be con- 
currently performing fetch-and-add instructions on the size field of a node 
being deleted, the process executing DeleteAfter must ensure it sees a true 
size. This is because the value is returned from DeleteAfter to be used in 
case the node is being merged. The process first waits for a valid size and 
then invalidates it using a fetch-and-store to get the size value and prevent 
additional interference. Then the size field of the deleted node must be set 
to zero so that TryToAllocate and TryToAppend calls do not succeed. The 
pseudocode procedures follow: 

int DeleteAfter(pred, del, i, oldsize) 

node *pred, *del; 

int i, *oldsize; 
{ 

1 if (WriteLock(del) = =  FAIL) 
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2 return FAIL; 

pred->next ~ del-:>next; 

/*loop until del-:>size is valid 

and leave with del->size < zero, thus reserving it*/ 
while (*oldsize 

FetchAndStore(del-:>size,-1) < 0) 

while (del->size < 0) delay; 

/*make it exactly zero*/ 

del->size ~ 0; 

del->deleted ~ TRUE; 

/*enqueue del on garbage list*/ 

remove (del, i); 

9 

10 

WriteUnloek(del); 

return SUCCESS; 

} 

int InsertBetween(pred, suce, ins, i, myversion) 

node *pres, *suet, *ins; 

int i; 

version *myversion; 

{ 
ins->next ---~ suee; 

pred-:>next ~ ins; 

3 WriteUnlock(pred); 

4 ReadUnlock(myversion, i); 

} 

The presence of deleted header  nodes mot ivates  another  change f rom 
the previous solution. In  the Allocate routine of a lgor i thm 3, if it is not  
possible to delete a block that  was entirely allocated, the s torage is essen- 
tially given back and the search continues down the freelist. After all, the 
s torage locations occupied by the header  informat ion must  be main ta ined  
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and can not be used by the caller if the block can not be removed from the 
freelist. Thus, there are no nodes with size zero (invalid) left in the linked 
list, lengthening search paths, in algorithm 3. In this solution, however, 
those nodes may be left in the freelist if deleting them fails for any reason 
(lines 11-17 in Allocate) and the caller is free to use the block of storage 
that the node described. As a result, the allocation request does not have 
to pass up eligible blocks of storage and zero is interpreted as a valid size 
value. There is also a correctness consideration that argues for allowing 
nodes with size of zero. Deleted nodes also contain a (valid) size field of 
zero that is set in DcleteAfter after obtaining a valid value (lines 4-6). If 
Allocate were to restore the size field as it does in algorithm 3, it would 
introduce the possibility of two processes both able to assign a value to the 
size field (e.g. a DeleteAfter call due to a merge attempt and a failed 
DeleteAfter called from Allocate). This can lead to a race condition and an 
incorrect size value. The statement of the assertion formulated for the last 
solution concerning assignments to the size field still holds in this solution. 

To understand this solution, it is necessary to appreciate the role 
played by deleted nodes. First consider a process in the search phase of 
Allocate (process s) executing concurrently with another process trying to 
delete node N (process d). After process d executes line 3 in DeleteAfter, 
node N is no longer accessible from the freelist, but its next pointer is part 
of a path back into the freelist. Let node P be N's old predecessor in the 
freelist. Usually, N ~  next = P ~ next at the time another process follows 
the deleted node's next pointer. However, multiple calls to DeleteAfter can 
yield longer paths before a freelist node is reached. If process s does the 
fetch-and-add (line 2 in TryToAllocate) on N before process d has reached 
line 4 in DeleteAfter, the allocation can still succeed in spite of the fact that 
the node is being deleted. If the TryToAilocate fails (possibly because 
process d has executed lines 4-6), process s follows N's next pointer and the 
search can continue. 

Next, let p rocess  be in the search phase of Deallocate in parallel with 
process d. Now, the point at which the detour through deleted nodes 
rejoins the freelist matters significantly more. In particular, nodes inserted 
immediately following N's predecessor since the deletion of N will be 
missed. This may cause the current pass through the list to fail if the 
appropriate place to reincorporate the deallocated storage is in this unseen 
part of the freelist. Suppose node N has been deleted since process s 
decided to access it (line3 in DeallocPass). Assume that the node, 
N--* next, is a legitimate member of the freelist structure. Process s deter- 
mines that the address of the block of storage it is in charge of deallocating 
is less than the address represented by N-~ next (line 4 in the next iteration 
of loop 3-7 in DealloePass). If process s tries to merge with N ~ next, the 
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lock request on N will fail since it has been deleted or is still locked by 
process d. If process d is past line 6 in DeleteAfter or the DeleteAfter call is 
a result of complete allocation, a TryToAppend call by process s fails. If 
node N is being deleted to merge with another block and process d has not 
reached line 6, a TryToAppend can succeed. This means a bigger block (size 
of node N plus process s's block) will be returned from DeleteAfter to be 
merged with process d's block. If it appears necessary for process s to call 
InsertBetween, that call will never be made because the prerequisite write- 
lock request will fail. This strategy forces a reevaluation of the appropriate 
place to put the newly released storage when it fails in the gap between N's 
old predecessor and N's successor. 

Now we turn to the problem of recycling deleted header nodes. A 
header must remain available as long as any process that may have read 
a pointer to it is still active. The read-lock placed on the version indicates 
the existence of a process still requiring that version. When the last read- 
lock on the old version is released by a call to ReadUnloek, garbage collec- 
tion on the garbage list associated with that version can begin. There is a 
background GarbageColleetor process associated with each sublist. The 
GarbageColleetor periodically moves nodes from the garbage list to the list 
of available header nodes and marks the version as ready to become the 
current one again. The Remove routine enqueues deleted header nodes on 
the current garbage list and swaps the versions when the length of the 
current list exceeds some threshold and the other version is marked as 
ready. Pseudocode is presented here: 

1 

2 

3 

4 

5 

6 

7 

8 

GarbageCollector (i,myversion) 

int i; 

version *myversion; 

/*i and my~,ersion are process creation parameters 

initially myversion ~- initial value of 

free/i].eurrent*/ 
{ 

while(TRUE){ 

Sleep(interval); 

if (rayversion !• free[i].eurrent)( 

GCLock(myversion); 

Append (myversion->garbage, freeHeaders); 

myversion- > readyforuse ~--- TRUE; 

myversion ~ myversion->other; 
} 
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9 } 
} 

Remove (N, i) 

node *N; 

int i; 

{ 
version *ver; 

l ver -~- free[i].eurrent; 

2 Enqueue(N, ver- > garbage); 

/*atomically*/ 

3 FetchAndAdd (ver->length, +i); 

4 if (ver->length > ~  THRESHOLD) { 

5 P(Mutex); 

/* Provides mutual exclusion with the 

reading of current version in ReadLock 

routine */ 

6 if ((ver =~--- free[i].eurrent) && 

7 (ver->other->readyforuse ~---= TRUE)){ 

8 ver->readyforuse ~ FALSE; 

9 free[i].current = ver->other; 

10 } 

11 V(Mutex); 

12 } 
} 

As a process begins each pass through one of the sublists of the 
freelist, it places a read-lock on the current version of that sublist (line 7 in 
Deallocate, line 3 in Allocate). The lock is held until either the operation 
succeeds (lines 7 and 16 in Allocate, line 21 in DealiocPass, and line 4 in 
InsertBetween) or the present pass is abandoned (line21 in Allocate, 
lines 26 and 32 in DeallocPass). The designation of which version is current 
may change once during any particular pass. The end of each pass presents 
an opportunity to lock a potentially different version in the next pass, 
should one be necessary. 

The GarbageCollector proces s periodically wakes up and checks 
whether the version it plans to collect next (myversion) has become the old 
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version (line 3). If so, it requests the GCLock to wait for read-locks to 
clear. Then, it moves deleted header nodes off the garbage list associated 
with the passive version and, once that list is empty, marks it as ready to 
reassume the role of current version (line 6). The current version designa- 
tion can switch as soon as the old garbage list has been cleared (lines 7-9 
in Remove). Finally, the GarbageColleetor turns its attention to the other 
version, making it the candidate for its next round of garbage collection 
operations. Thus, its private version moves back and forth, following 
free [i] .  current. 

The first task of the Remove routine is to insert the header node sup- 
plied as an argument onto the current version's garbage list. To be more 
precise, the process executing Remove initially reads which version is 
current, remembering it in a private variable, ver (line 1). Then, it directs 
all subsequent manipulations to that list even though it may not continue 
to be the current one. Note that this is not necessarily the version on which 
the caller holds its read-lock because another process calling Remove may 
have switched versions since that read-locked was placed. This means that 
the deleted node may have a longer lifetime than actually needed if it 
survives through the next version as well as the version that the deleting 
process locked. In this solution, the actual j9 b of switching versions is done 
by a process executing Remove when what it believes to be the current 
garbage list has grown sufficiently long. Multiple processes executing 
Remove concurrently may all detect the length of the garbage list exceeding 
the threshold. Therefore, processes must enter a critical section to 
accomplish the actual switch. Once in the critical section it is necessary for 
the process to determine whether some other process may have beaten it to 
the act of doing the switch or whether the other list is not yet ready to 
become current (lines 6 and 7 in Remove). 

3. EXPERIMENTS 

The solutions being compared in our experiments are based on essen- 
tially the same underlying approach (the first fit allocation algorithm) and 
very similar freelist structures (i.e. both structures are linked lists ordered 
by the starting addresses of free blocks). Thus, the differences among the 
solutions are primarily related to the granularities of locking and memory 
access and the synchronization protocols used. The experiments are inten- 
ted to capture the effects on performance of these kinds of design decisions. 
They also provide some insight into the impact that subtle architectural 
differences in memory architecture can have on the behavior of these kinds 
of shared memory algorithms. 

The algorithms under consideration have been fully implemented to 

828/17/4-3 
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perform the allocation and deallocation functions as outlined. Thus, our 
experiments measure the performance of the implemented operations rather 
than model the behavior of the algorithms more abstractly. This approach 
ensures that no details that may contribute to performance are overlooked, 
but it also complicates the evaluation by involving the idiosyncrasies of a 
particular parallel machine. The implementation of algorithm 4 includes 
the garbage collection mechanism for header nodes. The measurements 
taken for the requested operations in algorithm 4 have been appropriately 
adjusted to reflect the overhead due to garbage collection. Actually, one 
concession has been made to the fact that the development of these 
programs was intended for experimentation rather than actual use: algo- 
rithms 1 and 2 have been merged into a single implementation since, in the 
design of our experiments described here, they are essentially the same. 

A driver program, running under the Uniform System, simulates a 
workload of multiple processes making requests to a system with a 
specified number of separate memories (i.e. sublists of the freelist). In all of 
our experiments, the number of memories specified has been one. This 
allows us to generate processor/memory ratios of up to 64/1. Actually, only 
60/1 on the 64-node Butterfly Plus since some nodes are tied up by the 
system. Sixty processors making parallel memory allocation requests on a 
single memory sublist is an intense workload thai seems very unlikely in a 
NUMA machine such as the Butterfly. One expects ratios closer to 1 in a 
machine with a memory module residing at each node. However, this 
strategy tests the range of applicability and scalability of the various 
solutions. Given the decision to use only one sublist in our experiments, the 
justification for only one implementation for both algorithms 1 and 2 is 
clearer. The results obtained can be interpreted appropriately for either 
algorithm. In the case of algorithm 1, the level of parallel demand is 
considered to be system-wide; whereas in algorithm 2, it is only applied to 
one component of a system that could have other sublists experiencing 
similar workloads. 

The driver has three distinct phases in which requests are issued for 
allocation or deallocation of memory. After initially building the freelist 
structure and the chunks of allocatable memory, it generates tasks that 
make allocation requests in parallel until a target memory utilization has 
been reached. In this startup phase, allocations compete only with each 
other. Then during the steady state phase, each process generates a 
relatively balanced request pattern with allocations and deallocations dis- 
tributed to keep memory utilization close to the specified target figure. 
Finally, the memory is released in the windup phase. Deallocation requests 
compete among themselves for access to the freelist in this phase. Each 
phase is measured separately. 
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The basic structure of tasks is a loop that generates the next request 
and makes the appropriate call. The choice of operation depends on the 
phase and (in steady state) on the current local view of memory utilization. 
For an allocation, the size of the request is selected randomly from a given 
distribution. For  deallocation, a block is taken off the local list of blocks 
that have been previously allocated to this process. The loop terminates 
when the target allocation is reached in startup, after a specified length of 
time in steady state, and when all memory is returned in windup. 

The parameters for each test include the number of processes making 
requests, the number of separate memories (always 1 in this set of tests), 
the duration of the steady state phase, the pattern of sleep times between 
requests by a process, and the target memory utilization. Although the 
capability for a random sleep interval has been provided, the results 
described here are based on a stressful workload in which the processes do 
not sleep between subsequent requests. Consequently, they are oriented 
toward the peak load situation. 

Our primary measures of performance are throughput, average execu- 
tion times for individual operations, the length of search paths in allocation 
requests, and the number of missed opportunities for merging adjacent free 
blocks observed in snapshots of the freelist. The throughput measure 
reflects how much parallelism can be achieved and how much overhead is 
inherent in each solution. The operation times show the costs of various 
sources of contention and the complexity in the algorithms. The search 
path measure is an indication of both fragmentation and interference 
among processes in the TryToAlloeate routine. The search paths get longer 
as processes pass up acceptable blocks that just appear too small because 
the size fields have been reduced. Ideally, one might like a count of aborted 
merger attempts that have been caused by interference among processes 
and that should have succeeded. Unfortunately, this information can not 
effectively be gathered. We have settled for taking a snapshot of the freelist 
and counting adjacent blocks that have not been merged and recognize 
that it represents an underestimate of the fragmentation caused by parallel 
access. 5 

We first present the results for the steady state phase. The throughput 
curves for each of the three solutions running on the Butterfly Plus multi- 
processor are shown in Fig. 6. Similar results on the Butterfly One are 

5 Unmerged blocks that exist at one point in time may subsequently get allocated again and 
successfully merged in a later deallocation. Evidence of the first failed merge attempt is lost. 
Note that although it is possible to have other processes look for unmerged blocks during 
normal searches and make up for any failed merge attempts they find, this has not been done 
in these implementations. Other processes do not routinely merge blocks they are not 
responsible for. 
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presented in Fig. 7. The throughput is given as the number of allocate 
(deallocate) operations executed during the fixed time of the steady state 
phase (50 seconds) for various processor configurations. 

One obvious conclusion that can be drawn from these graphs is that 
algorithm 3 is not competitive with the alternatives at any number of 
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processors. The locking overhead of algorithm 3 appears to be quite 
significant. This statement refers to the work involved in handling lock 
requests at each block even when they can be satisfied immediately. The 
complex lock semantics certainly contribute to this overhead. 6 This high 
level of overhead (before considering interference by other processors) 
means that algorithm 3 would have to be very successful in delivering a 
high degree of parallel access in order to overcome this cost. Lock conten- 
tion and contention for the memory module where the freelist resides limit 
the parallelism and slow execution down still further. Therefore, we do not 
need to seriously consider algorithm 3 in the rest of the discussion of steady 
state behavior. 

The general shape of the throughput curves for algorithm 1 (algo- 
rithm 2 on 1 sublist) and algorithm 4 agree in Figs. 6 and 7, although the 
magnitude of the values and the crossover points are different. On small 
numbers of processors (i.e. less than 16), algorithm 1 delivers higher 
throughput because it is the simpler algorithm. It does not permit parallel 
access to the freelist, although parallel tasks executing algorithm 1 can 
overlap generation of the next request. Algorithm 4 has not achieved 
enough parallelism at this point to make up for its higher cost. After the 
crossover point, algorithm 4 is relying on parallelism to deliver the higher 
throughput. Note that the throughput curve levels off fairly rapidly (and in 
the Butterfly Plus appears to be starting down) with increasing numbers of 
processors. The write-locking protocol used primarily within deallocation 
operations is one factor in the performance of algorithm 4. However, there 
is also a (short) critical section within the implementation of the read-lock 
needed to determine the current version and in the Remove routine to 
update which version is current. These critical sections and increasing 
memory module contention appear to be contributing significantly to the 
limited parallelism. 

A comparison of the throughput results on the two machines is 
extremely interesting. The redesign of the memory architecture in the 
Butterfly Plus is supposed to provide faster access to both local and remote 
memory. The increase in throughput exhibited by algorithm 1 in moving 
from the Butterfly to the Butterfly Plus is consistent with an overall faster 
memory access. However, the performance of algorithm 4 degrades in the 
transition between machines. The explanation seems to be that memory 

~ This is confirmed by tests of a simpler node granularity algorithm which performs lock- 
coupling with simple exclusive spin-locks. The less expensive locks produce somewhat better 
performance than algorithm 3 on small numbers of processors (although still not com- 
petitive with algorithm 1 ). The simpler algorithm suffers from restricted parallelism at higher 
numbers of processors, with throughput falling below that of algorithm 3. 
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module contention begins to exert its effects much earlier (at fewer num- 
bers of processors) in the Butterfly Plus. The gap between local and remote 
access times has widened in the redesign. 7 Thus, the NUMA character of 
the Butterfly Plus is much more significant than it was in the original 
Butterfly design. Increasing the proportion of program execution that is 
spent on remote access puts greater pressure on shared memory. The fine 
granularity access to the freelist which is the basis for algorithm 4 makes 
contention an inevitable problem at some point. It appears that this point 
has shifted significantly between the two designs. Algorithm 4 is the clear 
winner in the results from the original Butterfly where local and remote 
accesses are more comparable. From this, one might conclude that fine 
granularity algorithms developed to provide high levels of concurrency, 
such as algorithm 4, are useful over a relatively wide range of configura- 
tions when the memory access times are fairly uniform. Depending on the 
ratio of remote to local access times in a NUMA design, the range of 
processor configurations between the point at which parallel access starts 
paying off and the point at which memory contention takes over may be 
limited for this class of algorithms. 

The search paths followed in trying to satisfy an allocation request 
using algorithm 4 are 25-66 % longer than those encountered using algo- 
rithm 1 (when there are t> 16 processors). The longer search paths con- 
tribute to the cost of an individual operation. It appears that these longer 
paths are primarily caused by passing over blocks that are suitable but 
have an invalid size value. Another explanation is that the freelist structure 
is more fragmented because of missed opportunities to merge small blocks 
into larger ones. However, snapshots of the freelist structure taken at the 
end of the steady state phase show that algorithm 4 leaves (on the average, 
per run) about 1 pair of adjacent blocks that should have been merged and 
were not. The maximum number observed has been only 5 unmerged 
blocks that survived to the end of the steady state phase. 

Figures 8 and 9 give the average time for an allocation and a dealloca- 
tion, respectively, on the Butterfly Plus. The difference in the basic costs of 
algorithms 1 and 4 is evident in the values at one processor. The growth in 
the average operation cost of algorithm 1 is due primarily to lock wait 
time. The costs incurred by algorithm 4 have already been mentioned. 

The results from the startup and windup phases give an indication of 
how the algorithms behave in a 2-phase request pattern (where the applica- 
tion has a separate allocation and deallocation phase). Results presented 
here are those from experiments on the Butterfly Plus. 

7 More improvement has been made in local access time than in remote access time. The 
access path to local memory has been made more direct and there is evidence that local 
accesses are favored in contention with remote accesses. 
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During the startup phase, allocations compete only with other alloca- 
tions starting with the initial state of the freelist which represents one large 
contiguous block. Figure 10 compares the cost to allocate for each of the 
three solutions implemented. The situation is quite different from the 
steady state case. Algorithm 1 has the lowest cost up to approximately 
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24 processors and then algorithm 3 becomes the best choice�9 Even with the 
lock on the entire sublist, the operation of algorithm 1 is fast enough (just 
subtracting the requested size from the size field of the one and only block) 
that waiting for access to the freelist is not significant. The locking over- 
head associated with algorithm 3 is minimized because the freelist is short 
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(only one node to lock), the implementation of the read-lock operation is 
efficient (it is the repeated application of it that hurts in the steady state 
case), and there are no incompatible locks. The parallelism of the finer 
granularity access in algorithm 3 produces good results up to around 
50 processors where contention appears to become a problem. Now it is 
algorithm 4 that is not competitive (the implementation of its synchroniza- 
tion is less efficient). 

Figure 11 shows the average cost of deallocating blocks in the windup 
phase. Algorithm 3 suffers as it did in steady state. Algorithms 1 and 4 
show the same kind of crossover as in steady state. However, if applica- 
tions were somehow limited to the two-phase pattern, a hybrid approach 
might be worthwhile: using algorithm 3 during the allocation phase, with 
a clean transition to algorithm 1 for deallocation. Although algorithm 4 is 
still marginally superior to algorithm 1 in larger processor configurations, 
it does not use a compatible freelist structure for this kind of hybrid 
approach. 

4. S U M M A R Y  

In this paper, we have discussed four different approaches for dynamic 
memory allocation in a shared memory multiprocessing environment. 
There are really two important aspects to this work. One part is concerned 
with the investigation of design techniques that allow potentially much 
more parallel access to be accommodated within the components of a 
complex data structure. The second aspect deals with the mapping of these 
parallel data structures on real rather than ideal parallel architectures. 

Much of the work with concurrent data structures investigates subtle 
techniques and design decisions that allow processes to coexist with shared 
data structure components and, often, in spite of changing values and 
dynamic structure. Some examples arise in our solutions. The 
TryToAllocate and TryToAppend routines use the atomic fetch-and-~b on 
the size field of a freelist node for synchronization as well as encoding the 
available space information. The two roles are particularly compatible in 
this case. Processes can interpret the returned values to determine its 
current role. In contrast, we see that there is a price to pay in having 
header data within the allocatable free space itself. The two roles played by 
the same space in the case of algorithm 3 incur more locking overhead for 
coordination than in the other node granularity solution, algorithm 4. 
Algorithm 4 achieves the elimination of lock-coupling in the search phase 
by adopting a "sloppier" data structure with the presence of deleted header 
nodes and the possibility of a process encountering obsolete information. 
The last two solutions illustrate both the utility and the complexity of using 
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various kinds of compatible locks in trying to increase the level of potential 
parallelism. As parallel machines become more prevalent, the value of those 
techniques in the design of highly parallel algorithms could become 
extremely significant. 

The motivation for the experimental work has been to evaluate these 
solutions in a realistic architecture and determine for what kinds of 
workloads (i.e. mix of operations, number of processes) each of the algo- 
rithms can be effective. The results are not  surprising. As expected, the 
simple approach (algorithm 2) is best at light loads. Therefore, this is the 
appropriate solution for the level of parallelism supported by environments 
like the Uniform System where the number of memories and the number 
of processes are approximately equal. As the number of processors request- 
ing space from a memory grows, the finer granularity algorithms are 
beneficial, to a point. The 2-phase request pattern does suggest a 
significantly different choice from the pattern consisting of a balanced mix 
of operations. 

It  was a fortunate set of circumstances that led us to gather results 
from the two related but, for this application, significantly different 
architectures. Having to interpret and reconcile the differences in the results 
from the two machines has provided interesting insights into the balancing 
of the local/remote access time ratio and the proport ion of local/remote 
access within an algorithm. 
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