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Generation 

A new, parallel approach for generating Bresenham-type lines is developed. 
Coordinate pairs which approximate straight lines on a square grid are derived 
from line equations. These pairs serve as a basis for the development of four new 
parallel algorithms. One of the algorithms uses the fact that straight line 
generation is equivalent to a vector prefix sums calculation. The algorithms 
execute on a binary tree of processors. Each node in the tree performs a simple 
calculation that involves only additions and shifts. All four algorithms have time 
complexity O(log2n) where n in the form 2 m denotes the number of points 
generated and n -  1 is the number of processors in the tree. This compares to 
O(n) for Bresenham's algorithm executed on a sequential processor. Pipelining 
can be used to achieve a constant time per line generation as long as line length 
is less than n. 

KEY WORDS:  Line generation; parallel algorithms; binary processor tree; 
middle cut algorithm; prefix sums; binary summation. 

1. INTRODUCTION 

Line generation is a fundamental geometric calculation that appears in 
many areas: computer graphics, image processing, scientific visualization, 
medical imaging, computer aided design, and computer aided manufacturing. 
Since its introduction, Bresenham's algorithm, (~'2) with many subsequent 
variations and optimizations, has become a standard approach for generating 
straight lines. A recent survey of the field was compiled by Brons. <3~ The 
original Bresenham view of line generation as embodied in his algorithm, 
which is essentially one involving two coordinated counters and a cumulative 
error, may lead to thinking of line generation as a fundamentally serial 
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process, and explains why not many attempts were made to paralletize it, 
There have been, however, some work done on parallel methods for line 
generation. 

Sproull (4) presents the (n, n) algorithm where n processors operate 
with a phase shift and each processor generates points spaced n units apart. 
The first processor generates points at x = 0, n, 2n,..., the second processor 
generates points at x = t, n + t, 2n + 1,..., and so on. 

Wright (5~ describes an algorithm where a line is divided into subintervals 
and each processor generates one subinterval. 

The algorithm used in Pixel-Planes (6) simulates a straight line as a 
long stretched polygon, This is the only algorithm, mentioned in this paper, 
that is not a variation of Bresenham's approach. 

Blelloch (7~ uses a scan operation, called in this paper prefix sums 
operation, as a basis for generating straight lines. His approach is probably 
similar to our prefix sums algorithm, but his description is not sufficiently 
detailed to make a precise comparison. 

Our paper is organized as follows. First, we show how points that 
approximate a straight line can be represented as elements of an arithmetic 
sequence and the derivation of such a sequence is explained. Next, four 
approaches to parallel computation of the points are described. 

2, S E Q U E N C E  A L G O R I T H M  

This section derives the relation between points that approximate 
a straight line and elements of a specialized arithmetic sequence (for 
alternative derivations see Refs. 1, 3, 4, 8). Numbers are assumed to be 
integers. Divisions are integer divisions with truncation. 

It is assumed without toss of generality that a straight line is drawn 
from the origin (0, 0) to a point (Ax, Ay), where Ax >~ Ay >10, Ax > 0, and 
the end points are center aligned. This nontrivial line lies completely in the 
first octant. An arbitrary straight line can be generated by using translation 
and symmetry properties. 

In more formal terms, the problem is to compute a sequence of 2D 
points 

(i, y~); O<~i~zlx (1) 

on a square grid, such that the vertical distance between the points and the 
line from (0, 0) to (Ax, Ay) is minimal. 

Ax + 1 points are distributed close to the line so that for every x, 
O<~x~Ax, there is exactly one 2D point in sequence (1) whose first 
coordinate is equal to x. The y coordinate to a given x is chosen as a point 
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on the grid that is vertically closest to the intersection between the theoretical 
straight line and the vertical line through x. 

The line equation is 

x Ay 
Y= Ax (2) 

The division in Eq. (2) must be done with rounding. Rounding can be 
obtained from ordinary integer division with truncation after adding Ax  - 2 
to the dividend. A x + 2  can be rounded up or down depending on the 
application. (9~ Equation (2) becomes 

x A y + A x + 2  
Y - Ax  (3) 

The general formula for the ith element of a line from (0, 0) to (Ax, Ay)  is 

(i, (i A y +  Ax  + 2 ) +  Ax)  (4) 

An algorithm with unit time complexity follows immediately from 
Eq. (4) where unit time is taken to mean a single evaluation of Yi- If 
we have A x +  1 processors then the ith processor should evaluate the 
expression 

yi = ( i A y +  Ax  + 2 ) +  Ax  (5) 

Although algorithm in Eq. (5) uses constant time, it may not be 
suitable because integer multiplication and division are used to obtain the 
y coordinate. In the following sections we develop parallel algorithms with 
only addition, subtraction, and shifting. The y sequence in Eq. (5) is an 
arithmetic sequence, a property exploited by the algorithms later. The main 
difference between the algorithms is in the method they use to compute the 
arithmetic sequence. 

The division by Ax  in Eq. (5) can be avoided in the following way. 
The actual sequence evaluated by the algorithms is 

(0, A x +  2), (1, Ay + Ax  + 2 ), (2, 2Ay + Ax  + 2 ) ..... (Ax, Ax  Ay + Ax  + 2 ) 

(6) 

The y coordinate of the sequence elements is kept in the form (p, q), 
where 

y = p A x + q , O < ~ q < A x .  (7) 

828/19/5- 3* 
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This is essentially the y coordinate expressed in base Ax. Then p is the 
quotient and q is the remainder of the integer division of y by Ax. p 
corresponds to the y coordinate of the final point, but we also need to keep 
track of q during computation to obtain the final result. The representation 
of a sequence element is thus a triplet (x, p, q) instead of a pair (x, y). 

The y coordinate to a given x is chosen as a point on the grid that is 
vertically closest to the ideal straight line. This is also a property of 
Bresenham's algorithm. It follows that sequence of Eq. (6) represents the 
same points as those generated by Bresenham's algorithm. 

The points on a line are now characterized by a particular arithmetic 
sequence. Efficient parallel computation of this sequence is our remaining 
task. 

3. F O U R  PARALLEL A L G O R I T H M S  

This section describes four new parallel algorithms which are based on 
the sequence algorithm derived in Eq. (6). The algorithms substitute 
additions and shifts for divisions or multiplications that are used in the 
sequence algorithm. 

3.1. Genera l  C o m m e n t s  

The underlying computer topology for each of our algorithms is a 
binary tree of processors. Each node in the tree is capable of some simple 
computation and exchange of data with other nodes. The flow of data 
proceeds in layers from the root of the tree to leaves. The only exception 
to this unindirectional flow is the prefix sums algorithm which has an 
additional phase from the leaves to the root. Each leaf processor can 
generate two points. The length of the longest computable line is thus the 
number of leaf processors multiplied by 2. 

The depth of the tree is proportional to O(log2 n) where n denotes the 
number of processors. Since the number of execution passes through the 
tree is at most two, the execution time is also proportional to O(log2 n). 
The cost of the algorithms, the number of processors multiplied by the time 
complexity, is (n - 1) log2 n = O(n log2 n). 

Only one layer of nodes in the tree is used at each step. Nodes that are 
not part of this layer can be utilized by pipelining. For example, at time t 
layer k is working on line i, layer k +  1 on line i +  1, layer k + 2  on line 
i + 2, and so on. At time t + 1, layer k is working on line i + 1, layer k + 1 
on line i + 2, layer k + 2 on line i + 3, and so on. By using pipelining, one 
straight line can be generated each clock cycle. The cost of the algorithms 
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becomes O(n), which represents the optimal speedup of the n processor 
version over the sequential version. 

Next, we describe four different algorithms to generate straight lines in 
detail. During the discussion we illustrate each algorithm for the line with 
values Ax = 6 and Ay = 2. 

3.2. Middle Cut Algorithm 

Two versions of the middle cut algorithm are presented. The first one 
is a general algorithm and the second one is an optimized version for a 
fixed tree of processors where a part of the computation can be omitted. 

Probably the most obvious approach to straight line generation in 
parallel is the divide-and-conquer technique: compute the midpoint between 
two endpoints and repeat the process on both subintervals until the interval 
size equals one (Fig. 1). 

The root node is initialized with the value of the first and last elements 
in sequence of Eq. (6): ((0, 0, Ax+2) ,  (Ax, Ay, Ax+2)) .  The last point on 
the line is not produced and must be added separately. 

The essential part of the computation is the function get_middle (see 
Fig. 2). Since I=(lx, tp, lq) and r=(r~,rp,%) are both part of an 
arithmetic sequence, the element m = (m~, rap, mq) between them can be 
calculated as their component-wise average. For p and q components, 
relation in Eq. (7) must be considered as well. That means that the value 
of  mq must be kept in the range 0 <~mq < Ax by adjusting mp and mq to 
satisfy relation in Eq. (7). If the number of elements between t and r is 
even, the element at the position before the center is computed. 

In general, the computation will terminate at different levels, which 
complicates hardware implementation. Moreover, the algorithm is too 
general. Under the assumption that we are using a binary tree of 
processors, the algorithm can be simplified considerably. 

We can use all processors in every line generation without any time 
penalty. The line is extrapolated to Iength MAXL, which denotes twice the 
number of leaf processors. Thus a line of length MAXL is computed every 

p r o c e d u r e  middle_cut(t,  r) 
b e g i n  

i f  distance(l,  r) < 1 t h e n  draw(t); 
m = get_middle(l, r); 
middle_cut(l,  m); middle_cut(m, r); 

end ;  

Fig. 1, The middle cut algorithm. 
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func t ion  get_srLiddle((/~, Ip,/q), (r~, rp, rq)) 
beg in  

{ Ax and Ay are global line generating parameters } 
m~ = (r~ + l~) d iv  2; 

{ compute the element to the left of the center } 
if  even ( r~ -  l~) t hen  rq = rq - Ay; 
m p =  lp + rp; mq = Iq + rq; 

{ make mp divisible by 2 } 
if odd(rap) t hen  beg in  r a p = r a p + l ;  m e = m q - A x ;  end; 
m p =  mp div  2; mq = m e d iv  2; 

{ normalize 0 _< rn e < Ax } 
i f m  e < O t h e n b e g i n  m p = m p - 1 ;  m e = m  e + A x ;  end;  
return((mx, mp, me)); 

end;  

Fig. 2. Function geLmiddle. 

time regardless of the original Ax, but only the first zlx + 1 points at leaves 
of the tree are taken. Some preprocessing must be added to compute the 
last point on the extended line. The additional cost of the preprocessing 
takes only constant time, because it is performed once per line generated. 

Since every node computes for a fixed value of x, we can omit all 
computations related to x. Because line length is fixed to MAXL, we can 
omit the recursion end test. Because midpoints always lie on the grid, we 
can omit the parity test for the number of points between endpoints. 
Similar optimizations are applied in the other parallel algorithms described 
in this article. 

The final algorithm is presented in Fig. 3. Procedure middle_cut_Iinel 
performs initialization. Procedure middle cut1 is calculation that is 
performed by each computation node of the tree. MAXL denotes twice the 
number of processors in the bottom row of the processor tree, which is 
always a power of 2. 

An example of the middle cut algorithm with values Ax  -- 6 and Ay = 2 
is shown in Fig. 4. Each circle in the figure represents a computing node. 
The pair of values at each circle are input values to the corresponding 
node. This pair is denoted a s  (lp, lq) and (rp, %) in function get_middlel  in 
Fig. 3. Values at the bottom of the tree represent the (tp, lq) part of the pair 
at this node. The sequence of tp values gives y values for the line. Since Ax. 
equals six, only first seven points are needed. The resulting line for Ax  = 6 
and A y = 2  is: (0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 2), (6,2). 

At this point we have fully specified the details of the conceptually 
simplest algorithm. 
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3.3. Pref ix  Sums A lgor i thm 

The prefix sums of a vector a = (aa, a2 ..... a , )  constitute a vector p, 
such that its ith component is the partial sum Pi = al + a2 + " ' "  '1- ai. The 
vector of y components of sequence in Eq. (6) is the prefix sums of a vector 
(Ax + 2, Ay, Ay,..., Ay)  with Ax + 1 coordinates. Because the x component 
of sequence in Eq. (6) is uniquely identified by the processor position, there 
is no need to compute it. Hence, line generation is equivalent to prefix 
sums calculation, a process whose optimizations and parallel implementa- 
tions have been studied. (v'l~ 

Prefix sums can be computed on a parallel computer with linear 
speedup dependent upon the number of processors. (H'12) Although our 

p r o c e d u r e  middle_cut_line(Ax, Ay) 
beg in  

distribute Ax to all nodes; 
n = M A X L ,  A y  + A x  div  2; 
middle_cut1((0, Ax div  2), (n d iv  Ax, n rood Ax)); 

end;  

p r o c e d u r e  middle_cut1(/, r) 
beg in  

m = get_middle1(/, r); 
middle_cutl(/ ,m); middle_curl(m, r); 

end;  

f unc t i on  get_middlel((/p, lq), (rp, rq)) 
beg in  

end;  

{ Ax is a global parameter } 
rnp = Ip + rpi mq = lq + rq; 

{ make mp divisible by 2 } 
if  odd(rap) t h e n  beg in  m p = m p + l ;  m q = r n q - A x ;  end;  
m p =  mp div  2; mq = mq div  2; 

{ normafize 0 _< rnq < A x  } 

i f  mq < 0 t hen  beg in  m p =  Up - 1; mq = mq + / k x ;  end; 
retnr ((- p, mq)); 

Fig. 3. The optimized version of the middle cut algorithm. 
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t"~(1,r) = ((0,3), (3,1)) 

~ , 3 ) ,  ( 1 , 1 ) ) ~ l ) ,  ( 1 , 5 ) ) ~ 5 ) ,  ( 2 , 3 ) ~ / ~ ~ 3 ) ,  (3,1)) 

(0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3) (2,5) 

Fig. 4. The middle cut algorithm with Ax = 6 and Ay = 2. 

algorithm does not achieve this optimal speedup, it leads to a very simple 
node implementation. We present an independently discovered line genera- 
tion algorithm based on the prefix sums calculation method by Blelloch. r 
He describes the application of prefix sums operation to line generation, 
but he does not present details. 

Since the prefix sums of a vector can be computed in O(log2 n) time, 
it is clear that line generation has the same time complexity. The algorithm 
works in two phases. The up phase proceeds from leaves to the root and 
the down phase from the root to leaves. This algorithm is the only one in 
this paper where two phases are required. All other algorithms require only 
the down phase. 

The up phase computes the sums of subtrees. The sum of a subtree is 
stored at each corresponding node. The down phase propagates the sum of 
all elements to the left of a given node down the tree using previously 
computed values (see Fig. 5). Procedure prefix_sums_ line is the initialization 
part. Procedure up_phase is performed at each node during the up phase, 
Procedure middle_phase is a short computation between the up phase and 
the down phase that saves the root value and sets its new value to zero. 
Procedure down_phase is performed at each node during the down phase. 
All numbers are expressed in base Ax, so additions in the algorithm must 
also be in base Ax (see Fig. 6). 

The algorithm computes the prefix sums vector shifted one position to 
the right to ensure that the computation in the leaves remains the same as 
that in internal nodes. The last element missing from the vector at the right 
is the value of the root after the up phase. 
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Values of nodes in the tree with Ax = 6 and Ay = 2 after up phase and 
down phase are shown in Figs. 7 and 8, respectively. Final values at the 
bottom are shifted one place to the right. The root value after the up phase 
is the value missing on the right, although it is not needed for this 
particular line, The result of the prefix sums algorithm is the same as that 
of the middle cut algorithm. 

p r o c e d u r e  prefix_sumsAine(Ax, Ay)  

b e g i n  
set first leaf to (0, Ax + 2); 

{ test is necessary for the slope of 45 degrees } 
i f  Ay  = Ax t h e n  set other  leaves to (1,0) 

e lse  set all other  leaves to (0, Ay);  

distr ibute Ax  to all nodes; 
up_phase(root); middle_phase(root) ; down_phase(root); 

e n d ;  

p r o c e d u r e  up_phase(tree) 
b e g i n  

tree.value = up_phase(tree.left) + up_phase(tree,right); 
return(tree,value); 

e n d ;  

p r o c e d u r e  middle_phase(tree) 
b e g i n  

save tree.value; tree.value = 0; 

e n d ;  

p r o c e d u r e  down_phase(tree) 
b e g i n  

tree,right.value = tree.value + tree.left.value; 
tree,left,value = tree,value; 
down_phase(tree,left); down_phase(tree,right); 

e n d ;  

F~g, 5, The prefix sums algorithm. 



398 Sosie and Riesenfeld 

p r o c e d u r e  + ( a ,  b) 

b e g i n  

cp = ap 4- bp; Cq = aq + bq; 

i f c q > A x t h e n b e g i n  c p = c p + l ;  C q = C q - A x ;  

r e tu rn (c ) ;  

e n d ;  

e n d ;  

Fig. 6. Addition in base Ax. 

Pipelining of the prefix sums algorithm is more complex to implement 
than pipelining of other algorithms in this paper because the nodes in the 
tree must maintain intermediate values for lines that are being processed. 
Each leaf node must keep 2 log 2 n values, the nodes one layer up must keep 
2(log2 n - 1) values, and so on. 

3.4. Binary Summat ion Algori thms 

For  hardware implementations, it may be preferable to trade a higher 
complexity class for simpler operations at each node. The next two 
algorithms have that goal. They transform multiplication into addition. 

If we subtract A x + 2  from the right coordinate of every pair in 
sequence of Eq. (6), the remaining sequence is 

(i, i , A y ) ;  O<.i<~Ax (8) 

(0,3) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) 

Fig. 7. The prefix sums algorithm after the up phase with Ax = 6 and Ay = 2. 
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(0,0) (0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3) 

Fig. 8. The prefix sums algorithm after the down phase with Ax = 6 and Ay = 2. 

Let (i,, in 1 ..... is, io) denote the binary expansion of index i. Sequence 
in Eq. (8) can be computed  in two ways. 

The first one is the most  significant first summat ion  algorithm (MSF):  

�9 reset all elements to zero 

�9 add 2" Ay to all elements i, such that in = 1 

�9 add 2 n -  1 Ay to all elements i, such that in_ 1 = 1 

�9 add 2 o Ay to all elements i, such that i0 = 1 

This type of binary expansion is implemented in Pixel-Planes/6) 
However,  the M S F  algori thm is not  a trivial extension of the Pixel-Planes 
algorithm, because it must  maintain numbers  in base Ax, while Pixel- 
Planes works with a single number.  

Another  way of comput ing Eq. (8) is the least significant first summat ion  
algori thm (LSF), which is similar to the M S F  algorithm, only the summat ion  
is executed in opposite order: 

�9 reset all elements to zero 

�9 add 2 o Ay to all elements i, such that  io = 1 

�9 add 21 Ay to all elements i, such that il = 1 

�9 add 2" Ay to all elements i, such that i X= 1 

Both  methods convert  multiplication into binary summation.  They are 
highly amenable to a binary tree implementation. It is simple to add term 
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A x + 2  to get sequence in Eq. (6) from sequence in Eq. (8). The root 
element in the tree is initialized to Ax + 2 instead of 0. 

The MSF method uses large terms 2 i Ay that must be added at each 
node. Terms 2 i Ay are easily computed by shifting Ay. Ordinarily, they 
would be expressed in base Ax. Instead of forcing this requirement, we 
represent terms 2 i Ay in nodes at height i in base 2 i Ax. They are expressed 
as a pair (p, q) where 

p A x U + q ;  0~<q<z lxU (9) 

Since Ax >i Ay >~ O, the value of 2 i Ay in base 2 ~ Ax is simply (0, 2 ~ Ay), if 
z]x > Ay, or (U, 0), if Ax = Ay. 

Because computation proceeds from the root to the leaves where the 
height is 0, the end result is in the required base dx  (see Fig. 9). Procedure 
msf l ine  represents the initialization of the MSF algorithm, while procedure 
m s f s u m  is the calculation performed at each node. 

An example with Ax = 6 and Ay = 2 is shown in Fig. 10. Values at 
each circle represent inputs to that node. They are denoted as (p, q) in 
procedure m s f s u m  (Fig. 9). Each branch in the tree shows the value that 
is added to the node value. 

The LSF method is straightforward (see Fig. 11). Procedure lsf line 
performs the initialization of the LSF algorithm. Procedure lsf_sum is the 
calculation performed at each node in the tree. Since we need values 2 ~ Ay 
(fp and fq  in procedure lsf sum) from the smallest to the largest, they can 

p r o c e d u r e  msfAine(Ax, Ay) 
b e g i n  

distribute Ax and Ay to all nodes; 
msf-sum(0, Ax + 2); 

end ;  

p r o c e d u r e  msf-sum(p, q) 
b e g i n  

{ scale down the range of q, i is height-1 } 
i f  q > 2  i A x  t h e n  b e g i n  p = p + 2 i ;  q = q - 2  i A x ;  end ;  

{ add term to the right subtree } 
rp = p; rq = q + 2 i Ay; 

{ scale down the range of rq, i is height-1 ) 
i f  rq >_ 2 ~ A x  t h e n  b e g i n  rp = rp + 2i; rq = rq - 2 i Ax; end ;  

msf_sum(p, q); msf_sum(rp, rq); 
end ;  

Fig. 9. The Most Significant First (MSF) Summation Algorithm. 
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. , ~ ~ )  = (0,3) 

 t {o,i1 ) 

7 \ ' 7 \ '  7 \ ' 7 \ '  
(0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3) (2,5) 

Fig. 10. The Most Significant First Binary Summation with Lfx = 6 and z/y = 2. 

p r o c e d u r e  lsLline(Ax, Ay) 
beg in  

distribute Ax to all nodes; 
lsLsum(0, Ax + 2, 0, Ay); 

end ;  

p r o c e d u r e  lsf_sum(p, q, fp, fq) 
beg in  

{ add term to the right subtree } 
r p = p +  fp; rq=q+ fq; 

{ normalize } 
i f r q > _ A x t h e n b e g l n  rp= rp+ l; rq = r q -  Ax; end;  

{ multiply terms } 

f p =  2 fp; f q =  2 fq; 
{ normalize } 

i f f q > A x t h e n  beg in  f p = f p + l ;  f q = f q - A x ;  end;  
lsf_sum(p, q, fp, f q); lsf_sum(rp, rq, fp, f q); 

end;  

Fig. 11. The Least Significant First (LSF) Summation Algorithm. 
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be easily maintained in base Ax with only one test alter multiplication by 
2 at each level. Values J)~ and fq can be computed only once per each level 
of nodes, attough they are shown as a part of the individual node computa- 
tion. 

An example with Ax=6 and Ay=2  is shown in Fig. 12. Values at 
each circle represent inputs to that node denoted as (p, q) in procedure 
I,f_sum (Fig. 9). Each branch in the tree shows tha value that is added to 
the node value. Since the LSF algorithm starts adding the smallest 
numbers first, the final order of nodes in the result is mixed. The position 
of a node is determined as the reversed binary expansion of its index. For 
example, node 6 (110 in the binary representation) contains the y value for 
x equal to 3 (0tl in the binary representation). The proper positions of 
nodes is shown below the computed values. 

The MSF and LSF algorithms are expandable in the following sense. 
If the straight line length is greater than the number of tree leaves, the 
result of the computation from the last leaf can be fed to the tree root and 
the line can be extended as tong as the numbers do not overflow the 
implementational constraints, 

3,5. i m p l e m e n t a t i o n a l  Issues 

All four presented algorithms (middle cut algorithm, prefix sums 
algorithm, and two binary summation algorithms) have the same time 
complexity O(log2 n) for a tree with O(n) processors. None of the four 
algorithms is superior over another in time complexity. We discuss some 
considerations in their implementation. 

~ = (0,3) 

I 

I\oi\ 8 7 \ ~  8 
(0,3) (1,5) (1,1) (2,3) (0,5) (2,1) (1,3) (2,5) 

O. 4. 2. 6. 1. 5. 3. 7. 

Fig. 12. The Least Significant First Binary Summation with Ax=6 and Ay=2. 
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The middle cut algorithm requires multiplication and division during 
the initialization process. This may become a bottleneck if pipelining is 
employed. The prefix sums algorithm needs two phases to complete. In 
addition, each node must maintain some storage for intermediate values, 
which is not the case with other algorithms. The LSF algorithm has 
potentially the simplest node calculation, but the results are not produced 
in correct order. This can cause inefficiency in routing the signals. 

The most likely candidate for a practical implementation is the MSB 
algorithm which has a simple initialization, uses simple computational 
nodes, and presents its results in correct order. A more detailed comparison 
of algorithms depends on implementational technology and it is not 
discussed here. 

These algorithms can be extended to generating antialiased lines 
without fundamental difficulties. Using existing subpixel approaches, 
antialiased lines can be generated with greater hardware cost but no 
fundamental change in complexity of the algorithms. This is an additional 
feature of these line generating methods. 

4. C O N C L U S I O N  

We have shown that straight line generation is not a fundamentally 
serial O(n) problem. We have developed algorithms with constant and 
log: n complexity bounds. 

Using only shifts and additions, four parallel algorithms were designed 
to generate the same lines as those in Bresenham's algorithm. All have time 
complexity O(log2 n), where n denotes the number of points generated, and 
can be pipelined to achieve unit time line generation. The algorithms can 
be implemented efficiently with parallel computers in the form of a binary 
tree. 

Conceptually the simplest, the middle cut algorithm is basically a 
divide-and-conquer algorithm. Each step calculates the midpoint between 
two endpoints and poses the generation of a line as the generation problem 
of two shorter lines. The process is repeated until the length of the line 
equals one. 

The prefix sums algorithm uses the fact that the elements of an 
arithmetic sequence are equivalent to the prefix sums of a certain vector. 
A variation of the prefix sums algorithm is included and exploited for 
the purpose of parallel line generation. 

The other two algorithms expand multiplication in the arithmetic 
sequence computation into binary summations. They differ in the order in 
which summation is performed. 

This paper develops algorithms for generating straight lines with a 
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massively parallel approach  in a tree topology. Using pipelining, one line 
(regardless of its length) can be generated per time unit. I t  is recognized 
that  these algori thms may  generate lines faster than tradit ional memory  
subsystems can store them. If  there is no need to store lines, it is possible 
to fully exploit this generat ion speed. Once memory  subsystems of suitable 
speed are available, these algorithms should provide significant speedup 
over sequential algorithms. 
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