
International Journal of Parallel Programming, VoL 19, No. 5, 1990

Parallel Algorithms for Line

Rok Sosi6 and Richard F. Riesenfeld 1

Received April 1990," Revised October 1990

Generation

A new, parallel approach for generating Bresenham-type lines is developed.
Coordinate pairs which approximate straight lines on a square grid are derived
from line equations. These pairs serve as a basis for the development of four new
parallel algorithms. One of the algorithms uses the fact that straight line
generation is equivalent to a vector prefix sums calculation. The algorithms
execute on a binary tree of processors. Each node in the tree performs a simple
calculation that involves only additions and shifts. All four algorithms have time
complexity O(log2n) where n in the form 2 m denotes the number of points
generated and n - 1 is the number of processors in the tree. This compares to
O(n) for Bresenham's algorithm executed on a sequential processor. Pipelining
can be used to achieve a constant time per line generation as long as line length
is less than n.

KEY WORDS: Line generation; parallel algorithms; binary processor tree;
middle cut algorithm; prefix sums; binary summation.

1. INTRODUCTION

Line generation is a fundamental geometric calculation that appears in
many areas: computer graphics, image processing, scientific visualization,
medical imaging, computer aided design, and computer aided manufacturing.
Since its introduction, Bresenham's algorithm, (~'2) with many subsequent
variations and optimizations, has become a standard approach for generating
straight lines. A recent survey of the field was compiled by Brons. <3~ The
original Bresenham view of line generation as embodied in his algorithm,
which is essentially one involving two coordinated counters and a cumulative
error, may lead to thinking of line generation as a fundamentally serial

t Department of Computer Science, University of Utah, Salt Lake City, UT 84112. E-mail:
sosic@cs.utah.edu, rfr@cs.utah.edu.

389

828/19/5-3 0885-7458/90/1090-0389506.00/0 �9 1990 Plenum Publishing Corporation

390 Sosi~ and Riesenfeld

process, and explains why not many attempts were made to paralletize it,
There have been, however, some work done on parallel methods for line
generation.

Sproull (4) presents the (n, n) algorithm where n processors operate
with a phase shift and each processor generates points spaced n units apart.
The first processor generates points at x = 0, n, 2n,..., the second processor
generates points at x = t, n + t, 2n + 1,..., and so on.

Wright (5~ describes an algorithm where a line is divided into subintervals
and each processor generates one subinterval.

The algorithm used in Pixel-Planes (6) simulates a straight line as a
long stretched polygon, This is the only algorithm, mentioned in this paper,
that is not a variation of Bresenham's approach.

Blelloch (7~ uses a scan operation, called in this paper prefix sums
operation, as a basis for generating straight lines. His approach is probably
similar to our prefix sums algorithm, but his description is not sufficiently
detailed to make a precise comparison.

Our paper is organized as follows. First, we show how points that
approximate a straight line can be represented as elements of an arithmetic
sequence and the derivation of such a sequence is explained. Next, four
approaches to parallel computation of the points are described.

2, S E Q U E N C E A L G O R I T H M

This section derives the relation between points that approximate
a straight line and elements of a specialized arithmetic sequence (for
alternative derivations see Refs. 1, 3, 4, 8). Numbers are assumed to be
integers. Divisions are integer divisions with truncation.

It is assumed without toss of generality that a straight line is drawn
from the origin (0, 0) to a point (Ax, Ay), where Ax >~ Ay >10, Ax > 0, and
the end points are center aligned. This nontrivial line lies completely in the
first octant. An arbitrary straight line can be generated by using translation
and symmetry properties.

In more formal terms, the problem is to compute a sequence of 2D
points

(i, y~); O<~i~zlx (1)

on a square grid, such that the vertical distance between the points and the
line from (0, 0) to (Ax, Ay) is minimal.

Ax + 1 points are distributed close to the line so that for every x,
O<~x~Ax, there is exactly one 2D point in sequence (1) whose first
coordinate is equal to x. The y coordinate to a given x is chosen as a point

Parallel Algorithms for Line Generation 391

on the grid that is vertically closest to the intersection between the theoretical
straight line and the vertical line through x.

The line equation is

x Ay
Y= Ax (2)

The division in Eq. (2) must be done with rounding. Rounding can be
obtained from ordinary integer division with truncation after adding Ax - 2
to the dividend. A x + 2 can be rounded up or down depending on the
application. (9~ Equation (2) becomes

x A y + A x + 2
Y - Ax (3)

The general formula for the ith element of a line from (0, 0) to (Ax, Ay) is

(i, (i A y + Ax + 2) + Ax) (4)

An algorithm with unit time complexity follows immediately from
Eq. (4) where unit time is taken to mean a single evaluation of Yi- If
we have A x + 1 processors then the ith processor should evaluate the
expression

yi = (i A y + Ax + 2) + Ax (5)

Although algorithm in Eq. (5) uses constant time, it may not be
suitable because integer multiplication and division are used to obtain the
y coordinate. In the following sections we develop parallel algorithms with
only addition, subtraction, and shifting. The y sequence in Eq. (5) is an
arithmetic sequence, a property exploited by the algorithms later. The main
difference between the algorithms is in the method they use to compute the
arithmetic sequence.

The division by Ax in Eq. (5) can be avoided in the following way.
The actual sequence evaluated by the algorithms is

(0, A x + 2), (1, Ay + Ax + 2), (2, 2Ay + Ax + 2) (Ax, Ax Ay + Ax + 2)

(6)

The y coordinate of the sequence elements is kept in the form (p, q),
where

y = p A x + q , O < ~ q < A x . (7)

828/19/5- 3*

392 Sosib and Riesenfeld

This is essentially the y coordinate expressed in base Ax. Then p is the
quotient and q is the remainder of the integer division of y by Ax. p
corresponds to the y coordinate of the final point, but we also need to keep
track of q during computation to obtain the final result. The representation
of a sequence element is thus a triplet (x, p, q) instead of a pair (x, y).

The y coordinate to a given x is chosen as a point on the grid that is
vertically closest to the ideal straight line. This is also a property of
Bresenham's algorithm. It follows that sequence of Eq. (6) represents the
same points as those generated by Bresenham's algorithm.

The points on a line are now characterized by a particular arithmetic
sequence. Efficient parallel computation of this sequence is our remaining
task.

3. F O U R PARALLEL A L G O R I T H M S

This section describes four new parallel algorithms which are based on
the sequence algorithm derived in Eq. (6). The algorithms substitute
additions and shifts for divisions or multiplications that are used in the
sequence algorithm.

3.1. Genera l C o m m e n t s

The underlying computer topology for each of our algorithms is a
binary tree of processors. Each node in the tree is capable of some simple
computation and exchange of data with other nodes. The flow of data
proceeds in layers from the root of the tree to leaves. The only exception
to this unindirectional flow is the prefix sums algorithm which has an
additional phase from the leaves to the root. Each leaf processor can
generate two points. The length of the longest computable line is thus the
number of leaf processors multiplied by 2.

The depth of the tree is proportional to O(log2 n) where n denotes the
number of processors. Since the number of execution passes through the
tree is at most two, the execution time is also proportional to O(log2 n).
The cost of the algorithms, the number of processors multiplied by the time
complexity, is (n - 1) log2 n = O(n log2 n).

Only one layer of nodes in the tree is used at each step. Nodes that are
not part of this layer can be utilized by pipelining. For example, at time t
layer k is working on line i, layer k + 1 on line i + 1, layer k + 2 on line
i + 2, and so on. At time t + 1, layer k is working on line i + 1, layer k + 1
on line i + 2, layer k + 2 on line i + 3, and so on. By using pipelining, one
straight line can be generated each clock cycle. The cost of the algorithms

Parallel Algorithms for Line Generat ion 393

becomes O(n), which represents the optimal speedup of the n processor
version over the sequential version.

Next, we describe four different algorithms to generate straight lines in
detail. During the discussion we illustrate each algorithm for the line with
values Ax = 6 and Ay = 2.

3.2. Middle Cut Algorithm

Two versions of the middle cut algorithm are presented. The first one
is a general algorithm and the second one is an optimized version for a
fixed tree of processors where a part of the computation can be omitted.

Probably the most obvious approach to straight line generation in
parallel is the divide-and-conquer technique: compute the midpoint between
two endpoints and repeat the process on both subintervals until the interval
size equals one (Fig. 1).

The root node is initialized with the value of the first and last elements
in sequence of Eq. (6): ((0, 0, Ax+2) , (Ax, Ay, Ax+2)) . The last point on
the line is not produced and must be added separately.

The essential part of the computation is the function get_middle (see
Fig. 2). Since I=(lx, tp, lq) and r=(r~,rp,%) are both part of an
arithmetic sequence, the element m = (m~, rap, mq) between them can be
calculated as their component-wise average. For p and q components,
relation in Eq. (7) must be considered as well. That means that the value
of mq must be kept in the range 0 <~mq < Ax by adjusting mp and mq to
satisfy relation in Eq. (7). If the number of elements between t and r is
even, the element at the position before the center is computed.

In general, the computation will terminate at different levels, which
complicates hardware implementation. Moreover, the algorithm is too
general. Under the assumption that we are using a binary tree of
processors, the algorithm can be simplified considerably.

We can use all processors in every line generation without any time
penalty. The line is extrapolated to Iength MAXL, which denotes twice the
number of leaf processors. Thus a line of length MAXL is computed every

p r o c e d u r e middle_cut(t, r)
b e g i n

i f distance(l, r) < 1 t h e n draw(t);
m = get_middle(l, r);
middle_cut(l, m); middle_cut(m, r);

end ;

Fig. 1, The middle cut algorithm.

394 Sosi6 and Riesenfeld

func t ion get_srLiddle((/~, Ip,/q), (r~, rp, rq))
beg in

{ Ax and Ay are global line generating parameters }
m~ = (r~ + l~) d iv 2;

{ compute the element to the left of the center }
if even (r~ - l~) t hen rq = rq - Ay;
m p = lp + rp; mq = Iq + rq;

{ make mp divisible by 2 }
if odd(rap) t hen beg in r a p = r a p + l ; m e = m q - A x ; end;
m p = mp div 2; mq = m e d iv 2;

{ normalize 0 _< rn e < Ax }
i f m e < O t h e n b e g i n m p = m p - 1 ; m e = m e + A x ; end;
return((mx, mp, me));

end;

Fig. 2. Function geLmiddle.

time regardless of the original Ax, but only the first zlx + 1 points at leaves
of the tree are taken. Some preprocessing must be added to compute the
last point on the extended line. The additional cost of the preprocessing
takes only constant time, because it is performed once per line generated.

Since every node computes for a fixed value of x, we can omit all
computations related to x. Because line length is fixed to MAXL, we can
omit the recursion end test. Because midpoints always lie on the grid, we
can omit the parity test for the number of points between endpoints.
Similar optimizations are applied in the other parallel algorithms described
in this article.

The final algorithm is presented in Fig. 3. Procedure middle_cut_Iinel
performs initialization. Procedure middle cut1 is calculation that is
performed by each computation node of the tree. MAXL denotes twice the
number of processors in the bottom row of the processor tree, which is
always a power of 2.

An example of the middle cut algorithm with values Ax -- 6 and Ay = 2
is shown in Fig. 4. Each circle in the figure represents a computing node.
The pair of values at each circle are input values to the corresponding
node. This pair is denoted a s (lp, lq) and (rp, %) in function get_middlel in
Fig. 3. Values at the bottom of the tree represent the (tp, lq) part of the pair
at this node. The sequence of tp values gives y values for the line. Since Ax.
equals six, only first seven points are needed. The resulting line for Ax = 6
and A y = 2 is: (0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 2), (6,2).

At this point we have fully specified the details of the conceptually
simplest algorithm.

Parallel Algorithms for Line Generation 395

3.3. Pref ix Sums A lgor i thm

The prefix sums of a vector a = (aa, a2 a ,) constitute a vector p,
such that its ith component is the partial sum Pi = al + a2 + " ' " '1- ai. The
vector of y components of sequence in Eq. (6) is the prefix sums of a vector
(Ax + 2, Ay, Ay,..., Ay) with Ax + 1 coordinates. Because the x component
of sequence in Eq. (6) is uniquely identified by the processor position, there
is no need to compute it. Hence, line generation is equivalent to prefix
sums calculation, a process whose optimizations and parallel implementa-
tions have been studied. (v'l~

Prefix sums can be computed on a parallel computer with linear
speedup dependent upon the number of processors. (H'12) Although our

p r o c e d u r e middle_cut_line(Ax, Ay)
beg in

distribute Ax to all nodes;
n = M A X L , A y + A x div 2;
middle_cut1((0, Ax div 2), (n d iv Ax, n rood Ax));

end;

p r o c e d u r e middle_cut1(/, r)
beg in

m = get_middle1(/, r);
middle_cutl(/ ,m); middle_curl(m, r);

end;

f unc t i on get_middlel((/p, lq), (rp, rq))
beg in

end;

{ Ax is a global parameter }
rnp = Ip + rpi mq = lq + rq;

{ make mp divisible by 2 }
if odd(rap) t h e n beg in m p = m p + l ; m q = r n q - A x ; end;
m p = mp div 2; mq = mq div 2;

{ normafize 0 _< rnq < A x }

i f mq < 0 t hen beg in m p = Up - 1; mq = mq + / k x ; end;
retnr ((- p, mq));

Fig. 3. The optimized version of the middle cut algorithm.

396 Sosi~ and Riesenfeld

t"~(1,r) = ((0,3), (3,1))

~ , 3) , (1 , 1)) ~ l) , (1 , 5)) ~ 5) , (2 , 3) ~ / ~ ~ 3) , (3,1))

(0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3) (2,5)

Fig. 4. The middle cut algorithm with Ax = 6 and Ay = 2.

algorithm does not achieve this optimal speedup, it leads to a very simple
node implementation. We present an independently discovered line genera-
tion algorithm based on the prefix sums calculation method by Blelloch. r
He describes the application of prefix sums operation to line generation,
but he does not present details.

Since the prefix sums of a vector can be computed in O(log2 n) time,
it is clear that line generation has the same time complexity. The algorithm
works in two phases. The up phase proceeds from leaves to the root and
the down phase from the root to leaves. This algorithm is the only one in
this paper where two phases are required. All other algorithms require only
the down phase.

The up phase computes the sums of subtrees. The sum of a subtree is
stored at each corresponding node. The down phase propagates the sum of
all elements to the left of a given node down the tree using previously
computed values (see Fig. 5). Procedure prefix_sums_ line is the initialization
part. Procedure up_phase is performed at each node during the up phase,
Procedure middle_phase is a short computation between the up phase and
the down phase that saves the root value and sets its new value to zero.
Procedure down_phase is performed at each node during the down phase.
All numbers are expressed in base Ax, so additions in the algorithm must
also be in base Ax (see Fig. 6).

The algorithm computes the prefix sums vector shifted one position to
the right to ensure that the computation in the leaves remains the same as
that in internal nodes. The last element missing from the vector at the right
is the value of the root after the up phase.

Parallel Algorithms for Line Generat ion 397

Values of nodes in the tree with Ax = 6 and Ay = 2 after up phase and
down phase are shown in Figs. 7 and 8, respectively. Final values at the
bottom are shifted one place to the right. The root value after the up phase
is the value missing on the right, although it is not needed for this
particular line, The result of the prefix sums algorithm is the same as that
of the middle cut algorithm.

p r o c e d u r e prefix_sumsAine(Ax, Ay)

b e g i n
set first leaf to (0, Ax + 2);

{ test is necessary for the slope of 45 degrees }
i f Ay = Ax t h e n set other leaves to (1,0)

e lse set all other leaves to (0, Ay);

distr ibute Ax to all nodes;
up_phase(root); middle_phase(root) ; down_phase(root);

e n d ;

p r o c e d u r e up_phase(tree)
b e g i n

tree.value = up_phase(tree.left) + up_phase(tree,right);
return(tree,value);

e n d ;

p r o c e d u r e middle_phase(tree)
b e g i n

save tree.value; tree.value = 0;

e n d ;

p r o c e d u r e down_phase(tree)
b e g i n

tree,right.value = tree.value + tree.left.value;
tree,left,value = tree,value;
down_phase(tree,left); down_phase(tree,right);

e n d ;

F~g, 5, The prefix sums algorithm.

398 Sosie and Riesenfeld

p r o c e d u r e + (a , b)

b e g i n

cp = ap 4- bp; Cq = aq + bq;

i f c q > A x t h e n b e g i n c p = c p + l ; C q = C q - A x ;

r e tu rn (c) ;

e n d ;

e n d ;

Fig. 6. Addition in base Ax.

Pipelining of the prefix sums algorithm is more complex to implement
than pipelining of other algorithms in this paper because the nodes in the
tree must maintain intermediate values for lines that are being processed.
Each leaf node must keep 2 log 2 n values, the nodes one layer up must keep
2(log2 n - 1) values, and so on.

3.4. Binary Summat ion Algori thms

For hardware implementations, it may be preferable to trade a higher
complexity class for simpler operations at each node. The next two
algorithms have that goal. They transform multiplication into addition.

If we subtract A x + 2 from the right coordinate of every pair in
sequence of Eq. (6), the remaining sequence is

(i, i , A y) ; O<.i<~Ax (8)

(0,3) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2)

Fig. 7. The prefix sums algorithm after the up phase with Ax = 6 and Ay = 2.

Parallel Algorithms for Line Generation 399

(0,0) (0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3)

Fig. 8. The prefix sums algorithm after the down phase with Ax = 6 and Ay = 2.

Let (i,, in 1 is, io) denote the binary expansion of index i. Sequence
in Eq. (8) can be computed in two ways.

The first one is the most significant first summat ion algorithm (MSF):

�9 reset all elements to zero

�9 add 2" Ay to all elements i, such that in = 1

�9 add 2 n - 1 Ay to all elements i, such that in_ 1 = 1

�9 add 2 o Ay to all elements i, such that i0 = 1

This type of binary expansion is implemented in Pixel-Planes/6)
However, the M S F algori thm is not a trivial extension of the Pixel-Planes
algorithm, because it must maintain numbers in base Ax, while Pixel-
Planes works with a single number.

Another way of comput ing Eq. (8) is the least significant first summat ion
algori thm (LSF), which is similar to the M S F algorithm, only the summat ion
is executed in opposite order:

�9 reset all elements to zero

�9 add 2 o Ay to all elements i, such that io = 1

�9 add 21 Ay to all elements i, such that il = 1

�9 add 2" Ay to all elements i, such that i X= 1

Both methods convert multiplication into binary summation. They are
highly amenable to a binary tree implementation. It is simple to add term

400 Sosi6 and Riesenfeld

A x + 2 to get sequence in Eq. (6) from sequence in Eq. (8). The root
element in the tree is initialized to Ax + 2 instead of 0.

The MSF method uses large terms 2 i Ay that must be added at each
node. Terms 2 i Ay are easily computed by shifting Ay. Ordinarily, they
would be expressed in base Ax. Instead of forcing this requirement, we
represent terms 2 i Ay in nodes at height i in base 2 i Ax. They are expressed
as a pair (p, q) where

p A x U + q ; 0~<q<z lxU (9)

Since Ax >i Ay >~ O, the value of 2 i Ay in base 2 ~ Ax is simply (0, 2 ~ Ay), if
z]x > Ay, or (U, 0), if Ax = Ay.

Because computation proceeds from the root to the leaves where the
height is 0, the end result is in the required base dx (see Fig. 9). Procedure
msf l ine represents the initialization of the MSF algorithm, while procedure
m s f s u m is the calculation performed at each node.

An example with Ax = 6 and Ay = 2 is shown in Fig. 10. Values at
each circle represent inputs to that node. They are denoted as (p, q) in
procedure m s f s u m (Fig. 9). Each branch in the tree shows the value that
is added to the node value.

The LSF method is straightforward (see Fig. 11). Procedure lsf line
performs the initialization of the LSF algorithm. Procedure lsf_sum is the
calculation performed at each node in the tree. Since we need values 2 ~ Ay
(fp and fq in procedure lsf sum) from the smallest to the largest, they can

p r o c e d u r e msfAine(Ax, Ay)
b e g i n

distribute Ax and Ay to all nodes;
msf-sum(0, Ax + 2);

end ;

p r o c e d u r e msf-sum(p, q)
b e g i n

{ scale down the range of q, i is height-1 }
i f q > 2 i A x t h e n b e g i n p = p + 2 i ; q = q - 2 i A x ; end ;

{ add term to the right subtree }
rp = p; rq = q + 2 i Ay;

{ scale down the range of rq, i is height-1)
i f rq >_ 2 ~ A x t h e n b e g i n rp = rp + 2i; rq = rq - 2 i Ax; end ;

msf_sum(p, q); msf_sum(rp, rq);
end ;

Fig. 9. The Most Significant First (MSF) Summation Algorithm.

Parallel Algorithms for Line Generation 401

. , ~ ~) = (0,3)

 t {o,i1)

7 \ ' 7 \ ' 7 \ ' 7 \ '
(0,3) (0,5) (1,1) (1,3) (1,5) (2,1) (2,3) (2,5)

Fig. 10. The Most Significant First Binary Summation with Lfx = 6 and z/y = 2.

p r o c e d u r e lsLline(Ax, Ay)
beg in

distribute Ax to all nodes;
lsLsum(0, Ax + 2, 0, Ay);

end ;

p r o c e d u r e lsf_sum(p, q, fp, fq)
beg in

{ add term to the right subtree }
r p = p + fp; rq=q+ fq;

{ normalize }
i f r q > _ A x t h e n b e g l n rp= rp+ l; rq = r q - Ax; end;

{ multiply terms }

f p = 2 fp; f q = 2 fq;
{ normalize }

i f f q > A x t h e n beg in f p = f p + l ; f q = f q - A x ; end;
lsf_sum(p, q, fp, f q); lsf_sum(rp, rq, fp, f q);

end;

Fig. 11. The Least Significant First (LSF) Summation Algorithm.

402 Sosib and Riesenfeld

be easily maintained in base Ax with only one test alter multiplication by
2 at each level. Values J)~ and fq can be computed only once per each level
of nodes, attough they are shown as a part of the individual node computa-
tion.

An example with Ax=6 and Ay=2 is shown in Fig. 12. Values at
each circle represent inputs to that node denoted as (p, q) in procedure
I,f_sum (Fig. 9). Each branch in the tree shows tha value that is added to
the node value. Since the LSF algorithm starts adding the smallest
numbers first, the final order of nodes in the result is mixed. The position
of a node is determined as the reversed binary expansion of its index. For
example, node 6 (110 in the binary representation) contains the y value for
x equal to 3 (0tl in the binary representation). The proper positions of
nodes is shown below the computed values.

The MSF and LSF algorithms are expandable in the following sense.
If the straight line length is greater than the number of tree leaves, the
result of the computation from the last leaf can be fed to the tree root and
the line can be extended as tong as the numbers do not overflow the
implementational constraints,

3,5. i m p l e m e n t a t i o n a l Issues

All four presented algorithms (middle cut algorithm, prefix sums
algorithm, and two binary summation algorithms) have the same time
complexity O(log2 n) for a tree with O(n) processors. None of the four
algorithms is superior over another in time complexity. We discuss some
considerations in their implementation.

~ = (0,3)

I

I\oi\ 8 7 \ ~ 8
(0,3) (1,5) (1,1) (2,3) (0,5) (2,1) (1,3) (2,5)

O. 4. 2. 6. 1. 5. 3. 7.

Fig. 12. The Least Significant First Binary Summation with Ax=6 and Ay=2.

Parallel Algorithms for Line Generation 403

The middle cut algorithm requires multiplication and division during
the initialization process. This may become a bottleneck if pipelining is
employed. The prefix sums algorithm needs two phases to complete. In
addition, each node must maintain some storage for intermediate values,
which is not the case with other algorithms. The LSF algorithm has
potentially the simplest node calculation, but the results are not produced
in correct order. This can cause inefficiency in routing the signals.

The most likely candidate for a practical implementation is the MSB
algorithm which has a simple initialization, uses simple computational
nodes, and presents its results in correct order. A more detailed comparison
of algorithms depends on implementational technology and it is not
discussed here.

These algorithms can be extended to generating antialiased lines
without fundamental difficulties. Using existing subpixel approaches,
antialiased lines can be generated with greater hardware cost but no
fundamental change in complexity of the algorithms. This is an additional
feature of these line generating methods.

4. C O N C L U S I O N

We have shown that straight line generation is not a fundamentally
serial O(n) problem. We have developed algorithms with constant and
log: n complexity bounds.

Using only shifts and additions, four parallel algorithms were designed
to generate the same lines as those in Bresenham's algorithm. All have time
complexity O(log2 n), where n denotes the number of points generated, and
can be pipelined to achieve unit time line generation. The algorithms can
be implemented efficiently with parallel computers in the form of a binary
tree.

Conceptually the simplest, the middle cut algorithm is basically a
divide-and-conquer algorithm. Each step calculates the midpoint between
two endpoints and poses the generation of a line as the generation problem
of two shorter lines. The process is repeated until the length of the line
equals one.

The prefix sums algorithm uses the fact that the elements of an
arithmetic sequence are equivalent to the prefix sums of a certain vector.
A variation of the prefix sums algorithm is included and exploited for
the purpose of parallel line generation.

The other two algorithms expand multiplication in the arithmetic
sequence computation into binary summations. They differ in the order in
which summation is performed.

This paper develops algorithms for generating straight lines with a

404 Sosi~ and Riesenfeld

massively parallel approach in a tree topology. Using pipelining, one line
(regardless of its length) can be generated per time unit. I t is recognized
that these algori thms may generate lines faster than tradit ional memory
subsystems can store them. If there is no need to store lines, it is possible
to fully exploit this generat ion speed. Once memory subsystems of suitable
speed are available, these algorithms should provide significant speedup
over sequential algorithms.

A C K N O W L E D G M E N T S

The authors would like to thank Majna Plegko, Gilad Bracha, Michael
Cohen, Kris Sikorski, Elaine Cohen, Jurg Nievergelt, Robin Forrest, Irving
Miller, and anonymous referees for their valuable comments on this paper.
This work was supported in part by D A R P A (DAAKl184K0017 and
N00014-88-K-0688). All opinions, findings, conclusions or recommendat ions
expressed in this document are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

R E F E R E N C E S

1. J. E. Bresenham, Algorithm for Computer Control of a Digital Plotter, IBM Systems
Journal, 4(4):25-30 (1965).

2. J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics', Addison-
Wesley, pp. 433-436 (1982).

3. R. Brons, Theoretical and Linguistic Methods for Describing Straight Lines, Fundamental
Algorithms for Computer Graphics, (ed.), R. A. Earnshaw, NATO ASI Series F, Volume 17,
Springer-Verlag, pp. 19-57 (1985).

4. R. F. Sproull, Using Program Transformations to Derive Line-Drawing Algorithms,
A CM Transactions on Graphics, 1(4):259-273 (October 1982).

5. W. E. Wright, Parallelization of Bresenham's Line and Circle Algorithms, IEEE Computer
Graphics and Applications, 10(9):60-67 (September 1990).

6. H. Fuchs, An Introduction to Pixel-Planes and other VLSI-intensive Graphics Systems,
Theoretical Foundations of Computer Graphics and CAD, (ed.), R. A. Earnshaw, NATO
ASI Series F, Volume 40, Springer-Verlag, pp. 675-688 (1988).

7. G. E. Blelloch, Scans as Primitive Parallel Operations, IEEE Transactions on Computers,
38(11):1526-1538 (November t989).

8. J, Van Aken and M. Novak, Curve-Drawing Algorithms for Raster Displays, ACM
Transactions on Graphics, 4(2):147-169 (April 1985).

9. J. E. Bresenham, Ambiguities in Incremental Line Rastering, IEEE Computer Graphics
and Applications, 7(5):31-43 (May 1987).

10. R. E. Ladner and M. J. Fischer, Parallel Prefix Computation, J. ACM, 27(4):831-838
(October 1980).

tl. H. Meijer and S. Akl, Optimal Computation of Prefix Sums on a Binary Tree of
Processors, IntT. JPP, 16(2):127-136 (1987).

12. R. Cole and U. Vishkin, Faster Optimal Parallel Prefix Sums and List Ranking, Information
and Control, 81(3):334-352 (June 1989).

