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A Scalable Implementation of 
Barrier Synchronization Using an 
Adaptive Combining Tree 
Rajiv Gupta I and Charles R. Hill ~ 

Barrier synchronization is commonly used for synchronizing processors prior to 
a join operation and to enforce data dependencies during the execution of 
parallelized loops. Simple software implementations of barrier synchronization 
can result in memory hot-spots, especially in large scale shared-memory multi- 
processors containing hundreds of processors and memory modules com- 
municating through an interconnection network. A software combining tree can 
be used to substantially reduce memory contention due to hot-spots. However, 
such an implementation results in O(log n) latency in recognition of barrier 
synchronization, where n is the number of processors. In this paper an adaptive 
software combining tree is used to implement a scalable barrier with O(1) 
recognition latency. The processors that arrive early at the barrier adapt the 
combining tree so that it has a structure appropriate for reducing the latency for 
the processors that arrive later. We also show how adaptive combining trees can 
be used to implement the fuzzy barrier. The fuzzy barrier mechanism reduces 
the idling of processors at the barriers by allowing the processors to execute 
useful instructions while they are waiting at the barrier. 

KEY WORDS:  Memory hot spots; software combining tree; fuzzy barrier; 
interconnection networks; processor synchronization. 

1. INTRODUCTION 

Barrier synchronization is a commonly  used mechanism for synchronizing 
the flow of control of  two or more parallel threads of execution. Upon  
reaching a barrier a processor must wait until all processors reach the 
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barrier. Barriers may be automatically introduced by a parallelizing com- 
piler or may be introduced explicitly by the programmer. They can be used 
for synchronizing processors to perform a join operation when exploiting 
parallelism in a fork-join fashion. During the parallel execution of loops, a 
barrier placed at the end of a DOALL loop enforces data dependencies 
between successive executions of the DOALL. Barriers can be implemented 
in software using one or more shared variables and several algorithms have 
been proposed to do so. (1-3) In this paper, we address the problem of 
developing a software implementation of barrier synchronization suitable 
for a large scale shared-memory multiprocessor system. A large scale 
shared-memory multiprocessor contains hundreds of processors and 
memory modules. A multistage interconnection network, such as the 
omega network, (4) is typically provided as a means for communication 
between the processors and memory modules. The Cedar machine at the 
University of Illinois, (5) the NYU Ultracomputer, (6) BBN Butterfly, and 
the IBM RP3 (7) are examples of such machines. 

The barriers can be implemented by an atomic counter decrement 
followed by a busy wait. Although such an implementation may be ade- 
quate in a system with a small number of processors it suffers from two 
major drawbacks if used in a large scale system. First, it results in memory 
hot-spots, which prevents its use for synchronizing a large number of 
processors. Second, the busy waiting of processors at the barrier wastes 
processor resources. A software solution to the hot-spot problem was 
proposed by Yew et a/. (3) Instead of using a single variable, a combining 
tree consisting of several shared memory variables is built. Each of these 
variables is only accessed by a subset of processors during synchronization. 
By distributing the variables among different memory modules in the 
system the problem of memory hot-spots is greatly reduced. Thus, this 
approach is suitable for synchronizing a large number of processors. 
However, such an implementation involves latency in detecting the 
occurrence of synchronization. If one of the processors arrives at the barrier 
later than all other processors it requires O(loga N) time to recognize that 
it is the last processor, to arrive at the barrier, where d is the number of 
children of each node in the tree and N is the number of processors. In this 
paper, we present a software implementation of the barrier that eliminates 
the latency in the recognition of barrier synchronization by employing an 
adaptive combining tree. 

A solution to reduce idling of processors at the barriers has been 
proposed. (8) The compiler finds useful instructions that can be executed by 
the processor while it is waiting for notification of synchronization. After 
having finished executing these instructions a processor checks whether all 
other processors have arrived at the barrier. If this is true the processor can 
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continue execution and thus avoid busy waiting at the barrier. The reduc- 
tion in the busy waiting not only leads to better processor utilization but 
also reduces the memory traffic due to busy waiting. A hardware 
implementation of the fuzzy barrier was proposed to avoid synchronization 
overhead and memory contention. (8/ We present a software implementa- 
tion of the fuzzy barrier using adaptive combining trees that results in an 
implementation that is scalable, involves low latency, and reduces idling at 
barriers. 

In the subsequent sections we first describe the machine model used in 
this work and the implementation of barrier synchronization using the 
traditional combining tree. Next the low latency implementation of barrier 
synchronization based upon an adaptive combining tree is discussed in 
detail. Finally the implementation of the fuzzy barrier using adaptive 
combining trees is described. 

2. T H E  M A C H I N E  M O D E L  

In this section we specify the machine model of a large scale shared- 
memory multiprocessor system. The system consists of a large number of 
identical processors and memory modules. The memory modules are 
shared by all the processors in the system. The processors and the shared 
memory modules are connected by a multistage interconnection network. 
We assume that the interconnection network does not perform combining 
as combining networks are slow and expensive to build. Each processor 
also has its local memory where local variables are stored. A processor 
does not have to go through the interconnection network to access its local 
memory. 

The machine also supports synchronization instructions that are 
executed atomically. These instructions perform read-test-modify opera- 
tions on variables in shared memory. The implementations of the adaptive 
combining tree and the fuzzy barrier described in this paper require the use 
of spinlocks that can be implemented using read-test-modify operations. 
For convenience we use the synchronization instructions supported by the 
Cedar machine (5~ to express synchronization operations. The Cedar syn- 
chronization instructions have the following form: 

(syncvar; test; oper) 

where syncvar is an integer synchronization variable allocated in shared 
memory, test is a condition that is tested prior to performing the operation 
oper on the synchronization variable. If the test fails the operation is not 
performed and the outcome of the test is sent to the processor. The 
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processor can issue the same instruction again or proceed with execution. 
A star on the test condition (test*) is used to indicate that the processor 
will continue to issue the instruction till it succeeds. The following instruc- 
tions perform a lock and unlock operation on a spinlock spin. 

lock: (spin; ( = 0)*; Increment ) 

unlock: (spin; Null; Decrement)  

The integer synchronization variable spin is initialized to zero. The lock 
instruction repeatedly tests the value of spin till it is zero at which point it 
increments spin. The unlock instruction decrements spin unconditionally. 

3. BARRIER I M P L E M E N T A T I O N  USING A S O F T W A R E  
C O M B I N I N G  TREE 

In this section we present a barrier implementation based upon the 
software combining trees proposed by Yew et al. (31 Figure 1 shows a com- 
bining tree for synchronizing N processors. The nodes of the tree represent 
variables allocated from different memory modules in the system. Each 
node contains a parent pointer, a counter that is initialized to d, which is 
the number of children of each node in the tree, and a notify field used 
during the notification of synchronization. For simplicity we assume that 
the number of processors (N) synchronizing at the barrier is an integral 
power of d (i.e., N =  dk). A processor upon arriving at the barrier goes to 
the leaf node assigned to it and decrements the counter. If the counter is not 
zero there are other processors that have not reached the barrier and the 
processor remains at that node and busy waits on the notify field. If the 
counter is zero then it is the last processor to arrive at the node and it goes 
to the parent node and repeats the above process. When a processor 
decrements the counter at the root node to zero, barrier synchronization 

P1 ..... Pd ............................... PN-d ...... PN 

Fig. 1. Combining tree. 
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has occurred and the notification through the notify fields is carried out. 
Each node in the combining tree is accessed by at most  d processors and 
the nodes are assigned to different memory  modules. Thus, the memory  
traffic required for barrier synchronizat ion is distributed among  the 
memory  modules. The pseudocode for the barrier implementat ion follows. 

type node = record { 
counter: syncvar;/* initial value = d */ 
notify: syncvar;/* initial value = 0 */ 
parent: ^node; 

} 

Procedure Barrier ( node ); 
{ 

<node--*counter; Null; Fetch(last)&Decrement> 
if ( last == 1 ) { 

/* d processors have arrived at node */ 
if ( node != root ) Barrier(node.parent); 
/* all processors have arrived at the barrier - begin notification */ 
node--*notify = d-l;/* notify siblings */ 
/* wait for all siblings to notice */ 
while (node---~notify != 0); 
/* reinitiatize the current node */ 
node---~counter = d; 

} 
else { 

/* wait for notification and indicate receipt of notification */ 
<node---~notify; (>0)*; Decrement> 
/* wait for all siblings to notice */ 
while (node---* notify l= 0); 

} 
} 

A processor  upon  reaching the barrier calls the procedure Barrier 
passing as parameter  the node at the lowest level in the combining tree 
assigned to it. In this implementat ion the combining tree is reinitialized 
when the processors leave the barrier. Thus, it can be reused repeatedly as 
is often required when barriers are used during parallel execution of  loops. 
To ensure that  a processor  does not  encounter  an uninitialized node upon  
re-entry in to the barrier, the processor waits at a node until all processors 
busy waiting at that  node have received the notification. The operat ion 
Fetch(last)&Decrement decrements the counter and returns the value of  the 
counter prior to the decrement  in the parameter  last. The caller can then 
check the value of last to determine whether it was the last processor to 
arrive at the node. Decrement ing of the notify field to indicate receipt of 
notification is also carried out atomically. It should be noted that for d =  2, 
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i.e., a binary tree, the counter and notify variables can be replaced by a flag 
and an atomic test-and-set operation suffices. 

3.1, T ime Complex i ty  Analysis 

Barrier synchronization can be considered to consist of two phases, 
recognition and notification. During the recognition phase the arrival of 
processors is noted to determine whether all processors have reached the 
barrier. During the notification phase all processors are notified about the 
occurrence of synchronization so that they can continue execution. 

Recognition: Two cases need to be considered here. The first case 
deals with the situation in which all processors arrive at the barrier 
simultaneously and the second case arises when one of the processors 
arrives later than all other processors. Two processors are considered to 
have arrived at the barrier simultaneously if one of them arrives before the 
other enters the busy waiting stage. 

(a) Simultaneous arrival--In this case the time to achieve barrier 
synchronization is O(dlogaN). This is because the d processors 
arriving at a node must decrement counter one at a time. Since 
there are logdN levels in the tree the total time spent in syn- 
chronizing is O(d log a N). 

(b) Non-simultaneous arrival--If all but one of the processors has 
already arrived at the barrier then the last processor must decre- 
ment the counters from the lower most level to the root of the 
tree to detect synchronization. This takes O(logd N) time. Thus, 
there is a latency of O(logd N) in the detection of barrier syn- 
chronization after the last processor has arrived at the barrier. 

Noti f icat ion:  Notification to all processors takes O(dlogaN) time. 
This is because the processor that reaches the root of the tree has to go 
through log d N levels notifying the processors and at each level it ensures 
that each of the d -  1 processors receives the notification. 

From this analysis it is clear that the choice of d involves a trade-off 
between optimizing the recognition time for the simultaneous arrival case 
and the non-simultaneous arrival case. By making the value of d small, the 
recognition time in the simultaneous arrival case can be reduced. But at the 
same time, the number of levels in the tree increases, thus causing the 
latency for detection of barrier synchronization in the non-simultaneous 
arrival case to go up. This trade-off was also reported by Yew et al. ~3) in 
their work. 
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4. BARRIER I M P L E M E N T A T I O N  USING AN ADAPT IVE  
C O M B I N I N G  TREE 

In this section, we present a barrier implementation based upon an 
adaptive combining tree. This implementation eliminates the latency for 
barrier recognition in the non-simultaneous arrival case. Therefore, a 
binary tree is used to minimize the recognition time in the simultaneous 
arrival case to O(log2N). The notification process is also modified, 
resulting in a barrier implementation that requires O(log2 N) time each for 
recognition in the simultaneous arrival case and performing the notifica- 
tion. The barrier is correctly reinitialized, thus allowing its repeated use in 
synchronization. 

To understand the approach to elimination of latency, let us study the 
cause of the latency in the implementation described in the previous section. 
Consider the situation in which a binary combining tree is being used to 
synchronize four processors. In addition let us assume that the order in 
which the processors arrive at the barrier is P~, P2, P3, and P4 respectively. 
The state of the combining tree before the arrival of P4 is shown in 
Fig. 2(a). The nodes of the tree are labeled by the processors busy-waiting 
at the nodes. When processor P4 arrives, starting from the bottom of the 
tree, it has to go to the root of the tree to recognize synchronization. If the 
order of arrival was known prior to recognition the tree in Fig. 2(b) would 
have been more suitable. Since no processors arrived in parallel, the tree 
need not be organized to exploit parallelism. Instead it is organized so that 
no processor has to visit multiple levels in the tree. When processor P4 
arrives it recognizes synchronization immediately after decrementing the 
counter at the root node. The trees shown in Fig. 2 represent the two 
extreme cases. The tree in Fig. 2(a) is organized to exploit maximum 
parallelism during synchronization and the tree in Fig. 2(b) is organized to 
minimize latency. For a given arrival pattern the most suitable tree is one 

count--- 1 

count nt=l 

(a) (b) 

Fig. 2. Reason for latency. 
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which exploits the paralMism in synchronizing the processors that arrive 
simultaneously and minimizes the latency for the processors that arrive 
serially. 

The order in which the processors arrive at the barrier is not known 
prior to execution. Furthermore, this order may not be the same during 
every execution. Thus, the appropriate tree structure cannot be constructed 
statically. However, we propose the use of an adaptive combining tree to 
achieve the appropriate tree structure dynamically. The combining tree is 
originally organized as a binary tree so that it can exploit maximum 
parallelism during synchronization if the processors arrive simultaneously. 
However, the processors that arrive early modify the tree so that it has a 
structure appropriate for reducing the latency for the processors that arrive 
later. For  the processor arrivals in the example of Fig. 2, we will start out 
with the tree in Fig. 2(a) but achieve the effect of having the tree in 
Fig. 2(b) if the processors arrive serially. 

The adaptive binary tree is illustrated through an example in Fig. 3. 
Figure 3(a) shows the initial combining tree. The parent link of the root 
node is nil. Thus, all processors have reached the barrier when a processor 
trying to go up the tree encounters a nil parent link. Figure 3(b) shows the 
tree after PI and P4 have arrived at the barrier. The links have been 
modified so that P2 and P3 have node 2 as their parent. Let us assume P2 
arrives next. Processor P2 goes directly to node 2 and modifies the tree so 
that the node corresponding to processor P3 points to the root node, as 
shown in Fig. 3(c). Thus, when Pa arrives it goes directly to the root of the 
tree and modifies the tree so that the parent of node 3 is nil. When 
processors Ps, P6, P7, and P8 arrive at the barrier they do not have to go 
all the way to the original root of the tree. A processor that arrives at the 
barrier after all other processors have modified the tree will have a nil 
parent and therefore will recognize the occurrence of synchronization 
immediately. The example presented illustrates how processors that arrive 
earlier adapt the tree so that the processors that arrive later can go directly 
to higher levels in the tree. At the same time starting out with a binary tree 
will allow for maximum parallelism during synchronization if all processors 
do arrive at the barrier simultaneously. 

The adaptive combining tree is implemented as a binary tree. Each 
node in the tree contains two sets of fields, the binary fields that form the 
binary tree and the current fields which form the current tree. The current 
fields, parent, left, and right, are provided for the purposes of traversing the 
tree in the recognition phase. The binary fields, bin_parent, bin_left, and 
bin_right, always form a binary tree. The current fields are initialized to 
form a binary tree and are modified during the synchronization process. 
After barrier synchronization is completed the current fields are 
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4 nil 
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(d) P ~  ,nil 

Fig. 3. Adapting the combining tree to avoid latency. 

reinitialized using the binary fields so that the combining tree can be used 
repeatedly. 

The basic rule that was being used to adapt the current combining tree 
is shown in Fig. 4. In Fig. 4 the current fields of the nodes are shown inside 
the node and the binary fields are shown by dotted lines. Figure 4(a) shows 
a situation in which the last processor from the subgraph S arrives at 
the barrier and visits node n i, which has not been visited by another 
processor. The other child node of nj (i.e., the .node not belonging to S), 
denoted by nk, has not been visited earlier. The parent link of node nk is 
modified to point to node ni, the parent of node nj. Also node nk is now 
made the new left child of ni. Fig. 4(b) shows that nk may not necessarily 



170 Gupta and Hill 

I I - not visi ted 

- vis i ted 

bin_parent 

bin_left bin_right 

(a) 

(b) 

Fig. 4. Tree adapta t ion .  

be the immediate right child of nj in the binary tree. However, the nodes 
between nj and nk must have been visited earlier and bypassed through the 
earlier modifications to the current tree. 

Next, we discuss how notification of synchronization is carried out. 
After a processor visits an unvisited node, it marks the node visited, carries 
out the modifications to the current combining tree and then busy waits at 
the node for notification. Thus if all but one of the processors have arrived 
at the barrier then there is a single processor busy waiting at each of the 
internal nodes of the current combining tree. The last processor upon 
arrival will have a nil parent link, indicating that synchronization has 
occurred. At this point it notifies the processor waiting at the root of the 
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binary tree by setting the notify flag of the root node. Each processor is 
provided with a pointer to the root node so that it can set the notify flag 
for the root node. The processor busy waiting at the root notifies the 
processors waiting at its child nodes in the binary tree. This notification 
continues down to the leaves. Thus using the binary combining tree the 
notification process is carried out in parallel. 

As in the previous algorithm the tree must also be reinitialized so that 
it can be reused. Each processor is responsible for reinitializing the node at 
which it busy waits. Thus, after receiving notification it reinitializes the 
node. However, if this approach is taken a processor can leave and hence 
reenter the barrier before all the nodes have been reinitialized. To avoid 
this problem we propose the use of two combining trees (say T1 and T2) to 
implement a single barrier. Each tree is used during alternate synchroniza- 
tions. If a processor has exited T1 and is entering T2, then T2 must have 
been reinitialized. This is because a processor can only leave T1 after all 
processors have entered T1, which guarantees that all processors have 
exited 7"2. Thus 7"2 must have been reinitialized. Each processor keeps 
track of the tree it is currently using. When the processor exits a tree it 
switches its current tree. 

The pseudocode for the implementation of the adaptive combining 
tree is given next. The three main parts to the synchronization process are 
indicating arrival at the barrier, modifying the combining tree, and waiting 
for notification. As mentioned earlier, each node contains current fields and 
binary fields which are used during the recognition phase and notification 
phases, respectively. A lock is provided that allows mutual exclusion when 
a node is being marked visited and during the modification of the parent 
link. A flag notify is provided which is continually checked by the processor 
busy waiting at the node for notification. The visited field indicates whether 
the node has not yet been visited by a processor (=no) ,  or it has been 
visited by a processor from the left/right subtree (=left/right). The indica- 
tion as to whether a node has been visited from the left subtree or the right 
subtree is saved so that the child node whose parent pointer is to be 
modified can be conveniently determined. The function Reinitialize(node) 
is used to reinitialize node prior to exiting the barrier. 

type node --- record { 
lock: syncvar; /* Initially 0 */ 
visited: (no, left, right); 
root, bin..Jeft, bin_right, bin_parent: "node; 
left, right, parent: anode;/* Initially bin._left, bin._right, and 

bin_parent respectively */ 
notify: boolean;/* Initially false */ 
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Procedure Barrier ( node ) 

{ 
/* Arrival Phase */ 
Loop ( /* Loop until parent field of node is nil or unvisited */ 

wait_at = node---*parent; 
if (wait_at ==  nil) { 

node---*root--*notify = t rue; /* Last to arrive - begin notification */ 
Reinitialize(node);/* reset left, right, parent, visited, and notify */ 
return; 

} 
<wait_at ' -*lock;  (=0)*; increment> 
if (wait_at--*visited ==  no) break; 
<wait_at--+lock; Null; Decrement> 

} 
Reinitialize(node); 
/* Now wait_at is unvisited. Mark it visited, and drop the lock */ 
wait_at--+visited = if (wait_at--+left==node) left; else right; 
<wait_at--Hock; Null; Decrement> 

/* Tree Modification Phase */ 
Loop { 

otherchild = if (wait_at--+visited=left) wait_at---~right; 
else wait_at--~left; 

<otherehild---*lock; (=0)*; Increment> 
if (otherchild---*visited==no) break; 
<otherehild---~lock; Null; Decrement> 

} 
/* Now otherchild is unvisited, and its lock is held */ 
parent_.node = wait_at---*parent; 
if (parent_node != nil) { 

if (parent._node--* left==wait_at) 
parent._node---~left = otherchild; 

else parent_node--~right = otherehild; 
} 
otherchild--+parent = parent_node; 
<otherchild---*loek; Null; Decrement> 
while (not wait_at---*notify);/* Wait for notification */ 
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/* Notification Phase */ 
if (not Leaf (wait_at---~bin_left)) { 

/* Notify the binary children */ 
wait_at----~bin_left---~notify = true; 
wait_at---~bin_right---*notify = true; 

} 
Reinitialize(wait_at);/* reset left, right, parent, visited, and notify */ 

In the arrival phase a processor (P) continually examines the visited 
field of its current parent node. If the node is unvisited the processor marks 
the node visited and moves to the tree modification phase. If the parent 
node has already been visited processor P waits for its parent node to 
change to an unvisited node or nil. This will eventually happen because the 
processor that visited the parent node must be in the process of modifying 
the parent pointer of the node at which P is waiting. In the tree modifica- 
tion phase a processor determines the node otherchild whose parent pointer 
is to be modified. If otherchild is an unvisited node its parent pointer is 
immediately modified. If this is not the case the processor must wait till its 
otherchild is modified to point to a unvisited node. This will eventually 
happen because the processor that visited otherchild will modify the tree 
appropriately in its tree modification phase. After tree modification a 
processor waits for notification. The last processor to arrive finds its parent 
pointer to be nil and starts notification at the root of the tree. 

4.1. Time Complexity Analysis 

The time for synchronization using an adaptive combining tree is as 
follows: 

Recognition: (a) Simultaneous arrival--The time for recognition is 
O(log2 N). This is because in the worst case a processor that discovers 
synchronization has its pointer changed log2 N times till it is nil. (b) Non- 
simultaneous arrival--The parent pointer for the last processor is already 
nil when it arrives at the barrier. Thus it takes constant (O(1)) time to 
recognize synchronization. 

Notification: This is being carried out in parallel using the binary 
tree and therefore it takes O(log2 N) time. 

5. FUZZY COMBINING TREE 

The waiting of processors at barriers can be reduced by using the fuzzy 
barrier mechanism. r The compiler constructs barrier regions consisting of 
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several instructions such that a processor is ready to synchronize upon 
reaching the first instruction in this region and must synchronize before 
exiting the region. When synchronization occurs the processors could be 
executing at any point in their respective barrier regions. The processors 
can potentially arrive at the barriei" at different times and exit the barrier 
at different times without busy waiting or stalling. If a processor reaches 
the end of the barrier region and tries to execute a non-barrier region 
instruction before synchronization has taken place, the processor is stalled. 
The larger the barrier region the more likely it is that none of the processors 
will have to stall. Compile-time techniques to find useful instructions that 
can be executed by a processor after it is ready to synchronize also exist. (8) 

A software fuzzy barrier can be made available by providing two 
procedure calls EnterBarrier and ExitBarrier. The example shown in Fig. 5 
demonstrates the use of the fuzzy.barrier in comparison to the fixed barrier 
for executing iterations of a loop in parallel. The barrier is required due to 
the cross iteration data dependency between statements S1 and $4. Since 
statements $2 and $3 are not involved in cross iteration dependencies they 
can be executed prior to synchronization as part of the barrier region. 

Next we present an implementation of the fuzzy barrier based upon 
the adaptive combining tree discussed in the previous section. At first 
it may seem that the adaptive tree implementation may be used for 
implementing the fuzzy barrier by simply having each processor execute the 
instructions in the barrier region prior to busy-waiting for notification. The 
problem with this approach is illustrated in Fig. 6. The combining tree in 
Fig. 6 shows a situation in which all processors have reached the barrier 
and P4, being the last to arrive, has to start the notification process. It will 
do so by informing P2 of the synchronization. However, it may be the case 
that P2 is still busy executing its barrier region and therefore will not notice 
the notification till later. At the same time processors P1 and P3 may have 
completed execution of their barrier regions and thus they will have to wait 
unnecessarily for notification. The cause of this problem is that the solution 

D o a l l I =  1 t o N  
Sl: A(I) = B(I) + C(I); 
Barrier; 
$2: D(I) = B(I)- C(I); 
S3: E(I) = D(I) + 1; 
$4: F(I) = A(I-1) + A(I); 

gnddoall  

D o a l l I =  1 t o N  
$1: a(I) = B(I) + C(I); 
EnterBarrier; 
$2: D(I) = S(I)-  C(I); 
$3: E(I) = D(I) + 1; 
ExitBarrier; 
S4: F(I) = A(I-1) + A(I); 

Enddoall 

Fig. 5. Fixed versus fuzzy barrier. 
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Fig. 6. Problem with notification. 

assumes that all processors will exit the barrier at the same time. This is 
true for the fixed barrier but not in the case of the fuzzy barrier. In a fuzzy 
barrier synchronization, the processors can enter the barrier in any order 
and also exit the barrier in any order. Furthermore, the order in which 
processors enter the barrier may not be the same as the order in which they 
exit the barrier. 

The solution to this problem becomes evident if we use separate tree 
traversals for implementing of the fuzzy barrier operations EnterBarrier 
and ExitBarrier. EnterBarrier performs the recognition and tree adaptation 
phases and ExitBarrier performs the notification phase. In each of the 
operations the processors must start at the bottom of the tree. Instead of 
busy waiting at the internal node reached by a processor during the 
recognition phase, it must start again at the bottom of the tree and go up 
the tree looking for notification. We illustrate this process through a four 
processor example. Let us assume that the processors arrive in the order 
P1, P2 and P3 respectively. Figure 7(a) shows the combining tree after it 
has been visited by processors P1, P2, and P3. The nodes are labeled with 

visited by 
P2 ~ -  P4 

(a) Recognition (b) Processors Waiting for Notification. 

Fig. 7. Notification. 
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the processors that visited the nodes. After visiting the nodes the processors 
do not busy-wait at the nodes but instead return from the procedure 
EnterBarrier and start executing their respective barrier regions. Processor 
P4, after discovering that it was the last processor to reach the barrier, sets 
the notify flag at the root node and returns to execute its barrier region. 
After completion of their barrier regions the processors start at the bottom 
of the original tree looking for notification. The processor that arrives first 
reaches the root node and discovers that synchronization has occurred. It 
then goes down the tree setting the notify flags of both binary child nodes 
and leaves the barrier. The processors that arrive later have to go up fewer 
levels and they too set the notify flags for the child nodes. Note that tree 
traversal during the notification phase is carried out using the pure binary 
tree. 

If the processors arrive before synchronization has occurred they go to 
the highest unoccupied node and busy wait. At most one processor busy- 
waits at an internal node. Thus, there is no hot spot problem during the 
notification phase. Figure 7(b) shows the combining tree in the situation 
where prior to the arrival of P4 at the barrier, the remaining processors 
have executed their barrier regions and are busy waiting for notification. It 
should also be noted that nodes at which the processors are busy waiting 
are not the same as the nodes they visited in the notification phase. This 
is because the processors may not execute ExitBarrier in the same order as 
they executed EnterBarrier, as they may take varying amounts of time to 
execute their barrier regions. After P4 arrives at the barrier notification 
proceeds in the usual manner. The pseudocode for the implementation of 
the fuzzy barrier is given here. 

type node = record { 
lock: synevar;/* Initially 0 */ 
visited: (no, left, right); 
LastVisitBy: integer;/* processor that reinitializes the node */ 
root, bin_left, bin_right, bin_parent: "node; 
left, right, parent: "node;/* Initially bin_left, bin_right, and 

bin_parent, respectively */ 
notify: boolean;/* Initially false */ 

} 
parentnode 
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/ 

node / 

otherchild. " . . . . . . .  ,,:,~. n 
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Procedure EnterBarrier ( n ) 
{ 

Loop { /* Loop until parent field of n is nil or unvisited */ 
node = n--*parent; 
if (node ==  nil) { 

n--*root--~notify = t rue; /* Last to arrive - begin notification */ 
return; 

} 
<node--~lock; (=0)*; increment> 
if (node---~visited ==  no) break; 
<node---~ lock; Null;Decrement> 

} 
/* Now node is unvisited. Mark it visited, and drop the lock */ 
node---~visited = if (node---~left == n) left; else right; 
<node---~lock; Null; Decrement> 
Loop { 

otherehild = if (node--~visited=left) node-->right; 
else node-~left; 

<otherehild---~lock; (=0)*; Increment> 
if (otherchild--~visited = =  no) break; 
<otherchild---~lock; Null; Decrement> 

} 
/* Now otherchild is unvisited, and its lock is held */ 
parent_node = node---~parent; 
if (parent_node != nil) { 

if (parent_node---~ left = =  node) parent__node----~left = otherchild; 
else parent_node---~right = otherchild; 

} 
otherchild---~parent = parent__node; 
<otherchild---*lock; Null; Decrement> 

} 
Procedure ExitBarrier ( node ) 

{ 
/* the processor to visit a node last will reinitialize it */ 
if Leaf(node) <node----~lock; (=0)*; Increment>; 
node---~LastVisitBy = ProcessorId0; 
if (node--~notify) <node---~lock; Null; Decrement>; 
else { 

/* climb the tree looking for notification */ 
parent_node = node---~bin_parent; 
if (parent_node == nil) { 

/* reached the root, cannot climb further */ 
node--~occupied = true; 
<node---~lock; Null; Decrement> 
while (not node--*notify); 

} 
else { 

<parent_node---clock; (=0)*; Increment> 
if (not parent__node----~occupied) { 

/* drop lock on node continue to climb */ 
<node--*lock; Null; Decrement> 
ExitBarrier(parent_node); 

} 

828/18,3-2 
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else { 
/* cannot climb further, wait at node */ 
<parent_node---->loek; Null; Decrement> 
node---+occupied = true; 
<node--+loek; Null; Decrement> 
while (not node---+notify); 

} 
} 

} 
if (node---+LastVisitBy != ProeessorldO) while (node---+notify); 
if (not Leaf(node)) { 

/* notify binary child nodes */ 
<node--+binAeft--+loek; (=0)*; Increment> 
if (node---+LastVisitBy == ProeessorId0) node---+bin_left--+notify = true; 
<node--+bin_left---+lock; Null; Decrement> 
<node---+bin_right--+lock; (=0)*; Increment> 
if (node---+LastVisitBy == ProcessorId0) node---+bin_right--+notify = true; 
<node---+bin_right---+lock; Null; Decrement> 

} 
if (node---+LastVisitBy == ProcessorId0) Reinitialize( node ) 

The procedure EnterBarrier implements the recognition phase and the 
tree modification in exactly the same manner as the fixed barrier 
implementation of the previous section. However, the ExitBarrier code is 
different from the notification phase of the barrier as the processors must 
retraverse the tree to receive notification. Prior to leaving the barrier each 
processor reinitializes the node at which it received notification. During the 
EnterBarrier operation the tree is adapted and therefore it is traversed 
using the current fields of the nodes. During the notification phase the 
binary fields are used to traverse the tree. The current fields are not needed 
for traversal during ExitBarrier because the tree is not being adapted. The 
function Processorld() returns the calling processor's id. During the 
notification phase in ExitBarrier, the processor that visits a node last is 
responsible for reinitializing the node. The identification of the last 
processor to visit a node is saved in the field Last VisitBy. 

5.1. Time Complex i ty  Analys is  

The time for synchronization using the fuzzy barrier is as follows: 

Recogni t ion:  The implementation of the recognition and tree 
adaptation phases is exactly the same as the algorithm described in the 
previous section. Therefore in the simultaneous arrival case the time for 
recognition is O(log2 N) and in the non-simultaneous arrival case recogni- 
tion takes constant time. 
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Not i f i ca t ion:  The time for notification depends upon whether the 
synchronization has already been detected prior to the completion of 
barrier regions by the processor. 

(a) Synchronization has Occurred- - I f  synchronization has already 
occurred then the processor that completes its barrier region first will 
require O(log2 N) to receive notification as it must climb to the root of the 
tree. The processor that completes the execution of its barrier region last 
will require constant time to receive notification. 

(b) Synchronization has not Occurred- - I f  synchronization has not 
occurred the processors must wait at the nodes in the tree. After syn- 
chronization occurs the processor waiting at the root of the tree receives 
the notification immediately, while the processors at lower levels of the tree 
have to wait longer for notification. Since the notification is carried out 
using the binary tree, the processors at the bot tom of the tree have to wait 
for O(log2 N) time. 

6. S U M M A R Y  

In this paper  we introduced adaptive combining trees to allow efficient 
implementation of barrier synchronization. An adaptive tree enables the 
exploitation of parallelism, available in the synchronization process, in 
situations where the processors arrive at the barrier simultaneously. At the 
same time if the processors do not arrive at the barrier simultaneously, the 
tree is adapted so that the latency in recognizing synchronization for the 
late arriving processor is avoided. We also presented an implementation of 
the fuzzy barrier that reduces the idling of processors at a barrier. This 
provides us with an implementation that avoids latency and reduces pro- 
cessor idling, the two main problems with existing scalable implementa- 
tions of the barrier mechanism. 

R E F E R E N C E S  

1. E. D. Brooks, The Butterfly Barrier, International Journal of Parallel Programming, 
15(4):295-307 (August 1986). 

2. D. Hansgen, R. Finkel, and U. Manber, Two Algorithms for Barrier Synchronization, 
International Journ~ of Parallel Programming, 17(1):1-18 (February 1988). 

3. P. C. Yew, N. F. Tzeng, and D. H. Lawrie, Distributing Hot-Spot Addressing in Large 
Scale Multiprocessors, IEEE Transactions on Computers, C-36(4):388-395 (April 1987). 

4. D. H. Lawrie, Access and Alignment of Data in an Array Processor, IEEE Transactions on 
Computers, C-24:1145-1155 (December 1975). 

5. D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh, Parallel Supercomputing 
Today and the Cedar Approach, Science, 231:967 974 (February 1986). 



180 Gupta and Hill 

6. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, The 
NYU Ultracomputer-Designing a MIMD Shared Memory Parallel Machine, IEEE Trans- 
actions on Computers, C-32(2):175-189 (February 1983). 

7. G. F. Pfister, The IBM Research Parallel Processor Prototype (RP3): Introduction and 
Architecture, In Proc. of  the International Conf. on Parallel Processing, pp. 764-771 (August 
1985). 

8. R. Gupta, The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Processors, 
In Proe. of  the Third International Conf. on Architectural Support for Programming 
Languages and Operating Systems, pp. 54-64 (April 1989). 


