
International Journal of Parallel Programming, VoL 15, No. 4, 1986

An Optimal Distributed Solution to the
Dining Philosophers Problem
S. P. Rana t and D . K. Baner j i 2

Received September 1986; Accepted February 1987

An optimal distributed solution to the dining philosophers problem is presented.
The solution is optimal in the sense that it incurs the least communication and
computational overhead, and allows the maximum achievable concurrency. The
worst case upper bound for concurrency is shown to be n div 3, n being the
number of philosophers. There is no previous algorithm known to achieve this
bound.

KEY WORDS: Dining philosophers; distributed algorithms; concurrency;
performance analysis; resource allocation.

1. I N T R O D U C T I O N

In this paper, we consider the well-known dining philosophers problem (1)
extended for a distributed environment. The philosophers are seated
around a table. In front of each philosopher is placed a fork and a plate of
spaghetti. The philosophers engage themselves in thinking until they get
hungry. A hungry philosopher, in order to eat, requires two forks, the fork
in front and the fork in front of the neighbor to the right. After acquiring
the forks, a philosopher eats the spaghetti, releases both the forks and
starts thinking all over again. Two neighboring philosophers compete for
the common fork. The problem is to devise an allocation strategy for the
forks that is distributed, deadlock-free and starvation-free.

The underlying model for this problem is formally described in
Section 2. In addition to the correctness of a distributed protocol, we are

i Department of Computer Science, Wayne State University, Detroit, MI 48202.
2 Department of Computing and Information Science, University of Guelph, Guelph, Ontario

N1G 2W1.

327

0885-7458/86/0800-0327505.00/0 �9 1986 Plenum Publishing Corporation

328 Rana and Banerji

further interested in its performance in terms of computational and
communication overhead and its potential for concurrency. In this case,
concurrency is a measure of how many philosophers are able to eat
simultaneously out of a set of hungry philosophers, in all reachable
configurations.

We show in Section 3 that every protocol for the dining philosophers
problem can reach a configuration in which at most n div 3 philosophers
can eat.

Subsequently, in Section 4, we present a protocol that achieves this
bound of n div 3 as well as incurs least computational and communication
overhead. An earlier distributed solution ~2) is also known to have least
computational and communication complexity. However, in that solution,
it is possible for the system to reach a configuration where at most n div 4
philosophers are able to eat.

2. M O D E L

Let P1, P2,..., Pn be the set of philosophers such that P(i+ 1)modn is the
right neighbor of Pij; l<<,i<<,n. In a distributed environment, the
philosophers are located at logically unique sites. The fork in the front of P~
is denoted by f~ and P~ and fi are on the same logical site, say, Si; i ~< i ~ n.

At any time, a philosopher is in exactly one of the three possible
states: thinking, hungry or eating. A philosopher transits from thinking to
hungry state arbitrarily and spontaneously but may remain in thinking
state forever. Once in hungry state, a philosopher Pi attempts to acquire
both forks f~ and f(i+~)modn" Upon getting the forks, the philosopher
transits to eating state. It is assumed that a philosopher in eating state
eventually comes out of this state, releases both the forks and goes to
thinking state again. Thus, a philosopher cannot remain in eating state
forever and, further, a fork cannot be held by or on behalf of a philosopher
in thinking state.

There is no centralized controller for the allocation of forks. Also,
nothing is assumed about the relative speeds of the philosophers. Each fork
f,. has an associated arbiter A~, also located at the site Si. The arbiter A~
controls the allocation of fork fi. In addition to controlling fi , arbiter A~
also monitors the state of philosopher Pi. When Pi enters the hungry state,
it is the arbiter Ai that acquires both the forks f~ and f(~+ 1)modn on behalf of
P~ and subsequently causes P~ to change its state from hungry to eating.
When Pi finishes eating, the arbiter A~ marks f,. free and returns the fork
f(~+ ~)modn to the corresponding neighbor arbiter.

A correct protocol for arbiters, Ai, i= 1 . . .n , ensures that when P~
becomes hungry, the arbiter Ai eventually succeeds in acquiring both the

An Optimal Solution to the Dining Philosophers Problem 329

forks and, consequently, Pi is able to transit from hungry to eating state.
Since the arbiters are on logically distinct sites, the neighboring arbiters
have to communicate for resolving the conflicts for the allocation of forks.
We assume an asynchronous message based and perfectly reliable com-
munication medium.

To facilitate the presentation of system configurations, we employ the
following notations. We represent a site Si by a labelled node in a graph.
The label of a node is a triple enclosed in square brackets with first com-
ponent as the index of the site. The remaining two components in the triple
capture the information about the status of forks at the site in question.
The second component lists the forks held at the site by, or on behalf of,
the philosopher associated with the site. The last component in the triple
lists the fork controlled at the site, if it is free. Note that any or both of the
last two components in a label may be empty. To illustrate this notation,
the label [3 ; f4;] conveys the information that it is associated with site $3
and the fork f4 is held for the philosopher P4- Further, the empty third
component indicates that the fork f3 is not free and f3 must be at site $2,
since it is not held at site S 3.

Using this notation, a global state, where all philosophers are in
thinking state, is depicted as follows:

El; E2; -.- E , ; -1; Eh;
; ; ; ;

f /] f2] f , 1] f ,]

We now introduce some other definitions to be used in later sections.
Suppose that an arbiter Ai holds a fork, on behalf of Pi of course, and has
requested another fork from arbiter A<i+ 1)mode, whose fork is currently not
free. Such a situation is denoted by us graphically by a directed arc from
node i to node (i + 1)mod n. We call this directed arc as a "hold-and-wait
link." This link disappears as soon as the requested fork is free.

Consider a collection of nodes {il, i2 ik}; k<~n. These nodes are
said to be on a "hold-and-wait chain" at a time instant if and only if for all
j; i~<j < k; there is a "hold-and-wait link" from node 6 to node 6+l-

The nodes form a "hold-and-wait cycle" at a time instant if all nodes
in the collection { 1, 2,..., n } are on a "hold-and-wait chain" and there is a
"hold-and-wait link" from node n to node 1. Obviously, the existence of a
"hold-and-wait cycle" implies a deadlocked system state.

3. W O R S T CASE U P P E R B O U N D O N C O N C U R R E N C Y

The upper bound on the number of philosophers who could eat
simultaneously is obviously n div2. However, no solution is known to

330 Rana and Baneqi

exhibit such a behavior in all reachable configurations where all
philosophers want to eat. 12-4) In this section, we establish the worst case
upper bound on concurrency.

T h e o r e m 1 . Every protocol for the dining philosophers problem
can reach a configuration in which at most n div 3 philosophers eat
simultaneously. In other words, n div 3 is the worst case upper bound on
concurrency.

Proof. Suppose P is a protocol for the dining philosophers problem
in which in all configurations at least n div 3 philosophers are able to eat
simultaneously when all philosophers are wanting to eat.

Consider the execution of P in which every third philosopher in turn
becomes hungry and picks up both forks. Pictorially, this situation is
depicted as follows:

[5 ; ; ; ; ; ;

; ; f3 , f4; ; fs; f6, f7;
] /=]]]]]

From this configuration, no other philosopher is able to eat until one of
the n div 3 eating philosophers transits from eating phase and thereby
returns a fork. To complete the proof, we show that such a configuration
may be reached irrespective of the allocation strategy in P.

For example, consider the scenario where, except every third
philosopher in turn, all other philosophers remain in thinking state during
the interval when the previous hungry philosophers are in the process of
acquiring forks. Since a fork can never be held for a thinking philosopher
in our model, in any correct protocol P, each of the previous hungry
philosophers will eventually succeed in picking up both the forks because
of no competition from the neighbors.

4. AN O P T I M A L D I S T R I B U T E D S O L U T I O N

We first describe the common part of all protocols discussed in this
section and also state the common assumptions under which these
protocols operate. The presented protocols differ only in one aspect viz. the
order in which the forks are requested by the arbiters.

(i) Each arbiter meets the fork requests in order of their arrival. If
at the time of a request, the fork is not available, it is reserved
and is made available to the requestor as soon as it is released.

(ii) An arbiter acquires the forks, one as a time, on behalf of the
associated philosopher. That is, unless the first requested fork is

An Optimal Solution to the Dining Philosophers Problem 331

(iii)

(iv)

not acquired, the arbiter does not acquire, reserve or send
a request for the other fork. An arbiter does not have to
communicate for acquiring the fork controlled by it. It simply
reserves or acquires the fork by marking the fork reserved or
busy, as the case may be.

When a philosopher goes from eating to thinking state, the
corresponding arbiter immediately marks its fork free. If the fork
was marked reserved, it is marked busy and granted to the
requestor. Further, the second fork is immediately returned to
the neighboring arbiter to the right. The fork is returned by an
intersite message and it is assumed that this return fork message
is eventually sent and received, thereby making the fork even-
tually available to the receiving site.

Further, it is assumed that if an arbiter is expected to send a
request to the arbiter to its right, it does so in a finite time
and its request is eventually received. Similarly, when a fork is
granted to a left neighbor, the message to that effect is
eventually received by the latter.

Thus, in the class of protocols previously described, three messages are
exchanged between arbiters per eating phase of a philosopher. These
messages are request fork from right neighbor, grant fork to left neighbor
and return fork to right neighbor. Note that these are the minimum num-
ber of messages required by any protocol. Further, the computational
overhead is least, since the allocation of a fork requires checking a fork and
marking it busy or reserved.

We now discuss the protocols further. Consider the strategy in which
every arbiter Ai, on Pi's becoming hungry; 1 ~< i ~< n, grabs fork f,. first. It is
easy to see that such a strategy may lead to the following configuration:

) o) o) -,.) o-----) o)

[1; [-2; [n - 1; [n;
A; f2; dn-1; fn;

]]]]

This configuration has a "hold-and-wait cycle" and thus, the previous
strategy does not give a deadlock-free solution. However, it can easily be
modified to give a deadlock-free solution by using the well-known deadlock
prevention scheme of ordering resources and restricting the generation of
resource requests in the prespecified order. In the present context, the
resources (forks) are already indexed. Furthermore, all arbiters except A,

332 Rana and Banerji

do request forks in order of increasing fork indexes in this strategy. By
modifying the protocol for A n such that A n requests fork f l first, we get our
first deadlock-free solution.

P r o t o c o l 1. All arbiters, on behalf of the associated philosophers,
acquire forks in order of increasing fork indexes.

Protocol 1 exhibits a bad concurrency behavior because of the poten-
tial of forming long "hold-and-wait chains." In the worst case, as shown
here, as much as (n - 1) nodes may be on a "hold-and-wait chain":

o) o) o) > o

[n; [1; [2; [n - 1;

; f l ; f2; f ~ - , , f . ;
]]]]

In order to improve the concurrency behavior, we modify Protocol 1
further. To simplify the ensuing presentation, we use the following
definition.

An arbiter A i is called to be of "O-type" if it grabs fork f~ and then
requests for the other fork; otherwise, it is called to be of "R-type." The
letter "O" and "R" are acronyms from _Own-fork-first and _Right-fork-first,
respectively. Accordingly, Protocol 1 may be restated as follows:

"The arbiter A, is of R-type while all others are of O-type."
We now prove two lemmas:

Lemma 1. If the right neighbor of an O-type arbiter is of R-type,
then a hold-and-wait link between them can exist if and only if the
associated philosopher of R-type arbiter is in eating state.

Proof. Let us assume that philosopher of R-type arbiter is not in
eating state. In such a case, the R-type arbiter cannot hold its forks,
because holding it implies it has both the forks and the associated
philosopher is in eating state. Since R-type arbiters fork is free, the hold-
and-wait link between O-type and R-type cannot exist in this case. The
proof is complete.

We say that this pair of arbiters form an ..OR-- pattern.

Lemma 2. In a pattern --OR-. of arbiters, i.e., an R-type arbiter
surrounded by O-type arbiters, a hold-and-wait chain cannot cross the
node of R-type arbiter.

An Optimal Solution to the Dining Philosophers Problem 333

Proof. By Lemma 1, if there is a hold-and-wait link between the first
two nodes, the philosopher of R-type must be eating and consequently
there will not be any hold-and-wait link between the last two nodes at that
time. This implies that there can be at most one hold-and-wait link either
between the first two or between the last two nodes in the . .ORO.- pattern.
The proof is complete.

The deadlock-freedom of Protocol 1 is a direct consequence of
Lemma 2, since arbiters An_l, An and A1 form the - .ORO.-pat te rn . To
improve the concurrency behavior of Protocol 1, we use the insight from
Lemma 2, not only to prevent the formation of a hold-and-wait cycle but
also to prevent the formation of long hold-and-wait chains. The trick is to
repeat the pattern . .ORO.- more often by introducing more R-type
arbiters.

We have a second solution now.

P r o t o c o l 2. An Arbiter Ai is of R-type if i is a multiple of 2;
otherwise, it is of O-type.

Protocol 2 arranges the arbiters in the pattern OROROR.. - .
P ro toco l2 is essentially the same as given by Cargill. (2~ Intuitively, it
appears that Protocol 2 must exhibit the best concurrency behavior, since
hold-and-wait situation does not propogate beyond three arbiters. Unfor-
tunately, that is not true, and as pointed in Ref. 2, in Protocol 2, one may
reach a configuration where at most n d iv4 philosophers can eat
simultaneously.

Such a configuration results from the scenario shown as follows for the
remaining quadruples:

o o o) o

E2; [3; [4; E5;
f2 , f3 ; ; ; fs;

]] f4]]

In this scenario, out of a sequence of four hungry philosophers, only the
first one is able to eat while all others are blocked. Observe that the node
with index 4 has a free fork but no arbiter can pick it up in this scenario.
This is so because fork f4 is their second fork, i.e., it cannot be acquired
unless they have acquired their first fork. Thus, in the worst scenario, n
div 4 forks remain free in the system even though all philosophers want to
ea t . This is perhaps the reason for less than optimal concurrency behavior
of Protocol 2.

We give a final protocol that is conceptually similar to Protocol 2 but
exhibits an optimal concurrency behavior.

334 Rana and Banerji

P r o t o c o l 3. (Optimal solution) An arbiter Ai is of R-type if i is a
multiple of 3; otherwise, it is of O-type.

In Protocol 3, n div 3 arbiters are of R-type and are scattered among
O-types as in the pattern OOROOROOR.- . . We now prove the
correctness and performance results for Protocol 3.

R e s u l t 1. Protocol 1 is starvation- and deadlock-free.

Proof. Since there are .-ORO-. patterns of arbiters, as dictated by
Protocol 3, deadlock freedom is proved by application of Lemma 2.
Further, as described in the beginning of this section, each request for a
fork succeeds in either getting the fork or reserving the fork. Since a fork is
eventually released, the reserved fork is eventually granted to the
requesting arbiter. Thus, starvation can not occur in any of the protocols
presented in this section.

Lemma 3. In a pattern OOR of three consecutive arbiters, in every
reachable configuration when all philosophers want to eat, at least one of
these three arbiters will be able to acquire both the forks and thereby will
cause the corresponding philosopher to transit to eating state.

Proof. Consider the pattern OOR.
If the first O-type has both the forks, the proof is complete.
If the first O-type arbiter is waiting for a fork, then there are two cases

(i) waiting for the fork in front.

(ii) waiting for the fork in front of neighbor to the right, in which
case the fork in front must have already been acquired.

Consider case (i). Here, the second O-type can always have the fork in
his front and compete for the second fork. If R-type arbiter is not com-
peting, the second O-type will get the second fork. However, if R-type is
also competing for the same fork, then both second O-type and R-type are
competing for their second fork. Whosoever succeeds in the competition
will have both the forks. Thus, in case (i), either the second or the third
arbiter is able to acquire both the forks in all reachable configurations.

Now, let us consider case (ii). If the second O-type is not competing,
the first O-type will get the second fork. However, if both the first and
second O-type are competing for the same fork, then either of them may
succeed. If the second O-type succeeds in getting the fork, this would be his
first fork. As in case (i), second O-type and the R-type now or may not
compete for the same fork. In either case, as shown earlier, exactly one of
them is able to acquire both its requisite forks.

This complete the proof of Lemma 3.

An Optimal Solution to the Dining Philosophers Problem 335

Result 2. In protocol 3, in every reachable configuration when all
philosophers want to eat, at least n div 3 philosophers will be able to eat
simultaneously.

Proof. Since in protocol 3, the pattern OOR is repeated n div 3
times, by using Lemma 3 the proof is complete.

5. C O N C L U S I O N

We have presented a new deadlock- and starvation-free distributed
solution to the dining philosophers problem in a distributed environment.
The solution has optimal concurrency behavior in the sense that maximum
possible number of philosophers are able to eat concurrently in all con-
figurations when all philosophers are wanting to eat. Further, the solution
is also robust like the solution in Ref. 2 because the effect of a failure is not
propagated beyond the immediate neighbors.

A C K N O W L E D G M E N T S

We are thankful to an anonymous referee for providing valuable
suggestions for improving the presentation of the results in this paper. This
work has been supported in part by The Natural Sciences and Engineering
Research Council of Canada under grant numbers A0087 and A0956 and
also from a grant from The Institute of Manufacturing Research at Wayne
State University.

REFERENCES

1. E. W. Dijkstra, Hierarchical ordering of Sequential Processes, Acta Informatica
1(2):115-138 (1971).

2. T. A. Cargill, A Robust Distributed Solution to the Dining Philosophers Problem,
Software Practice and Experience, 12(10):965-969 (1982).

3. E. Chang, n-Philosophers: An Exercise in Distributed Control, Computer Networks 4:71-76
(1980).

4. H. Wedde, A Starvation-Free Solution for the Dining Philosophers Problem by use of
Interaction Systems, Proc. MECS '81 Symposium, Lecture Notes in Computer Science 118,
Springer, Berlin, pp. 534-543 (1981).

