
International Journal of Parallel Programming, Vol. 15, No. 4, 1986

Loop Skewing: The Wavefront
Method Revisited
Michael Wolfe 1"2

Received November 1986; Accepted February 1987

Loop skewing is a new procedure to derive the wavefront method of execution
of nested loops. The wavefront method is used to execute nested loops on
parallel and vector computers when none of the loops can be done in vector
mode. Loop skewing is a simple transformation of loop bounds and is combined
with loop interchanging to generate the wavefront. This derivation is par-
ticularly suitable for implementation in compilers that already perform
automatic detection of parallelism and generation of vector and parallel code,
such as are available today. Loop normalization, a loop transformation used by
several vectorizing translators, is related to loop skewing, and we show how
loop normalization, applied blindly, can adversely affect the parallelism detected
by these translators.

KEY WORDS: Parallelism detection; wavefront method; vectorization; loop
transformations; compiler optimization.

1. I N T R O D U C T I O N

This paper presents a new derivation of the wavefront method that is par-
ticularly suitable for automatic generation by compilers. A new transfor-
mation, called loop skewing, is introduced and used in combination with
loop interchanging in a fashion that will generate code that executes nested
loops in the wavefront method. Loop skewing is a simple modification of
the shape of the do loop iteration space. Since loop interchanging has
already been implemented by several commercial compilers, the addition of
simple loop skewing will allow these compilers to implement waveffonting
automatically.

i Kuck and Associates, Inc., 1808 Woodfield Drive, Savoy, Illinois 61874.
2 Dept. of Computer Science, University of Illinois, Urbana, Illinois 61801.

279

0885-7458/86/0800-0279505.00/0 �9 1986 Plenum Publishing Corporation
828/15/4-1

280 Wol fe

The next section of this paper reviews many of the terms that are used
throughout the paper, such as data dependence and loop interchanging.
Short examples of interchanging of triangular and trapezoidal loops are
shown, since they relate directly to the following section. Next we present
the main result; here we introduce loop skewing and show how it is used
with loop interchanging to generate code for the wavefront method.
Following that we discuss loop normalization, another simple transfor-
mation that is used by some compilers and translators to simplify the
derivation of the data dependence tests and the transformations used to
discover parallelism. We show that loop normalization is the inverse of
loop skewing for certain triangular loops, and can actually reduce the
amount of parallelism available in certain cases.

Most methods for executing the loop:

d o I = 2 , N - 1
d o J = 2 , N - 1

A(I, J)
end do

end do

on a vector or parallel computer involve executing all iterations of the J
loop in parallel or executing all the iterations of the I loop in parallel.
Methods for detecting parallelism in one or the other of the do loops are
well known, such as vectorization and loop interchangingJ 1-6) However, if
the loop contains the assignment:

d o I = 2 , N - 1
d o J = 2 , N--1

A(I, J) = (A(I+ 1, J) + A (I - 1, J) + A(I, J+ 1)
+ A(I, J - 1))/4

end do
end do

then the loop is parallel for neither the J loop (due to the data dependence
from A(I, J) to A(I, J - 1)) nor the I loop (due to the data dependence
from A(I, J) to A(I-- 1, J)). An alternate method to execute such loop nests
in parallel, known as the wavefront method, ~v 9) (or hyperplane method ~1~
can be used to extract parallelism from loops such as this. Existing
derivations of the wavefront method depend on finding the "angle" of the
wavefront through the iteration space and optimizing this angle. (We
ignore the 0 ~ or 90 ~ wavefront angles, which are really just the execution of
a single loop in parallel.) The methods given to find the wavefront angle
only work with very simple subscript expressions, and are not integrated
with other well known data dependence tests for parallelism detection.

Loop Skewing: the Wavefront Method Revisited 281

2. D A T A DEPENDENCE A N D LOOP I N T E R C H A N G I N G

Data Dependence: Simple data dependence relations in scalar code are
shown by the following program segment:

St: X = Z
$2: Y= X
$3: Z = Z + 1
$4: X = 9

Here we say that statement $2 depends on St (flow-dependence) since the
value of X used in $2 is assigned in $1. We say that $3 depends on $1
(anti-dependence) since the value of Z assigned in $3 is not the value used
by St. Finally, we say that $4 depends on $1 (output-dependence) since the
value assigned to X in $3 is assigned after the value in St is assigned. More
on data dependence can be found in the references. (t'3,4,8,tl 13)

Loop Interchanging." A nest of do loops, such as the two-nested loop in
Fig. la, can be thought of as traversing the two-dimensional iteration space
shown in Fig. lb. The arrows in the iteration space represent how the serial
do loops execute the statements in the loop for iteration [I = 1, J = 1] first,
then [1, 2], [1, 3] [-1, 5], then incrementing the / index to go to [2, 1],
[2, 2],..., [2, 5],..., [-5, 1],..., [5, 5]. Interchanging these two do loops means
changing the order in which the iteration space is traversed(m); by

do I =i,5
do J= 1,5

A (I , J + I) = A (I , J) + B (I , J)
e n d do

e n d do

(a)

O=l 2 :3 4 5

_ t j

t

I

4 t " o - - ~ - " ~ <) - - ~ - ~ x

I

(b)
(a) A two-nested do loop; (b) its

iteration space.
Fig. 1.

282 Wolfe

interchanging the loop as in Fig. 2a, the iteration space would be executed
in the order shown in Fig. 2b.

Iteration Space Dependence Graph: For interchanging loops, a com-
piler is not so much interested in the data dependence relations between the
statements in a loop as between the iterations of a loop. In these loops, the
value of A(1, 2) used in iteration [I = 1, J = 2] was assigned in iteration
[I = 1, J = 1]. In fact, the value used in iteration [i, j] was assigned in
iteration [i, j - 1] (except for boundary values); this relation is shown in
the iteration space dependence graph Fig. 3. Notice that the pattern of the
dependence flow in the iteration space can be characterized by the direction
or the distance of the flow with respect to the loop dimensions. In this
example, the dependence distance would be called (0, - 1) , since the dis-
tance in the I dimension is zero, and the distance in the J dimension is - 1.
Many translators, such as the Parafrase Analyzer (5'6) and KAP, (14-t6) save
the sign of the dependence distance; here it would save (0, -), or (=, <),
to characterize the data dependence in the loop ((= , <) is the data depen-
dence direction vector).

The possible directions in a two dimensional iteration space
(corresponding to a doubly-nested do loop) are shown in Fig. 4. The
iteration space dependence graph in Fig. 4a shows the data dependence
directions that are preserved by loop interchanging. The one in Fig. 4b

doJ=l,5
doI=l,5

A(I,J+Z) = A(I,J) + B(I,J)
end do

end do

I=1

2

5

(a)

J=l 2 3

1

Fig. 2.
with

4 5

!
|

!

! ! i I I ,

(b)
(a) The two-nested loop from figure 1

the do loops interchanged; (b) the
interchanged iteration space.

Loop Skewing: the Wavefront Method Revisited 283

d=1 2 5 4 5

i=1 c , o , o , o , o

2 o .---o , c , o ,o

Fig. 3. The iteration space dependence
graph for the loop in Figs. 1 and 2.

shows the data dependence directions that prevent loop interchanging; a
pair of loops with a (< , >) data dependence direction vector cannot be
interchanged (without interaction from outer loops(l'2)).

Triangular loops: Some loops have non rectangular iteration spaces.
Examples are loops with bounds that include outer loop indices, such as
the loop nest in the following example. Here, the upper bound of the inner
do J loop is a simple function of the outer loop index. The iteration space
traversed by this do loop pair is drawn in Fig. 5; it is easy to see why this is
called a triangular loop.

do I = 1 , N
do J = / , N

A(L J) = A(I, J) + B(I, J)
end do

end do

Q ~ O ~-0 ~-0 ~0 0 ? 0 0 0

/ o o/o o / o
o : / o o

o o oo o
0 O 0 "0 0 0

(a) (b)
Fig. 4. (a) Dependence relations in the iteration space dependence graph
that are preserved by loop interchanging. (b) Dependence relations that are
violated by loop interchanging.

284

I-- I

I = 2

I=5

I - -N- I

Wol fe

N

�9

o

I=N o

F i g . 5. I t e r a t i o n s p a c e o f a t r i a n g u l a r l o o p .

To properly interchange these loops it is necessary to modify the loop
bounds:

do J = 1, N
do I = l, J

A(I, J) = A(I, J) + B(I, J)
end do

end do

Triangular loop bounds as shown here actually appear quite often in
numerical algorithms. A related class of loops, called trapezoidal loops, is
similar in form to triangular loopsl but is slightly more complicated to

I =1 2 3 " " �9 K-1 K K§ " " �9 N

d=1 o o o . . . o o o . . . o

2 0 0 o o o 0 0 0 o o o 0

3

K - 1

0 �9 �9 �9 0 0 0 o �9 o 0

0 0 0 �9 �9 �9 0

F i g . 6. I t e r a t i o n s p a c e o f a t r a p e z o i d a l l o o p .

J=1

o

2

o

o

3 �9 �9 �9 N-I

0 �9 o o 0

0 �9 �9 o 0

0 �9 �9 o 0

O O

O

Loop Skewing: the Wavefront Method Revisited 285

interchange. The next loop is a trapezoidal loop; the lower bound of the I
loop is a function of the outer J loop, just as in a triangular loop, but the
upper bounds do not match.

do J = I , K - 1
do I = J , N

A(I, K) = A(I, K) + A(I, J) ,A(J, K)
end do

end do

The iteration space looks like a triangular loop with the lower point cut off
at K - 1 (the upper bound of the outer loop); see Fig. 6. To interchange
these loops, a min function is needed to achieve the same cutoff point~17):

do I = I , N
do J = 1, m i n (K - 1, I)

A(I, K) = A(I, K) + A(I, J) �9 A(J, K)
end do

end do

3. T H E W A V E F R O N T M E T H O D V I A I N D E X SET S K E W I N G

Interchanging of trapezoidal loops can be the basis of a new for-
mulation of the wavefront method of executing do loops. ~7-1~ The loop at
the beginning of this article has the iteration space dependence graph as
shown in Fig. 7. Even though the two do loops may be interchanged,
neither loop may be executed in parallel. The wavefront method creates a
"'wave" that passes through the iteration space, as shown in Fig. 8. All the
iterations on a single wavefront line are executed in parallel; this method
exhibits much parallelism while still preserving all data dependence
relations.

Our alternate formulation skews the index set of the original do loop
creating a rhomboid iteration space out of what used to be a square; the
modified iteration space dependence graph is shown in Fig. 9.

do I = 2 , N - 1
d o J = I + 2 , I + N - 1

A(I, J - 1) = (A(I+ 1, J - I) + A (I - 1, J - I)
+A(I, J+ 1 - I) + A(I, J - 1 +I)) /4

end do
end do

This was done by adding I to the bounds of the inner J loop; notice that
within the loop, J is replaced by the expression J - I to account for the

286 Wolfe

d=2 :3 4 5 6 '''

I--2

3

4

5

Fig. 7. Iteration space dependence graph of a loop
that is a candidate for the wavefront method.

change in the bounds. The reader can verify that the first iteration of the
new loop, (I = 2, J = I + 2 = 4) still assigns to A(2, 2). Note that the bounds
for the J loop in the iteration space have changed slightly. Figure 9 also
shows the iteration space dependence graph for the modified loop; notice
that now not only are the loops interchangable, but when interchanged, the
do I loop may be performed in parallel since there are no data dependence
arcs which point straight down (with a direction vector of (< , =)). The do

d=2 3 4 5 6 ...

w71 ,2 ~3 /4 5 - . .
/ / / / /

/ / / / /

I=2 ,o" ,o" o" o" o" . . .

/ / / / / / / /
/ / / / / /

o / / /(3 / O / . . . 3 , o / / / o /
/ / / / / /

/ / / / /

4 2 / / o / 0 / (3/ o / . . . / / /
/ / / / / /

/ / / /

/ / o...
/ / / /

�9 �9 �9 �9 �9 �9

Fig. 8. Execution ordering for the wavefront method of
executing two loops, superimposed on the iteration space
dependence graph. All iterations on each diagonal line can be
executed in parallel.

Loop Skewing: the Wavefront Method Revisited 287

J=4 5 6 7 8 - � 9

I=2

5

4

5

Fig. 9. Modified iteration space dependence graph after loop skewing.

loops may be interchanged using the techniques of trapezoidal loop
interchanging; by executing the inner loop in parallel or vector mode, the
wavefront ordering of the iterations will result:

do J = 4 , N + N - 2
do I = max(2, N - J + 1), m i n (N - 1, J - 2)

A(I, J - I) = (A (I+ 1, J - I) + A (I - 1, J - I)
+A(I, J + 1 - I) + A(I, J - 1 +I)) /4

enddo
enddo

We can skew (index) J with respect to (outer loop index) I by (a
factor o f) f (where f is an integer constant) by

(a) replacing the lower bound of the J loop, LBJ, with the
expression (LBJ + I , f) ,

(b) replacing the upper bound of the J loop, UBJ, with the
expression (UBJ + I �9 f) , and

(c) replacing all occurrences of J in the loop with the expression
(J - I , f) .

Loop skewing is always legal; it has no effect on the numerical results
of the program. It does not even change the execution order of the
iterations (iterations in the skewed iteration space are executed in the same
order as the corresponding iterations in the original iteration space).
However, loop skewing does change the direction vectors. In this example,
the "downward" dependences, with a direction of (< , =), are changed to
(< , <) directions by loop skewing. This trick can even be used to change
some (< , >) direction vectors to (< , <), as shown in Fig. 10. Also, a

do I = 3, N
do J=3, N

A(I,J) = A(I-2,J+I) +
end do

end do
(a)

d=5 4 5 6 ...

I=3 o

5

6

�9 �9

dol =3, N
do J = 3+I,

A(I,J-I)
end do

end do

P /
(b)

N+T
= A(I-2

(c)

d=6 7 8 9 �9

�9

J+l-l) +

�9 o o �9

Fig. 10: Changing (< , >) direction vectors to (< , <) via loop
skewing:

The loop in (a) has a data dependence relation with the
direction vector (< , >); the iteration space dependence graph for
this loop is shown in (b). The (< , >) dependence prevents the
loops from being interchanged. If loop skewing is applied, as in
(c), the iteration space dependence graph will be changed to (d);
the (< , >) direction vector has been modified to a (< , <) direc-
tion vector, and the loops can be interchanged.

Loop Skewing: the W a v e f r o n t M e t h o d Revisited 289

dol =i, N
do J = I, N

(a)

d=l 2 3 4 5 6 7 8 . ' .

I = I o o o o o o o o �9 �9 �9

2 0 0 0 0 0 0 0 0 �9 �9 �9

0 0 0 0 0 0 0 0 �9 * *

4 o o o o o o o o , . ,

(b)

do I =i, N
do J = i+2"I, N+2*I

(c)

d = 3 4 5 6 7 8 9 1 0 �9 �9 �9

I = 1 o o o o o o o o �9 �9 �9

2 o o o o o o . . .

0 0 0 0 �9 o �9

4 0 0 �9 o �9

(d)

Fig. 11: Loop Skewing by a Larger Factor.
Loops can be skewed by a factor greater than one. The loop in (a)

has the iteration space shown in (b). After skewing the inner loop by a
factor of 2, the loop in (c) results. The new iteration space is shown in
(d). The advantage of large factor skewing is that more (< , >) data
dependence direction vectors can be changed to (< , <) directions, thus
allowing loop interchanging and vectorization after skewing.

290 Wolfe

do I = 2, N-I
do J = 2, M-1

do K= 2, P-i
X(I,J,K) = (X(I-I,J,K) + X(I+I,J,K)

+ X(I,J-I,K) + XII,J+I,K)
+ X(I,J,K-I) + X(I,J,K+I)) /.6.

end do
end do

end do

(a)

do I = 2, N-I
do J = 2, M-i

do K = I+J+2, I+J+P-i
X(I,J,K-I-J) = (X(I-I,J,K-I-J) + X(I+I,J,K-I-J)

+ X(I,J-I,K-I-J) + X(I,J+I,K-I-J)
+ (I,J,K-I-J-I) + X(I,J,K-I-J+I)) / 6

end do
end do

end do

(b)
do K = 6, N+M+P-3

do I = max(2,K-M-P), min(N-I,K-~)
do J = max(2,K-I-P), min(M-i,K-I-2)

X(I,J,K-I-J) = (X(I-Z,J,K-I-J) + X(I+I,J,K-I-J)
+ X(I,J-I,K-I-J) + X(I,J+I,K-I-J)
+ X(I,J,K-I-J-I) + X(I,J,K-I-J+I)) / 6

end do
end do

end do

(c)
Fig. 12: Loop Skewing with respect to more than one loop.

The six point difference equation in (a) cannot be executed in parallel along any of
the three do loop dimensions. We can skew the inner K loop index with respect to both
the outer loop indices, as shown in (b). By interchanging this loop to the outermost
nest level, as in (c), the inner two loops can both be executed in parallel.

l oop can be skewed by a factor of 2 or more, as in Fig. 11. Finally, a loop
can be skewed with respect to more than one loop, as shown in the
example in Fig. 12.

4. LOOP N O R M A L I Z A T I O N

Loop normalization is a minor transformation performed by some
other parallelism detect ion programs (3-6) in order to make data dependence
testing easier. Loop normal izat ion modif ies the loop bounds so that the
lower bound of all do loops is one (or zero) , and the increment is one; this
simplifies data dependence tests because two out of three of the l oop bound
expressions will be a s imple k n o w n constant. The fol lowing example shows
a do l oop nest before and after loop normal izat ion.

Loop Skewing: the Wavefront Method Revisited 291

before:

do I = 3 , N
do J = I + 1, N

A(I, J) = A (I - 1, J) + B(I, J)
enddo

enddo

after:

do I = 1, N - 2
d o J = l , N - I

A(I+ 2, J+ I+ 2) = A (I + 1, J+ I+ 2)+ B(l+ 2, J+ I+ 2)
enddo

enddo

In this carefully concocted example, loop normalization may make data
dependence equations easier to derive, but it also makes the job of a
vectorizer more difficult. First, what used to be simple array subscripts
(A(I, J), A (I - 1 , J)) are now much more complicated, with two index
variables in the second subscript (A(I + 2, J+ I+ 2), A(I + 1, J+ I+ 2)).
Second, and perhaps more important, the original loop exhibited a data
dependence with a (< , =) direction vector:

[-I= 3, J = 5] uses A (3, 5)
[-I= 4, J = 5] assigns A (3, 5)
(-- 1, 0) data dependence distance vector
(<, =) data dependence direction vector

Loop normalization has changed this to a (< , >) direction vector:

l-I= I, J = 2] uses A (3, 5)
[-I= 2, J = 1] assigns A (3, 5)
(-- 1, + 1) data dependence distance vector
(<, >) data dependence direction vector

The (< , >) direction vector prevents loop interchanging, if that is
desirable for any reason. Loop normalization here is just a special case of
index set skewing, with a negative skew factor. Because loop normalization
can adversely affect the complexity of transforming the do loop nest, loop
normalization should be avoided.

5. S U M M A R Y

Loop skewing is a simple transformation of the loop bounds that
changes the shape of the iteration space. It also can change the data depen-

292 Wol fe

dence direction vectors to allow loop interchanging and to allow parallel or
vector code to be generated after loop interchanging. Loop skewing is a
convenient method for a compiler or translator to implement the wavefront
method of executing a loop nest in parallel. Previous wavefront derivations
have focussed on the dependence analysis needed to discover when
wavefronting is useful. Loop skewing makes wavefronting easier to
understand and implement. However, we are not introducing a new
wavefront algorithm, only a simple vehicle to implement wavefronting.

Loop normalization is used by some translators to simplify the
derivation and implementation of data dependence testing of other trans-
formations that discover parallelism. In some cases it can be seen to be a
form of loop skewing by a negative factor; in these cases, loop nor-
malization will also change the data dependence direction vectors in such a
way as to possibly adversely affect the types of transformations attempted
by the translator. For this reason we do not recommend loop nor-
malization for parallelizing translators.

REFERENCES

1. M. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. Thesis, Dept. of Comp.
Sci. Rpt. No. 8~1105, Univ. of Illinois, Urbana, Illinois, (October, 1982).

2. J. R. Allen and K. Kennedy, Automatic Loop Interchange, Proc. of the ACM SIGPLAN
'84 Symposium on Compiler Construction, Montreal, Canada, SIGPLAN Notices 19,
(6):233-246, (June 1984).

3. J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs to Vector Form,
Supercomputers: Design and Applications, Kai Hwang, (ed.), IEEE Computer Society
Press, Silver Spring, Maryland, pp. 186-203, (1982).

4. J. R. Allen and K. Kennedy, Automatic Translation of Fortran Programs to Vector Form,
Tech. Rpt. COMP TR84-9, Rice Univ., Houston, Texas, (July 1984).

5. D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe, The Structure of an Advanced Vectorizer
for Pipelined Processors, Proc. of COMPSAC 80. The 4th Int'l Computer Software and
Applications Conf., Chicaga, Illinois, pp. 709-715 (October 1980).

6. D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe, The Structure of an Advanced Retargetable
Vectorizer, Supercomputers." Design and Applications, Kai Hwang (ed.), IEEE Computer
Society Press, Silver Spring, Maryland, pp. 163-178 (1982).

7. Y. Muraoka, Parallelism Exposure and Exploitation in Programs, Ph.D. Thesis, Dept. of
Comp. Sci. Rpt. No. 71-424, University of Illinois, Urbana, Illinois, (February 1971).

8. U. Banerjee, S. C. Chen, D. Kuck, and R. Towle, Time and Parallel Processor Bounds for
Fortran-Like Loops, IEEE Trans. on Computers, C-28 (9): 660-670 (September 1979).

9. R. H. Kuhn, Optimization and Interconnection Complexity for: Parallel Processors,
Single--Stage Networks, and Decision Trees, Ph.D. Thesis, Dept. of Comp. Sci. Rpt.
No. 80-1009, University of Illinois, Urbana, Illinois, (February 1980).

10. L. Lamport, The Parallel Execution of DO Loops, Comm. of the ACM, 17(2):83-93
(February 1974).

11. U. Banerjee, Data Dependence in Ordinary Programs, M. S. Thesis, Dept. of Comp. Sci.
Rpt. No. 76-837, Univ. of Illinois, Urbana, IL, (November 1976).

Loop Skewing: the Wavefront Method Revisited 293

12. U. Banerjee, Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Comp. Sci. Rpt.
No. 79-989, University of Illinois, Urbana Illinois, (October 1979).

13. D. Kuck, The Structure of Computers and Computations, Vol. I, John Wiley and Sons,
Inc., New York, (1978).

14. C. Huson et al., The KAP/205: An Advanced Source-to-Source Vectorizer for the Cyber
205 Supercomputer, Proc. of the 1986 lnt'l Conf. on Parallel Processing, St. Charles, IL,
IEEE Computer Society Press, Washington, DC, pp. 827-832 (August 1986).

15. J. Davies et aL, The KAP/S-I: An Advanced Source--to--Source Vectorizer for the S-1
Mark IIa Supercomputer, Proc. of the 1986 Int'l Conf. on Parallel Processing, St. Charles,
Illinois, IEEE Computer Society Press, Washington, DC, pp. 833-835 (August 1986).

16. T. Macke et al., The KAP/ST-100: An Advanced Source--to--Source Vectorizer for the
ST-100 Attached Processor, Proc. of the 1986 Int7 Conf. on Parallel Processing, St.
Charles, Illinois, IEEE Computer Society Press, Washington, DC, pp. 171-175 (August
1986).

17. M. Wolfe, Advanced Loop Interchanging, Proc. of the 1986 Int'l Conf. on Parallel
Processing, St. Charles, Illinois, IEEE Computer Society Press, Washington, DC,
pp. 536-543 (August 1986).

