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Loop skewing is a new procedure to derive the wavefront method of execution 
of nested loops. The wavefront method is used to execute nested loops on 
parallel and vector computers when none of the loops can be done in vector 
mode. Loop skewing is a simple transformation of loop bounds and is combined 
with loop interchanging to generate the wavefront. This derivation is par- 
ticularly suitable for implementation in compilers that already perform 
automatic detection of parallelism and generation of vector and parallel code, 
such as are available today. Loop normalization, a loop transformation used by 
several vectorizing translators, is related to loop skewing, and we show how 
loop normalization, applied blindly, can adversely affect the parallelism detected 
by these translators. 

KEY WORDS:  Parallelism detection; wavefront method; vectorization; loop 
transformations; compiler optimization. 

1. I N T R O D U C T I O N  

This paper presents a new derivation of the wavefront method that is par- 
ticularly suitable for automatic generation by compilers. A new transfor- 
mation, called loop skewing, is introduced and used in combination with 
loop interchanging in a fashion that will generate code that executes nested 
loops in the wavefront method. Loop skewing is a simple modification of 
the shape of the do loop iteration space. Since loop interchanging has 
already been implemented by several commercial compilers, the addition of 
simple loop skewing will allow these compilers to implement waveffonting 
automatically. 

i Kuck and Associates, Inc., 1808 Woodfield Drive, Savoy, Illinois 61874. 
2 Dept. of Computer Science, University of Illinois, Urbana, Illinois 61801. 

279 

0885-7458/86/0800-0279505.00/0 �9 1986 Plenum Publishing Corporation 
828/15/4-1 



280 Wol fe  

The next section of this paper reviews many of the terms that are used 
throughout the paper, such as data dependence and loop interchanging. 
Short examples of interchanging of triangular and trapezoidal loops are 
shown, since they relate directly to the following section. Next we present 
the main result; here we introduce loop skewing and show how it is used 
with loop interchanging to generate code for the wavefront method. 
Following that we discuss loop normalization, another simple transfor- 
mation that is used by some compilers and translators to simplify the 
derivation of the data dependence tests and the transformations used to 
discover parallelism. We show that loop normalization is the inverse of 
loop skewing for certain triangular loops, and can actually reduce the 
amount of parallelism available in certain cases. 

Most methods for executing the loop: 

d o I = 2 ,  N -  1 
d o J = 2 ,  N -  1 

A(I, J) . . . .  
end do 

end do 

on a vector or parallel computer involve executing all iterations of the J 
loop in parallel or executing all the iterations of the I loop in parallel. 
Methods for detecting parallelism in one or the other of the do loops are 
well known, such as vectorization and loop interchangingJ 1-6) However, if 
the loop contains the assignment: 

d o I = 2 ,  N -  1 
d o J = 2 ,  N--1 

A(I, J) = (A(I+ 1, J) + A ( I -  1, J) + A(I, J+ 1) 
+ A(I, J -  1))/4 

end do 
end do 

then the loop is parallel for neither the J loop (due to the data dependence 
from A(I, J) to A(I, J - 1 ) )  nor the I loop (due to the data dependence 
from A(I, J) to A(I-- 1, J)). An alternate method to execute such loop nests 
in parallel, known as the wavefront method, ~v 9) (or hyperplane method ~1~ 
can be used to extract parallelism from loops such as this. Existing 
derivations of the wavefront method depend on finding the "angle" of the 
wavefront through the iteration space and optimizing this angle. (We 
ignore the 0 ~ or 90 ~ wavefront angles, which are really just the execution of 
a single loop in parallel.) The methods given to find the wavefront angle 
only work with very simple subscript expressions, and are not integrated 
with other well known data dependence tests for parallelism detection. 
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2. D A T A  DEPENDENCE A N D  LOOP I N T E R C H A N G I N G  

Data Dependence: Simple data dependence relations in scalar code are 
shown by the following program segment: 

St: X = Z  
$2: Y= X 
$3: Z = Z +  1 
$4: X =  9 

Here we say that statement $2 depends on St (flow-dependence) since the 
value of X used in $2 is assigned in $1. We say that $3 depends on $1 
(anti-dependence) since the value of Z assigned in $3 is not the value used 
by St. Finally, we say that $4 depends on $1 (output-dependence) since the 
value assigned to X in $3 is assigned after the value in St is assigned. More 
on data dependence can be found in the references. (t'3,4,8,tl 13) 

Loop Interchanging." A nest of do loops, such as the two-nested loop in 
Fig. la, can be thought of as traversing the two-dimensional iteration space 
shown in Fig. lb. The arrows in the iteration space represent how the serial 
do loops execute the statements in the loop for iteration [ I =  1, J =  1 ] first, 
then [1, 2], [1, 3] ..... [-1, 5], then incrementing the / index to go to [2, 1], 
[2, 2],..., [2, 5],..., [-5, 1 ],..., [5, 5]. Interchanging these two do loops means 
changing the order in which the iteration space is traversed(m); by 

do I =i,5 
do J= 1,5 

A ( I , J + I )  = A ( I , J )  + B ( I , J )  
e n d  do  

e n d  do  

(a) 

O=l 2 :3 4 5 

_ . . . . .  . . t  j 

t 

I 

4 t " o - -  ~ - " ~ < ) - -  ~ - ~  x 

I 

(b) 
(a) A two-nested do loop; (b) its 

iteration space. 
Fig. 1. 
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interchanging the loop as in Fig. 2a, the iteration space would be executed 
in the order shown in Fig. 2b. 

Iteration Space Dependence Graph: For interchanging loops, a com- 
piler is not so much interested in the data dependence relations between the 
statements in a loop as between the iterations of a loop. In these loops, the 
value of A(1, 2) used in iteration [ I =  1, J = 2 ]  was assigned in iteration 
[ I =  1, J =  1]. In fact, the value used in iteration [i, j] was assigned in 
iteration [i, j - 1 ]  (except for boundary values); this relation is shown in 
the iteration space dependence graph Fig. 3. Notice that the pattern of the 
dependence flow in the iteration space can be characterized by the direction 
or the distance of the flow with respect to the loop dimensions. In this 
example, the dependence distance would be called (0, - 1 ) ,  since the dis- 
tance in the I dimension is zero, and the distance in the J dimension is - 1. 
Many translators, such as the Parafrase Analyzer (5'6) and KAP, (14-t6) save 
the sign of the dependence distance; here it would save (0, - ), or ( =,  < ), 
to characterize the data dependence in the loop (( = ,  < ) is the data depen- 
dence direction vector). 

The possible directions in a two dimensional iteration space 
(corresponding to a doubly-nested do loop) are shown in Fig. 4. The 
iteration space dependence graph in Fig. 4a shows the data dependence 
directions that are preserved by loop interchanging. The one in Fig. 4b 

doJ=l,5 
doI=l,5 

A(I,J+Z) = A(I,J) + B(I,J) 
end do 

end do 

I=1 

2 

5 

(a) 

J=l 2 3 

1 

Fig. 2. 
with 

4 5 

! 
| 

! 

! ! i  I I , 

(b) 
(a) The two-nested loop from figure 1 

the do loops interchanged; (b) the 
interchanged iteration space. 
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d=1 2 5 4 5 

i=1 c , o  , o  , o  , o  

2 o .---o , c  , o  ,o 

Fig. 3. The iteration space dependence 
graph for the loop in Figs. 1 and 2. 

shows the data dependence directions that prevent loop interchanging; a 
pair of loops with a (< ,  > ) data dependence direction vector cannot be 
interchanged (without interaction from outer loops(l'2)). 

Triangular loops: Some loops have non rectangular iteration spaces. 
Examples are loops with bounds that include outer loop indices, such as 
the loop nest in the following example. Here, the upper bound of the inner 
do J loop is a simple function of the outer loop index. The iteration space 
traversed by this do loop pair is drawn in Fig. 5; it is easy to see why this is 
called a triangular loop. 

do I = 1 ,  N 
do J = / ,  N 

A(L J) = A(I, J) + B(I, J) 
end do 

end do 

Q ~ O  ~-0 ~-0 ~0 0 ? 0 0 0 

/ o o/o o / o  
o : / o o  

o o oo o 
0 O 0 "0 0 0 

(a) (b) 
Fig. 4. (a) Dependence relations in the iteration space dependence graph 
that are preserved by loop interchanging. (b) Dependence relations that are 
violated by loop interchanging. 
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F i g .  5. I t e r a t i o n  s p a c e  o f  a t r i a n g u l a r  l o o p .  

To properly interchange these loops it is necessary to modify the loop 
bounds: 

do J =  1, N 
do I =  l, J 

A(I, J) = A(I, J) + B(I, J) 
end do 

end do 

Triangular loop bounds as shown here actually appear quite often in 
numerical algorithms. A related class of loops, called trapezoidal loops, is 
similar in form to triangular loopsl but is slightly more complicated to 

I =1 2 3 " "  �9 K-1 K K§ " "  �9 N 

d=1 o o o . . .  o o o . . .  o 

2 0 0 o o o  0 0 0 o o o  0 

3 

K - 1  

0 �9 �9 �9 0 0 0 o �9 o 0 

0 0 0 �9 �9 �9 0 

F i g .  6.  I t e r a t i o n  s p a c e  o f  a t r a p e z o i d a l  l o o p .  

J=1 

o 

2 

o 

o 
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interchange. The next loop is a trapezoidal loop; the lower bound of the I 
loop is a function of the outer J loop, just as in a triangular loop, but the 
upper bounds do not match. 

do J = I , K - 1  
do I = J , N  

A(I, K) = A(I, K) + A(I, J) ,A(J, K) 
end do 

end do 

The iteration space looks like a triangular loop with the lower point cut off 
at K -  1 (the upper bound of the outer loop); see Fig. 6. To interchange 
these loops, a min function is needed to achieve the same cutoff point~17): 

do I = I , N  
do J =  1, m i n ( K -  1, I) 

A(I, K) = A(I, K) + A(I, J) �9 A(J, K) 
end do 

end do 

3. T H E  W A V E F R O N T  M E T H O D  V I A  I N D E X  SET S K E W I N G  

Interchanging of trapezoidal loops can be the basis of a new for- 
mulation of the wavefront method of executing do loops. ~7-1~ The loop at 
the beginning of this article has the iteration space dependence graph as 
shown in Fig. 7. Even though the two do loops may be interchanged, 
neither loop may be executed in parallel. The wavefront method creates a 
"'wave" that passes through the iteration space, as shown in Fig. 8. All the 
iterations on a single wavefront line are executed in parallel; this method 
exhibits much parallelism while still preserving all data dependence 
relations. 

Our alternate formulation skews the index set of the original do loop 
creating a rhomboid iteration space out of what used to be a square; the 
modified iteration space dependence graph is shown in Fig. 9. 

do I = 2 ,  N - 1  
d o J = I + 2 ,  I + N - 1  

A(I, J -  1) = (A(I+ 1, J -  I) + A ( I -  1, J -  I) 
+A(I, J+ 1 - I )  + A(I, J -  1 +I) ) /4  

end do 
end do 

This was done by adding I to the bounds of the inner J loop; notice that 
within the loop, J is replaced by the expression J - I  to account for the 
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d=2 :3 4 5 6 ''' 

I--2 

3 

4 

5 

Fig. 7. Iteration space dependence graph of a loop 
that is a candidate for the wavefront method. 

change in the bounds. The reader can verify that the first iteration of the 
new loop, ( I =  2, J =  I +  2 = 4) still assigns to A(2, 2). Note that the bounds 
for the J loop in the iteration space have changed slightly. Figure 9 also 
shows the iteration space dependence graph for the modified loop; notice 
that now not only are the loops interchangable, but when interchanged, the 
do I loop may be performed in parallel since there are no data dependence 
arcs which point straight down (with a direction vector of ( < ,  = )). The do 

d=2 3 4 5 6 ... 

w71 ,2 ~3 /4 5 - . .  
/ / / / / 

/ / / / / 

I=2 ,o" ,o" o" o" o" . . .  

/ / / /  / /  / /  
/ / / / / / 

o / / /(3 / O /  . . . 3 , o  / / / o  / 
/ / / / / / 

/ / / / / 

4 2 / / o /  0 / (3/ o / . . .  / / / 
/ /  / / / / 

/ / / / 

/ /  o... 
/ / / / 

�9 �9 �9 �9 �9 �9 

Fig. 8. Execution ordering for the wavefront method of 
executing two loops, superimposed on the iteration space 
dependence graph. All iterations on each diagonal line can be 
executed in parallel. 
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J=4 5 6 7 8 - � 9  

I=2 

5 

4 

5 

Fig. 9. Modified iteration space dependence graph after loop skewing. 

loops may be interchanged using the techniques of trapezoidal loop 
interchanging; by executing the inner loop in parallel or vector mode, the 
wavefront ordering of the iterations will result: 

do J = 4 ,  N + N - 2  
do I =  max(2, N -  J +  1), m i n ( N -  1, J -  2) 

A(I, J -  I) = (A ( I+  1, J -  I) + A ( I -  1, J -  I) 
+A(I, J +  1 -  I) + A(I, J -  1 +I)) /4 

enddo 
enddo 

We can skew (index) J with respect to (outer loop index) I by (a 
factor o f ) f  (where f is an integer constant) by 

(a) replacing the lower bound of the J loop, LBJ, with the 
expression (LBJ + I ,  f ) ,  

(b) replacing the upper bound of the J loop, UBJ, with the 
expression (UBJ + I �9 f ) ,  and 

(c) replacing all occurrences of J in the loop with the expression 
( J - I ,  f ) .  

Loop skewing is always legal; it has no effect on the numerical results 
of the program. It does not even change the execution order of the 
iterations (iterations in the skewed iteration space are executed in the same 
order as the corresponding iterations in the original iteration space). 
However, loop skewing does change the direction vectors. In this example, 
the "downward" dependences, with a direction of (< ,  = ), are changed to 
(< ,  < ) directions by loop skewing. This trick can even be used to change 
some (< ,  > )  direction vectors to (< ,  <), as shown in Fig. 10. Also, a 



do I = 3, N 
do J=3, N 

A(I,J) = A(I-2,J+I) + 
end do 

end do 
(a) 

d=5 4 5 6 ... 

I=3 o 

5 

6 

�9 �9 

dol =3, N 
do J = 3+I, 

A(I,J-I) 
end do 

end do 

P / 
(b) 

N+T 
= A(I-2 

(c) 

d=6 7 8 9 �9 

�9 

J+l-l) + 

�9 o o �9 

Fig. 10: Changing ( < ,  > ) direction vectors to ( < ,  < )  via loop 
skewing: 

The loop in (a) has a data dependence relation with the 
direction vector ( < ,  > ); the iteration space dependence graph for 
this loop is shown in (b). The ( < ,  > )  dependence prevents the 
loops from being interchanged. If loop skewing is applied, as in 
(c), the iteration space dependence graph will be changed to (d); 
the ( < ,  > ) direction vector has been modified to a ( < ,  < ) direc- 
tion vector, and the loops can be interchanged. 
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dol =i, N 
do J = I, N 

(a) 

d=l  2 3 4 5 6 7 8 . ' .  

I = I  o o o o o o o o �9 �9 �9 

2 0 0 0 0 0 0 0 0 �9 �9 �9 

0 0 0 0 0 0 0 0 �9 * * 

4 o o o o o o o o , . ,  

(b) 

do I =i, N 
do J = i+2"I, N+2*I 

(c) 

d = 3  4 5 6 7 8 9 1 0  �9 �9 �9 

I = 1  o o o o o o o o �9 �9 �9 

2 o o o o o o . . .  

0 0 0 0 �9 o �9 

4 0 0 �9 o �9 

(d) 

Fig. 11: Loop Skewing by a Larger Factor. 
Loops can be skewed by a factor greater than one. The loop in (a) 

has the iteration space shown in (b). After skewing the inner loop by a 
factor of 2, the loop in (c) results. The new iteration space is shown in 
(d). The advantage of large factor skewing is that more (< ,  > )  data 
dependence direction vectors can be changed to (< ,  < ) directions, thus 
allowing loop interchanging and vectorization after skewing. 
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do I = 2, N-I 
do J = 2, M-1 

do K= 2, P-i 
X(I,J,K) = (X(I-I,J,K) + X(I+I,J,K) 

+ X(I,J-I,K) + XII,J+I,K) 
+ X(I,J,K-I) + X(I,J,K+I)) /.6. 

end do 
end do 

end do 

(a) 

do I = 2, N-I 
do J = 2, M-i 

do K = I+J+2, I+J+P-i 
X(I,J,K-I-J) = (X(I-I,J,K-I-J) + X(I+I,J,K-I-J) 

+ X(I,J-I,K-I-J) + X(I,J+I,K-I-J) 
+ (I,J,K-I-J-I) + X(I,J,K-I-J+I)) / 6 

end do 
end do 

end do 

(b) 
do K = 6, N+M+P-3 

do I = max(2,K-M-P), min(N-I,K-~) 
do J = max(2,K-I-P), min(M-i,K-I-2) 

X(I,J,K-I-J) = (X(I-Z,J,K-I-J) + X(I+I,J,K-I-J) 
+ X(I,J-I,K-I-J) + X(I,J+I,K-I-J) 
+ X(I,J,K-I-J-I) + X(I,J,K-I-J+I)) / 6 

end do 
end do 

end do 

(c) 
Fig. 12: Loop Skewing with respect to more than one loop. 

The six point difference equation in (a) cannot be executed in parallel along any of 
the three do loop dimensions. We can skew the inner K loop index with respect to both 
the outer loop indices, as shown in (b). By interchanging this loop to the outermost 
nest level, as in (c), the inner two loops can both be executed in parallel. 

l oop  can be skewed by a factor of 2 or more,  as in Fig. 11. Finally, a loop  
can be skewed with respect to more  than one loop,  as shown in the 
example  in Fig. 12. 

4. LOOP N O R M A L I Z A T I O N  

Loop normalization is a minor  transformation performed by some  
other parallelism detect ion programs (3-6) in order to make  data dependence 
testing easier. Loop  normal izat ion  modif ies  the loop  bounds  so that the 
lower bound of all do loops  is one (or zero) ,  and the increment is one; this 
simplifies data dependence tests because two out  of  three of the l oop  bound 
expressions will be a s imple k n o w n  constant.  The fol lowing example  shows  
a do l oop  nest before and after loop  normal izat ion.  
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before: 

do I = 3 ,  N 
do J = I +  1, N 

A(I, J) = A ( I -  1, J) + B(I, J) 
enddo 

enddo 

after: 

do I =  1, N - 2  
d o J = l , N - I  

A(I+ 2, J+ I+ 2) = A ( I +  1, J+ I+ 2)+ B(l+ 2, J+ I+ 2) 
enddo 

enddo 

In this carefully concocted example, loop normalization may make data 
dependence equations easier to derive, but it also makes the job of a 
vectorizer more difficult. First, what used to be simple array subscripts 
(A(I, J), A ( I - 1 ,  J)) are now much more complicated, with two index 
variables in the second subscript (A(I + 2, J+ I+ 2), A(I + 1, J+ I+ 2)). 
Second, and perhaps more important, the original loop exhibited a data 
dependence with a (< ,  = ) direction vector: 

[-I= 3, J =  5] uses A (3, 5) 
[-I= 4, J =  5] assigns A (3, 5) 
(-- 1, 0) data dependence distance vector 
( <,  = ) data dependence direction vector 

Loop normalization has changed this to a (< ,  > ) direction vector: 

l-I= I, J =  2] uses A (3, 5) 
[-I= 2, J =  1] assigns A (3, 5) 
( -- 1, + 1) data dependence distance vector 
( <,  > )  data dependence direction vector 

The (< ,  > )  direction vector prevents loop interchanging, if that is 
desirable for any reason. Loop normalization here is just a special case of 
index set skewing, with a negative skew factor. Because loop normalization 
can adversely affect the complexity of transforming the do loop nest, loop 
normalization should be avoided. 

5. S U M M A R Y  

Loop skewing is a simple transformation of the loop bounds that 
changes the shape of the iteration space. It also can change the data depen- 
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dence direction vectors to allow loop interchanging and to allow parallel or 
vector code to be generated after loop interchanging. Loop skewing is a 
convenient method for a compiler or translator to implement the wavefront 
method of executing a loop nest in parallel. Previous wavefront derivations 
have focussed on the dependence analysis needed to discover when 
wavefronting is useful. Loop skewing makes wavefronting easier to 
understand and implement. However, we are not introducing a new 
wavefront algorithm, only a simple vehicle to implement wavefronting. 

Loop normalization is used by some translators to simplify the 
derivation and implementation of data dependence testing of other trans- 
formations that discover parallelism. In some cases it can be seen to be a 
form of loop skewing by a negative factor; in these cases, loop nor- 
malization will also change the data dependence direction vectors in such a 
way as to possibly adversely affect the types of transformations attempted 
by the translator. For this reason we do not recommend loop nor- 
malization for parallelizing translators. 
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