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Quadrature Formulas 
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Summary.  Quadrature formulas are obtained for the Fourier and Bessel 
transforms which correspond to the well-known Gauss-Laguerre formula 
for the Laplace transform. These formulas provide effective asymptotic 
approximations, complete with error bounds. Comparison is also made 
between the quadrature formulas and the asymptotic expansions of these 
transforms. 

Subject Classifications AMS" 65D30, 65R10; CR: 5.16. 

1. Introduction 

If w(t) is a positive function on (0, oo) which is rapidiy decreasing at infinity, 
and if f(t) is sufficiently smooth in (0, oo), then it is well-known that integrals 
of the form 

f(t) w(t) dt (1.1) 
o 

can be numerically evaluated by Gaussian quadrature rules. However, if w(t) is 
an oscillatory function, such as e it or the Bessel function J,(t), and if f(t) 
decreases slowly at infinitely, then the problem of numerical computation of 
these integrals becomes considerably more difficult. Although there are several 
different methods of treating this problem, (see, e.g., [2, w [11, w [14, 
w and [17]), there do not seem to be any simple quadrature rules for 
oscillatory integrals over (0, oo) which correspond to the Gauss-Laguerre 
quadrature formula for the case when w(t) in (1.1) is e-'. Exceptions are the n- (cos) 
point formulas with weight function w(t)= l + s i  n t ( l+ t )  -(2"-1§ n 
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=1(1)10 ,  s=1.05(0.05)4, given in [7]. The purpose of this note is to derive 
quadra ture  formulas for the Fourier  and the Bessel t ransforms 

oo 

F(x) = ~ tuf(t) e ix' dt, (1.2) 
0 

oo 

Hi(x ) = .[ tuf(t) H~i)(x t) dr, i = 1, 2, (1.3) 
0 

where x is a real pa ramete r  and H~~ i =  1, 2, are the Hanke l  functions. In 
(1.2) we require # > - 1 ,  and in (1.3) we require / ~ _ + v > -  1. These quadra ture  
formulas in fact also provide asympto t ic  approx imat ions  for the integrals in 
(1.2) and (1.3), as x--+oc, complete  with error bounds.  A compar i son  is then 
made between these quadra ture  formulas and the asymptot ic  expansions of  
these integrals. Our  analysis is based on the use of  analytic cont inuat ion and 
an integral analogue of Abel 's limit theorem for power  series. The basic 
assumpt ion  for our  a rgument  is that  the function f ( t )  is ho lomorphic  in the 
half plane Re t > O. 

2. The  Fourier  Trans forms  

We first recall the Gauss-Laguerre  formula [2, p. 174] 

where 

oo 

,[ tuf(t) e -t dt = ~ w k f ( t k )+ E , ( f ) ,  (2.1) 
0 k = l  

n ! F ( n + # + l )  
E , ( f )  = f ( 2 . ) ( ~ ) ,  0 < { < Go. (2.2) 

(2n)! 

The abscissas t k are the zeros of  the Laguerre  polynomial  

dn 
L ( ~ ) ( t ) = e t t - U ~ ( e - ' t " + " ) ,  (2.3) 

and the weights w k are given by 

n ! F ( n + # +  1) t k 
wk - (~) 2 (2.4) 

EL' + l(tk)] 

Some tables of  t k and w k can be found in [9] and [1, p. 923]. If z is real and 
positive, then it is easy to see that  (2.1) can be written in the more  general 
form 

where 

S tuf(t) e - z t d t = z - u - 1  w k f ( t k / z ) + E , ( f ;  z), 
0 k = l  

n ! F(n + # + 1 ) ~(2.) . . . .  
E , ( f ; z ) - ( - ~ ) n ) i z T ~ 4 f J  tC/z), 0 < ~ < c ~ .  

(2.5) 

(2.6) 
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We wish to show that the result (2.5)-(2.6) in fact holds when z is purely 
imaginary, provided that f(t) is a holomorphic function in the half-plane 
Ret>O. To prove this result, we need the following integral analogue of the 
Abel limit theorem for power series. For a proof of this result, we refer to [-15, 
p. 26]. 

Lemma. I f  the integral ~ cp(t)dt converges as an improper Riemann integral, then 
0 

T lim ~ e-~' ~p(t)dt= cp(t)dt. 
e~O 0 0 

Theorem 1. Let f(t) be a holomorphic function in Re t>O, and suppose that 
f(2")(t) is continuous in Re t  >O. I f  the Fourier transform F(x) in (1.2) converges 
as an improper Riemann integral, then we have 

e(U + 1)~i/2 

w k f ( i  tk/x ) + ~.(f; x), (2.7) F(x) - 1 
X/L+ k= 1 

where 

" n!F(n+p+l)e{Z'+u+ " (2.8) ~.(f; x ) = ~ . x - ~ - + ; 7  ; 1)'W2f(2")(i ~/x), 0 < 4  < oO. 

Proof The integral on the left-hand side of (2.5) can be considered as the 
Laplace transform of tuf(t). Thus, by a well-known result from Laplace trans- 
form theory, this integral converges for Rez>O [18, p. 37, Corollary la]  and 
defines a holomorphic function there [18, p. 57, Theorem 5a]. Since f(t) is 
holomorphic for Ret>O, the terms on the right-hand side of (2.5) are all 
holomorphic for Re z>O. By analytic continuation, the identity in (2.5) holds 
for all z in Rez>O. Now, write z = ~ - i x  and let ~-*0 in (2.5). The right-hand 
side of (2.5) clearly tends to the right-hand side of (2.7), as desired. The fact 
that the Laplace integral in (2.5) tends to the Fourier integral in (2.7) follows 
from the above lemma. This proves (2.7). 

Remark 1. It is sometimes advantageous to express the truncation error in (2.1) 
in the form 

E. ( f )=n!  r ( n + u +  1) f [ t l ,  t~, t2, t 2 . . . .  , t,, t,, ~1], (2.9) 

where 0 < ~ < ~  and f [ t ~ , t l , . . . , t , , t , , ~  ~] is the 2n-th divided difference of 
f(t), relative to the abscissas tl, t~, ..., t,, t, and ~1; see [6, p. 397, Eq. (8.7.12)]. 
The corresponding error term in (2.8) can hence be written as 

n! F(n + # + 1) e(2n+u + 1)~i/2 
~ , ( f ; x ) =  xZ,+u+l 

[ . t l  . t l  tn tn "~1] (2.10) 
x f  tX,  Z X , . . . ,  i x ,  i x ,  Z x , 

where 0 < ~1 < ~ .  
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Remark 2. If f(2m(t) is bounded on the imaginary axis, say by M2,, then from 
(2.8) we have 

n!F(n+p+l) 
[e,(f; x)]--< (2n)[ x 2"+"+1 M2"" (2.11) 

A similar estimate holds if the divided difference in (2.10) is bounded. In either 
case, (2.7) provides an attractive asymptotic approximation for the Fourier 
integral F(x). The asymptotic nature of Gauss quadrature approximations and 
their superiority over ordinary asymptotic expansions were first noted by Todd 
[16], and later again by Gautschi [4] and Stenger [12]. 

3. Numerical Examples 

As a preliminary check on the validity of (2.7), we take - 1  < # < 0  and f ( t )=  1. 
Since from (2.1) we have 

~ wk=F(#+ 1), 
k = l  

it follows from (2.7) that 

oo {( } F ( p +  1) tUeiXtdt=exp /~+l)ni.  ~ u  , 
0 2 

which is a well-known identity [8, p. 98]. 

Example I. The function 

eiXt 
E*(x) = dt (3.1) 

o l + t  

can be expressed in terms of trigonometric integrals Ci(x ) and Si(x); see [i, 
Chapt. 5]. From (2.7) we have, with # = 0, 

t k + i  x 
E*(x)~kZ=lwk 2 - -  

= tk  - t - x  2 . 
(3.2) 

The weights w k and abscissas t k for 2_<n_<15 are given in [1, p. 923]. The 
following table shows the closeness of the approximation when we take n=  10 
in (3.2). 

Table 1 

x l ( x )  Approximation 

2 0.144545 +i0.399021 0.144544 +i0.399037 
4 0.0496782 + i0.229193 0.0496781 + i0.229193 
6 0.0245215 +i0.159306 0.0245215 +i0.159306 
8 0.0144597 +i0.121624 0.0144597 +i0.121624 

10 0.00948854 + i 0.098 I910 0.00948854 + i 0.0981910 
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Example 2. Consider the integral 

S(x) = ~ t 1/2 sin x t dr. (3.3) 
o l + t  

With #=�89 the quadrature formula (2.7) gives 

1 & x + t  k 
w k - - + G ( x  ), (3.4) S(x)=l/~- ~=~ x2+t~ 

where 
n! r(n+�89 

le,(x)[ < (3.5) 
= ~ ~/2 (x 2 + t~ ) . . .  (x  ~ + t.~) 

The weights w k and abscissas t~ here are given in [10]. Let s,(x) denote the 
first term on the right-hand side of (3.4). In Table 2 we tabulate the values of 
s,(x) for n=4,8 ,  16 and x = 2 , 3 , 4 , 5 .  

Table 2 

n ~  2 3 4 5 

4 0.231422 0.13392163 0.088647098 0.0636329754 
8 0.232113 0.13411233 ~088672001 0.0636330084 

16 0.232087 0,13410937 0.088672219 0.0636330809 

The estimate (3.5) shows that Ie16(5)I_-<2x10 -1~ Thus, we have S(5) 
=0.0636330809 accurate to at least eight decimal places. For comparison, we 
also refer the reader to [11, p. 202] for a different way of computing S(x). 

4. The Bessel Transforms 

Let K~(t) denote the modified Bessel function of the third kind, and let 

w(t)=tUKv(t),  /~_v>  - 1 ,  (4.1) 

be the weight function in (1.1) The moments 

oo 

p, = ~ t"+"Kv(t)dt ,  n=0,  1, 2, ... (4.2) 
0 

can easily be found to be 

p =2,+U-lF(�89 1 1 i 1 1 1 1 + ~ p + ~ + ~ v )  F ( ~ n + ~ # + ~ - ~ v ) .  (4.3) 

A sequence of polynomials, p,(t), orthonormal with respect to the weight 
function w(t) in (0, oo) can then be constructed by using determinants; see [13, 
w167 and 2.2]. The zeros of these polynomials are positive and distinct. 
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Furthermore, between two consecutive zeros of p,(t), there is exactly one zero 
of p,+~(t); see [13, w 

For fixed n, let t , , . . . , t ,  denote the zeros of p,(t), and let A, be the 
coefficient of t" in p,(t). The general quadrature formula [6, Eqs. (8.4.6), (8.4.9) 
and (8.4.17)] then gives 

j tuf(t) Kv(z t) dt = z-U- i ),  Wk f(tk/Z ) + E,( f ;  z), (4.4) 
0 k=l  

where z is real and positive, 

A, 
wk = A,_ 1 P', (Xk) P,-1 (Xk) (4.5) 

and 

E,( f ;  Z)=Ae(J2'r,) ! z2,+,+ , , 0< ~ < or. (4.6) 

If f (t) is a holomorphic function in Re t >0 then, by analytic continuation, (4.4) 
also holds for complex z as long as Re z >0. The following result is a generali- 
zation of (2.7). 

Theorem 2. Let f ( t )  be a holomorphic function in the half plane Re t >0, and 
suppose that f~z")(t) is continuous in Ret>0 .  I f  the Bessel transforms in (1.3) 
converge as improper Riemann integrals, then we have 

Hl(x)=2rc ei("-v)'~/2k~lwkfxu+ 1 i + ~l ) ( f ;  X), (4.7) 

where t k and w k are the nodes and weights, respectively, of the Gauss quadrature 
formula (4.4), and 

3 (1 ) ( f ;  X) 2 e i(u+2n-v)=/2 f ( 2 n ) ( i { l / X  ) 
~z x 2"+u+1 A~(2n)! ' 0<{  l < m .  (4.8) 

The corresponding formula for H2(x ) is obtained by replacing i by - i  in (4.7) 
and (4.8). 

Proof In (4.4), we first put z = e - i x  and then let e---~0. The right-hand side of 
2 

(4.4) clearly tends to the right-hand side of (4.7), except for the factor - - e  -i"~/2. 
In view of the connecting formula n i 

H~l)(t)=2. e - i ~ / 2 K v ( - i t ) ,  0 < t < o o ,  (4.9) 
7"r 

the left hand side of (4.4) also tends to the left-hand side of (4.7), provided that 
the limit (as e-*0) can be taken inside the integral sign. The fact that the limit 
and the integral can indeed be interchanged is justified by the asymptotic 
expansion [8, p. 250] 

\~z]  e-~=oAS(V)z ~ , (4.10) Kv(z)~ 
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as z ~ o o  in I a r g z l < ~ z - 6 ,  and the lemma in w The corresponding formula 
for H2(x ) is obtained by using, instead of (4.9), the connecting formula 

HT)(t) = -2.ei"V/2Kv(it), 0 < t <  o�9 (4.11) 

and putting z = e +ix in (4.4). This completes the proof of Theorem 2. 

Remark 3. It is well-known that the Bessel function of the first kind, Jr(t), can 
be written as 

Jr(t) =�89 {H(2 ')(t) + H(~2) (t)}. (4.12) 

Hence, the quadrature formulas for Hl(x ) and H2(x ) can also be used to 
numerically compute the Hankel transform 

oo 

.i tuf(t)Jv( x t) dt. (4.13) 
0 

As a simple check on the validity of (4.7), we take - v - 1 < / ~  <�89 and f(t)= 1. 
Since from (4.4) we have 

k= l  

it follows from (4.12) and Theorem 2 that 

1 1 1 # 
tUd~(xt)dt= F(g#+gv+~)  2 (4.14) 

r ( � 8 9  ' , . + 1 ,  -~#+~)x  0 

which agrees with Eq. (19) in [3, p. 49]. (Note that in the case of the Hankel 
transform (4.13), the condition # •  1 in (1.3) can be weakened to /~+v> 
- 1 .  The more restrictive assumption is needed only to ensure the convergence 
of the integrals in (1.3) and (4.2). 

Remark 4. The derivative form of the error term in (4.8) can also be expressed 
in terms of the divided difference off( t ) .  More explicitly, we have 

~ ( n l ) ( f ; x ) = 2  e i(u+2"-~)/2 [ t~ t, .t, .r (4.15) 
~ AZx2,+u+l f i - - , i ~ , . . . , i x , l x , Z  x 

for some ~e(0, oo). The use of (4.15) is usually preferable to that of (4.8). 

5. More  Examples  

Example 3. Consider the integral 

0 
(5.1) 
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In the notations of w we have / ~ = v = 0  and f ( t )=l / ( l+t ) .  From (4.12) and 
Theorem 2 it follows that 

i(x) = 1  • 2x )2 wk . . ~ : ~ ,  .~ + ~.(x). (5.2) 
k = l  X - t - t  k 

On account of (4.15), the remainder 6,(f; x) satisfies 

2 1 
I~.(x)l <= A~ x(x2 +t~)...(x2 +t~). (5.3) 

The leading coefficients A, in p,(t) and the abscissas t k and weights w k corre- 
sponding to formulas in (5.2) for 2<n_<5 are listed (to ten decimal places in 
Table 3. 

Table 3 

n Coefficients Abscissas Weights 

1 1.0346310752 0.6366197724 1.5707963268 

2 0.5839852962 0.3672186882 1.3999512373 
2.8441656971 0.1708450895 

3 0.2108566158 0.2609612883 1.2294421665 
1.8802425952 0.3313894656 
5.6269259843 0.009964694674 

4 0.05596246029 0.2034678616 1.0948309833 
1.4202585051 0.4377391923 
4.0139876796 0.0377769612 
8.6778718603 0.0004491900176 

5 0.01174097062 0.1672481118 0.9888810597 
1.1456294188 0.5037500094 
3.1628739845 0.07510923965 
6.4939278147 0.003038578952 

11.8874874319 0.00001743909733 

It is interesting to compare formula (5.2) with the asymptotic approxima- 
tion [19, Eq. (5.13)] 

I(x) = 1 _ 1 +  r3 (x), (5.4) 
x x 

where 
]r3(x)l < 5.3155 x -7/2. (55) 

From (5.2), with n = 2, we have 

I(10) - 0.0990 (5.6) 

with truncation error bounded by 0.000019, and hence (5.6) accurate to four 
decimal places. The asymptotic approximation (5.4) gives the same value as in 
(5.6). However, the error associated with this approximation is bounded only 
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by 0.0017, and hence does not give any indication concerning the accuracy of 
the value given in (5.6). Taking n =  5 in (5.2), we in fact obtain I(10)=0.0990740 
accurate to seven decimal places. 

Example 4. Consider the integral 

_ ~ Jo(xt) dr. (5.7) 
I(x) - o If/(1 + t) 

Here we have # =  - �89 v = 0  and f ( t ) =  1/(1 + t). F rom the results in w 4, we have 

n X - -  t k 
l (x )=  k}21Wk . .~V~,  .~ + ~.(X) (5.8) 

= x q - t  k 
with 

2 
I6.(x)[< - 2  2.+~/2- (5.9) 

7I"Zt n X 

The values of the coefficients A,, the abscissas t k and the weights w k are listed 
in Table 4. 

T a b l e  4 

n Coefficients Abscissas Weights 

i 1.0429856349 0.2284732905 4.6474760094 

2 0.6958420717 0.1272660741 4.4186595245 
2.1828789401 0.2288164849 

3 0.2776778397 0.08975811418 4.1825838264 
1.4038905409 0.4551726046 
4.8758067266 0.009719578404 

4 0.0791554398 0.06990008100 3.9858407490 
1.04587495139 0.6239374973 
3.4232461358 0.03733775108 
7.8792758079 0.0003600119525 

5 0.0175560146 0.05750827921 3.8221033421 
0.8366348329 0.7471552593 
2.6726988390 0.07574750466 
5.8349740709 0.002457777509 

11.0589492082 0.00001212583461 

Let us now take n = 2 in (5.8) and compare  it with the asymptotic approxi- 
mat ion [16, Eq. (5.22)] 

F2(1/4) 2rt 
I ( x )=  2gl / /~  F2(1/4 )x3/2 ~r2(x), (5.10) 

where 
[r2 (x)[ __< 1.00138 x -2. (5.11) 

(The first term on the right-hand side of Eq. (5.22) is missing a factor of  �89 The 
two-point  formula in (5.8) gives I(50)=0.2944872 accurate to seven decimal 
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places, whereas the approximation (5.10) gives I(50)=0.294 accurate to only 
three decimal places. The superiority of (5.8) over (5.10) is even more apparent 
for x>50.  

Remark 5. There are various ways of constructing quadrature formulas. We 
have constructed Tables 3 and 4 by using the method based on determinants; 
see [13, w167 and 2.2]. For a more effective procedure, we refer to a recent 
article by Gautschi [5, Example 4.10]. 
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