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Summary. We discuss the construction of three-point finite difference ap-
proximations and their convergence for the class of singular two-point
boundary value problems: (x*yY=f(x,¥), y(0)=4, y(1)=B, O<a<1. We
first establish a certain identity, based on general (non-uniform) mesh, from
which various methods can be derived. To obtain a method having order
two for all «e(0,1), we investigate three possibilities. By employing an
appropriate non-uniform mesh over [0,1], we obtain a method M, based
on just one evaluation of f. For uniform mesh we obtain two methods M,
and M, each based on three evaluations of f. For «=0, M, and M, both
reduce to the classical second-order method based on one evaluation of f.
These three methods are investigated, their O(h?*)-convergence established
and illustrated by numerical examples.

Subject Classifications: AMS(MOS): 651.10; CR: 5.17.

1. Introduction

We consider the class of singular two-point boundary value problem:

(xmy’)l :f('x?y)’ 0<x§1’

y(0)=4, y(1)=B. (1

Here, «€(0,1) and A,B are finite constants. We assume that, for
(x, Mel{[0,1T7xR}: (4)f(x, y) is continuous, df /@y exists and is continuous, and
affoy=20.

Certain classes of singular boundary value problems have been considered
by Jamet [3, 4] and Parter [5], in the linear case only. Jamet studied the
application of a standard three-point finite difference scheme with a uniform
mesh of size h and has shown that the error in the maximum-norm is O(h'~9).
Ciarlet et al. [1] used a suitable Rayleigh-Ritz-Galerkin method and improved
Jamet’s result by showing that the error in the uniform norm for their Galer-
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kin approximation is O(h*~%. Gusttafsson [2] gave a numerical method for
solving singular boundary value problems by representing the solutions as
series expansions on a sub-interval near the singularity and by using difference
method for a regular boundary value problem derived for the remaining
interval. Reddian [6] and Reddian and Schumaker [7] have studied col-
location for the solution of singular two-point boundary value problems. Their
methods concern certain projections onto finite dimensional linear spaces of
singular non-polynomial splines; these singular splines possess convenient local
support basis which have a certain advantage in the numerical computations.

Our object in the present paper is to discuss the construction of three-point
finite difference approximations and their convergence, under appropriate con-
ditions, for the class of singular two-point boundary value problems (1). In
Section 2 we first establish a certain identity based on general (non-uniform)
mesh over [0, 1], from which various methods can be derived. In order to
obtain a method having order two for all «e(0,1), there seem to be three
possibilities. By employing an appropriate non-uniform mesh over [0, 1], we
obtain our first method M, based on just one evaluation of f. Alternatively
employing uniform mesh, we obtain two methods M, and M, each based on
three evaluations of f. The methods M, and M, have the property that, for «
=0, they reduce to the classical second-order method based on one evaluation
of f. In Section 3 these three methods are investigated in detail and, under
appropriate conditions, their O(h2)-convergence is established. In Section 4 we
consider numerical examples to illustrate these methods and their second-order
convergence for various a€(0,1).

2. The Finite Difference Methods

For a positive integer N =2, consider a general (non-uniform) mesh over [0, 1]:
O=xq,<x,<...<xy=1. Let y,=y{x), fi=f(x,,¥,), etc. We set z(x)=x*y" and
f)=1(t, y(r)); integrating (1) from x, to x, dividing by x* and then integrating
from x, to x,,, and interchanging the order of integration we obtain

Xic+ 1

1
,Vk+1_J’k:Jka+1”":& j (x,f;i‘——tl‘“)f(t)dl, (2)

where we have set
L= =X ).

In an analogous manner, we obtain

Xk

1
o A [ @ =xl-9f(r)de 3)

Xk -1

Eliminating z, from (2) and (3) we obtain the identity:

Vie1= Y W=V K" LT
- %L p=1()N—1, )
Ji Jey Jo Jiy
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where we have set

1 Xk + 1

Ik+=1 [ (i i—t=9f(nad,
—a
1 %

=y 1 e o

Identity (4} is our basic result from which methods can be obtained for the
singular two-point boundary value problem (1). We are interested here in
deriving methods with order two for all «€(0,1); in the following we give three
such methods. By introducing an appropriate non-uniform mesh, in Sect. 2.1
we derive our first method (M) based on one evaluation of f. Next, employing
uniform mesh in Sects. 2.2 and 2.3 we derive two methods (M, and M) each
based on three evaluations of f For a=0, each of the methods M, and M,
reduce to the classical second-order method based on one evaluation of f. The
convergence of these methods, under appropriate conditions, is discussed in
Sect. 3.

2.1 First Method (M ) Based on Non-Uniform Spacing

By Taylor expansion of f we obtain

IF :A(-)i-,kfk+A1i,kflé+%A%,kf”(éki)’ & e(X X x 1), &)

and

m+ 1 1V 1
A'i"‘:mlﬂ L m+(2~1) —'(W'r )
j=0 x2—=] J

f(m+2—a—j m+2—a—j —
) (s —Xj ), m=0,12.

With the help of (5), from (4) we obtain

1 +<1+ 1 ) 1
Vit ) ey
VPR VRN AN M A (6)
+Bg S +1=0, k=1(1)N—1,
where
tgcl):Bl,kfl:_F%BZ,kf”(ék)? €0 1%, 1) (7
and
At A-
B, =2k mk o m=0,1,2.
Y A A

Note that 4, >0, m=0,2, A7 ,>0, A7, <0, J,>0and B, ,>0, m=0,2.

Note that each discretization in (6) is based on one evaluation of f. In Sect.
3.1 we shall show that a method based on (6), neglecting !, is O(h?)-
convergent for all «€(0,1) provided we choose the mesh x, =(kh)'/* -,
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2.2 Second Method (M ,) Based on Uniform Spacing

Here, and in Section 2.3, we assume that the spacing is uniform: x,, , —x, =h.
For uniform spacing the method M, can be shown to be of order 2—a.
However, in the following we modify (6) so that for uniform spacing the
resulting method has order two for all «€(0,1).

With the help of

h3
hﬂ:(ﬁ(+1_fk_l)/z_-6‘fm(0'k)’ 0L E(X - 15Xy 1),

from (6) and (7) we obtain

1 1 1 1
Jk g e J Jk l)yk J, yk+1+BO,kfk .
1
tap Bl =S ) +87=0, k=1{)N—
where
h?
tiz):%Bz,kf”(fk)—*g B J" (0 9)

Note that the discretization (8) is based on three evaluations of f. In Sect.
3.2 we show that, under suitable conditions, the method M, based on (8) is
O(h*)-convergent for all a€(0,1). Since for «=0, B, , =0 and hence (8) reduces
to the classical second-order method for y’=f(x, y) based on one evaluation of
f- Consequently we may regard (8) as the “modified classical second-order
method”.

2.3 Third Method (M ;) Based on Uniform Spacing

Here, in I* we approximate f(f) by linear interpolation at x;, X, 4 :

LF :ag,kﬁc +a;_r,kfki 1 +a§,kf"(fki)a (10)
where
L .
(—1y (1) . o
+ | x2—a—j_x2—a—1 X/
0,k 2:‘02—0(—] j (*cz1 k pi
1 2 (—I)j (2) 3 3
*57 N eEr T X T ) X,
2hj§03-—0(—] J (kil k ) k
1 2 (——l)j 2\ .
ai :i (‘)xj x3~1—1_x3 a j’
1.k Zhj;)}—oc—] j W(Xix T k )
and
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Note that ag ,, af ,>0 and a3 , <0. With the help of (10), from the identity (4)
we obtain

1 1 1 1
Jk— Vi - 1+(J J 1>Yk_z)’k+1+bo,kfk
(11)
“‘fk+1 “‘fk D=0, k=1()N—1
where
1 =b, . f"(&) (12)
and
at a’
b, ==+ (—1)" mk o m=0,2.
e Iy Jk<1

Note that b, , >0 and b, , <0.

Thus in the case of uniform spacing, a second method of order two, for all
xe(0,1). can be based on the discretization (11). The O(h*-convergence of the
method M 5, under appropriate conditions, is proved in Sect. 3.3.

3. Convergence of the Methods M, M,, M,

We next discuss the convergence of the methods M; M, and M, showing that,
under suitable conditions, each of these methods is O(h?)-convergent for all
a€(0,1). For the purpose, it is convenient to introduce matrix notation and we
shall describe all the three methods together. In each case the differential
equation is discretized at x, for k=1(1) N—1 and y,=4, yy=B.

Let D=(d;; denote the tridiagonal matrix with

d

= = d -
Kok — s s .
! Jk‘l’ Jk Jk 1’ oo Jk

Let P=(p;;) denote the tridiagonal matrix and let 9 =(q,,0,...,0,q,_ )7, where
for the method M :
B =0; _A __B.
Pkt =B,k Prx+1™Y5 ql_Jo’ QN‘l_JNAl’
for the method M ,:
4 1
~2h

A 1 B 1
g :Z—FZ—hBI’IfO’ qN—lsz—:_ﬁBl,NvlfN;

Pri=Boxs Prxs1™ B,

for the method M ,:

at a
1,k _ Lk
Pii=bo > Pers1= 7 pk,k—l—J >
X k— 1

q,=(A—a;  fo)o» an-1=(B—ajy_ N4
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Also, let F(Y)=(fy,....fu_ )% Y=, yy_ )" and let T=(t;,....ty_ )%
where t, =t{™, m=1,2,3 corresponding to the three methods M,, M, and M.
Then, each of the discretizations (6), (8) and (11) can be expressed in the matrix

form:
DY+ PF(Y)+T=Q. (13)

The method M, M, or M, now counsists of finding an approximation Y for ¥
by solving the (N — 1) x (N — 1) system:

DY +PF(Y)=0. (14)

Let E=Y Y. We may write F(Y)—F(Y)=ME where M=diag{U,,...,Uy_,},
(note that U, 20} and then from (13) and (14) we obtain the error equation:

(D+PMYE=T. (15)

For the discussion in the following, we make here some of the common
definitions needed in the following sections. Let Z=(I,...,1)7, and let S
=(S1,-.,Sy_1)T=(D+PM)Z denote the vector of row-sums of D+ PM. Simi-

larly, let S*=(S%,...,8% )" =DZ denote the vector of row-sums of D. Also, let
V=(V,,...,Vy_,)T where V,=exp(2)—exp(x;), and let R=(R,,...,Ry_)T=DV.

3.1 Convergence of the Method M,

For the method M, x,=(kh)*/*~®, therefore, J, =h/{1—0a), k=0(1) N —1, and
it is easy to see that D+PM is 1rredu01ble Now since B, >0 and U, 20,
therefore S,, Sy_; >0 and S, =0, k=2(1)N—2, and D+ PM is also monotone.
Therefore, (D+PM)~! exists and (D+PM)~'=0. Since D is also irreducible
and monotone, and PM 2 O, therefore (D+PM)~*<D~* In order to establish
convergence we next obtain bounds for D~'=(d;;").

Since for M,, S¥=S}_, =(1—a)/h, with the help of D~'S*=Z we obtain

A7 <1St=hf1—«), d7}  S1SE_ =h/(1—-u), i=1()N-1. (16)

Next, to obtain bounds for the rest of d;;' we consider the vector R. It is easy

to see that for M,, R,, Ry_,>0, and for sufficiently small h,

h
Rk>—1ja&x,f“‘1, k=2(1)N~2. (17)

Since D~'R=V and since V;<e?—1, i=0(1) N, with the help of (17) we obtain

Z ditx?l<er—1,  i=1(1)N—1. (18)
I—O(k

We next obtain bounds for the local truncation error t{" for the method
M,. We assume that, for xe(0,1], x*[f'ISN, and x**'|f”|<N, for suitable
constants Ny, N,. Since for sufficiently small h we have
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O(h3 3a—-1 h3
ka 5 B xk s kzl(l)N“l,

B
1.k< 3(1 )

from (7) we obtain for sufficiently small h,

3

6(1-a)®

Now, since (D+PM)~*<D~!, from (15) it follows that |E| <D~ 'T|, and
with the help of (16), (18) and (19) we obtain the following result.

Theorem 1. Assume that f satisfies (A); further, let f"eC{(0,1] xR}, x*f,
x**1f"eC{[0,11xR}. Then, for the method M, based on (6) with x,
=(kh)Y* -9 we have for sufficiently small h, and for all ae(0,1), |E|=0(h?).

0] < x22=1(34N,+N,), k=1(1)N—1. (19)

3.2 Convergence of the Method M ,

For the method M,, xk kh, k=0(1)N. Since for fixed x, and for h—0,
Jo~hx;® and B, ,~ —ah?/(12x,), it is easy to see that for sufficiently small h,
D+PM is irreducible. Again, since for h—0, B, , ~h, we obtain for sufficiently
small h,

S, >1/2J0),  Sy_1>1/Jy 1, S.>By, UJ2, k=2(1)N—2. (20a)

We now assume that df/0y>0. Let U, ,=mindf/0y; then U, >0, and for

sufficiently small h,
S, >4 U,. (20b)

Since (D+PM)~'S=2Z, with the help of (20) it follows that for sufficiently
small h,

I—a

2h
(D+PM)7 SIS, <" (D+PM)7)_ S1/Sy <2k,

(21)

N-2
Z (D+PM); ,}Sl/ min S, <4/(hU,), i=1(1)N—
P 2SkSN-2
To obtain bounds for the truncation error t{® for the method M,, we
assume that |f"|<N,, [f”] [€N,, 0<x<1, for sultable constants N, and N,.
Since for fixed x, and h—0, Bz,k~h /6, it follows that for sufﬁmently small h
B, ,<h*/3. With this result and with |B, ,|<ah?/(6x,), from (9) we obtain for
sufficiently small h,
€2 < (h3/36) (6N, +aN,). (22)

Now, since |E||<|(D+PM)~'T|, with the help of (21) and (22) we obtain the
following result.

Theorem 2. Assume that f satisfies (A); further, let "€ C{[0,1] xR}, and let

0f/0y>0. Then, for the method M, based on (8) with x,=kh we have for
sufficiently small h, and for all ae(0,1), | E||=0(h?).
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3.3 Convergence of the Method M ,

The arguments here are similar to those given for the convergence of the
method M,. For M, x,=kh, k=0(1)N, and since for fixed x, and for h—0,
af ~(*/6)x7% it is easy to see that D+PM is irreducible. Again, since
bo x>0, af,>0, by the row-sum criterion it follows that D+PM is also
monotone. Therefore, (D+PM)~* exists and (D+PM)~*=0. Since D is also
irreducible and monotone and since PM =0, therefore (D+PM)-'<D-! We
next obtain bounds for D1
Since S*=1/J, and S} _,=1/J,_,, with the help of D~'S*=Z we obtain

1/S% =h'=*/(1 ~a),

23
1/S%_ <2hi-*  i=1(1)N-1 23)

dry
d-

=
1
1,N—1§

To obtain bounds for the rest of d;;' we consider the vector R. It is easy to see

that for M5, R, Ry_, >0, and that for sufficiently small A,
R,>(ah/2)x3~1,  k=2(1)N-2. (24)
Since D~ 'R =V, with the help of (24) we obtain for sufficiently small k,
N-2
(@h/2) 3 d;' xim'SVy=e*~1, k=1(1)N-1. (25)
i=2

To obtain bounds for the truncation error t», we assume that
x!=*f"|<N,, 0<x<1, for a suitable constant N, . Since for fixed x, and h—0,
b, .~ —h3/12, we have for sufficiently small h, |b, | <h?/24, and then from (12)
it follows that for sufficiently small A,

I <h*24)x N, k=1()N-1 (26)
Now, since (D+PM)~*<D~!, from (15) we have |E||<|D~'T|, and with the

help of (23), (25) and (26) we obtain the following result.

Theorem 3. Assume that f satisfies (A); further, let f"eC{0,1] xR},
x'=2f"eC{[0,1] xR }. Then, for the method M , based on (11) with x,=kh we
have for sufficiently small h, and for all «€(0,1), |[E|| =0(h?).

4. Numerical [Hustrations

We next illustrate our methods M,, M, and M, and show that each of these
methods is O(h?)-convergent for «€(0,1). For the purpose we consider the
following two singular two-point boundary value problems:

xy) =px+P- e+ -1+ XNy, yO)=1, y()=e, 27
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Table 1. The Boundary Value Problem (27)

N Method M, Method M, Method M,
a=0.50, f=4.0 2=0.50, §=50 2=0.50, f=4.0

16 43(-2) 1.8(=2) 1.2(-2)

32 1.1(—2) 4.7(-3) 3.0(-3)

64 29(=3) 1.2(=3) 7.3(—4)

128 12(—4 3.0(—4) 1.8(—4)
a=0.75, p=3.75 a=0.75, f=4.75 o=0.75, §=3.75

16 14(—1) 1.8(-2) 1.2(-2)

32 4.1(—=2) 4.6(-3) 29(-3)

64 1.1(—2) 12(-3) 7.2(—4)

128 27(—3) 29(—-4) 1.8(—4)

Table 2. The Boundary Value Problem (28)

N Method M, Method M, Method M,
a=0.50, f=5.0 2=050, §=5.0 a=0.50, $=4.0

16 1.5(—3) 15(-4) 39(—4)

32 3.7(—4) 1.9(—4) 9.7(-95)

64 93(—5) 47(=5) 24(-5)

128 23(—95) 1.2(-5) 6.1(—96)
a=0.75, =375 a=0.75, f=4.75 =075, f=3.75

16 73(=3) 1.0(=-3) 6.2(—4)

32 1.8(—=3) 26(—-4) 1.6(—4)

64 45(—4) 6.4(—5) 39(—9)

128 LI(—4) 1.6(—5) 9.7(—6)

with the exact solution y(x)=exp (x*), and

() = =+ 12 (Bt —(o+B— D)4+ x7),
YO=In(1/4,  y(1)=In(/s)

with the exact solution y(x)=1In(1/4 + x*)).

We solved the boundary value problems (27) and (28) for a few selected
values of o and §, and for N =25 k=4(1)7. The error-norms obtained for the
three methods are shown in Tables 1 and 2; the numerical results verify
second-order convergence for all the three methods for the sets of values of «
and § considered. It may also be noted that the method M is far superior, in
accuracy, than the method M.

(28)



350 M.M. Chawla

References

—_

. Ciarlet, P.G., Natterer, F., Varga, R.S.: Numerical methods of high order accuracy for singular
nonlinear boundary value problems. Numer. Math. 15, 87-99 (1970)

2. Gusttafsson, B.: A numerical method for solving singular boundary value problems. Numer.
Math. 21, 328-344 (1973)

3. Jamet, P.: Numerical methods and existence theorems for parabolic differential equations whose
coefficients are singular on the boundary. Math. Comput. 22, 721-743 (1968)

4. Jamet, P.: On the convergence of finite difference approximations to one-dimensional singular
boundary value problems. Numer. Math. 14, 355-378 (1970)

5. Parter, S.V.: Numerical methods for generalized axially symmetric potentials. SIAM Journal,
Series B2, 500-516 (1965)

6. Reddien, G.W.: Projection methods and singular two point boundary value problems. Numer.
Math. 21, 193-205 (1973)

7. Reddien, G.W., Schumaker, L.L.: On a collocation method for singular two point boundary

value problems. Numer, Math. 25, 427-432 (1976)

Received August 2, 1979 /March 3, 1981 /May 26, 1982



