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Summary. We discuss the construction of three-point finite difference ap- 
proximations and their convergence for the class of singular two-point 
boundary value problems: (x~y')'=f(x,y), y(0)=A, y(1)=B, 0<c~<l .  We 
first establish a certain identity, based on general (non-uniform) mesh, from 
which various methods can be derived. To obtain a method having order 
two for all c~e(0,1), we investigate three possibilities. By employing an 
appropriate non-uniform mesh over 1-0, 1], we obtain a method M1 based 
on just one evaluation o f f  For uniform mesh we obtain two methods M 2 
and M 3 each based on three evaluations o f f  For c~=0, M 1 and M 2 both 
reduce to the classical second-order method based on one evaluation of f. 
These three methods are investigated, their O(hZ)-convergence established 
and illustrated by numerical examples. 

Subject Classifications: AMS(MOS):  65L10; CR: 5.17. 

1. Introduction 

We consider the class of singular two-point boundary value problem: 

(x'y')'=f(x,y), 0 < x < l ,  
(1) 

y(0)=A, y(1)=B. 

Here, ~e(0,1) and A,B are finite constants. We assume that, for 
(x, y)~{[0, 1] xlR}:(A)f(x, y) is continuous, ~f/Oy exists and is continuous, and 
of/~y>=O. 

Certain classes of singular boundary value problems have been considered 
by Jamet I-3, 4] and Parter [5], in the linear case only. Jamet studied the 
application of a standard three-point finite difference scheme with a uniform 
mesh of size h and has shown that the error in the maximum-norm is O(h I-~). 
Ciarlet et al. [1] used a suitable Rayleigh-Ritz-Galerkin method and improved 
Jamet 's  result by showing that the error in the uniform norm for their Galer- 
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kin approximation is O(h2-'). Gusttafsson [2] gave a numerical method for 
solving singular boundary value problems by representing the solutions as 
series expansions on a sub-interval near the singularity and by using difference 
method for a regular boundary value problem derived for the remaining 
interval. Reddian [6] and Reddian and Schumaker [7] have studied col- 
location for the solution of singular two-point boundary value problems. Their 
methods concern certain projections onto finite dimensional linear spaces of 
singular non-polynomial splines; these singular splines possess convenient local 
support basis which have a certain advantage in the numerical computations. 

Our object in the present paper is to discuss the construction of three-point 
finite difference approximations and their convergence, under appropriate con- 
ditions, for the class of singular two-point boundary value problems (1), In 
Section 2 we first establish a certain identity based on general (non-uniform) 
mesh over [0, 1], from which various methods can be derived. In order to 
obtain a method having order two for all ee(0,1), there seem to be three 
possibilities. By employing an appropriate non-uniform mesh over [0, 1], we 
obtain our first method MI based on just one evaluation of f Alternatively 
employing uniform mesh, we obtain two methods M 2 and M3, each based on 
three evaluations o f f  The methods M~ and M 2 have the property that, for 
=0,  they reduce to the classical second-order method based on one evaluation 
of f In Section 3 these three methods are investigated in detail and, under 
appropriate conditions, their 0(hZ)-convergence is established. In Section 4 we 
consider numerical examples to illustrate these methods and their second-order 
convergence for various c( e (0, 1). 

2. The Finite Difference Methods 

For a positive integer N > 2, consider a general (non-uniform) mesh over [-0, 1]: 
O=xo<Xl  < . . . < x N = l .  Let yk=y(xO, fk=f(x>yO,  etc. We set z(x)=x~y ' and 
f ( t )=f( t ,y( t ) ) ;  integrating (1) from x k to x, dividing by x ~, and then integrating 
from x k to Xk+ ~ and interchanging the order of integration we obtain 

1 x k +  1 

Yk+~--Yk=JkZk+~__ a 5 (Xlk+~ - t*-=)f( t )dt ,  (2) 
x k  

where we have set 
Jk--(Xl-~-- X~-~)/( �94 --o:). - - ~ ,  k +  1 

In an analogous manner, we obtain 

1 xk 

Yk--Yk-l=Jk-*Zk l--C( ~ (t~-~-x~z~)f(t)dt" (3) 
x k - 1  

Eliminating z k from (2) and (3) we obtain the identity: 

Yk+l--Yk Yk--Yk-1 _I~- I k + - -  k = l ( 1 ) / - - 1 ,  (4) 
Jk Jk-1 Jk Jk - , '  
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where we have set 

1 xk+  i 

I ;  = 1 ---~ _~ (x~+ ~ - t 1 -~)f(t) dt, 

- ~ (t 1 ~-x~-~)f(t)dt.  
I ; -  1-~  . . . .  - 

Identity (4) is our basic result from which methods can be obtained for the 
singular two-point boundary value problem (1). We are interested here in 
deriving methods with order two for all a~(0, 1); in the following we give three 
such methods. By introducing an appropriate non-uniform mesh, in Sect. 2.1 
we derive our first method (M 0 based on one evaluation o f f  Next, employing 
uniform mesh in Sects. 2.2 and 2.3 we derive two methods (M 2 and M3) each 
based on three evaluations o f f  For c~=0, each of the methods M 1 and M 2 
reduce to the classical second-order method based on one evaluation of f The 
convergence of these methods, under appropriate conditions, is discussed in 
Sect. 3. 

2.1 First Method (MI) Based on Non-Uniform Spacing 

By Taylor expansion o f f  we obtain 

I k  + + , i _+ i, + + =As, kL+Af ,  Rf/,+sAz, kf  (~k), 37 e(Xk,Xk• 

and 

1 m+: ( - 1 )  j ( m + l ]  
A~',~-m+~ j~ o m s  ~ j 

. y j  ( y m +  2 - e t - j _ _  y m +  2 - a -  j" I 
~ k  ~ k  +- I ~ k  I~ m=O, 1,2. 

(5) 

With the help of (5), from (4) we obtain 

where 

and 

1 
- - - - Y ~ - t  + + J~-i Yk--~Yk+I 

J k -  1 

+Bo,kfk+t~=O, k = l ( 1 ) N - - 1 ,  

t ( 1 ) _ R  f '  I ,, 

B m k=A+'k-~ A2,,k 
" Jk Jk- l '  m=0, 1,2. 

(6) 

(7) 

Note that A~,k>O, m=0,2 ,  A~(,k>O, Al_k <O, Jg>O and Bm, k>O , m=0,2 .  
Note that each discretization in (6) is based on one evaluation o f f .  In Sect. 

3.1 we shall show that a method based on (6), neglecting t~ 1), is O(hZ)- 
convergent for all c~ e(0, 1) provided we choose the mesh x k =(kh) 1/(1 -~) 
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2.2 Second M e t h o d  (M2) Based  on Uni form Spacing 

Here, and in Section 2.3, we assume that the spacing is uniform: X k + , - - X k = h .  
For uniform spacing the method M,  can be shown to be of order 2-c~. 
However,  in the following we modify (6) so that for uniform spacing the 
resulting method has order  two for all ee (0 ,  1). 

With the help of  
h a 

hfs = (fk +~ -- fk-*)/2 - ~ -  f ' "  (ak) , a k ~ (X k_ ~, X k + ~), 

from (6) and (7) we obtain 

1 (1.,k "k-1  1 ) 1 Y k - 1  + ~ - + 7 - -  Y k - - 7 - Y k + l  + B O , k f k  

- ~ - ~ k  ( 8 )  1 
-}- ~ Bl,k(fk+ 1 --fk_ 1) + t(2) = 0 , k = l ( 1 ) N - 1 ,  

where 
h 2 

B ~ttll \ t (2)_•  r"t~ ~--~- ~,kJ tag). (9) ~k -- 2 ~ 2 , k J  "~k/ 

Note  that the discretization (8) is based on three evaluations o f f .  In Sect. 
3.2 we show that, under suitable conditions, the method M 2 based on (8) is 
O(h2)-convergent for all c~e(0, 1). Since for c(=0, B l , k = 0  and hence (8) reduces 
to the classical second-order method  for y" = f ( x , y )  based on one evaluation of 
f. Consequently we may regard (8) as the "modif ied classical second-order 
me thod ' .  

2.3 Third M e t h o d  (M3) Based  on Uni form Spacing 

Here, in Iff we approximate  f ( t )  by linear interpolat ion at Xk, Xk+_I" 

I[~ + a + + ,, + =ag, kfk + f, kfk+ l + a ~ , k f  (~-) ,  
where 

1(1)  
+ L ~ - j  . , .2 -a- j ]  " aO 'k=- j_  = .  2 - - a - - j  (x2Z1 ~k ]XJk 

1 2 ( - 1 ) '  (2i)t~3_~_j .,.3 o~_j,x j 
+ ~  j__2" o 3-- a - - j  J "~k4-1 ~k ' k' 

+ 1 2 (--1) j ~j][2\X~(X~+__~-J--X~ -~ - i ) '  
ai-,~ = - + ~ o  3 -  c(-j 

and 

+ ( - 1 )  i j .  4 -=- j  ,.4-~-j~ 
aLk=6j~o= 4--c~-- j  XktXk+_ 1 --~k , 

h ~  (--1) j (2) 
j=o 3 - - a - - j  ~k f- 

( l o )  
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Note that ao, k, a~,k>0 and a~,k<0. With the help of (10), from the identity (4) 
we obtain 

- - J k ~  - y k - l  + J ; +  J ~ - i  Y k - - ~ Y k + l - + - b o , k f k  

a + 
1,k a l ,  k [" 

where 
t(3) =b2,kf,,(~k) k 

and 

b - a"+'k + (- -  1)"-a'~'k 

k = l ( 1 ) N - 1  

(11) 

(12) 

m=0,2.  

Note that bo,k>0 and bz,k<O. 
Thus in the case of uniform spacing, a second method of order two, for all 

~e(0, 1). can be based on the discretization (11). The O(h2)-convergence of the 
method M3, under appropriate conditions, is proved in Sect. 3.3. 

3. Convergence of the Methods  Mx, M2, M s 

We next discuss the convergence of the methods M I M 2 and M 3 showing that, 
under suitable conditions, each of these methods is O(h2)-convergent for all 
c~e(0, 1). For the purpose, it is convenient to introduce matrix notation and we 
shall describe all the three methods together. In each case the differential 
equation is discretized at x k for k= I ( 1 ) N - 1  and Yo=A, yN=B. 

Let D=(d~j) denote the tridiagonal matrix with 

1 1 1 1 
-- ' dk'k =Jk -~ Jk 1' dk,k+ i -- dk'k-1 Jk-1 Jk" 

Let P =(p/j) denote the tridiagonal matrix and let Q = (q l, 0 .... , O, qN-1) r, where 
for the method M 1" 

A B 
P k , k = B o , k ,  Pk, k + l = O ;  ql = - ,  qN-1-- ; 

- Jo JN- 1 

for the method M 2" 

1 
Pk, k = B o ,  k, Pk,k+ 1 = - t -~B l , k ;  

A 1 B 1 
q ~ = ~ o + ~ B ~ , l  fo, qN-t--JN_~ 2hB1 ,N- l f u  ; 

for the method M3: 
a + 

1,k __ a~,k . 
Pk,k=bo,k, Pk,k+1= Jk ' Pk, k-1 JR- I '  

ql = ( A-a~ ,  lfo)/Jo, qu- I = ( B - a  + tfN)/Jn_ 1 , N -  1 
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Also, let F(Y)=(fl , . . . , fN_i) r, Y=(yl,.. . ,y:v_l) r and let T=(tl, . . . , tN_l) r, 
where t k - ,~") --~k , m = 1 , 2 , 3  corresponding to the three methods M1, M 2 and M 3. 
Then, each of  the discretizations (6), (8) and (11) can be expressed in the matrix 
form: 

D Y + PF(Y)+ T=Q. (13) 

The method M1, M 2 or  M a now consists of  finding an approximat ion ~" for Y 
by solving the ( N -  1) x ( N  - 1) system: 

D Y +PF(Y)=Q. (14) 

Let E =  Y - Y .  We may write F ( Y ) - F ( Y ) = M E  where M = d i a g { U 1 ,  ..., UN_I} , 
(note that Uk>O ) and then from (13) and (14) we obtain the error equat ion:  

(D +PM) E = T. (15) 

For  the discussion in the following, we make here some of  the c o m m o n  
definitions needed in the following sections. Let Z = ( 1 , . . . , 1 )  r, and let S 
=(S  l .... ,S N_ OT=(D+PM)Z denote the vector of  row-sums of D+PM. Simi- 
larly, let S* =(S*, . . . ,S~_ 0 r = D Z  denote the vector of row-sums of  D. Also, let 
V = ( V  1 .. . .  , IN_ l) r where Vj=exp(2 ) -exp(x j ) ,  and let R = (R  i .... ,Ru_ i)T=DV. 

3.1 Convergence of the Method M 1 

For the method M1, Xk=(kh) 1/~1-~, therefore, Jk=h/(1--~), k = 0 ( 1 ) N - 1 ,  and 
it is easy to see that D + P M  is irreducible. Now, since Bo,k>O and Uk>0, 
therefore $1, S N_ 1 > 0  and Sk>O , k = 2 ( 1 ) N - - 2 ,  and D+PM is also monotone.  
Therefore, (D+PM) -1 exists and (D+PM) -I >=0. Since D is also irreducible 
and monotone ,  and PM>O, therefore (D+PM)-i  <D-1. In order to establish 
convergence we next obtain bounds  for D-l=(d:o 1). 

Since for M1, S* =S~v_ i = ( 1 -  cO~h, with the help of D-~S * =Z we obtain 

d-l<_l/S*=h/(1-cO, d -1 <I/S~ l = h / ( 1 - ~ ) ,  i = I ( 1 ) N - 1 .  (16) 
i , I  - -  i , N - 1  z - 

Next, to obtain bounds  for the rest of  d~ 1 we consider the vector R. It is easy 
to see that for M 1, R 1, R s_ 1 >0,  and for sufficiently small h, 

Rk>lh~ x~ ~-1, k = 2 ( 1 ) g - 2 .  (17) 

Since D - 1 R  = V and since V/__< e 2 -  1, i =  0(1)N, with the help of (17) we obtain 

ha N-2 
~=2dTki'Z~-l<ea--1, i = I ( 1 ) N - - 1 .  (18) ~k 

1 - - ~ k =  

We next obtain bounds for the local t runcat ion error t~ 1) for the method 
M1. We assume that, for x e ( 0 , 1 ] ,  x~If'1<N1 and x~+ltf"l<=N2 for suitable 
constants NI ,  N 2. Since for sufficiently small h we have 
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o~h 3 h 3 
3~-i B2,k __003 X3ct , k =  I ( 1 ) N -  1, Bl'k<2(1--~)3Xk ' <-3(1 

from (7) we obtain for sufficiently small h, 

h 3 
z~- ~(3~N1 +N2), k = l ( 1 ) N - 1 .  (19) It~l)[ < 6(1 -~)3 Xk 

NOW, since (D+PM)-~<=D -~, from (15) it follows that IIEII<I[D-IT[[, and 
with the help of (16), (18) and (19) we obtain the following result. 

Theorem 1. Assume that f satisfies (A); further, let f"eC{(O, 13xlR}, x~f ', 
x~+lf 'eC{[O, 1]xlR}. Then, for the method M 1 based on (6) with x k 
=(kh) 1/(1-~), we have for sufficiently small h, and for all ~e(0, 1), [[EH =O(h2). 

3.2 Convergence of the Method M 2 

For the method M2, Xk=kh, k=0(1)N.  Since for fixed x k and for h ~ 0 ,  
h -~  Jk~ Xk and Bi.k~--c~h3/(12Xk), it is easy to see that for sufficiently small h, 

D + P M  is irreducible. Again, since for h~O, Bo,k~h, we obtain for sufficiently 
small h, 

Si > 1/(2Jo), SN- 1 > 1/JN- i, S k >Bo,  k Uk/2 , k =  2(1) N -  2. (20a) 

We now assume that Of/c?y>O. Let U.=min~?f/~?y; then U . > 0 ,  and for 
sufficiently small h, 

S k > (h/4) g . .  (20b) 

Since ( D + P M ) - * S = Z ,  with the help of (20) it follows that for sufficiently 
small h, 

2h i -~ 
= - - ,  (D+PM)i- ~ I ~ I / S N  l < 2 h  1-~ (D+PM)~i  < 1/Si < 1-c~ " - ' 

N-2 (21) 
(D+PM)iT, kl<--I/ min Sk <=4/(hU,), i = I ( 1 ) N - 1 .  

k=2 2<k<N-2 

To obtain bounds for the truncation e r r o r  t(k 2) for the method M2, we 
assume that [ f " l < N i ,  "' - If I<N2,  0 < x < l ,  for suitable constants bT, and N2- 
Since for fixed x k and h--,O, B2,k~h3/6, it follows that for sufficiently small h, 
B2.k<h3/3. With this result and with [Bl,kl<C~h3/(6Xk), from (9) we obtain for 
sufficiently small h, 

lt~ 2)] < (h3/36)(6)7~ + c~ b72). (22) 

Now, since HEll < I[(D+PM)-*TII, with the help of (21) and (22) we obtain the 
following result. 

Theorem 2. Assume that f satisfies (A); further, let f ' "EC{[0 ,  1] x IR}, and let 
Of/Oy>O. Then, for the method M 2 based on (8) with Xk=kh we have for 
sufficiently small h, and for all c~E(0, 1), I[EII = O ( h 2 )  - 
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3.3 Convergence of the Method M 3 

The arguments  here are similar to those given for the convergence of the 
method M~. For  M3, G = k h ,  k = 0 ( 1 ) N ,  and since for fixed x k and for h-*0,  
a ++- ~(h2/6)x~ ~, it is easy to see that  D + P M  is irreducible. Again, since 1 , k  

b0,k>0,  a~,k>0, by the row-sum criterion it follows that  D + P M  is also 
monotone .  Therefore, (D+PM)  -1 exists and ( D + P M ) - I > O .  Since D is also 
irreducible and mono tone  and since P M  > O, therefore (D +PM)-~  <D-~.  We 
next obtain bounds for D 

Since S' I' = 1/Y o and S~_ ~ = 1/J N_ 1, with the help of  D -  ~ S* = Z  we obtain  

d - 1  < 1/S* =h~-=/(1 -~ ) ,  
i, 1 ~ 

d -~ <1/S* ~<2h ~-~, i = t ( 1 ) N - 1 .  i , N - l ~  

(23) 

To  obtain bounds  for the rest of  dii ~ we consider the vector  R. It is easy to see 
that  for M 3, R~, R N_ 1 >0,  and that for sufficiently small h, 

Rk>(c~h/2)x~ -1, k = 2 ( 1 ) N - 2 .  (24) 

Since D -  ~ R - V, with the help of  (24) we obtain for sufficiently small h, 

N - 2  

(c(h/2) ~ d~ax~ k = l ( 1 ) N - 1 .  (25) 
j = 2  

To obtain  bounds  for the t runcat ion error  t(f ,  we assume that 
x 1-=]f''t <=N~, 0 < x <  1, for a suitable constant  -N1. Since for fixed x k and h ~ 0 ,  
bz,k~ -h3 /12 ,  we have for sufficiently small h, Ib2,kI <h3/24, and then f rom (12) 
it follows that  for sufficiently small h, 

lt(k3)l<=(h3/24)x~-~N1, k = l ( 1 ) N - 1 .  (26) 

Now,  since (D+PM)-I<=D -1, from (15) we have HEll < I ID- tTl l ,  and with the 
help of (23), (25) and (26) we obta in  the following result. 

Theorem 3. Assume that f satisfies (A); further, let f"eC{(O, 1]xIR}, 
x l -=f"eC{[O, 1] xlR}. Then, for the method M 3 based on (11) with xk=kh  we 
have for sufficiently small h, and for all c( e (0, 1), liE 1t = O(h2). 

4. Numerical Illustrations 

We next illustrate our  methods M~, M 2 and M 3 and show that  each of  these 
methods  is 0(h2)-convergent  for ~6(0,1).  For  the purpose we consider the 
following two singular two-point  boundary  value problems:  

(x~y')'=flx~+P-2((c(+fl-l)+flx'~)y, y(O)= 1, y(1) =e ,  (27) 
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N Method M 1 Method M 2 Method M 3 

~=0.50, /~=4.0 :~=0.50,/3=5.0 c~=0.50, /3=4.0 

16 4.3(--2) 1 .8( -2)  1 .2 ( -2 )  
32 1 . 1 ( 2 )  4 .7 ( -3 )  3 . 0 ( - 3 )  
64 2.9 ( -- 3) 1.2 ( - 3) 7.3 ( - 4) 
128 7.2(--4) 3 .0 ( -4)  1 .8 ( -4 )  

~=0.75, /3=3.75 c~=0.75,/3=4.75 ~=0.75, /~=3.75 

16 1.4(--1) 1 .8 ( -2)  1 .2 ( -2 )  
32 4.1 ( - -  2) 4 . 6 ( -  3) 2.9 ( -  3) 
64 1.1 (--2)  1 .2(-3)  7 . 2 ( -4 )  
128 2.7(--3) 2 . 9 ( 4 )  1 .8 ( -4 )  

Table 2. The Boundary Value Problem (28) 

N Method M 1 Method M 2 Method M 3 

~=0.50, /3=5.0 ~ =0.50, / /=5 .0  ~ =0.50, /3=4.0 

16 1.5(--3) 7 .5 ( -4)  3 . 9 ( - 4 )  
32 3.7(--4) 1 .9( -4)  9 . 7 ( - 5 )  
64 9.3(--5) 4 .7 ( -5 )  2 . 4 ( - 5 )  
128 2.3(--5) 1 .2( -5)  6 . 1 ( - 6 )  

c~=0.75,/~=3.75 ~z=0.75,/3=4.75 ~=0.75, /3=3.75 

16 7.3 ( -- 3) 1 .0 ( -  3) 6.2 ( - 4) 
32 1.8 ( -- 3) 2.6 ( - 4) 1.6 ( - 4) 
64 4.5 ( -- 4) 6.4 ( - 5) 3.9 ( - 5) 
128 1.1 ( - -4)  1 .6 ( -  5) 9 . 7 ( - 6 )  

with the exact solution y(x)= exp (x~), and 

(x~y') ' = f i x  ~+~- 2(~x~ eY - (~  +/~ - 1))/(4+ x~), (28) 
y(0)=ln (1/4), y(1)=1n(1/5), 

with the exact solution y(x) ----- In (1/(4 + x~)). 
We solved the boundary value problems (27) and (28) for a few selected 

values of  c~ and /~, and for N = 2  ~, k=4(1)7 .  The error-norms obtained for the 
three methods are shown in Tables 1 and 2; the numerical results verify 
second-order convergence for all the three methods for the sets o f  values of  c~ 
and fl considered. It may a l so  be noted that the method M3 is far superior, in 
accuracy, than the method M a. 
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