

Finite Difference Methods and Their Convergence for a Class of Singular Two Point Boundary Value Problems

M. M. Chawla¹ and C. P. Katti

¹ Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA, and

² Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India

Summary. We discuss the construction of three-point finite difference approximations and their convergence for the class of singular two-point boundary value problems: $(x^{\alpha}y')' = f(x, y)$, $y(0) = A$, $y(1) = B$, $0 < \alpha < 1$. We first establish a certain identity, based on general (non-uniform) mesh, from which various methods can be derived. To obtain a method having order two for all $\alpha \in (0,1)$, we investigate three possibilities. By employing an appropriate non-uniform mesh over $[0, 1]$, we obtain a method M_1 , based on just one evaluation of f. For uniform mesh we obtain two methods M_2 . and M_3 each based on three evaluations of f. For $\alpha=0$, M_1 and M_2 both reduce to the classical second-order method based on one evaluation of f. These three methods are investigated, their $O(h^2)$ -convergence established and illustrated by numerical examples.

Subject Classifications: AMS(MOS): 65L10; CR: 5.17.

1. Introduction

We consider the class of singular two-point boundary value problem:

$$
(x^{\alpha} y')' = f(x, y), \quad 0 < x \le 1,y(0) = A, \quad y(1) = B.
$$
 (1)

Here, $\alpha \in (0,1)$ and A,B are finite constants. We assume that, for $(x, y) \in \{[0, 1] \times \mathbb{R}\}$: $(A) f(x, y)$ is continuous, $\partial f / \partial y$ exists and is continuous, and $\partial f / \partial y \ge 0$.

Certain classes of singular boundary value problems have been considered by Jamet $[3, 4]$ and Parter $[5]$, in the linear case only. Jamet studied the application of a standard three-point finite difference scheme with a uniform mesh of size h and has shown that the error in the maximum-norm is $O(h^{1-\alpha})$. Ciarlet et al. [1] used a suitable Rayleigh-Ritz-Galerkin method and improved Jamet's result by showing that the error in the uniform norm for their Galerkin approximation is $O(h^{2-\alpha})$. Gusttafsson [2] gave a numerical method for solving singular boundary value problems by representing the solutions as series expansions on a sub-interval near the singularity and by using difference method for a regular boundary value problem derived for the remaining interval. Reddian [6] and Reddian and Schumaker [7] have studied collocation for the solution of singular two-point boundary value problems. Their methods concern certain projections onto finite dimensional linear spaces of singular non-polynomial splines; these singular splines possess convenient local support basis which have a certain advantage in the numerical computations.

Our object in the present paper is to discuss the construction of three-point finite difference approximations and their convergence, under appropriate conditions, for the class of singular two-point boundary value problems (1), In Section 2 we first establish a certain identity based on general (non-uniform) mesh over [0, 1], from which various methods can be derived. In order to obtain a method having order two for all $\alpha \in (0,1)$, there seem to be three possibilities. By employing an appropriate non-uniform mesh over $[0, 1]$, we obtain our first method M_1 , based on just *one* evaluation of f. Alternatively employing uniform mesh, we obtain two methods M_2 and M_3 , each based on three evaluations of f. The methods M_1 and M_2 have the property that, for α $=0$, they reduce to the classical second-order method based on one evaluation of f. In Section 3 these three methods are investigated in detail and, under appropriate conditions, their $O(h^2)$ -convergence is established. In Section 4 we consider numerical examples to illustrate these methods and their second-order convergence for various $\alpha \in (0, 1)$.

2. The Finite Difference Methods

For a positive integer $N \ge 2$, consider a general (non-uniform) mesh over [0, 1]: $0 = x_0 < x_1 < ... < x_N = 1$. Let $y_k = y(x_k)$, $f_k = f(x_k, y_k)$, etc. We set $z(x) = x^2y'$ and $f(t)=f(t,y(t))$; integrating (1) from x_k to x, dividing by x^2 , and then integrating from x_k to x_{k+1} and interchanging the order of integration we obtain

$$
y_{k+1} - y_k = J_k z_k + \frac{1}{1 - \alpha} \int_{x_k}^{x_{k+1}} (x_{k+1}^{1 - \alpha} - t^{1 - \alpha}) f(t) dt,
$$
 (2)

where we have set

$$
J_k\!=\!(x_{k+1}^{1-\alpha}\!-\!x_k^{1-\alpha})/(1-\alpha).
$$

In an analogous manner, we obtain

$$
y_k - y_{k-1} = J_{k-1} z_k - \frac{1}{1 - \alpha} \int_{x_{k-1}}^{x_k} (t^{1 - \alpha} - x_{k-1}^{1 - \alpha}) f(t) dt.
$$
 (3)

Eliminating z_k from (2) and (3) we obtain the identity:

$$
\frac{y_{k+1} - y_k}{J_k} - \frac{y_k - y_{k-1}}{J_{k-1}} = \frac{I_k^+}{J_k} + \frac{I_k^-}{J_{k-1}}, \qquad k = 1(1)N - 1,\tag{4}
$$

where we have set

$$
I_{k}^{+} = \frac{1}{1 - \alpha} \int_{x_{k}}^{x_{k+1}} (x_{k+1}^{1 - \alpha} - t^{1 - \alpha}) f(t) dt,
$$

$$
I_{k}^{-} = \frac{1}{1 - \alpha} \int_{x_{k-1}}^{x_{k}} (t^{1 - \alpha} - x_{k-1}^{1 - \alpha}) f(t) dt.
$$

Identity (4) is our basic result from which methods can be obtained for the singular two-point boundary value problem (1). We are interested here in deriving methods with order two for all $\alpha \in (0, 1)$; in the following we give three such methods. By introducing an appropriate non-uniform mesh, in Sect. 2.1 we derive our first method (M_1) based on *one* evaluation of f. Next, employing uniform mesh in Sects. 2.2 and 2.3 we derive two methods $(M_2 \text{ and } M_3)$ each based on three evaluations of f. For $\alpha=0$, each of the methods M_1 and M_2 reduce to the classical second-order method based on one evaluation of f . The convergence of these methods, under appropriate conditions, is discussed in Sect. 3.

2.1 First Method (M₁) Based on Non-Uniform Spacing

By Taylor expansion of f we obtain

$$
I_{k}^{\pm} = A_{0,k}^{\pm} f_{k} + A_{1,k}^{\pm} f_{k}' + \frac{1}{2} A_{2,k}^{\pm} f''(\xi_{k}^{\pm}), \quad \xi_{k}^{\pm} \in (x_{k}, x_{k \pm 1}), \tag{5}
$$

and

$$
A_{m,k}^{\pm} = \frac{1}{m+1} \sum_{j=0}^{m+1} \frac{(-1)^j}{m+2-\alpha-j} {m+1 \choose j} \\ \cdot x_k^j (x_{k+1}^{m+2-\alpha-j} - x_k^{m+2-\alpha-j}), \qquad m = 0, 1, 2.
$$

With the help of (5), from (4) we obtain

$$
-\frac{1}{J_{k-1}}y_{k-1} + \left(\frac{1}{J_k} + \frac{1}{J_{k-1}}\right)y_k - \frac{1}{J_k}y_{k+1} + B_{0,k}f_k + t_k^{(1)} = 0, \quad k = 1(1)N - 1,
$$
\n(6)

where

$$
t_k^{(1)} = B_{1,k} f_k' + \frac{1}{2} B_{2,k} f''(\xi_k), \qquad \xi_k \in (x_{k-1}, x_{k+1}), \tag{7}
$$

and

$$
B_{m,k} = \frac{A_{m,k}^+}{J_k} + \frac{A_{m,k}^-}{J_{k-1}}, \qquad m = 0, 1, 2.
$$

Note that $A_{m,k}^{\pm} > 0$, $m = 0, 2, A_{1,k}^+ > 0, A_{1,k}^- < 0, J_k > 0$ and $B_{m,k} > 0, m = 0, 2$.

Note that each discretization in (6) is based on *one* evaluation of f. In Sect. 3.1 we shall show that a method based on (6), neglecting $t_k^{(1)}$, is $O(h^2)$ convergent for all $\alpha \in (0, 1)$ provided we choose the mesh $x_k = (kh)^{1/(1-\alpha)}$.

2.2 Second Method (M₂) Based on Uniform Spacing

Here, and in Section 2.3, we assume that the spacing is uniform: $x_{k+1} - x_k = h$. For uniform spacing the method M_1 can be shown to be of order $2-\alpha$. However, in the following we modify (6) so that for uniform spacing the resulting method has order two for all $\alpha \in (0, 1)$.

With the help of

$$
hf'_{k} = (f_{k+1} - f_{k-1})/2 - \frac{h^3}{6}f'''(\sigma_k), \quad \sigma_k \in (x_{k-1}, x_{k+1}),
$$

from (6) and (7) we obtain

$$
-\frac{1}{J_{k-1}}y_{k-1} + \left(\frac{1}{J_k} + \frac{1}{J_{k-1}}\right)y_k - \frac{1}{J_k}y_{k+1} + B_{0,k}f_k
$$

$$
+\frac{1}{2h}B_{1,k}(f_{k+1} - f_{k-1}) + t_k^{(2)} = 0, \quad k = 1(1)N - 1,
$$
 (8)

where

$$
t_k^{(2)} = \frac{1}{2} B_{2,k} f''(\xi_k) - \frac{h^2}{6} B_{1,k} f'''(\sigma_k).
$$
 (9)

Note that the discretization (8) is based on three evaluations of f. In Sect. 3.2 we show that, under suitable conditions, the method M_2 based on (8) is $O(h^2)$ -convergent for all $\alpha \in (0, 1)$. Since for $\alpha = 0$, $B_{1,k} = 0$ and hence (8) reduces to the classical second-order method for $y'' = f(x, y)$ based on one evaluation of f. Consequently we may regard (8) as the "modified classical second-order method'.

2.3 Third Method (M3) *Based on Uniform Spacing*

Here, in I_k^{\pm} we approximate $f(t)$ by linear interpolation at $x_k, x_{k\pm 1}$.

$$
I_k^{\pm} = a_{0,k}^{\pm} f_k + a_{1,k}^{\pm} f_{k \pm 1} + a_{2,k}^{\pm} f''(\xi_k^{\pm}),
$$
\n(10)

where

$$
a_{0,k}^{\pm} = \sum_{j=0}^{1} \frac{(-1)^j}{2 - \alpha - j} {1 \choose j} (x_{k\pm 1}^{2 - \alpha - j} - x_k^{2 - \alpha - j}) x_k^j
$$

$$
\mp \frac{1}{2h} \sum_{j=0}^{2} \frac{(-1)^j}{3 - \alpha - j} {2 \choose j} (x_{k\pm 1}^{3 - \alpha - j} - x_k^{3 - \alpha - j}) x_k^j,
$$

$$
a_{1,k}^{\pm} = \pm \frac{1}{2h} \sum_{j=0}^{2} \frac{(-1)^j}{3 - \alpha - j} {2 \choose j} x_k^j (x_{k\pm 1}^{3 - \alpha - j} - x_k^{3 - \alpha - j}),
$$

and

$$
a_{2,k}^{\pm} = \frac{1}{6} \sum_{j=0}^{3} \frac{(-1)^j}{4 - \alpha - j} {j \choose j} x_k^j (x_{k \pm 1}^{4 - \alpha - j} - x_k^{4 - \alpha - j})
$$

$$
+ \frac{h}{4} \sum_{j=0}^{2} \frac{(-1)^j}{3 - \alpha - j} {j \choose j} x_k^j (x_{k \pm 1}^{3 - \alpha - j} - x_k^{3 - \alpha - j}).
$$

Note that $a_{0,k}^{\pm}$, $a_{1,k}^{\pm}$ > 0 and $a_{2,k}^{\pm}$ < 0. With the help of (10), from the identity (4) we obtain

$$
-\frac{1}{J_{k-1}}y_{k-1} + \left(\frac{1}{J_k} + \frac{1}{J_{k-1}}\right)y_k - \frac{1}{J_k}y_{k+1} + b_{0,k}f_k
$$

+
$$
\frac{a_{1,k}^+}{J_k}f_{k+1} + \frac{a_{1,k}^-}{J_{k-1}}f_{k-1} + t_k^{(3)} = 0, \quad k = 1(1)N - 1
$$
\n(11)

where

 $t_{k}^{(3)}=b_{2,k}f''(\xi_{k})$ (12)

and

$$
b_{m,k} = \frac{a_{m,k}^+}{J_k} + (-1)^m \frac{a_{m,k}^-}{J_{k-1}}, \qquad m = 0, 2.
$$

Note that $b_{0,k} > 0$ and $b_{2,k} < 0$.

Thus in the case of uniform spacing, a second method of order two, for all $\alpha \in (0, 1)$. can be based on the discretization (11). The $O(h^2)$ -convergence of the method $M₃$, under appropriate conditions, is proved in Sect. 3.3.

3. Convergence of the Methods M_1, M_2, M_3

We next discuss the convergence of the methods M_1 , M_2 and M_3 showing that, under suitable conditions, each of these methods is $O(h^2)$ -convergent for all $\alpha \in (0, 1)$. For the purpose, it is convenient to introduce matrix notation and we shall describe all the three methods together. In each case the differential equation is discretized at x_k for $k = 1(1)N-1$ and $y_0 = A$, $y_N = B$.

Let $D=(d_{ij})$ denote the tridiagonal matrix with

$$
d_{k,k-1} = -\frac{1}{J_{k-1}}, \quad d_{k,k} = \frac{1}{J_k} + \frac{1}{J_{k-1}}, \quad d_{k,k+1} = -\frac{1}{J_k}.
$$

Let $P = (p_{ij})$ denote the tridiagonal matrix and let $Q = (q_1, 0, \ldots, 0, q_{N-1})^T$, where for the method M_1 :

$$
p_{k,k} = B_{0,k}, p_{k,k \pm 1} = 0;
$$
 $q_1 = \frac{A}{J_0}, q_{N-1} = \frac{B}{J_{N-1}};$

for the method M_2 :

$$
p_{k,k} = B_{0,k}, \quad p_{k,k+1} = \pm \frac{1}{2h} B_{1,k};
$$

$$
q_1 = \frac{A}{J_0} + \frac{1}{2h} B_{1,1} f_0, \quad q_{N-1} = \frac{B}{J_{N-1}} - \frac{1}{2h} B_{1,N-1} f_N;
$$

for the method M_3 :

$$
p_{k,k} = b_{0,k}, \quad p_{k,k+1} = \frac{a_{1,k}^+}{J_k}, \quad p_{k,k-1} = \frac{a_{1,k}^-}{J_{k-1}};
$$

$$
q_1 = (A - a_{1,1}^- f_0)/J_0, \quad q_{N-1} = (B - a_{1,N-1}^+ f_N)/J_{N-1}
$$

Also, let $F(Y)=(f_1,...,f_{N-1})^T$, $Y=(y_1,...,y_{N-1})^T$ and let $T=(t_1,...,t_{N-1})^T$, where $t_k = t_k^{(m)}$, $m=1,2,3$ corresponding to the three methods M_1 , M_2 and M_3 . Then, each of the discretizations (6), (8) and (11) can be expressed in the matrix form:

$$
DY + PF(Y) + T = Q.
$$
\n(13)

The method M_1 , M_2 or M_3 now consists of finding an approximation \tilde{Y} for Y by solving the $(N - 1) \times (N - 1)$ system:

$$
D\tilde{Y} + PF(\tilde{Y}) = Q. \tag{14}
$$

Let $E = \tilde{Y} - Y$. We may write $F(\tilde{Y}) - F(Y) = ME$ where $M = \text{diag}\{U_1, ..., U_{N-1}\},$ (note that $U_k \ge 0$) and then from (13) and (14) we obtain the error equation:

$$
(D+PM) E = T.
$$
\n⁽¹⁵⁾

For the discussion in the following, we make here some of the common definitions needed in the following sections. Let $Z = (1, ..., 1)^T$, and let S $=(S_1, \ldots, S_{N-1})^T$ = (D+PM)Z denote the vector of row-sums of D+PM. Similarly, let $S^* = (S^*_1, \ldots, S^*_{N-1})^T = DZ$ denote the vector of row-sums of D. Also, let $V=(V_1, ..., V_{N-1})^T$ where $V_i = \exp(2) - \exp(x_i)$, and let $R = (R_1, ..., R_{N-1})^T = DV$.

3.1 Convergence of the Method M 1

For the method M_1 , $x_k = (kh)^{1/(1-\alpha)}$, therefore, $J_k = h/(1-\alpha)$, $k = 0(1)N-1$, and it is easy to see that $D+PM$ is irreducible. Now, since $B_{0,k}>0$ and $U_k\geq 0$, therefore S_1 , $S_{N-1} > 0$ and $S_k \ge 0$, $k=2(1)N-2$, and $D+PM$ is also monotone. Therefore, $(D+PM)^{-1}$ exists and $(D+PM)^{-1} \ge 0$. Since D is also irreducible and monotone, and $PM \ge 0$, therefore $(D+PM)^{-1} \le D^{-1}$. In order to establish convergence we next obtain bounds for $D^{-1} = (d_{ij}^{-1})$.

Since for M_1 , $S_1^* = S_{N-1}^* = (1 - \alpha)/h$, with the help of $D^{-1}S^* = Z$ we obtain

$$
d_{i, 1}^{-1} \le 1/S_1^* = h/(1 - \alpha), \qquad d_{i, N-1}^{-1} \le 1/S_{N-1}^* = h/(1 - \alpha), \qquad i = 1(1) N - 1. \tag{16}
$$

Next, to obtain bounds for the rest of d_{ij}^{-1} we consider the vector R. It is easy to see that for M_1 , R_1 , R_{N-1} > 0, and for sufficiently small h,

$$
R_k > \frac{h\alpha}{1-\alpha} x_k^{2\alpha - 1}, \qquad k = 2(1)N - 2. \tag{17}
$$

Since $D^{-1}R = V$ and since $V_i \le e^2 - 1$, $i = 0(1)N$, with the help of (17) we obtain

$$
\frac{h\alpha}{1-\alpha}\sum_{k=2}^{N-2}d_{ik}^{-1}x_k^{2\alpha-1} < e^2 - 1, \qquad i = 1(1)N - 1.
$$
 (18)

We next obtain bounds for the local truncation error $t_k^{(1)}$ for the method M_1 . We assume that, for $x \in (0,1]$, $x^{\alpha} |f'| \leq N_1$ and $x^{\alpha+1} |f''| \leq N_2$ for suitable constants N_1 , N_2 . Since for sufficiently small h we have

Singular Two Point Boundary Value Problems 347

$$
B_{1,k} < \frac{\alpha h^3}{2(1-\alpha)^3} x_k^{3\alpha-1}, \qquad B_{2,k} < \frac{h^3}{3(1-\alpha)^3} x_k^{3\alpha}, \qquad k = 1(1)N - 1,
$$

from (7) we obtain for sufficiently small h,

$$
|t_k^{(1)}| \leq \frac{h^3}{6(1-\alpha)^3} x_k^{2\alpha-1} (3\alpha N_1 + N_2), \qquad k = 1(1)N - 1. \tag{19}
$$

Now, since $(D+PM)^{-1} \leq D^{-1}$, from (15) it follows that $||E|| \leq ||D^{-1}T||$, and with the help of (16), (18) and (19) we obtain the following result.

Theorem 1. Assume that f satisfies (A); further, let $f'' \in C$ { $(0,1] \times \mathbb{R}$ }, $x^{\alpha} f'$, $x^{a+1}f'' \in C$ {[0, 1] $\times \mathbb{R}$ }. Then, for the method M_1 based on (6) with x_k $=(kh)^{1/(1-\alpha)}$, we have for sufficiently small h, and for all $\alpha \in (0, 1)$, $||E|| = O(h^2)$.

3.2 Convergence of the Method M 2

For the method M_2 , $x_k = kh$, $k=0(1)N$. Since for fixed x_k and for $h \rightarrow 0$, $J_k \sim h x_k^{-\alpha}$ and $B_{1,k} \sim -\alpha h^3/(12x_k)$, it is easy to see that for sufficiently small h, $D+PM$ is irreducible. Again, since for $h\rightarrow 0$, $B_{0,k}\sim h$, we obtain for sufficiently small h,

$$
S_1 > 1/(2J_0)
$$
, $S_{N-1} > 1/J_{N-1}$, $S_k > B_{0,k} U_k/2$, $k = 2(1)N - 2$. (20a)

We now assume that $\partial f/\partial y > 0$. Let $U_* = \min \partial f/\partial y$; then $U_* > 0$, and for sufficiently small h,

$$
S_k > (h/4) U_* \tag{20b}
$$

Since $(D+PM)^{-1}S = Z$, with the help of (20) it follows that for sufficiently small h,

$$
(D+PM)_{i1}^{-1} \le 1/S_1 < \frac{2h^{1-\alpha}}{1-\alpha}, \qquad (D+PM)_{i,N-1}^{-1} \le 1/S_{N-1} < 2h^{1-\alpha},
$$

$$
\sum_{k=2}^{N-2} (D+PM)_{i,k}^{-1} \le 1/\min_{2 \le k \le N-2} S_k \le 4/(hU_*), \qquad i=1(1)N-1.
$$
 (21)

To obtain bounds for the truncation error $t_k^{(2)}$ for the method M_2 , we assume that $|f''| \leq \bar{N}_1$, $|f'''| \leq \bar{N}_2$, $0 < x \leq 1$, for suitable constants \bar{N}_1 and \bar{N}_2 . Since for fixed x_k and $h\rightarrow 0$, $B_{2,k}\sim h^3/6$, it follows that for sufficiently small h, $B_{2,k}$ < $h^3/3$. With this result and with $|B_{1,k}| < \alpha h^3/(6x_k)$, from (9) we obtain for sufficiently small *h,*

$$
|t_k^{(2)}| \leq (h^3/36)(6N_1 + \alpha N_2). \tag{22}
$$

Now, since $||E|| \leq ||(D+PM)^{-1}T||$, with the help of (21) and (22) we obtain the following result.

Theorem 2. Assume that f satisfies (A); further, let $f''' \in C$ { $[0, 1] \times \mathbb{R}$ }, and let $\partial f/\partial y$ > 0. Then, for the method M_2 based on (8) with $x_k = kh$ we have for *sufficiently small h, and for all* $\alpha \in (0, 1)$, $||E|| = O(h^2)$.

3.3 Convergence of the Method M 3

The arguments here are similar to those given for the convergence of the method M_1 . For M_3 , $x_k = kh$, $k=0(1)N$, and since for fixed x_k and for $h \rightarrow 0$, $a_{1,k}^{\pm} \sim (h^2/6)x_k^{-\alpha}$, it is easy to see that $D+PM$ is irreducible. Again, since $b_{0,k}^{1,k} > 0$, $a_{1,k}^{\pm} > 0$, by the row-sum criterion it follows that $D+PM$ is also monotone. Therefore, $(D+PM)^{-1}$ exists and $(D+PM)^{-1} \geq O$. Since D is also irreducible and monotone and since $PM \ge 0$, therefore $(D+PM)^{-1} \le D^{-1}$. We next obtain bounds for D^{-1} .

Since $S_1^* = 1/J_0$ and $S_{N-1}^* = 1/J_{N-1}$, with the help of $D^{-1}S^* = Z$ we obtain

$$
d_{i, 1}^{-1} \le 1/S_1^* = h^{1-\alpha}/(1-\alpha),
$$

\n
$$
d_{i, N-1}^{-1} \le 1/S_{N-1}^* < 2h^{1-\alpha}, \quad i = 1(1)N - 1.
$$
\n(23)

To obtain bounds for the rest of d_{ii}^{-1} we consider the vector R. It is easy to see that for M_3 , R_1 , $R_{N-1} > 0$, and that for sufficiently small h,

$$
R_k > (\alpha h/2) x_k^{\alpha - 1}, \qquad k = 2(1) N - 2. \tag{24}
$$

Since $D^{-1}R = V$, with the help of (24) we obtain for sufficiently small h,

$$
(\alpha h/2) \sum_{j=2}^{N-2} d_{kj}^{-1} x_k^{\alpha-1} \le V_0 = e^2 - 1, \qquad k = 1(1)N - 1.
$$
 (25)

To obtain bounds for the truncation error $t_k^{(3)}$, we assume that $x^{1-\alpha}|f''| \leq \overline{N}_1$, $0 < x \leq 1$, for a suitable constant \overline{N}_1 . Since for fixed x_k and $h \to 0$, $b_{2,k} \sim -h^3/12$, we have for sufficiently small h, $|b_{2,k}| < h^3/24$, and then from (12) it follows that for sufficiently small h,

$$
|t_k^{(3)}| \leq (h^3/24) x_k^{\alpha - 1} \bar{N}_1, \quad k = 1(1)N - 1.
$$
 (26)

Now, since $(D+PM)^{-1} \leq D^{-1}$, from (15) we have $||E|| \leq ||D^{-1}T||$, and with the help of (23), (25) and (26) we obtain the following result.

Theorem 3. *Assume that f satisfies (A); further, let* $f'' \in C$ *{*(0, 1] $\times \mathbb{R}$ }, $x^{1-\alpha}$ f" $\in C$ {[0,1] $\times \mathbb{R}$ }. *Then, for the method* M_3 based on (11) with $x_k = kh$ we *have for sufficiently small h, and for all* $\alpha \in (0, 1)$, $||E|| = O(h^2)$.

4. Numerical Illustrations

We next illustrate our methods M_1 , M_2 and M_3 and show that each of these methods is $O(h^2)$ -convergent for $\alpha \in (0,1)$. For the purpose we consider the following two singular two-point boundary value problems:

$$
(x^{\alpha} y')' = \beta x^{\alpha + \beta - 2} ((\alpha + \beta - 1) + \beta x^{\beta}) y, \qquad y(0) = 1, \ y(1) = e,\tag{27}
$$

Ν	Method $M1$	Method $M2$	Method $M3$
	$\alpha = 0.50, \beta = 4.0$	$\alpha = 0.50, \beta = 5.0$	$\alpha = 0.50, \beta = 4.0$
16	$4.3(-2)$	$1.8(-2)$	$1.2(-2)$
32	$1.1(-2)$	$4.7(-3)$	$3.0(-3)$
64	$2.9(-3)$	$1.2(-3)$	$7.3(-4)$
128	$7.2(-4)$	$3.0(-4)$	$1.8(-4)$
	$\alpha = 0.75, \beta = 3.75$	$\alpha = 0.75, \beta = 4.75$	$\alpha = 0.75, \beta = 3.75$
16	$1.4(-1)$	$1.8(-2)$	$1.2(-2)$
32	$4.1(-2)$	$4.6(-3)$	$2.9(-3)$
64	$1.1(-2)$	$1.2(-3)$	$7.2(-4)$
128	$2.7(-3)$	$2.9(-4)$	$1.8(-4)$

Table 1. The Boundary Value Problem (27)

Table 2. The Boundary Value Problem (28)

Ν	Method $M1$	Method $M2$	Method $M3$
	$\alpha = 0.50, \beta = 5.0$	$\alpha = 0.50, \beta = 5.0$	$\alpha = 0.50, \beta = 4.0$
16	$1.5(-3)$	$7.5(-4)$	$3.9(-4)$
32	$3.7(-4)$	$1.9(-4)$	$9.7(-5)$
64	$9.3(-5)$	$4.7(-5)$	$2.4(-5)$
128	$2.3(-5)$	$1.2(-5)$	$6.1(-6)$
	$\alpha = 0.75, \beta = 3.75$	$\alpha = 0.75, \beta = 4.75$	$\alpha = 0.75, \beta = 3.75$
16	$7.3(-3)$	$1.0(-3)$	$6.2(-4)$
32	$1.8(-3)$	$2.6(-4)$	$1.6(-4)$
64	$4.5(-4)$	$6.4(-5)$	$3.9(-5)$
128	$1.1(-4)$	$1.6(-5)$	$9.7(-6)$

with the exact solution $y(x) = \exp(x^{\beta})$, and

$$
(x^{\alpha} y')' = \beta x^{\alpha + \beta - 2} (\beta x^{\beta} e^y - (\alpha + \beta - 1))/(4 + x^{\beta}),
$$

y(0) = ln (1/4), y(1) = ln (1/5), (28)

with the exact solution $y(x) = \ln(1/(4 + x^{\beta}))$.

We solved the boundary value problems (27) and (28) for a few selected values of α and β , and for $N=2^k$, $k=4(1)7$. The error-norms obtained for the **three methods are shown in Tables 1 and 2; the numerical results verify** second-order convergence for all the three methods for the sets of values of α and β considered. It may also be noted that the method M_3 is far superior, in accuracy, than the method M_1 .

References

- 1. Ciarlet, P.G., Natterer, F., Varga, R.S.: Numerical methods of high order accuracy for singular nonlinear boundary value problems. Numer. Math. 15, 87-99 (1970)
- 2. Gusttafsson, B.: A numerical method for solving singular boundary value problems. Numer. Math. 21,328-344 (1973)
- 3. Jamet, P.: Numerical methods and existence theorems for parabolic differential equations whose coefficients are singular on the boundary. Math. Comput. 22, 721-743 (1968)
- 4. Jamet, P.: On the convergence of finite difference approximations to one-dimensional singular boundary value problems. Numer. Math. 14, 355-378 (1970)
- 5. Parter, S.V.: Numerical methods for generalized axially symmetric potentials. SIAM Journal, Series B2, 500-516 (1965)
- 6. Reddien, G.W.: Projection methods and singular two point boundary value problems. Numer. Math. 21, 193-205 (1973)
- 7. Reddien, G.W., Schumaker, L.L.: On a collocation method for singular two point boundary value problems. Numer. Math. 25, 427-432 (1976)

Received August 2, 1979/March 3, 1981/May 26, 1982