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A Modified Newton Method for the Solution
of llI-Conditioned Systems of Nonlinear Equations
with Application to Multiple Shooting

P. Deuflhard

Abstract. In this paper the well-known modified (underrelaxed, damped) Newton
method is extended in such a way as to apply to the solution of ill-conditioned systems
of nonlinear equations, i.e. systems having a ‘‘nearly singular’” Jacobian at some
iterate. A special technique also derived herein may be useful, if only bad initial guesses
of the solution point are available. Difficulties that arose previously in the numerical
solution of nonlinear two-point boundary value problems by multiple shooting
techniques can be removed by means of the results presented below.

1. Introduction

In recent years considerable progress has been made in the numerical solution
of system of nonlinear equations. The techniques that are in common use may, in
principle, be derived from the steepest descent method (Cauchy [9], Rosenbloom
[30]) and the Newton method (Kantorovi¢ [18]). Among the most popular
techniques are the Levenberg-Marquardt method (Levenberg {21}, Marquardt
[22], Bard [1]), Powell’s new hybrid method (Powell [28], Broyden [5]}, and
the modified (underrelaxed, damped) Newton method (Goldstein [14], Stoer [31]).
In [32] the latter method was selected to solve boundary value problems by
multiple shooting techniques. (For reference see Keller [19], Osborne [25],
Bulirsch [6], and Stoer/Bulirsch [32]. The notations used in this paper are close
to [6] and [32].)

It may be recalled that in the multiple shooting method the two-point boundary
value problem

y =f(x,y) =x€[a,bl, v:[a,b]=R"
r(y(a), y(b))=0

is replaced by (# — 1) initial value problems

(1.4)

(12) y,=f(x: y) xe[xi» xi+1]} .

7=1,...,m—1
Y53 %5, 8) =S,
with a suitably chosen subdivision ¢ = x, < --- <%, =b.

The 7 (m —1)-vector sT =(s7, ..., sT_,) has to be selected so that the following
conditions hold:

a) continuity conditions (for m >2)

(1.3) Fi(sj,8j31) =5 (Xj415 %, 8;) — S5 =0, J=1,...,m—=2,

2t Numer. Math., Bd. 22



290 P. Deuflhard

b) boundary conditions

En—l (Slr Sm——l) =r (sl’ y (xm; xmv—l’ Sm—l)) =0.

Let 4s"® denote the correction given by the ordinary Newton method at the
iteration point s*. Then by the modified Newton method

(1.4) s —s® 1 2, 4s® o<, <1,

The scalar sequence {4,} is usually chosen in such a way as to ensure that
(1.5) T (s*H) < T (s®)

where

m— m—1

1
T(s):= Z ()P = ZF/F;.
1= 7=

(I || Euclidean vector or spectral matrix norm, respectively, throughout the
paper.) As the iterates approach the solution point, the 4, should approach 1, in
order to take account of the quadratic convergence of the ordinary Newton method.

In some real life applications, however, the iteration terminates without
convergence, if the Jacobian is singular at some iteration point. Even if the
Jacobian is nonsingular in the strict mathematical sense, rounding and discretiza-
tion errors can heavily disturb the actual computation: extremely small values of
Ar (say A,as 1/1000) are required (sometimes even negative). As a consequence,
computing time may increase beyond a tolerable measure, or the algorithm may
fail to converge. The purpose of this paper is to present a modification of Newton's
method designed to overcome the difficulties mentioned.

For the case of singular Jacobian, some authors recommend the alternative
use of steepest descent corrections as they do not involve the Jacobian inverse.
That is why in § 2 Newton’s method is compared with a class of steepest descent
methods. This leads, at first, to a replacement of the usual monotonicity test (1.5)
and, secondly, to a modified Newton method, which is in some respect similar to
the least-squares method suggested by Ben-Israel {3] and extended by Fletcher
{13]. In § 3, the method as proposed herein is backed by a constructive proof of
global convergence which implies convergence results for the modified Newton
method as known so far. Details of the numerical realization are worked out in
§ 4. The vesults of § 2—4 apply to general systems of nonlinear equations. In § 5 the
method is specified taking account of the sparse structure of the Jacobian arising
in multiple shooting. Numerical examples are presented in § 6.

2. A Steepest Descent Modification of Newton’s Method
In this paragraph a modification of Newton’s method for both nonsingular
and singular Jacobian is derived from a comparison with a class of steepest
descent methods.
Let
hé .- &)
Fx):=]: , Fa¥) =
fulbe-oos 60)
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denote the system of nonlinear equations to be solved and let J(x) denote the
Jacobian (n, #)-matrix of the system.

Let a level function be defined by
(2.1) T(x|A):=3%|AF (x)|=3%(A4F (x))" (AF (x))

where A is an arbitrary constant nonsingular (n, #)-matrix. This type of function
is useful since

) T(x|4)=0 & F(x)=0 & x=x*
2.
22 T(x|4)>0 & F(x)+0 & x==x*
The following lemma is elementary.

Lemma 2.1. Let T (x|A) be defined for x€ DCIR”. Let p,==0 denote a search
divection in x,€D and grad T (x,| A) the gradient direction of T (x| A) in %,. Then if

pr grad T (v,] 4) <0
there exists a py, > O such that
T(x,+ 29| A) <T (%] 4) for 0<A=Z .
This inspires the following

Definition. Let A x;, denote the correction vector given in x, by some iterative method
for solving systems of nonlinear equations. Then a level function T (x| A) is said to
be “appropriate” for the iterative method in question, if and only if

(2.3) Axigrad T (x,| A) <0 for all x,€D with Azx,=+0.

a) Case of Nonsingular Jacobian. Assume [ (x;) to be nonsingular for the time
being. Then the Newion correction vector A x, is

(2.4) Awy=—]J ()2 F (xy).
One obtains
(2.5)  Ax; grad T (x| A)=—2T (x| 4)<0 forall x,eD with Azx,=0.

Hence, according to Lemma 2.1 each level function T (x| 4) may be used to deter-
mine the sequence {4,} by means of the monofonicity test

(2.6) T (%1} A)<T (%] A) with 1z, :=x,+4,4%,.

Of course, the sequence {,} —and the rate of convergence of the modified Newton
method —depends on the choice of the matrix 4. The question of how to choose 4
is resolved by means of the following

Theorem 2.2. Let A x, denote the dirvection of steepest descent of T (x|A) in x,:
(2.7) Ax,=—grad T (x,| A) =— (4] (:))T AF (%).
Then there are level functions T (x| B) satisfying A xi grad T (x| B) >0, unless
J () J (x)TATAF (x) =y F (%) for some y€RR:

2xr
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Proof. Let A =1 be assumed (usual case). Write 4:= J (x,) J (%), B:=BTB,
F,:=F(x). Then A} grad T (x,| B) =—F1 A BF,. Now, choose B:=4 +uyy”
with u>0 and Fj (4 +1I)y =0, but F; y 40 (here the assumption 4 F, 3=y F, is
required). For u> |4 F,|?/(Ffy)® one obtains

A5 grad T (x| B) =—|A B +p(FEy)*>o.

The proof for the general case 4 ==1 is omitted. ¢
The interesting part of this result is the special case

(2.8) A=](x)? inzx,.

Upon substitution of (2.8) into (2.7) the Newfon correction is obtained as a particular
steepest descent correction:

(2.9) Axy=—grad T (x,| J (%)) =—J () F (3).

Hence, {2.8) seems to point out a natural scaling of T (x| A) in the monotonicity
test (2.6). Moreover, it may be shown that in a neighborhood of x* the level

surfaces
T (%] A) =const

are spheres for this choice of A, while in general they are ellipsoidals. This follows
from {compare e.g. J. Kowalik/M. R. Osborne {20])

(2.10) T (x] 4) =3[4T (%) (5 — 5*) P +0 (5 — x* ).

It may be recalled that for an exact sphere only one steepest descent correction
is needed to find x* —independent of the starting point x, (compare Greenstadt
[16] for linear F (x)).

b) Case of Singular Jacobian. Without loss of generality the following special
case is assumed (for a justification see § 4).

Jii

o O}’ s:=rank (J,) =rank(J),

(2.11) J{x) =[

where J is a nonsingular upper triangular (s, s)-matrix. Let P and P denote two
projection matrices

P= , P=I-— P withrank(P):=s.
0

Remark. A sufficient condition for PJ (x,) =0 is

(2.12) DF (x) = const.



Modified Newton Method for Ill-Conditioned Systems of Equations 293

Upon partitioning the linear n-system J(x,) A x, =—F (x;) one obtains
(1) JPAx, +jPAx,=—PF(x,)
(I1) 0=—PF(x)

(IT) is omitted (contradiction). (I) defines s necessary conditions for a modified
Newton method

(2.13) Ax,eN,, (Newton condition)

where
Ny:={dx€R"|JPAx +jPAx+ PF(z) =0}

(n —s) further conditions are obtained from the following

Lemma 2.3. Let PJ(x,) =0 according to (2.41). Let A x, denote the direction of
steepest descent of any level function T (x| A) (see (2.7)). Then, independent of A,
the components of A x, satisfy

(2.14) PAx,=]TPAx, (steepest descent condition)
where
1:=J7
Proof. Let A:=AT A be partitioned with respect to P and P.

4,14
4 =: { ¥ 1; /—1: }
Upon substituting 4 into (2.7) it is obtained
PAx,=—J"(4,PF,+4,PF), PAx, =—j"(4,PF,+4,PFE)
Since [ is nonsingular, the result follows independent of 4. ¢
Remark. (2.14) holds for the Levenberg-Marquardt method as well.

Theorem 2.4. Let Ax, denote a correction vector subject to both the Newton
condition (2.13) and the stcepest descent condition (2.14). Then A x, may be computed
in the following way

PAy,:=—J*PF(z), PAy:=jTPdy,
PAx,=(I,_,+j"{)'PAy,  PAx,=PAy,—i PAx,
Proof. Substitution of (2.14) into (2.13) yields

(J +i7") PAx,=—PE,

(2.15)

where (J 4+777) =J (I, +777) is nonsingular, as J is nonsingular from (2.11) and
(I, +777) is positive definite. Thus P4 x, can be determined. From (2.14), P4 x,
can be determined.

From a well-known theorem (see Householder {17]) one obtains

(I A7 =1, —] M,
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where M:=(I,_ 47 77) is positive definite. With the auxiliary variable 4y, as
denoted above it is obtained
PAx,=(I +]]") PAy,=PAy,—] M]" PAy,

PAxy=jTPAx,=M>"PAy, = PAx,=PAy,—j PAx,.
It is shown in [10] that (2.15) is a computationally convenient representation of
(2.16) Axy=—J(x)'F (%),
where A' denotes the Penrose pseudoinverse [26] of a real matrix A satisfying
(217)  (ATA)T =44, (44N =A4AY, AYAAY =AY, AA'A=4

Thus, a method using the correction 4 x, from (2.15) with 1, =1, is equivalent
to the Newton-Raphson method proposed by Ben-Israel [3]. In order to expand
the domain of convergence of the method, Fletcher {13] proposed a modification
for 0 <A, <1 with T (x|I) in the monotonicity test (2.6). He already gave a proof
that T(x|1) is an “appropriate” level function for (2.16). The whole class of
“appropriate” level functions T (x| A) is described by the following

Lemma 2.5. Let PJ(x,) =0, Ax,=—](x) F(x,). Then T(x]d) is an
“appropriate” level function, tf and only if

(2-18) PATAP =o.
Proof. Let A:=ATA. Then
Axf grad T (x| A) =— (PF)TAPF, — (PE)" (PAP)(PE).

The first right-hand term is negative definite, if and only if PF,=5=0. P, =0 is
equivalent to 4 x, =0. The second right-hand term may be positive. Therefore
PAP =0 is necessary and sufficient that

Axfgrad T (x,| A) <0 forall Ax,==0. o

For example, condition (2.18) holds for 4 orthogonal or diagonal (gauging of
variables). The choice of A to be proposed herein may be motivated in the same
way as for the case of nonsingular Jacobian. Upon employing (2.17) twice the
analogue of (2.9) is obtained

(2.19) A %, =—grad T(xki](xk)f) =_](xk)TF(xk)'

Hence, for the case of singular Jacobian natural scaling of the level function
T (x| A) means

(2.20) A=](x)" inx,

Obviously, condition (2.18) holds for (2.20). However, property (2.2) is modified
as follows

T (%] J(%)1)>0 & PF(x)+0 & Ax,+0
T(%|J(x)) =0 & PF(x)=0 < dx,=0.

If furthermore PF (x,) =0, then x, = x*.

(2.21)
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A final comparison of the type of method presented here and the class of
steepest descent methods may be made by the following

Lemma 2.6. Let B, K be nonsingular (n, n)-matrices. Let two linear transfor-
mations be described by

(I) F(x)>G(x)=BF (x), (1I) x—>y=K«x
a) Let A x, denote the steepest descent corvection (2.7) for A =1
Axy=—] ()" F (%)
Then A x, ts invariant to the transformations (I} and (I1), if and only if
(2.22) B'"B=K'K—=1I.
b) Let A x, denote the Newton-Raphson correction
Ay =—J (%) F ()
where PJ(x,) =0. Then Az, is invariant to the transformations (1) and (11), if
and only if
(2.23) PBTBP =PK*KP =0.
Remark. Condition (2.22) also holds for the Levenberg-Marquardt correction.
Obviously (2.22) is contained in (2.23).

For the sake of completeness it may be noted that the results given here may
easily be extended to apply to least squares problems as well (see Example 1 of § 6).

3. Convergence Results

It may be recalled from [3] that a method using the corrections {2.16) {with
A, =1) converges locally to a point x* subject to

(3-1) J (@¥)TF (x%) =o0.

That is, x* is either a solution point (with F (x*) =0) or a stationary point (with
PJ(x*) =0 and PF(x*) =0). In the latter case no information about PF (x*)
is given except the well-known least squares property

(32) IPE ()l = min |] ()2 +F ()]s

Hence, a reasonable assumption to obtain convergence to some solution point x*
is that the Jacobian be nonsingular in some domain D. Then, local quadratic
convergence of the ordinary Newton method is guaranteed under the assumptions
of the well-known Newton-Kantorovi¢ theorem [18]}. For the modified Newton
method Stoer [31] gave a proof of global convergence showing the existence of
some sequence {4} such that {T(x,|I)} is a monotonely decreasing sequence.
The proof in [31] can easily be extended to apply to any T (x| 4), if A is contained
in some matrix set

(33) Ayr={A]|condy(4) <M < oo}.
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Here A4 is assumed to be a constant matrix, independent of the iteration step £,
in contrast with natural scaling as suggested in (2.8). The purpose of this paragraph
is to give a theorem of global convergence of the following modified Newton
method

Axg=—J (%) F (%)
(3.4) Xy =%, + A, dx, with 4,€]0,1] such that

T (%5 | T (1)) < T (| J () 72)-
Upon studying the monotonicity test (2.6) for arbitrary level function T (x| A4)
a certain extremal property is shown to hold for natural scaling (2.8). Moreover,
a rank strategy to be proposed in § 4 is motivated by the subsequent results.

Following Ortega/Rheinboldt [24] a level set of T (x| A) is defined by

(3.5) Go(A):={xeR*| T (x| 4) =T (x| 4)}.
In order to save space, standard assumptions are arranged once:

(3.6) Standard Assumptions.

I. Let F(x)eCH(D) with Go(A)CDC R” for some A€Ay,. Let J(x) denote the
Jacobtan matrix.
II. Let exist J(x)™ with | J (x)2| <8 for all xeD.
L ] (x) = J W =ylx —y| for 2, yeD.

IV. Let the path-conmected component of x, in Go(A) (in the sequel simply
denoted as Gy (A)) be compact.

It is well-known (see e.g. Rheinboldt [29]) that under the assumptions I, II,
and IV there exists one and only one solution point x* in (the path-connected
component of x, in) Gy (A4).

The following notations will be frequently used
3.7  Je=J®), Fe=F(x), a:=[{dx| B:=|Ji"l h:=py|E|

A simple derivation of the modified Newton method is obtained from the following
result.

Lemma 3.1. Let (3.6) be assumed and let x,€Gy(A). Let GL (n) denote as usual
the class of nonsingular (n, n)-matrices and define

(3-8) Gyi= () G,(4).

A€GLn)
Then
G,={xeR*|x=2x(A), A€[0, 2]}
where the path %(A) (also called Newton path due to [23]) is defined by
) a) F(x)=(1—AF, orby
39 7
b) G =—J@ 50 =x
Proof. Let H,(A) denote the set

Hy(4) ={yeR"||dy|=|4E]}
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and let
H,= [\ H,4).

. AEGL{n)
Select a subset 4 of GL (n)

A:={A|ATA = 3 %;q:q] with ¢:=E /| B[},

(x, >0 eigenvalues, ¢, eigenvectors of 474).
Let y have the components #,, 7 =1, ..., #, with respect to the basis {g;}:

y= Z URES
Then
2} for Aed.

L,

H(4) ={yeR"| X nfx; =|
Now let ﬁkzz ﬂAHk(A). Then 1
4ed
H,={y =maq|n} |EI} ={yeR"|y=(1— ) F, Aelo, 21}.
It is easy to show that H, k:ﬁk. Now set y =F (x) and lift the path H, to G,

(implicit function theorem). This proves statement a. The proof of statement &
may be found in [23].

Remark. The interesting part of the path %(1) is for 1€[0, 1], since x* =% (1).
It was shown in [29] that if J(#) is singular for some % (A*) with 0 << 2* <1, then
G, terminates at % (1%).

Along %(2) the following property is common for all level functions:

(3-10) T(2(A)]|4)=01—22T (x,]A4).

Euler-discretization of the differential equation (3.9.b) yields (see e.g. Meyer [23]):
(3.11) D=0~ J7'E,  he€lo, 1),

h
With these preparations the monotonicity test (2.6) can be studied for arbitrary
level function T (x| A4).

Theorem 3.2. Let (3.6) be assumed. Let x,€Go(A) with T (x,|A) >0 (without loss
of generality). A x, denotes the Newton correction. Then

T (%, +AA %, | A) <4, (A A) T(x, | A) for A€[0, fiy(4)]
where
ty(A] A):=[1—A 422k, (1 k) cond (4],)* =1
and
B (A4) :=min{1, 1/[h, (1 +A4) cond (4 ],)1}.

Proof. For convenience it is useful to introduce

Dyi={x=x(2,0)| #(4, 0) =% (A) +6(x, +A4 x,—% (%)), (4, 8) €[0, @ (4)] x [0, 3(A) ]}
(see Fig. 1).
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-0
X, =x(0, )

X()=x(20) o-————0 Ji=const
om0 §=3(})

o—————0 J§=const

x*=%(1)=x(1,0) m Dy

Fig. 1

Since G, < G,(4), there exists a §(4)€]0, 1] for A1€[0, 1] such that D,< G4(A).
Moreover, x,€Gy(A) implies D,CGy(4).

1) The estimates to follow are valid for all x(4, §)€D,. With the notations

é
%:=#%(4) (for fixed A) and ]‘:—%f](x(l,é'))dﬁ’

one obtains
F(x(4, 8)) =F (%) +J (x(4 6) —%) (mean value theorem).
Employing the Cauchy-Schwarz inequality yields
T(x(h, 8)| 4) =4|4F (x(2, )P <} IAF (D] +]AT (22, 9) — )|~
A straightforward estimation using Lemma 3.1 gives
4T (x4, &) — <UL T 1 G, 8) — ]
1 0) — 2l SR hu| T TN =1+ a=|Ji7 477 |4E].
Upon using (3.10) for T (%] 4) =4[ AF (%) |# it is obtained

(3.12) ”—Af”%f%"ﬂ)i < [1— A+ 822k, (1 +hy) cond (A])] =: £(4, 8).

2) Until now, no information about § () was given. An elementary calculation
shows that f, (4) was selected in such a way as to ensure that

(3.43) (A, 0)<1 for 0<A<H(A), O0=<O=1, (0, 8)=t(m,(4),1)=1.

By means of (3.13) and a continuity argument it can be shown, that §(4) <1
leads to a contradiction for 0 <A <<, (4). Thus

S(A)=1 for 0<A<m,(A).
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Hence, (3.12) holds for 0 <6 <1, 0 <A <l (4). By definition #, (1| 4) =#(4, 1).
This completes the proof. ¢
Corollary 1. The optimal choice 2, €10, 1] with respect to the function #, (1] 4) is
(3.14) 7,(4) =min{1, 1/{2h (1 +hy) cond (4J)T}.

An estimate of the rate of convergence of the modified Newton method with 1,

from (3.14) gives
Ap\2
b(hl4)=(1— %) for <1

b (] 4) <2 for A, =1.

(3-15)

Corollary 2. For natural scaling as proposed in (2.8) the following inequalities
hold (extremal property)

a) H(A|Ji) <t (2] 4)
(3.16) b) m(JxY =@ (4) for all A€d,,.
) AU =h(4)
For the proof of (3.16) just use cond (4 ],) =1, cond (I} =1.
Remark. As x, approaches the solution point x*, 4, approaches 0 (let y = 0).
For this case one obtains from (3.14) that A, =1 is the optimal choice of 4 -in-
dependent of the monotonicity test. This is the ordinary Newton method.

The following theorem of global convergence of the modified Newton method
is closely related to the preceding theorem.

Theorem 3.3. Let (3.6) be assumed. Let the sequence {x,} be obtained by the
tteration

K1 =% — A J (%) T ().
If the sequence {2} is selected so that
Amin =4 = . (4),

where
i (A): =min{1, 1/{A, (1 + k) cond (A] (%4))] — Anin}

and Ay 1S any fixed value in the range
0<Apim<min{1, 1/[2Mhy(1+ M ho) m]}
with m:= Iercl;a()fq ) cond (4] (%)), then the following results hold .
a) {%}CGo(4).
b) If T (x| A) >0, then
T (%31| A) < T (2| A) and T (1| J (%)) < T (%] J (5)?).
c) There exists an x*€Gy(A) with x* = lign %y and F (x*) =0.

Proof. 1) With the assumptions (3.6) it is readily obtained that 4y < oo and
cond (J (x)) £ M < oo for all x€G,(A4). Since m <M M < cc, there always exists
a A, subject to the conditions above. If x,€Gy(4), then h, <M h, (Kantorovi¢

min
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inequality) and cond {4 J;) Sm. With the notation g:=min{1,1/[2M ke {1 -+M hy) ]}
the following inequalities hold: u,(4)=F =2,;n>0. Hence, the interval
(A min 2 (4)] is non-empty.

2) Now, let T (x,|A4) > 0 and x,€ Gy(A4) be assumed for the sake of induction.
Then, from Theorem 3.2, T(%.,]d4)Z8(A]A4) T (x,[A4) for 0=SA<R,(4).
A straightforward calculation yields

}_m‘ 2
LA A) < (1= "2m ] for A€(Amim e (4))-

This implies x, ;€ Gy(A). The assumption above is obviously true for k=0.
The trivial case 7 (x,|4) =0 can be omitted. Thus, statement @ and the first
part of statement b are proven. The second part of statement b follows from (3.16).

3) Theinequality T (x| A) <t (4| 4) T (x;| 4) may be applied consecutively
giving

ant Amin 2%
I sy )= T 4] 4) T (] 4) < (1= 252 T (3] 4)

Since A, > 0:
li;n T (%] A) =0

Go{A) is compact by assumption IV. Thus there exists an x* =lim x,, #* € Gg{4).
With T (x*]| 4) =0 and 4 €4, one obtains |F(x*}{=0. ¢

Finally, it may be summarized that for global convergenceof the method (3.4) the
existence of some comstant scaling matrix A €4,, (so that the assumptions (3.6)
are valid) is sufficient. In applications it is impossible to select a constant matrix 4
in such a way as to minimize the number of iterations required to find the solution.
Because of the extremal property (3.16), however, natural scaling seems to be an
approach into this direction. This is confirmed by numerical experience. (See e.g.
Example 2 of § 6.)

4, Numerical Realization of the Method

The purpose of this paragraph is to discuss the question of how fo select the
rank of the Jacobian at each iteration step in actual computation. In general,
since reducing the rank means just solving a subsystem (compare (2.21)), the
use of maximum rank would be favorable. Exceptions are necessary for ‘‘nearly
singular” Jacobian and may be useful for bad initial data.

At first, it may be summarized what natural scaling as proposed in (2.8) means
in actual computation. Let 4 x, denote the correction of the ordinary Newton
method and A %, the correction of the simplified Newton method

Az =— J (%) 1F (%)

4.1) Ay =—J (%) F (%)

where
Bpr1 =% + 4 d %

Then 1, is selected in such a way as to ensure that

4.2) 14 %2 < |4 5
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The calculation of 4 x,,, requires no additional function evaluations, but only
O (n?) operations more compared with O (%% operations required by the usual
Newton step (one decomposition of J (x,) at iteration step k). For the case of less
than maximum rank of the Jacobian, J(x,) is replaced by J(x,)' in (4.1).

a) A-priori Selection of the Pseudo-Rank of the Jacobian. The following method
is derived from results due to Wilkinson [33]. Let 4 x, denote the exact solution
of the exact linear system

J(x) Az, =—F ().
In contrast with the notations (3.7), now let J, denote the approximate Jacobian

actually used in x,, (rounding errors included) and let Z\J{Gk denote the exact solution
of the modofied linear system

Jrdxy=—F (x)).
Then a well-known result [33] yields

|45 — 4%] _ _eycond(Jy)

(43) 2 S Ty it avcond () <1
where
ot = I (%) — Jil .
ke 17:1
In what follows a nonlinear system F(x) will be said to be ill-conditioned in x, if
(4.4) e, cond(J,) =1,

i.e. if the linear Newton system in x, is ill-conditioned (sometimes 1 is replaced
by 1/2 in the right-hand side).

Monitoring the algorithm by means of (4.4), however, raises three numerical
problems: First, the computation of cond (J,), e.g. by singular value decomposition
{for reference see Golub/Reinsch [15]) requires substantially more computing
time than the solution of the linear Newton system. Secondly, in applications
even the order of magnitude of ¢, is usually unknown. Thirdly, the estimate (4.3)

gives only an upper bound of the relative error of Af\o;k. The actual error may be
much lower. Therefore, it seems to be sufficient in applications to use a lower
bound of cond (J,) instead of the correct value. This may be done by means of the
following result.

Lemma 4.1. Let the approximate Jacobian J, be decomposed so that J,=QRC
where Q is a Householder matrix, R is an upper triangular matrix and C is a column
permutation matrix (wpdating the information of columm piveting due to Businger/
Golub [8]). Let r; denote the diagonal elements of the matrix R with v, +=0. Then

(4.5) cond (J,) = |7 2A> . 2‘|11ﬁl>1_

] S Trnal =7 = Inl =
Proof. The following inequality is known to hold for triangular matrices:

cond (R) gmz:x IT:-'IT (see e.g. [31]).
1, k
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Column pivoting as proposed in [8] ensures that
Iyll 2‘721 g gi’n—ll %ir)zl'
Finally, since Q and C are orthogonal, it is obtained
cond (J,) =cond(R). ¢

Moreover, column pivoting due to [8] ensures theoretically that the matrix R is
of the form (2.11), if and only if J, is singular. Since Q and C are orthogonal, the
multiplication rule of the pseudoinverse of a product of matrices yields

JL=CTR'Q.

R' is calculated according to (2.45). This justifies the former restriction to the
special case (2.11).

A-priori Test. Same notations as in Lemma 4.1. Let ¢ denofe an input param-
eter subject to e Ze, for all k. If for some s<<n

(4.6) 7| >1re and |r, (| =|n]e
then let s define the pseudo-rank of the Jacobian to be used in (2.16).
Lemma 4.2. If condition (4.6) holds, then F (x) is ill-conditioned in x,.

Proof. ¢ycond (J,) = e Anl =1. o

Treal

The test (4.6) is performed during the decomposition of J,, i.e. before the
Newton correction is actually computed. That is why (4.6) is called a-priors test.
It may be noticed that both the test (4.6} and the condition number depend on
scaling. Therefore it is advisable to scale J, before the actual decomposition
(compare Bauer [2]). The input parameter ¢ is usually selected to be of the order
of magnitude of the relative machine precision.

b) A-posteriori Selection of the Pseudo-Rank of the Jacobian. Since the reverse
statement of Lemma 4.2 is not true, there are cases of ill-condition that are not
detected by the test (4.6). In the numerical solution of /inear systems the question
of how to classify a given matrix as to be singular or not, was discussed over years.
The state-of-the-art decision is made by iterative refinement of the solution:
no attempt at obtaining the solution is made unless the norm of the first correction
is significantly smaller than the norm of the initially proposed solution (compare
[8]). This method can be extended to the non-linear case recalling that iterative
refinement just means Newton’s method for linear F (x) (with the exception of the
fact that the residual vector is computed using double-length accumulation of
inner products). The use of the monotonicity test (4.2) instead of the monotonicity
test (1.5) is the nonlinear analogue of the fact that in the linear case the corrections
are compared instead of the residuals. Finally 4, =1 (linear case) is extended to
Amin = A, =1, for some suitably chosen positive input parameter A;,.

(4.7) Rank-Strategy. Let A, denote an input parameter in the range 0<Apn
= 1. At the iterate x,, let condition (4.2) be not satisfied for all A, tried in the range

lmm—-lksll
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Then reduce the pseudo-rank of the Jacobian by one, compute the new correction A x,
from (2.16), and try once more, e.g. with A, =1. (To be repeated, if necessary.)

This type of vank-strategy is now backed theoretically by means of the result
(3.14). To simplify notations, let the transition from the modified Newton method
for pseudo-rank s (say s =#) of the Jacobian to the modified Newton method for
pseudo-rank s’ <s be described by the following

(4.8) Transition Tableau.
s=n — s'<s
F(x) — PF(%), say |PF(x)|>0

J(x) — J(x) = [—ﬁ—‘?} (2.11) 7:=0 without loss of generality

00
Axy=—J (%) F (%) — PAx,=—J'PF(x;), PAx,=0=Px=Py,
T(x|J(x)) — T(x]J(x)").

It may be seen that the right-hand side refers to a modified Newton method for
the reduced mapping PF (P x). Hence, the results of theorem 3.2 for the mapping
F (x) may be compared with the results for the mapping PF (Px).

exist J (%)t — J(%)t = { J7|0 ]

Comparison Lemma 4.3. Nofations of the fransition tablean (4.8). Let primed
quantities correspond to the right-hand side of (4.8). A,(A4) and 2, (A) are selected
due to (3.14). Assume 2, <1 and ' <f=p;. Then

2) A (J (1) > A (T (5))

b) A (1) > A, (D).

Proof. a) Employ (3.14) for natural scaling. Then A, <1 implies
A=1/2h,(1+h)] <1 and A, =min{1, 1/[2A;(14+k;)]}.

(4.9)

Moreover
12 (x) —PTI=IT (2 =T ) [ =y]x -]
implies
Iy sy:|P](0) =P (W [=7'|x—y]
and

by =p2y' | PF (x) | <8y | F () | = -
This proves statement a.

b) cond (J) =|J [T | = PJ (=) | Bs =T () I8 <|J (%) |B = cond (J (). 0

In applications, the selection of 4, is not due to (3.14) but ad hoc. Nevertheless,
numerical experience confirms the results (4.9). A reasonable choice of the range
of the input parameter 4_;, appeared to be

1 1
1% =Amin S3-
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c) A Rule of Thumb for Bad Initial Data. In some real life examples only bad
initial guesses of the solution are available. A well-known rule of thumb for these
cases is to start the modified Newton method with small values 4,. This is backed
by (3.14): x, ““far from x*’’ means A, “large”, which implies 4,(4) “small”’. An
efficient alternative rule of thumb can be derived from the result (4.9).

(4.10) Rank-Strategy. Start with initial pseudo-rank of the Jacobian less than
maximum rank. In the course of the iteration increase the rank gradually.

Employing (4.10) gives usually smaller corrections 4 xj, as for the Penrose
pseudoinverse the following result is well-known:

(4.11) ldxl=ldn] < Tl =TT

5. Application to the Solution of Muitiple Shooting Equations

The purpose of this paragraph is to give a multiple shooting modification of
Newton’s method, similar to the method derived so far. This is necessary because
of the sparse structure of the Jacobian (#(m—1), #(m —1))-matrix

Gl’ ‘I O
] (S) = 0 ém_g, ‘_I ’
A BGm—l
where
Gi:=fﬂ”f4é+__;"f’si?_’ =1, ..., m—1
i 70D B:— 27 0ays)
2Ya A7)

and the identity matrix I are (%, »)-matrices.

For nonsingular Jacobian the Newton correction 4s is computed following
Stoer/Bulirsch [32]:

As,=Ey
(5.1) X
As;y=Gids;+F, j=1,...,m—2
where
E:=44+BG,_ ;-G
w=—F, _,~BG, E,_,— —BG,_, - GH.
Remark. For a smooth trajectory (i.e. B == --- =F, ,=0) E is the Fréchet-

derivative of the operator that describes the two-point boundary value problem.
The (#, #n)-matrix E is nonsingular, if and only if J(s) is nonsingular, as may
be seen from the following

Lemma 5.1, Let C denote the (n,n)-matrices

Ci'—"G"G"_l...G‘ for 1§l§i§m_1'
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Let L, R, and S denote the (n(m —1), n(m —1))-matrices
BC:_,,...,BCny, I

p=|"1. . 0 9
0 I
g, 0
R:i={| ..
&, T
E
s=| 1.0
| 0 1
Then
652 a) LJR=S

b) det{J) =det(E).
The proof of a} is rather space consuming but straightforward.
The proof of b} is obtained from a) with det{L} =det(R) =1.

If E is singular, then the system (5.1) cannot be ‘““solved”. The modification
(2.16) of Newton's method using the Penrose pseudoinverse of the Jacobian as a
whole would ignore the sparse structure of J(s). Moreover, it is important for
actual computation that independent of m only the (», #)-matrix E has to be
inverted. This inspires the following modification of (5.1):

As;=E'u
(5.3) y :
$;1=G;ds;+F, j=1,...,m—2.

The question of how to select the rank of E is decided by means of the results
of § 4. Using the decomposition (5.2a) the system (5.3) may be written as

As=—]"F=—(RRT) grad T (s| RJ")
where
J-=RS'L,

Here J- denotes a generalized inverse satisfying

(J- )T =(RRNJ-J(RRY), (JJ)"=(L"L)JJ-(L"L)?,
JJI-=J JIJ=I

The difference of the Penrose axioms (2.17) and the axioms (5.4) implies restric-

tions for the class of “ appropriate” level functions.

(5.4)

Lemma 5.2. Notations as before. T (s|H) denotes a level function. Let PE =0,
As=— J-F. Then

a)AsT grad T (s|H) =—2 T (s|H) + (H(I — J J)F)THF
b) (H(I — ] J)F)THF =—(Pu)T (HTHF),,_,.

22 Numer, Math., Bd. 22

(5.5)
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Proof. a) As” grad T (s|H)=—(J-F)' J'H'HF = —(H(J J-+I1 —I1)F)"HF
=—2T(s|H) +(H(I—]]J)F)THF
b) Now({(I —J J- ) F=F+ JAs=L(LF +LJ4s).
Using the notations of Lemma 5.1 it may be seen that
LYLF +LJAs)=

0, —1I —u+EAds, 0
ST —F,—G,As, + s, :
0 —I : - 0
1, BC:_,---BC Y| | =E, . —G, .45, ,+4s, 4 EAs,—u
With P(EAs, —u) =0 and PE =0 the result above is obtained. ¢
An important consequence of this result is that the usual level function

m—1

Te|D=4%

2

L

is not ‘“ appropriate”’ for the modification (5.3) of Newton’s method, unless m =2.
Rather the ““appropriate’ level functions

m—1
T61) =43 145
]—_’.'
or
m-—2
T(s|R*J)=3(|4s [t + ZIIIFAP)
=
should be used to determine the sequence {4,}.

m—2
Proof. As"grad T (s|I) =— 21“177”2 —|PE,_,|t— (PE,_,)" (PF,_; + Pu). For
7=

arbitrary functions Z; the right-hand side is negative definite if and only if m = 2.
The proof for T'(s| /) and T'(s|R-*J-) is easily obtained using (5.5a) and the
axioms (5.4). ¢ '

As for convergence of this modification of Newton’s method, the result (3.1)
due to [3] may be applied. It can be shown that the method converges locally

(for A, ==1) and yields a smooth trajectory y(x) (satisfying [{ = --- =F,_,=0
for m > 2) subject to
(5.7) ¥ ={x,5), Pr(y(),y(®)=0.

No information is given about Pr(y(a), y (b)) except the analogue of the least
squares property (3.2).

Remark. A sufficient condition for PE =0 is
(5.8) Pr(y(a), y(b)) =const

(compare condition (2.12)).
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6. Numerical Resuits

Example 1. 1Least squares problem due to Brown/Dennis [4]. Minimize

10

T(x] I) =Z (f(fl: 52, ?1) "'f(1’ 10’ pi))a

j=1
where
pi=04-4, i=1(1)10, F(&, & p):=e 5P —¢™h?,

The experiment was run on the TR 440 of the Leibmiz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften. The computations were performed in
FORTRAN single precision with a 38 bit mantissa. The analytic expression of the
Jacobian was used. Each evaluation of the Jacobian was counted for 2 function
evaluations. Using the different starting points given in [4], the problem was
solved by a (non-optimized) standard version of a least squares algorithm employing
the results of this paper (see last row of Table A). In [4] all starting points (with
the exception of the last one) were reported to lead to a failure (F) of the ordinary
Newton method (there called Gauss-Newton method), see first row of Table A.
For comparison the results presented in {4] for the Levenberg-Marquardt method
(L.M.) and its derivative free version (D.F.L.M.) are arranged (second row of
Table A).

Table A. Number of function evaluations required to reduce T (#|I) to less than 10~

Starting point #, and T (x|I)

(0,0) (0, 20) (5.0 (5. 20) (2.5, 10)
3.06* 2.09 19.6 1.81 0.808
ordinary (Gauss-)Newton method F F F F 16
LM. (D.F.L.M.) 22 25 25 31 16
modified (Gauss-)Newton method 19 14 21 14 13

{this paper)

* It may be noted that for xy,= (0, 0} the Jacobian is singular.

The following three examples were run on an IBM 370/165 of the Kern-
forschungsanlage Jilich via an IBM 2780 terminal at the Universitdt zu Koln.
The computations were performed in FORTRAN double precision with a 56 bit
mantissa. The examples refer to multiple shooting. For an ALGOL program
of the type of algorithm used herein see [7]. Unless noted, the Jacobian is approx-
imated by numerical differentiation at each iterate. The damping factors A, are
selected from the set {1, 3,..., Ay}, where 4, denotes the input parameter
as introduced for the ramk-strategy (4.7). The following three figures show the
comparative behavior of different algorithms by drawing the sequences {4,} with
unaccepted trials included. Each trial of 4 means one function evaluation (in
multiple shooting, that means the numerical solution of (m —1) initial value
problems for differential equations). The sign v marks the reduction of the
applied pseudorank of the Jacobian.

22%
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Id
12} °
14}
18 F
1/16
A i L 1 I 'S 3 il A A 1 L 1 1 1 1 L I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 %k
monotonicity test function eval. level function
old (6-1) 84 T(sU®|]) = 1.3 101
new (6.2) 52 T(s'W|I) =0.4 - 1071
Fig. 2

Example 2. Re-entry auxiliary problem (n =6, m =2).

For reference to this boundary value problem see (32] (7.3.7.1), (7.3.7.3),
{7.3.7.4), and (7.3.7.10). Since m =2 (single shooting), the method applied is the
same as proposed for the solution of general systems of equations. Fig. 2 shows a
comparison of the sequence {4,} using the monotonicity test

6.1) T(*N D) <T (™) (old)

and the sequence {4,} using the monotonicity test

(6.2) T (s®D] J(s®™)1) < T(s®| J (s®)2)  (new)
as proposed herein.

One evaluation of the Jacobian counts for 3 function evaluations. Throughout
both of the iterations the Jacobian is of full rank. The experiment affirms the
result (3.16¢). For the common initial data s one obtains T (s®|I) =0.34. The
lower bounds of the condition numbers of the (3, 3)-matrix E (scaled) range from
0.4-10% to 0.5 - 10® (at the solution point §).

Example 3. Re-entry problem (n =7, m =9).

For reference see [32] (7.3.7.1), (7.3.7.6), and (7.3.7.7). For the initial data
s one obtains T (s”|I) =1 -10% Fig.3 shows a comparison of the sequences
{4y} with and without rank-strategy (4.10). The actually applied pseudo-rank at
s is 2 less (and at 51 less) than the full rank of the matrix E (as is indicated by
the negative numbers over v).

One evaluation of the Jacobian counts for 7 function evaluations. The lower
bounds of the condition numbers of E (scaled) range from 3 - 10* (at 5%) to the
maximum value 4-10¢; for the solution point one obtains 1 - 10%. Reduction of
the maximum rank by 2 (at s'”) yields 0.9 - 10, reduction by 1 (at s) yields
1104
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hae]
_'2 _'1 new
1+
it old
14+
18+
i 1 L 1 n L i A L 1 n >
I 2 3 4 5 7 8 9 10 11 %k
function eval. level function
old without (4.10) 100 T(s"W|I)=0.9-101
new with  (4.10) 56 T(s®|I) =0.3-10"1
Tig. 3
2 4
k-1 ~1 new
v
1 -
12} old
1/4}
18}
1/16 ¢
1k
1/64
~1/64 |
L i 1 1 L i 1 1 1 L 1 A ) | .
1 2 3 4 5 6 7 & 9 10 11 12 13 &
level function function eval. computing time
old T(s|I) 99 46.8 sec.
new T (s|J (s®)) 38 16.0 sec.

Fig. 4

Example 4. Optimal control for synenergetic orbit plane change of a spacecraft
(n =13, m =6).

This example refers to a hypersonic maneuver of a spacecraft as described by
Dickmanns [12]. Let a spacecraft fly on an orbit around a planet baving a sufficiently
dense atmosphere. The problem is to turn the orbit plane to a new one of the same
altitude. The quantity to be minimized is the fofal amount of fuel required for the
maneuver. It is important to limit the heating of the spacecraft.

The mathematical model as given in [6] leads to a two-point boundary value
problem with 13 differential equations and several inequality constraints for the
control variables. In actual computation the problem appeared to be very sensitive.
Hence, the solution was attacked by computing a homofopy sequence of familiar
problems using multiple shooting techniques (compare {6]). The example presented
here is one of the problems from the homotopy chain. The number of nodes is m = 6.
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Rank-1 corrections of the Jacobian due to [5] (see also [32] and [10]) are employed.
Numerical differentiation is inserted only at suitably selected iterates. The example
indicates the efficiency of the rank-strategy (4.7) for m > 2 in connection with the level
function T (s|J-), even if only a poor approximation of the Jacobian is given. Fig. 4
shows a comparison of two algorithms using 7 (s{I) and T (s|J-), respectively.

The algorithm using T(s|I) would not converge unless two empirical rules of
thumb were employed: (I) it is nof required that T (s|I) decreases at the first iteration
step (actually one obtains T(s©|I)=0.6-10"2, T (sM|I)==04-10% whereas
T (s (sO)2) < T (s J (s®)-2)1) (II) A, is permitted to be megative (this means,
that the Jacobian approximation is so poor that the result (2.5) cannot be claimed for
the actual Newton correction A45®). Like in Fig. 3 the sign v marks the reduction
{by 1) of the pseudo-rank of the Jacobian. The lower bound of the condition number
of the matrix E is 1.4 - 10° at the solution point.

Employing the results of this paper U. Zimmermann [34] computed the solutions
of the complete homotopy sequence. An extensive comparison given in [34] clearly
shows the efficiency of the method as proposed herein.

Example 5. Optimal descent of the second stage of a space shuttle subject to
heating restrictions (n =13, m =9).

This problem refers to a special type of spacecraft called space shuttle. The physical
model is due to Dickmanns [11]. By means of the results of this paper Pesch [27]
treated the optimal descent of the second stage. (The description given here follows
the lines of [27] where the results of extensive computations were presented.) The
quantity to be maximized is the range. As in example 4 heating vestrictions are required.

The mathematical model leads to a two-point boundary value problem with
13 differential equations. For the physical quantities (velocity v, height h, flight path
angle y, range A etc.) the following 6 differential equations hold:

LA
v=—- -—g-siny

A4 sinpg v
=5 -Cosy—-7-cosy cosy-tan A

v
©CoS p —(—‘Ig)——?)-cosy

(6.3) v=

. v .
=-_-cosy-sing

k=v-siny (r=R+h)

where A:=0AF%1)’, W:-—-cWF%v’, Ccyi=cy, +Ech.

For the lift coefficient c 4 (a control variable) three inequality consirainis are required
among which the heating restriction is the most severe:

5
(6.4) cy écAH’_“.ZlBi(h)Hi(h' v) +Adc .
7-

B, H, i=1,..., 5 are given functions, Ac,; represents the heating of the space
shuttle beyond the allowed limit temperature (4¢, z = 0 means 2000 ° FF == 1093.3 °C).
The given boundary conditions are v(0) = 7.85 km/sec, v(T) =1.116 km/sec, y(0) =
—1.25°% y(T)=—2.7° h(0)=95.0km, A(T)=30.0km, x(0)=A4(0)=6(0)=0°
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The total flight time T is free (’2' =0). From the calculus of variations one obtains
6 differential equations for the adjoint varviables 2, A Ay gy By, 2g €8

. R \2
%=—{’~v[“5’° () cosv

Thl 1;["8 ﬂhv'&:)_rsﬁzf siny + - R+h sin y cos z tan A
-I-lA> R+h Smysmxl

+ 4y, [v cos y]

il )

This equation is nonlinear since the controls ¢, and p are functions of the adjoint
variables e.g.

" L Hy ,.;("’Ax )2 2
Sinp=—Zoosyr CSA=T “’-—I/m +A.

Finally, the transversality conditions are 4 additional boundary conditions

AT =4(T) =0, AN =—1., [Ao+Ag+A7+id+hh+igtl_r=0.

In actual computation the problem appeared to be khighly sensitive. Hence, a sequence
of familiar problems was constructed nsing A¢, ;4 from {6.4) as a homotopy parameter

To give an impression of the numerical difficulties three graphs for the control variable
¢4 (¢) are presented {due to [27]).

Ca
4
AH 1
]
03 — ) l"\
\ \‘
\ \
L f
\
\
]

«— nodes

A4y =0.040 > Ac 4 =0.039

1 1 >
0 500 1000 1500 2000 t [sec]

lift coefficient ¢, (control): Solution data for Ac,y =0.040 do not yield a complete
starting trajectory for dc,, = 0.039 (exponential overflow)

Fig. 5
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1014

+1f

~— with heating restriction (4 ¢, =0.008)
==« without heating restriction
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]
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1500 2000 t [sec]'
flight path angle y [27]
Fig. 8

In Fig. 5 the solution data for d¢,y =0.040 (at 9 nodes) were taken as the initial
data for Ac,y =0.039: exponential overflow occurs in the subinterval 6. Upon
inserting a new node the starting trajectory could be completed (see Fig. 6). The
solution ¢ () for d¢4, =0.039 is shown in Fig. 7. The solution is correct to about
6-8 significants digits. Approaching 4¢,; ==0.008 the homotopy steps decreased and
computing time increased: for a change of 0.0005 in Ac gy more than 600 sec. were
required on the IBM 370/165! Using a 56 bit mantissa the lower bound of the condition

number of E (scaled) was about 10" at the solution point. In Fig. 8 the graph »(?)
for Ac 4y =0.008 due to [27] is shown.

Conclusion

The modified Newton method as proposed herein, appears to work efficiently
in solving ill-conditioned, highly nonlinear systems of equations (or non-linear
least squares systems) as far as an approximation of the Jacobian is available and
the dimension of the system is not too large. These properties hold for multiple
shooting where the dimension of the system is equal to the number of differential
equations to be solved simultaneously. By means of the results given here
significant progress in solving sensitive optimal control problems could be made.

Acknowledgment. The author wishes to thank Prof. R. Bulirsch who stimulated
and encouraged this work which is part of the author’s dissertation. The author is

indebted to Dr. E. D. Dickmanns who prepared initial data of Example 4 and § and
to Prof. P. Frederickson for reading the manuscript.



314

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.
25.

26.

P. Deuflhard

References

. Bard, Y.: Comparison of gradient methods for the solution of nonlinear parameter

estimation problems. SIAM J. Numer. Anal. 7, 157-186 (1970)

. Bauer, F. L.: Optimally scaled matrices. Num. Math. 5, 73-87 (1963)
. Ben-Israel, Adi: A Newton-Raphson method for the solution of systems of equa-

tions. J. Math. Anal. Appl. 15, 243-252 (1966)

. Brown, K. M., Dennis, J. E., Jr.: Derivative-free analogues of the Levenberg-

Marquardt and Gauss algorithms for nonlinear least squares approximation.
Num. Math. 18, 289-297 (1972)

. Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations.

Math. Comp. 19, 577-583 (1965)

. Bulirsch, R.: Die Mehrzielmethode zur numerischen Losung von nichtlinearen

Randwertproblemen und Aufgaben der optimalen Steuerung. Vortrag im Lehr-
gang ,,Flugbahnoptimierung’‘ der Carl-Cranz-Gesellschaft e.V., Okt. 1971

. Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point

boundary value problems I. To be published in Num. Math., Handbook Series
Approximation

. Businger, P., Golub, G. H.: Linear least squares solutions by Householder trans-

formations. Num. Math. 7, 269-276 (1965)

. Cauchy, A.: Méthode générale pour la résolution des systémes d’équations simul-

tanées. C.R. Acad. Sci. Paris 25, 536-538 (1847)

Deuflhard, P.: Ein Newton-Verfahren bei fastsingulirer Funktionalmatrix zur
Losung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode. Universi-
tit zu Koln, Mathematisches Institut: Dissertation, 1972

Dickmanns, E. D.: Optimale dreidimensionale Gleitflugbahnen beim Eintritt in
Planetenatmosphire. Raumfahrtforschung 14, Heft 3 (1970)

Dickmanns, E. D.: Optimal control for synenergetic plane change. Proc. XXth
Int. Astronautical Congress 597631 (1969)

Fletcher, R.: Generalized inverse methods for the best least squares solution of
systems of nonlinear equations. Comp. J. 10, 392-399 (1968)

Goldstein, A. A.: Cauchy’s Methode der Minimierung. Num. Math. 4, 146-150
(1962)

Golub, G. H., Reinsch, C.: Singular value decomposition and least squares
solutions. Num. Math. 14, 403-420 (1970)

Greenstadt, J.: On the relative efficiencies of gradient methods. Math. Comp. 21,
360-367 (1967)

Householder, A. S.: Principles of numerical analysis. New York: McGraw-Hill
1953

Kantorovi¢, L., Akilow, G.: Functional analysis in normed spaces. Moscow:
Fizmatgiz 1959. German Translation: Berlin: Akademie-Verlag 1964

Keller, H.B.: Numerical methods for two-point boundary-value problems.
London: Blaisdell 1968

Kowalik, J., Osborne, M. R.: Methods for unconstrained optimization problems.
New York: American Elsevier Publ. Comp., Inc. 1968

Levenberg, K. A.: A method for the solution of certain nonlinear problems in
least squares. Quart. Appl. Math. 2, 164-168 (1944)

Marquardt, D. W.: An algorithm for least-squares-estimation of nonlinear param-
eters. SIAM J. Appl. Math. 11, 431—441 (1963)

Meyer, G. H.: On solving nonlinear equations with a one-parameter operator
imbedding. University of Maryland, Computer Science Center: Techn. Rep. 67-50
(Sept. 1967)

Ortega, J.M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in
several variables. New York-London: Academic Press 1970

Osborne, M. R.: On shooting methods for boundary value problems. J.Math.
Anal. Appl. 27, 417-433 (1969)

Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51,
406-413 (1955)



27.

28.
29.
30.
31.
32.

33.

34.

Modified Newton Method for Ili-Conditioned Systems of Equations 315

Pesch, H.-J.: Numerische Berechnung optimaler Steuerungen mit Hilfe der Mehr-
zielmethode dokumentiert am Problem der Riickfithrung eines Raumgleiters unter
Beriicksichtigung von Aufheizungsbegrenzungen. Universitit Koln, Mathe-
matisches Institut: Diplomarbeit, 1973

Powell, M. J. D.: A ForTRAN subroutine for solving systems of non-linear algebraic
equations. A E.R.E. Rep. 5947, Harwell (1968)

Rheinboldt, W. C.: Local mapping relations and global implicit function theorems.
University of Maryland, Computer Science Center: Techn. Rep. 68-52 (Febr. 1968)
Rosenbloom, P.C.: The method of steepest descent. Proc. Symp. Appl. Math.
AMS 6, 127176 (1956)

Stoer, J.: Einfithrung in die Numerische Mathematik I. Heidelberger Taschenbuch
105. Berlin-Heidelberg-New York: Springer 1972

Stoer, J., Bulirsch, R.: Einfithrung in die Numerische Mathematik I1. Heidelberger
Taschenbuch 114. Berlin-Heidelberg-New York: Springer 1973

Wilkinson, J. H.: Rounding errors in algebraic processes. London: Her Majesty’s
Stationary Office 1963 (German translation: Rundungsfehler. Heidelberger
Taschenbuch 44. Berlin-Heidelberg-New York: Springer 1969)

Zimmermann, U.: Numerische Berechnung optimaler Steuerungen unter Verwen-
dung der Mehrzielmethode bei mehrfacher Beschrinkung im Phasenraum mit
Beispielen aus der Flugbahnoptimierung. Universitit Koln, Mathematisches
Institut: Diplomarbeit, 1973

Peter Deuflhard

Mathematisches Institut der TU Miinchen
D-8000 Miinchen 2, Barerstr. 23
Bundesrepublik Deutschland



