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A Modified Newton Method for the Solution 
of Ill-Conditioned Systems of Nonlinear Equations 

with Application to Multiple Shooting 

P. Deuflhard 

Abstract. In this paper the well-known modified (underrelaxed, damped) Newton 
method is extended in such a way as to apply to the solution of ill-conditioned systems 
of nonlinear equations, i.e. systems having a "nearly singular" Jacobian at some 
iterate. A special technique also derived herein may be useful, if only bad initial guesses 
of the solution point are available. Difficulties that  arose previously in the numerical 
solution of nonlinear two-point boundaxy value problems by multiple shooting 
techniques can be removed by means of the results presented below. 

1. Introduction 

In  recent years considerable progress has been made in the numerical solution 
of system of nonlinear equations. The techniques tha t  are in common use may,  in 
principle, be derived from the steepest descent method (Cauchy [9], Rosenbloom 
t30]) and the Newton method (Kantorovi~ [48]). Among the most  popular 
techniques are the Levenberg-Marquardt  method (Levenberg [2t],  Marquardt  
[22], Bard  [t]), Powell 's new hybrid method (Powell [28~, Broyden [5]), and 
the modified (underrelaxed, damped) Newton method (Goldstein [! 4], Stoer [3r ]). 
In  [323 the latter method was selected to solve boundary  value problems by  
multiple shooting techniques. (For reference see Keller [19], Osborne ~25], 
Bulirsch [6], and Stoer/Bulirsch [32]. The notations used in this paper  are close 
to [63 and [32].) 

I t  m a y  be recalled tha t  in the multiple shooting method the two-point  boundary  
value problem 

y '  = / ( x ,  y)  xE[a,  b], y :  Ea, b J ~ , "  

(t.t) r (y (a), y (b)) = 0  

is replaced by (m --  t) initial value problems 

y' =](x,y) xeExj, xj+l] / i =1 ..... m-I  (1.2) 
y(x j ;  x i, si) = s  i } 

with a suitably chosen subdivision a = x 1 < ... < xm = b. 

The n (m - -  1)-vector s T = ( s [ ,  .. T �9 , S,,)_I) has to be selected so tha t  the following 
conditions hold: 

a) continuity conditions (for m >2 )  

(1.3) Fj(s#sj+~):=y(xj+,; x#s 3-sj+~=o, i = 1 ,  . . . ,  m - - 2 ,  
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b) boundary conditions 

•,,--1 (Sl' S,n--1) : =  il" (Sl, 31 (Xm ; Ym--1, Sin--l) ) = O. 

Let zl s (k) denote the correction given by the ordinary Newton method at the 
iteration point s (~). Then by the modi/ied Newton method 

(1.4) s (k+~) = s (~) + ~,A s (~), 0 < 2k ~ 1. 

The scalar sequence {~k} is usually chosen in such a way as to ensure that 

T (s (k+1)) < r (s (*)) (1.5) 

where 
m--i m--I 

T ( s ) :  = ~ I1~ (s)[I = ---- E ~TF;.  
1=1 1=1 

(11" II Euclidean vector or spectral matrix norm, respectively, throughout the 
paper.) As the iterates approach the solution point, the 2 k should approach t, in 
order to take account of the quadratic convergence of the ordinaryNewton method. 

In some real life applications, however, the iteration terminates without 
convergence, if the Jacobiau is singular at some iteration point. Even if the 
Jacobian is nonsingular in the strict mathematical sense, rounding and discretiza- 
tion errors can heavily disturb the actual computation: extremely small values of 
),k (say ~km 1/1000) are required (sometimes even negative). As a consequence, 
computing time may increase beyond a tolerable measure, or the algorithm may 
fail to converge. The purpose of this paper is to present a modification of Newton's 
method designed to overcome the difficulties mentioned. 

For the case of singular Jacobian, some authors recommend the alternative 
use of steepest descent corrections as they do not involve the Jacobian inverse. 
That is why in w 2 Newton's method is compared with a class of steepest descent 
methods. This leads, at first, to a replacement of the usual monotonicity test (t .5) 
and, secondly, to a modified Newton method, which is in some respect similar to 
the least-squares method suggested by Ben-Israel [3 ] and extended by Fletcher 
[13]. In w 3, the method as proposed herein is backed by a constructive proof of 
global convergence which implies convergence results for the modified Newton 
method as known so far. Details of the numerical realization are worked out in 
w 4. The results o/ w 2-4 apply to general systems o/nonlinear equations. In w 5 the 
method is specified taking account of the sparse structure of the Jacobian arising 
in multiple shooting. Numerical examples are presented in w 6. 

2. A Steepest Descent Modification of Newton's Method 

In this paragraph a modification of Newton's method for both nonsingular 
and singular Jacobian is derived from a comparison with a class of steepest 
descent methods. 

Let 

[li/ l ..... 1 F(x):  = , F(x*) = 0  

(8~ . . . . .  8. ) / 
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denote the system of nonlinear equations to be solved and let jr (x) denote the 
Jacobian (n, n)-matrix of the system. 

Let a level/unction be defined by  

(2.i) Z (x I A): = & Ila F (x)II ~ = 1_ (AF (x)) ~ (AF (x)) 

where A is an arbitrary constant nonsingular (n, n)-matrix. This type of function 
is useful since 

T ( x [ A ) = O  r F ( x ) = 0  r x = x *  
(2.2) 

T ( x l A ) > O  r F(x) 4=O ~ x@-x*. 

The following lemma is elementary. 

Lemma 2.1. Let T(xIA ) be de/ined /or xED(  IR ~. Let pk ~=O denote a search 
direction in xk ED and grad T ( xk l A) the gradient direction o / T ( x  I A) in xk. Then i/ 

p r grad T (x k [ A) < 0 

there exists a ttk > 0 such that 

T ( x ~ + 2 p k l A ) < T ( x k l A )  /or 0<2<-- / ,  k. 

This inspires the following 

Definition. Let A Xk denote the correction vector given in x k by some iterative method 
/or solving systems o/nonlinear equations. Then a level/unction T ( x l A ) is said to 
be "appropriate"/or the iterative method in question, i /and only i/ 

(2.3) A x [ g r a d T ( x k [ A ) < O  /orall xkED with Axk=~0. 

a) Case of Nonsingular Jacobian. Assume J (xk) to be nonsingular for the time 
being. Then the Newton correction vector A x k is 

(2.4) A xk = --jr (x~)-lF (x~). 

One obtains 

(2.5) Axr~ g r a d T ( x k [ A ) = - - 2 T ( x ~ l A ) < O  fora l l  x~ED with Axk4=O. 

Hence, according to Lemma 2.t each level function T (x [ A) may be used to deter- 
mine the sequence {2k} by means of the monotonicity test 

(2.6) T(xk+l[A ) < T ( x k [ A  ) with x~+l:=xk+2~Ax k. 

Of course, the sequence {2k}--and the rate of convergence of the modified Newton 
method--depends on the choice of the matrix A. The question of how to choose A 
is resolved by means of the following 

Theorem 2.2. Let A x k denote the direction o/steepest descent o / T  (x I A) in x~ : 

(2.7) A Xk = -- grad T (x, I A) = -  (AJ  (xk))rAF (xk). 

Then there are level /unctions T (x I B) satis/ying A x ff grad T (x k t B) > 0, unless 

J(xk)J(xk)T A r  AF(xk) ----xF(xk) /or some ZE~. 1. 

21" 
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Proof. Let A = I  be assumed (usual case). Write A : = J (x~) J (xk) r, B : = BT B, 
Fk:=F(xk). Then A x [ g r a d T ( x , [ B )  ----Fr,  ABFk. Now, choose B : = , ~  + p y y Z  
with p > 0 and Fk r (.~ + I) y ----- 0, but  F r y  ~= 0 (here the assumption A F k 4= Z Fk is 
required). For p > [[2Fkll'/(F/yp one obtains 

A x [  grad T (x~ [ B) = --[1.4 Fk [[z + #  (F[y)~ > O. 

The proof for the general case A 4= 1 is omitted. 0 

The interesting part of this result is the special case 

(2.8) A ----- J (xk)-I in x k. 

Upon substitution of (2.8) into (2.7) the Newton correction is obtained as a particular 
steepest descent correction: 

(2.9) A x k = -- grad T ( xk I J (xk)-1) = _ j (xk)-lF (xk). 

Hence, (2.8) seems to point out a natural scaling of T (x[A) in the monotonicity 
test  (2.6). Moreover, it may be shown that  in a neighborhood of x* the level 
surfaces 

T (xk[ A) = const 

are spheres for this choice of A, while in general they are ellipsoidals. This follows 
from (compare e .g .J .  Kowalik/M. R. Osborne [20]) 

(2.1 o) T (~k I A)  ---- �89 [[aJ (x*) (xk - -  x*)[I ~ + 0 (11 ~k - -  x* H~) �9 

I t  may be recalled that  for an exact sphere only one steepest descent correction 
is needed to find x* -- independent  of the starting point x o (compare Greenstadt 
~t 6] for linear F (x)). 

b) Case of Singular Jaeobian. Without loss of generality the following special 
case is assumed (for a justification see w 4). 

(2A1) J(x , )  = [  JJo-~] '  s : = r a n k  ( Jh )=rank(J ) ,  

where J is a nonsingular upper triangular (s, s)-matrix. Let P and ff denote two 
projection matrices 

�9 0 

p = t ff = I  -- P with rank (P) : = s. 
0 ' 

0 . 
0 

Remark. A sufficient condition for P J  (xk) = 0 is 

(2.t  2) P F  (x) = const .  
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Upon partitioning the linear n-system J (xk) A xk ------F (x,) one obtains 

(I) J PA x, + j  PA xk =- -  P F  (xk) 

(II) 0 = - -  P F  (xk) 

(II) is omitted (contradiction). (I) defines s necessary conditions for a modified 
Newton method 

A xk E Nk, (Newton condition) (2.'13) 

where 
N~:= {AxE IR"[ J PA x + i  PA x + P F  (xk) =0}. 

(n --s) further conditions are obtained from the following 

Lemma 2.3. Let P J  (xk)=0 according to (2.'1'1). Let A x k denote the direction o[ 
steepest descent of any level ]unction T (x] A) (see (2.7)). Then, independent o] A, 
the components o/A x~ satis/y 

(2.'14) PA x k = { r  pA x~ 

where 

(steepest descent condition) 

[ : = j - x / .  

Proo]. Let A : = A T A  be partitioned with respect to P and P. 

_ 

�9 

Upon substituting .4 into (2.7) it is obtained 

PA xk =--J r ( -4oPFk +AxPFk), PA xk =-- i r (goPFk + 2 x P ~ )  

Since J is nonsingular, the result follows independent of A. 0 

Remark. (2.14) holds for the Levenberg-Marquardt method as well. 

Theorem 2.4. Let A x k denote a correction vector sub~ect to both the Newton 
condition (2A3) and the steepest descent condition (2A4). Then A xk may be computed 
in the ]ollowing way 

PA y~: = -- j -x  P F  (xk), PA Yk: =T r PA Yk 

(2A5) PAxk=(I ,_ ,+]-rD-XPAyk ,  P A x k = P A y , - - [ P A x ,  

Proo]. Substitution of (2A4) into (2.13) yields 

(J + iU)  PA x~ = -  PF~, 

where (J + f i r ) = J ( 1 ,  W]f  r) is nonsingular, as J is nonsingular from (2.tt) and 
(1 s +~{r)  is positive definite. Thus PA xk can be determined. From (2A4), ffAx k 
can be determined. 

From a well-known theorem (see Householder [t 7]) one obtains 

(Is +~TT) -x = I  s --{M-X{ r, 
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where M :  = (In_ ~ +?--r~) is positive definite. With  the auxil iary variable A 3'k as 
denoted above it is obtained 

PA x k = (I + T 7  r) -1PA Yk = PA Yk - - ; M - I f  7" PA Yk, 

P-A Xk =TTPA xk =M-~TTpAyk ~ P A x  k : P A y  k --]'PA x k. 0 

I t  is shown in [lO] tha t  (2.t 5) is a computat ionaUy convenient  representat ion of 

(2.16) A xk = -  J (xk) * F ( xk), 

where A * denotes the  Penrose pseudoinverse [26] of a real mat r ix  A satisfying 

(2.17) (AtA) r = A t A ,  (AAt) r =AA*,  AtAA* = A  t, AA tA  = , 4  

Thus, a method  using the correction A x k from (2.1 S) with ;t k -----t, is equivalent  
to  the Newton-Raphson  method  proposed by  Ben-Israel  [31. In  order to expand 
the domain  of convergence of the method,  Fletcher  [t 3 ] proposed a modification 
for 0 < ~k ----< 1 with T (x [ I)  in the monotonic i ty  test  (2.6). He  already gave a proof 
t ha t  T(x [  I)  is an "appropriate" level function for (2.t6). The whole class of 
"'appropriate" level functions T(x[A)  is described by the following 

Lemma2 .5 .  Let PJ(x~)=o,  Axk=--J(xk) tF(xk) .  Then T(x]A) is an 
"appropriate" level ]unction, i] and only i/ 

(2.18) P A r A P  = 0 .  

Proo]. Let 71 : ---- A T A. Then 

A x [  grad  T(xk [A) = --  (PFk)TytPI~ --(Pt~)T(PflP)(PFk).  

The first r ight-hand term is negative definite, if and only if Pb~ 4:0. PFk ~-0 is 
equivalent  to A x k = 0. The second r ight-hand t e rm m a y  be positive. Therefore 
P f l P  = 0  is necessary and sufficient tha t  

A x T g r a d T ( x k l A ) < O  forall Axk~O.  0 

For example,  condition (2A8) holds for A orthogonal  or diagonal (gauging of 
variables).  The choice of A to be proposed herein m a y  be mot iva ted  in the same 
way  as for  the case of nonsingular Jacobian.  Upon employing (2A7) twice the 
analogue of (2.9) is obta ined 

(2A9) A x k = - -  grad T ( xk [ J ( xk) * ) = - J  ( xk) * F ( xk). 

Hence, for the case of singular Jacobian  natural scaling of the level function 
T ( x I A) means 

(2.20) A = J ( x k ) *  in x k. 

Obviously,  condition (2A8) holds for (2.20). However,  p roper ty  (2.2) is modified 
as follows 

T(xk[J(xh) ' )>O ~=> PF(x~)+O ~ Axk=t=O 

(2.21) T(xklJ(x,)*)=o r PF(xk )=0  r A xk=O. 

If fur thermore PF (xk) = O, then x k = x*. 
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A final comparison of the type of method presented here and the class of 
steepest descent methods may be made by the following 

Lemma 2.6. Let B, K be nonsingular (n, n)-matrices. Let two linear trans[or- 
mations be described by 

(I) F ( x ) - - > G ( x ) = B E ( x ) ,  (II) x - + y = K x  

a) Let ~! x k denote the steepest descent correction (2.7)/or A = I 

zi x~ = - -  J (x~) T F (x,) 

Then ~l x k is invariant to the trans/ormations (I) and (II), il and only i l 

(2.22) B T B = K r  K = I.  

b) Let z] x,  denote the Newton-Raphson correction 

A x k = - J  (xk)tF (xk) 

where P J  (xk )=0 .  Then ~lx k is invariant to the trans]ormations (I) and (II), il 
and only i/ 

(2.23) P B  T B P = p K T  K p  = O. 

Remark. Condition (2.22) also holds for the Levenberg-Marquardt correction. 
Obviously (2.22) is contained in (2.23), 

For the sake of completeness it may be noted that  the results given here may 
easily be extended to apply to least squares problems as well (see Example t of w 6). 

3. Convergence Results 

I t  may be recalled from [3] that  a method using the corrections (2A6) (with 
/~k = 1) converges locally to a point x* subject to 

(3.t) J(x*)rF(x *) = 0 .  

That  is, x* is either a solution point (with F (x*) = 0) or a stationary point (with 
P J ( x * )  = 0  and P F ( x * ) = 0 ) .  In the latter case no information about PF(x* )  
is given except the well-known least squares property 

(3-2) ][ P F  (x*)[[2 = min  IIJ (x*)Z + F (x*)[Iv 
Z i R  

Hence, a reasonable assumption to obtain convergence to some solution point x* 
is that  the Jacobian be nonsingular in some domain D. Then, local quadratic 
convergence of the ordinary Newton method is guaranteed under the assumptions 
of the well-known Newton-Kantorovi~ theorem [18]. For the modified Newton 
method Stoer [31] gave a proof of global convergence showing the existence of 
some sequence {2k} such that  {T (xk[ I ) }  is a monotonely decreasing sequence. 
The proof in [31 ] can easily be extended to apply to any T (x ] A), if A is contained 
in some matrix set 

(3.3) ,4 ,,: = {A I cond~ (A) < M < o~}. 
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Here A is assumed to be a constant matrix, independent of the iteration step k, 
in contrast with natural scaling as suggested in (2.8). The purpose of this paragraph 
is to give a theorem of global convergence of the following modified Newton 
method 

A xk: = - J  (x~)-IF (xk) 

(3.4) xk+l :=x  k+2~dx~ with 2kE]0,13 such that 

T(x,+~lJ(xk) -~) < T(xk[J(xk)-~). 

Upon studying the monotonicity test (2.6) for arbitrary level function T(x  t A) 
a certain extremal property is shown to hold for natural scaling (2.8). Moreover, 
a rank strategy to be proposed in w 4 is motivated by the subsequent results. 

Following Ortega/Rheinboldt [24] a level set of T(x[ A) is defined by 

(3.5) G~(A):-={xElR ~ [ T (x lA )  <_< T(x~IA)}. 

In order to save space, standard assumptions are arranged once: 

(3.6) Standard Assumptions. 
I. Let F (x) ECX (D) with Go(A ) C D (  1R a for some A EA M. Let J (x) denote the 

Jaeobian matrix. 
n .  Let exist j (x)-I with I]J(x)-X[] <=fl for all xED. 

I n .  [IJ(x) - j ( y ) ] [  <=yl[x - y H  /or x, yED. 
IV. Let the path-connected component o/ x o in Go(A) (in the sequel simply 

denoted as G O (A) ) be compact. 

It is well-known (see e.g. Rheinboldt [29j) that under the assumptions I, II, 
and IV there exists one and only one solution point x* in (the path-connected 
component of x 0 in) G O (A). 

The following notations will be frequently used 

(3.7) Jk:=J(xk) ,  Fk:=F(xk), ~k:=[iAxkll, flk:~tlJ~l], hk:=fl2~[IF~[[. 

A simple derivation of the modified Newton method is obtained from the following 
result. 

Lemma 3.1. Let (3.6) be assumed and let xkEGo(A ). Let GL (n) denote as usual 
the class of nonsingular (n, n)-matrices and define 

(3.8) Gk:= N ek(A). 
A E GL (n) 

Then 
c~ = { x ~  ~" l  x = ~(~), ~ [ o ,  2~} 

where the path ~(2) (also called Newton path due to ~23t) is defined by 

a) ~ (x) = 0 - ~) F~, or by 
(3.9) d~ 

b) -d~ =--J(~)-~F~, x(o)=xk 

Proof. Let Hk(A) denote the set 

Hk(A) ={yE lR" I IIAylI~_IIAFhlI} 



Modified Newton Method for Ill-Conditioned Systems of Equations 297 

and let 
H k : =  (~ Hk(A). 

A C GL (n) 

Select a subset A of GL (n) 

: ---- {A ] A TA = ~, u i q, qr with q~: = Fk/I1F~ tl}, 
i 

(~  > 0 eigenvalues, qi eigenvectors of ,4 TA). 

Let  y have the components ~i, i = 1 . . . . .  n, with respect to the basis {qi} : 

Y = Z ~l~qi. 
i 

Then 

Hk(A) = { Y e N * I  Z 2 
i 

Now let /lk : = f~ Hk (A). Then 

/~k ={Y =V,/ll*~ <= llSIIq ={YelR"IY = ( 1 -  4)Fk, 4e[O, 2]}. 
I t  is easy to show that  H ,  = / t~ .  Now set y -=F(x) and lift the pa th  H~ to Gk 
(implicit function theorem). This proves s ta tement  a. The proof of s ta tement  b 
may  be found in [23]. 

Remark. The interesting part  of the  path ~ (2) is for 2 E [0, 1], since x* = 2 (1). 
I t  was shown in [29] tha t  if J(x) is singular for  some 2(2") with 0 < 2* < t ,  then 
Gk terminates a t  �9 (2*). 

Along s (4) the following proper ty  is common for all level functions: 

(%t0) T (~(2) I A ) = (t --2)9 T(x~l A). 

Euler-discretization of the differential equation (3.9.b) yields (see e.g. Meyer [23 ]): 

(3.tt)  x,+l - xk ~ - j [ x v ~ ,  4ke]o, t l .  

With these preparations the monotonici ty test  (2.6) can be studied for arbi t rary  
level function T (x[ A). 

Theorem 3.2. Let (3.6) be assumed. Let xk EGo(A ) with T (xk]A) > 0 (without loss 
o[ generality). A xk denotes the Newton correction. Then 

where 

and 

r ( x k + 4 A x ,  lA) gt , (21A)T(xk[A ) /or 2~[0, fih(A)] 

t, (21 A) : = [t -- 2 + 2 z hk (1 + hk) cond (A Jk)] 2 g I 

fi,(A) := r a in{ l ,  t /[hk(l +h , )  cond (AJ~)]}. 

Pro@ 'For convenience it is useful to introduce 

D~: = { x = x ( 2 ,  a) I x(2, ~ ) = 2 ( 4 ) + ~  (x~+2A x~--~(2)),  (2, 8)~ [0, ~ (A)] • [0, ~(2)]} 

(see Fig. 1). 
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x(L ~) 

x(1, 

x(~., 1) 6= 1 

" \ 

g)  x (2,  0)  o- . . . .  o ,t = const 

~ o---------o ~=3(,l) 

O O ~=COIISt 

~*----~(I)=x(I,0} ~ D~ 

Fig. t 

Since GkcG~(A), there exists a ~(2)E]O, t] for 2El0, t] such that Dk(Gk(A ). 
Moreover, x~ E G o (A) implies D, ( G O (A). 

t) The estimates to follow are valid for all x(2, 8)ED k. With the notations 

~ :=2 (a )  (for fixed )0 and i:=~fj(x(a, ~'))a~' 
0 

one obtains 

F(x(,~, 8 ) ) = F ( ~ ) + / ( x ( 2 ,  6)--~) (mean value theorem). 

Employing the Cauchy-Schwarz inequality yields 

r (x (2, 8)[A ) = ~[[AF (x (,~, ~)) [[* =< { [I[AF (2)[[ + [[A] (x (,~, 6) -- 2)][]*. 

A straightforward estimation using Lemma 3.t gives 

[[Af(x (2, ~) --  2)1] < [[AJ~[[ [[J~VII [I x ft., ~) - 2[] 

tlxCZ, ~) - 211_-_,~*~,h,,llJ;-Vll _-_- ~ +h, ,  ~, __< IIJ;~A-~II IIAF~[I. 
Upon using (3.~0) for T(~I  A)------�89 it i~ obtained 

(3.t2) IIAFkll _< It - -  Z + ~.zhk(l  +hk) cond CA J,)]  = :  t(~., ~), 

2) Until now, no information about ] (~t) was given. An elementary calculation 
shows that ~k (A) was selected in such a way as to ensure that  

(3A3) t ( 2 , 8 ) < t  for o< ,~<~k(A) ,  0_<8___t, t(O, 8)=t(~k(A), t)--- l .  

By means of (3.13) and a continuity argument it can be shown, that ~(~)<  1 
leads to a contradiction for 0 < ~ <~ , (A) .  Thus 

~ ( ) 0 = t  for O ~ ( A ) .  
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Hence, (3.t 2) holds for 0 ~ 6 <--_ t,  0 < 2 </Tk (A). By definition tk (2 [ A ) --= t ~ (2, t). 
This completes the proof. 0 

Corollary 1. The optimal choice 2~ E [0, 1 ] with respect to the function tk (4 [ A) is 

(3.t4) 2k(A ) =min{ t ,  l/[2hk(l +h , ) cond  (AJ~)]}. 

An estimate of the rate of convergence of the modified Newton method with 2k 
from (3.14) gives 

(3.t5) 
tk(2~lA )=<~ for 2~=1. 

Corollary 2. For natural scaling as proposed in (2.8) the following inequalities 
hold (extremal property) 

a) tk(21J~ -1) <tk(2lA)/ 

(3.t6) b) i lk(J;  1) >=ilk(A) I forall  A~A~ v 
c) 2k(J~ -1) >=2 , (A) ]  

For the proof of (3.t6) just use cond(AJk) >=t, cond(I) =1 .  

Remark. As x k approaches the solution point x*, hk approaches 0 (let y 4: 0). 
For this case one obtains from (3.t4) that ;tk-----~ is the optimal choice of 2-in- 
dependent of the monotonicity test. This is the ordinary Newton method. 

The following theorem of global convergence of the modified Newton method 
is closely related to the preceding theorem. 

Theorem 3.3. Let (3.6) be assumed. Let the sequence {x,} be obtained by the 
iteration 

xk + i = x~ -- 2~J ( xk)-X F ( xk). 

I/the sequence (~}  is selectea so that 

2min ~ 2k ~/'gk (A), 
where 

/t k (A): = min {1, t/[h k (1 + hk) cond (AJ  (xk))] -- A rain} 

and 2~i~ is any ]ixed value in the range 

0 < 2mi n ~ min {t, 1/[2Mh o (t + Mho) m]} 

with m:----- max cond (AJ  (x)), then the ]ollowing results hold: 
xEG, (A) 

a) {x~}c Co(A). 
b) / ]  T(x~IA)>O,  then 

T (x,+ tl A ) <  T (xkl A) and T ( xk+llJ (x,) -a) < T ( x~lJ (x~)-' ). 
c) There exists an x'EGo(A) with x* = limx k and F(x*) =0 .  

k 

Proo]. t) With the assumptions (3.6) it is readily obtained that h 0 < oo and 
cond(J(x)) ~ < o o  for all X6Go(A ). Since m ~ M ~ r < o ~ ,  there always exists 
a 2ml. subject to the conditions above. If x~E G O (A), then h k <= M h o (Kantorovi~ 
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inequality) and cond (AJk) ~m. With the notation ~: = rain {t, t / [2 Mho (t +Mho)]} 
the following inequalities hold: pk(A)~p=>2min>0.  Hence, the interval 
[2min, /~k (A)] is non-empty. 

2) Now, let T (x k [ A) > 0 and x k E G o (A) be assumed for the sake of induction. 
Then, from Theorem 3.2, T(xk+l[A)<=t~(AlA)T(xklA) for 0 ~ 2 ~ g k ( A ) .  
A straightforward calculation yields 

tk(2lA)~<___({--~2-in-)2 for 2E[2min,/zk(a)]. 

This implies x~+lEGo(A ). The assumption above is obviously true for k = 0 .  
The trivial case T(xkl A ) = 0  can be omitted. Thus, statement a and the first 
part of statement b are proven. The second part of statement b follows from (3.16). 

3) The inequality T ( x k + 1 [ A) ~ t k (2k [ A) T (x~ [ A) may be applied consecutively 
giving 

Ilk-1 2~n ),k T ( xo T(xklA ) =< t ,(2,lA)T(xolA ) _~ ( t - -  IA) 
i=0 

Since 2mi~ > 0: 
lim T (x k [ A) = 0. 

k 

Go (A) is compact by assumption IV. Thus there exists an x* = limx~, x* E Go(A). 
With T (x*lA) = 0 and A E A M one obtains IIF (x*)II--o. o 

Finally, it may be summarized that for global convergence of the method (3.4) the 
existence of some constant scaling matrix A ~A~ (so that the assumptions (3.6) 
are valid) is su[[icient. In applications it is impossible to select a constant matrix A 
in such a way as to minimize the number of iterations required to find the solution. 
Because of the extremal property (3.16), however, natural scaling seems to be an 
approach into this direction. This is confirmed by numerical experience. (See e.g. 
Example 2 of w 6.) 

(4.1) 

where 

4. Numerical Realization of the Method 

The purpose of this paragraph is to discuss the question of how to select the 
rank o/ the Jacobian at each iteration step in actual computation. In general, 
since reducing the rank means just solving a subsystem (compare (2.2t)), the 
use of maximum rank would be favorable. Exceptions are necessary for "' nearly 
singular" Jacobian and may be useful for bad initial data. 

At first, it may be summarized what natural scaling as proposed in (2.8) means 
in actual computation. Let A x k denote the correction of the ordinary Newton 
method and z]-~ k the correction of the simpli[ied Newton method 

A xk = - J  (xk) 

A x/~+l = - J  (x,)-XF (x,+ 1) 

xk+l =xk + 2 k d  xk. 

Then 2k is selected in such a way as to ensure that 

(4.2) tlA--xk+ 1 II < II A xd 
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The calculation of A xk+l requires no additional function evaluations, but only 
0 (n 2) operations more compared with 0 (n 8) operations required by the usual 
Newton step (one decomposition of J (xk) at iteration step k). For the case of less 
than maximum rank of the Jacobian, J(xk) -1 is replaced by J(xk) t in (4.t). 

a) A-priori Selection of the Pseudo-Rank of the Jacobian. The following method 
is derived from results due to Wilkinson [33]. Let A x k denote the exact solution 
of the exact linear system 

J (xk) d xk = - - F  (xk). 

In contrast with the notations (3.7), now let Jk denote the approximate Jacobian 

actually used in x k (rounding errors included) and let A x k denote the exact solution 
of the modofied linear system 

JkA xk = - - F  (xk). 

Then a well-known result [33] yields 

IIA xl, - ~ k l l  < ek cond (J'k) 
(4.3) [ij~xk[i _ i_ekcond(jk) ,  if ekcond(Jk)< t  

where 
IJJ (::k) - Jk II 

ek :=  IlJkll 

In what follows a nonlinear system F (x) will be said to be ill-conditioned in x k if 

(4.4) e k cond (Jk) > t, 

i.e. if the linear Newton system in x k is ill-conditioned (sometimes I is replaced 
by  t ]2 in the right-hand side). 

Monitoring the algorithm by means of (4.4), however, raises three numerical 
problems: First, the computation of cond (Jk), e.g. by  singular value decomposition 
(for reference see Golub/Reinsch [t5]) requires substantially more computing 
time than the solution of the linear Newton system. Secondly, in applications 
even the order of magnitude of e k is usually unknown. Thirdly, the estimate (4.3) 

gives only an upper bound of the relative error of A x k. The actual error may be 
much lower. Therefore, it seems to be sufficient in applications to use a lower 
bound o] cond (Jk) instead of the correct value. This may be done by means of the 
following result. 

Lemma 4.1. Let the approximate Jacobian Jk be decomposed so that Jk =QRC 
where Q is a Householder matrix, R is an upper triangular matrix and C is a column 
permutation matrix (updating the in/ormation o/column pivoting due to Businger/ 
Golub [8]). Let r i denote the diagonal elements o/the matrix R with r, 4=0. Then 

Ir, l > Irll _ >  .. .  ~ Ir, l _-__t. 
(4 .5)  c o n d ( J k )  _~ ~ - ~  _ I" . -11  = - - I ~ d  

Proo/. The following inequality is known to hold for triangular matrices: 

cond(R) > m a x  [r~] (see e.g. [3t]). 
- i,k I'kl 
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Column pivoting as proposed in [8] ensures that 

Irll >=lr,] > ... > t r , _ l [  :>[r,~ I. 

Finally, since Q and C are orthogonal, it is obtained 

cond (Jk) = cond (R). 0 

Moreover, column pivoting due to [8] ensures theoretically that the matrix R is 
of the form (2At), if and only if Jk is singular. Since Q and C are orthogonal, the 
multiplication rule of the pseudoinverse of a product of matrices yields 

R t is calculated according to (2A 5). This justifies the former restriction to the 
special case (2.11). 

A-priori Test. Same notations as in Lemma 4.1. Let e denote an input param- 
eter subject to e <~ e k/or all k. I ! / o r  some s < n 

(4.6) Ir, l > l r ,  le and Ir,+l l<ir ,  I e, 
then let s define the pseudo-rank o/the Jacobian to be used in (2.t6). 

Lemma 4.2. l j  condition (4.6) holds, then F (x) is ill-conditioned in x k. 

Irxl > a 
Proo/. ekcond(Jk) ~ e  I r , §  ---- " 

The test (4.6) is performed during the decomposition of Jk, i.e. before the 
Newton correction is actually computed. That is why (4.6) is called a-priori test. 
I t  may be noticed that both the test (4.6) and the condition number depend on 
scaling. Therefore it is advisable to scale ark before the actual decomposition 
(compare Bauer [2]). The input parameter e is usually selected to be of the order 
of magnitude of the relative machine precision. 

b) A-posteriori Selection of the Pseudo-Rank of the Jaeobian. Since the reverse 
statement of Lemma 4.2 is not true, there are cases of ill-condition that are not 
detected by the test (4.6). In the numerical solution of linear systems the question 
of how to classify a given matrix as to be singular or not, was discussed over years. 
The state-of-the-art decision is made by iterative refinement of the solution: 
no at tempt at obtaining the solution is made unless the norm of the first correction 
is significantly smaller than the norm of the initially proposed solution (compare 
E8]). This method can be extended to the non-linear case recalling that iterative 
refinement just means Newton's method for linear F (x) (with the exception of the 
fact that the residual vector is computed using double-length accumulation of 
inner products). The use of the monotonicity test (4.2) instead of the monotonicity 
test (t.5) is the nonlinear analogue of the fact that in the linear case the corrections 
are compared instead of the residuals. Finally 2, = t (linear case) is extended to 
2rain =< 2k =< t,  for some suitably chosen positive input parameter 2mi n. 

(4.7) Rank-Strategy. Let 2~in denote an input parameter in the range 0<2~-n 
~_ t.  At  the iterate xk let condition (4.2) be not satisfied ]or all 2k tried in the range 

2rain ~ 2k ~ 1 
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Then reduce the pseudo-rank o/ the Jacobian by one, compute the new correction A x~ 
]rom (2.t6), and try once more, e.g. with 2k = I. (To be repeated, i] necessary.) 

This type of rank-strategy is now backed theoretically by means of the result 
(3A4). To simplify notations, let the transition from the modified Newton method 
for pseudo-rank s (say s ----n) of the Jacobian to the modified Newton method for 
pseudo-rank s '<  s be described by the following 

(4.8) Transition Tableau. 

s : n  --> sr ~ s  

F (xk) ~ P F  (xk), say tlPF (xk)[I > o 

=owithout lo so, ene a, ity 

e x i s t , , . ,  

Axk=--J (x~) - lF(xk )  ~ P A x ; = - J - 1 P F ( x k ) ,  f f A x k = O ~ P x ~ P x ~  

r(xIJ(x~)- q ~ r(xIJ(x#t  ). 

It  may be seen that the right-hand side refers to a modified Newton method for 
the reduced mapping PF (P x). Hence, the results of theorem 3.2 for the mapping 
F (x) may be compared with the results for the mapping PF (P x). 

Comparison Lemma 4.3. Notations o/ the transition tableau (4.8). Let primed 
quantities correspond to the right-hand side o[ (4.8). 2~(A) and 2'k(A) are sdected 
due to (3A4). Assume 2k< 1 and 8' < 8  =Sk. Then 

a) /t; (J  (xk)') > 2k (J  (Xk) -l) 
(4.9) b) 2; (I) > 2k (I). 

Prool. a) Employ (3A4) for natural sealing. Then 2, < 1 implies 

2k =l / [2h,~( l+h,)]  < t  and 2;=rain{t ,  l/[2h;(1+h'k)]}. 

Moreover 

implies 

and 

[I P J  (x) - P J  (y) U <= UJ (x) - J (y) I[ <= ~' U x - y [I 

]7' <=~,:[[PJ (x) - P J  (y) [[<=y'[[x -y[ [  

h; = 8'~r ' [I p F  (.~)II < 8~r ItF (*~)II = h~. 

This proves statement a. 

b) cond (J) = U l[ [IJ -111 --[I P J  (*~)l[ 8; ~-IlJ (~)[18' < IlJ (*~)]18~ = cond (J  (x~)). 0 
In applications, the selection of 2~ is not due to (3A4) but ad hoc. Nevertheless, 

numerical experience confirms the results (4.9). A reasonable choice of the range 
of the input parameter ~min appeared to be 

1 1 
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e) A Rule of Thumb for Bad Initial Data. In some real life examples only bad 
initial guesses of the solution are available. A well-known rule of thumb for these 
cases is to start the modified Newton method with smallvalues ~0. This is backed 
by  (3.14): x k " far  from x*"  means h~ "large",  which implies ~k (A) "small" .  An 
efficient alternative rule of thumb can be derived from the result (4.9). 

(4A0) Rank-Strategy. Start with initial pseudo-rank o/ the Jacobian less than 
max imum rank. I n  the course o/ the iteration increase the rank gradually. 

Employing (4.10) gives usually smaller corrections A x~, as for the Penrose 
pseudoinverse the following result is well-known: 

(4.t 1) IIA xs II [[A II T (xk[Jt) --< T (x, I j~ a) 

5. Application to the Solution of Multiple Shooting Equations 

The purpose of this paragraph is to give a multiple shooting modification of 
Newton's method, similar to the method derived so far. This is necessary because 
of the sparse structure of the Jacobian (n(m-- t ) ,  n (m- - t ) ) -ma t r ix  

where 

J(s)  = 
0 "c'-" 

1 

Gi :=  ~y(xj+l; xi, si) i = t  . . . .  m --1 
~ s j  ' ' 

A . - -  ~r(ya, yb) B : - -  ~r(ya, yb) 
~Ya ' ~Yb 

and the identity matrix I are (n, n)-matrices. 

For nonsingular Jacobian the Newton correction A s is computed following 
Stoer/Bulirsch r32] : 

A s 1 = E - a u  
(5.t) 

Asi+ 1 = G i A s i + F i ,  i= t  . . . . .  m - - 2  
where 

E : = A  + B G m - 1  "'" Gx 

u : = - -  F,~_I --  BG, ,_i  F,~_ a . . . . .  BG,,_ I ... G2F 1. 

Remark. For a smooth trajectory (i.e. F 1 . . . . .  F~_2 =0)  E is the Frrchet- 
derivative of the operator that describes the two-point boundary value problem. 

The (n, n)-matrix E is nonsingular, if and only if J (s) is nonsingular, as may 
be seen from the following 

Lemma 5.1. Let C~ denote the (n,n)-matrices 

C ~ = G i G ~ - I . . . G t  /or t < < - l < - - i ~ m - - t .  
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L a  L, R, and S denote the ( n (m -- t ), n (m --1) )-matrices 

r e , ; - - 1 )  " " �9 , i f ; - - 1 ,  

L:= - I  0 

0 " - I ,  

I I 1 c1. .  0 
~ 1 7 6  , 

R:; o i l l ' . . .  
�9 " C ~'-2" " I  ~7~--2  " " " " " m - - 2  

S : =  I 0 . 

' ' ' I  
Then 

(5.2) 
a) L J R = S  

b) det (J) = det (E). 

The proof of a) is rather space consuming but straightforward. 

The proof of b) is obtained from a) with det (L) = det (R) = 1. 

If E is singular, then the system (5.t) cannot be "solved".  The modification 
(2A6) of Newton's method using the Penrose pseudoinverse of the Jacobian as a 
whole would ignore the sparse structure of J (s). Moreover, it is important for 
actual computation that independent of m only the (n, n)-matrix E has to be 
inverted. This inspires the following modification of (5.1): 

As 1 = E t u  
(5.3) 

Asi+I----GjAsi+F# j = t  . . . . .  m- -2 .  

The question of how to select the rank of E is decided by means of the results 
of w 4. Using the decomposition (5.2a) the system (5.3) may be written as 

zl s = - J -  F = -- { R R T) grad T (s I R-1J -) 
where 

J-  = R S t L .  

Here J -  denotes a generalized inverse satisfying 

( j _ j ) r  = (R RT)- IJ -J  (R Rr), ( j j _ ) r  = (LT L ) j j -  (LT L)-X, 
(5.4) 

j - j j -  =]-, J J - J=] .  
The difference of the Penrose axioms (2.t7) and the axioms (5.4) implies restric- 
tions for the class of "appropriate" level [unctions. 

Lemma 5.2. Notations as be/ore. T (slH) denotes a level [unction. La  P E = 0 ,  
A s = - - J - F .  Then 

a) A s T grad T (s i l l )  = - 2 T (s I n ,  + (H (I - - J J - ) F ) r H F  
(5.5) 

b) (H ( I - - J J - ) F ) r  H F  = - -  (Pu) T (Hr HF)._x.  

2 2  N u m e r .  M a t h . ,  B d .  2 2  
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Proo[. a) A s T grad T (s t H) = - -  (J-F)r  JT HT H F  = -- (H (J J -  + I - I ) F ) r H F  
= - -  2 T (s i l l )  + ( g  (I - - J J - ) F ) T H F  

b) Now (I - J J - ) F  = F  + J A  s = L  -~ (LF + LJA s). 

Using the notations of Lemma 5.1 it may  be seen tha t  

L -x (LF + L J A  s) 

�9 �9 . . . - -F1--G1Asl+Aso " 
" - - I  " = 0 

B m-1 [__F,~_2__'Gm_zAsm_2~As,~_ 1 L I, BC~_I. �9 C,~_1 E A s l - - u  

With P (EA s~--u)  = o and P E = 0 the result above is obtained. 0 

An important  consequence of this result is tha t  the usual level function 

m - - 1  

T (s [ I)  = ~ ~. [IF ill s 
i=1 

is not "appropr ia te"  for the modification (5.3) of Newton's method,  unless m = 2. 
Ra ther  the "appropriate" level functions 

T(slJ-) = ~  E [IAsill ~ 
i=1 

or  
~} - -  2 

T (s I R-1J - ) = ~ (IIA sl [1' + Y IIF, II ~) 
1=1 

should be used to determine the sequence {2k}. 

m - - 2  

Proof. A s T grad T (s 11) = - -  E I~'[[* - - I [PF--II [ '  -- (PF,,_~)r (PF,~_I ~-flu). For 
i=1 

arbi t rary  functions ~. the right-hand side is negative definite if and only if m --  2. 
The proof for T(s[J-)  and T(sIR-1J-  ) is easily obtained using (5.5a) and the 
axioms (5.4). 0 

As for convergence of this modification of Newton's  method, the result (3.1) 
due to [3] m a y  be applied. I t  can be shown that  the method converges locally 
(for 2, =1)  and yields a smooth t ra jec tory  y(x) (satisfying F 1 . . . . .  F,,,_ 2 = 0  
for m > 2) subject  to 

(5.7) y' =/ (x ,  y), Pr(y(a) ,  y(b)) = 0 .  

No information is given about  Pr(y(a) ,  y(b)) except the analogue of the  least 
squares proper ty  (3.2). 

Remark. A sufficient condition for f i E - - 0  is 

(5.8) P r  (y (a), y (b)) = const 

( compare condition (2.12)). 
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6. Numerical Results 

Example 1. Least squares problem due to Brown/Dennis [4]. Minimize 

l0 

T(xlI) -- Y (1(,1, G, P,) - t 0 ,  to, p,))~ 
i=1 

where 
p i = 0 A - i ,  i = t  ( t) t0,  /(~l,~2, p):=e-ClP--e -*'p. 

The experiment was run on the TR 440 of the Leibniz-Rechenzentrum der 
Bayerischen Akademie der Wissenseha[ten. The computations were performed in 
FORTRAN single precision with a 38 bit mantissa. The analytic expression of the 
Jacobian was used. Each evaluation of the Jacobian was counted for 2 function 
evaluations. Using the different starting points given in [4], the problem was 
solved by a (non-optimized) standard version of a least squares algorithm employing 
the results of this paper (see last row of Table A). In [4] all starting points (with 
the exception of the last one) were reported to lead to a failure (F) of the ordinary 
Newton method (there called Gauss-Newton method), see first row of Table A. 
For comparison the results presented in [4] for the Levenberg-Marquardt method 
(L.M.) and its derivative free version (D.F.L.M.) are arranged (second row of 
Table A). 

Table A. Number  of funct ion evaluations required to reduce T(x[ l )  to less t han  10 -5 

Start ing point  x o and T(xolI ) 

(o, o) (o, 9.0) (5, o) (5, 90) (2.5, lO) 
3.06* 2.09 19.6 1.81 0.808 

ordinary (Ganss-)Newton method F F F F t6 

L.M. (D.F.L.M.) 22 25 25 3t t6 

modified (Gauss-)Newton method 19 14 2t 14 13 
(this paper) 

* I t  may  be noted tha t  for x 0 = (O, 0) the Jacobian is singular. 

The following three examples were run on an IBM 370/t65 of the Kern- 
forschungsanlage Jiilich via an IBM 2780 terminal at the Universitat zu K6ln. 
The computations were performed in FORTRAN double precision with a 56 bit 
mantissa. The examples refer to multiple shooting. For an ALGOL program 
of the type of algorithm used herein see [7]. Unless noted, the Jacobian is approx- 
imated by numerical differentiation at each iterate. The damping factors 2k are 
selected from the set {t, ~- . . . . .  2~an}, where ~ in  denotes the input parameter 
as introduced for the rank-strategy (4.7). The following three figures show the 
comparative behavior of different algorithms by drawing the sequences {2,} with 
unaccepted trials included. Each trial of 2 means one function evaluation (in 
multiple shooting, that  means the numerical solution of ( m - - t )  initial value 
problems for differential ~ equations). The sign �9 marks the reduction of the 
applied pseudorank of the Jacobian. 

22* 
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~k- 1' 
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//2 
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1/16 
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n g t V  

Mew 
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3 4 5 6 7 8 9 10 1t 12 13 14 

monotonicity test function eval. 
(6.1) 84 
(6.2) 52 

Fig. 2 

I I t ! 

15 16 17 18 : 

level function 
T(s(t*)lI) = t.3 �9 10 -11 
T(s(n)]I) = 0.4.10 -11 

Example 2. Re-en t ry  auxil iary problem (n = 6, m = 2). 

For  reference to this boundary  value problem see [32] (7.3.7.1), (7.3.7.3), 
(7.3.7.4), and (7.3.7.t0). Since m----2 (single shooting), the method applied is the 
same as proposed/or the solution o/general systems o/equations. Fig. 2 shows a 
comparison of the sequence {2k} using the monotonic i ty  tes t  

(6.t) T (s (*+x) I I)  < T (s(k) I I) (old) 

and the sequence {2h} using the monotonic i ty  test  

(6.2) T (st*+l) l J (stk)) -1) < T (st*)lJ (s t*))-l) (new) 

as proposed herein. 

One evaluat ion of the Jacobian  counts for 3 function evaluations.  Throughout  
bo th  of the  i terat ions the Jacobian  is of full rank. The exper iment  affirms the  
result (3.16c). For  the common initial da ta  s t~ one obtains T ( s (~  0.3t. The 
lower bounds of the  condition numbers of the (3, 3) "matr ix  E (scaled) range from 
0.4" t0  t t o  0.5 �9 IO s (at the solution point ~). 

Example 8. Re-en t ry  problem (n = 7, m = 9). 

For  reference see [52] (7.3.7A), (7.3.7.6), and (7.3.7.7). For  the initial da ta  
s (~ one obtains T (s(~ = t �9 l 0 ' .  Fig. 3 shows a comparison of the sequences 
{2,} with and  wi thout  rank-strategy (4.t0). The actual ly  applied pseudo-rank a t  
s (~ is 2 less (and a t  s O) 1 less) than  the full rank  of the ma t r ix  E (as is indicated by  
the  negat ive numbers  over  v). 

One evaluat ion of the Jacobian  counts for 7 function evaluations.  The lower 
bounds of the eomfilio,a numbers of E (scaled) range f rom 3 �9 t04 (at s t~ to the 
m a x i m u m  value 4-  t0*; for the  solution point  one obtains  t �9 t 0  a. Reduct ion of 
the  m a x i m u m  rank  by  2 (at s t~ yields 0.9" t0  x, reduction b y  t (at s 0)) yields 
t . t 0  4. 
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Fig. 4 

Example  4. Optimal  control for synenergetic orbit  plane change of a spacecraft 

(n = t 3 ,  m = 6 ) .  

This example refers to a hypersonic maneuver of a spacecraft as described by 
Dickmanns [t 2]. Let a spacecraft fly on an orbit around a planet having a sufficiently 
dense atmosphere. The problem is to turn  the orbit plane to a new one of the same 
altitude. The quant i ty  to be minimized is the total amount o/ fuel  required for the 
maneuver. I t  is important  to limit the heating of the spacecraft. 

The mathematical model as given in [6] leads to a two-polnt boundary value 
problem with t3 differential equations and several inequality constraints for the 
control variables. In  actual computation the problem appeared to be v~ty se~tsfrtiv#. 
Hence, the solution was attacked by computing a h ~ a t a p y  s ~ / ~  of familiar 
problems using multiple shooting techniques (compare [6]). The example present~l 
here is one off the problems from the homotopy chain. The number of nodes is m = 6. 



3 t 0 P. Deuflhard 

Rank- I  corrections of the  Jacobian due to [5] (see also [32] and  [10]) are employed. 
Numerical  differentiat ion is inserted on ly  a t  su i tably  selected iterates. The example 
indicates the  efficiency of the rank-strategy (4.7) for m > 2 in  connection with the  level 
funct ion T ( s l J -  ), even if only a poor approximat ion  of the Jacobian is given. Fig. 4 
shows a comparison of two algori thms using T ( s l I  ) and  T ( s l J - ) ,  respectively. 

The algori thm using T ( s l I  ) would not  converge unless two empirical rules of 
t h u m b  were employed:  (I) i t  is not required that  T (slI) decreases a t  the first i terat ion 
step (actually one obtains T ( s ( ~  -2, T(sOllI)=o.4.1oL whereas 
T (slX) l j  (s(~ -a) < T (sO0)[j (st0))-x) 1) (II) 22 is permit ted to be negative (this means,  
t h a t  the Jacobian approximat ion  is so poor tha t  the result  (2.5) cannot  be claimed for 
the  actual  Newton correction A $(z)). Like in Fig. 3 the  sign �9 marks the reduct ion 
(by t) of the  pseudo-rank of the  Jacobian.  The lower bound  of the condition number 
of the mat r ix  E is t .4 �9 105 at  the solut ion point .  

Employing  the  results of this paper  U. Z immermann  [34] computed the  solut ions 
of the  complete homotopy  sequence. An extensive comparison given in  [34] clearly 
shows the efficiency of the method as proposed herein. 

E x a m p l e  a. O p t i m a l  descent  of the  second s tage  of a space shu t t l e  sub jec t  to  
h e a t i n g  res t r ic t ions  (n = t 3, m => 9). 

This  problem refers to a special type  of spacecraft called space shuttle. The physical 
model  is due to Dickmanns  [ t l ] .  By  means  of the  results of this  paper  Pesch [27] 
t rea ted  the opt imal  descent of the second stage. (The description given here follows 
the  lines of [27] where the results of extensive computa t ions  were presented.) The 
q u a n t i t y  to be maximized is the  range. As in  example 4 heating restrictions are required. 

The mathemat ica l  model  leads to a two-point  bounda ry  value problem with 
t 3 differential equations.  For  the  physical  quantities (velocity v, height h, ]light path 
angle 3,, range A etc.) the following 6 differential equat ions hold:  

(6.3) 

W 
. . . .  g .  s i n  3' m 

A sin # v 
-- �9 cos y-  cos Z " tan A 

- m . v  c o s 3 ,  r 

A . c o s  ~ - -  ( g  - -  V )  " c o s  3, 
= m~b-v 

/ / =  v .  cos 3,. sin Z 
r 

/~ = v .  s i n  3, (r  = R + h)  

r v c o s  
r cosA cosz, 

s where A ' - -  --  e--vs W : = c w F ~ v  , "-- c n r --  Cwo + k a. " - - C A ~  2 " 

For  the  lift coe//icient c a (a control variable) three inequality constraints are required 
among which the  hea t ing  restr ict ion is the  most  severe: 

5 

(6.4) r a ~ c a l  t = Y, B i (h )Hi (h ,  v) + Aca t  f. 
i=x 

Bi ,  H o i = 1 . . . . .  5 are given functions,  Ava~  represents the  heat ing of the space 
shut t le  beyond  the  allowed l imi t  t empera ture  (A r a n = 0 means  2000 ~ F = t093.3 ~ 
The  given boundary conditions axe v(O) = 7.85 km/sec, v(T)- - - - t . t  t6  km/sec, 3 , (0)= 
- - t . 25  ~ 7 ( T ) = - - 2 . 7  ~ h (0) - -  95.0 km, h ( T ) - - - 3 0 . O k m ,  Z ( 0 ) = A ( O ) = 0 ( 0 ) = 0  ~ 
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T h e  total /light time T is f ree  (~r = 0). F r o m  t h e  ca lcu lus  of  v a r i a t i o n s  one  o b t a i n s  
5 d i f f e r en t i a l  e q u a t i o n s  for  t h e  adjoint variables 2v, 2x" ~7' 2a, Ah, ~o, e.g. 

~ e-," v ...... ~--  �9 s in s in ~, cos  +2x  c a  2m cos ~, 7 + ~ h  z t a n A  

go R 2 v 

[ v 1 + 2"a - -  /~ + 7  s in 7 s in  Z 

+ 2h [v cos ~,] 

+ ~o - R + h c o s A  " 

Th is  e q u a t i o n  is  nonlinear s ince  t h e  con t ro l s  c a a n d  # a re  f u n c t i o n s  of  t h e  a d j o i n t  
v a r i a b l e s  e.g. 

2x 2y 
w : = - I / (  ~ ~ - ) ~ +  ~ .  sin/~ w cos  7 ' cos  # = - -  - - ,  w F \  cos  y / 

F ina l ly ,  t h e  transversality conditions are  4 a d d i t i o n a l  b o u n d a r y  c o n d i t i o n s  

Az(T) -~ ),0(T) = 0., i ra(T) = - -  1., [ ~ v ; + 2 z 2 + ~ v ~ + ~ a z l + a h i + ~ o O ] t = T = O .  

I n  a c t u a l  c o m p u t a t i o n  t h e  p r o b l e m  a p p e a r e d  to  be  highly sensitive. Hence ,  a s e q u e n c e  
of  f ami l i a r  p r o b l e m s  w a s  c o n s t r u c t e d  us ing  A CAn f r o m  (6.4) as  a h o m o t o p y  p a r a m e t e r .  
To  g ive  an  i m p r e s s i o n  of  t h e  n u m e r i c a l  d i f f icu l t i es  t h r e e  g r a p h s  for  t h e  c o n t r o l  va r i ab l e  
c a (t) are  p r e s e n t e d  (due  to  [27]). 

C A 

CAH 

0.3 

0.2 

0.1 

! 
! 
i / ' \  
| I t 
t I t 

I t 
I t e # 1 ~" disc~ 

I t / ' t  
I 1 . I I 

II II 
2 3  4 5  6 

C A ~ CAH 

I.~v-- nodes 

8 9 

d can = 0.040 ~ d cAs = 0.039 

O. I I 
0 500 1000 1500 2000 t [ s ec ]  

lift coe//icient c A (control): S o l u t i o n  d a t a  for  A cAn ~-0 .040  do  n o t  y ie ld  a c o m p l e t e  
s t a r t i n g  t r a j e c t o r y  fo r  A c a H = 0.039 ( e x p o n e n t i a l  over f low)  

Fig .  5 
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"l CAn 

0.3 

0.2 

o., I 
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0 

! 
I ! * , / ' ,  
I I t 
I , t 
I ] I, .~ discontinuities e"* 
! , I "~ , I 
I $ t ! 
t s t , , '~ 
I . \ ~ _ r  

II II I 
2 3 4 5 6 7 

new node 
inserted 

i t ! ! ! 
! t I 
I I I 
! t I 
i ! i 

-I 
9 

I 
10 

nodes 

c A - - - - -  c A .  A can = 0 . 0 4 0  --+ A can = 0.039 

I I I I 
500 1000 1500 2000 t [ sec]  

l i / t  r  r ( c o n t r o l ) :  i n s e r t i o n  o f  a n e w  n o d e  (7) g e n e r a t e s  a c o m p l e t e  s t a r t i n g  
t r a j e c t o r y  f o r  A c a n = 0 .039  

Fig .  6 
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! t 
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I I /; ! 
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/ I I l I 
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0. I t I 
0 500 1000 1500 

lift r c A (control) : solution Ior A ca H = 0.039 

Fig .  7 
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?lOl' 

+1 

- 1  

- 2  

f ' , ,  

i- ",, f \  r \  
r  

I 
with heating restriction (,t CAn = 0.008) 

- - - -  without heating restriction ! / 

i I 

I I I I i 
0 500 1000 1500 2000 t [see] 

flight path angle ~, [27] 
Fig. 8 

In  Fig. 5 the solution da ta  for A cAH = 0.040 (at 9 nodes) were taken as the initial 
da ta  for Z]CAH---~0.039: exponential  overflow occurs in the subinterval 6. Upon 
inserting a new node the start ing t ra jectory could be completed (see Fig. 6). The 
solution c a (t) for Acan  =0.039 is shown in Fig. 7. The solution is correct to about 
6-8 significants digits. Approaching A c a n = 0.008 the homotopy steps decreased and 
computing time increased: /or a change o/ 0.0005 in ACAH more than 600 see. were 
required on the IBM 370]165 t Using a 56 bi t  mantissa the lower bound of the condition 
number of E (scaled) was about t0 x9 at  the solution point. In  Fig. 8 the graph ~ (t) 
for A c a n = 0 . 0 0 8  clue to [27] is shown. 

Conclusion 

The  modif ied Newton method  as proposed  herein, appears  to work  eff iciently 
in solving i l l -condit ioned,  h ighly  nonl inear  sys tems of equat ions (or non-l inear  
least  squares systems) as far  as an approx ima t ion  of the  Jaeobian  is avai lable  and 
the dimension of the  sys tem is no t  too large. These proper t ies  hold  for mul t ip le  
shoot ing where the  dimension of the  sys tem is equal  to  the  number  of different ial  
equat ions  to  be solved s imultaneously.  B y  means  of the  results  given here 
signif icant  progress in solving sensi t ive op t ima l  control  problems could be made.  
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