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Local Contributions to Global Deformations 
of Surfaces 

D. M. Burns, Jr. (Princeton) and Jonathan M. Wahl (Chapel Hill)* 

Introduction 

In [23], Schiffer and Spencer prove that all small deformations of 
complex structure on a compact  Riemann surface may be realized by 
altering the complex structure only within an arbitrarily small neigh- 
borhood of a point on the surface. It seems interesting in general to 
consider whether it is possible to construct deformations of an algebraic 
variety or complex manifold from deformations of neighborhoods of 
certain subvarieties. Further motivation for trying to understand the 
role of subvarieties in deformations is suggested by the instability under 
deformation of the Neron-Severi group, i.e., the group of divisors modulo 
numerical equivalence. 

As an example, one may consider the family of affine surfaces 
Vt: x 2 + y 2 + z 2 = t  z (t is a parameter;  V o has a nodal singularity at the 
origin). This family admits a resolution {Xt} --, {V~}, with {X,} a smooth 
family of non-singular surfaces, and each X~ is a minimal resolution of V t 
([4] or [5]). The exceptional curve E in X o is a IP 1 with self-intersection 
- 2  which does not appear in any Xt, for t#:0. One may ask whether 
every smooth surface X with such a curve in it admits a one-parameter  
family of deformations arising from this local model. Furthermore, if X 
contains several disjoint such curves, does each one independently 
contribute one dimension to the moduli of X?  The Hartogs '  theorem of 
[14] says that one cannot simply plumb in the local deformation, leaving 
the structure of X unchanged outside a small neighborhood of E. More- 
over, old examples of Segre [26] show that the nodes on certain hyper- 
surfaces V in IP 3 are not "independent", i.e., there aren't enough defor- 
mations of the resolution X of V to allow for a one-dimensional contri- 
bution from each node. 

Theorem (3.7) of this paper says that the regularity of the Kuranishi 
variety of X is sufficient for the deformations of X to realize independently 
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the local deformations of disjoint nodal curves, or, more generally, the 
exceptional curves arising from rational double points. In fact, inter- 
preting "independently" properly, these conditions are equivalent. In 
conjunction with structure Theorem(2.6) on deformations of X, one 
readily constructs examples (e.g., those of Segre) of surfaces of general 
type with obstructed deformations and obtains information on the 
singularities of the moduli space. 

The main technique of the paper is a localization of some defor- 
mations of X about an exceptional curve E in cohomology, by means of 
the local cohomology group H~(X, O), O = tangent sheaf of X. It is then 
shown that nodes are always independent to first order. Once this is 
known, two types of conciusions follow: (1) The actual independence of 
certain exceptional curves, given the regularity of the Kuranishi variety; 
the example of a Kummer K - 3  surface is worked out in detail (3.9). 
(2) If we know a priori bounds on the dimension of the Kuranishi family, 
and we know the presence of sufficiently many nodal exceptional curves, 
then the contribution of H~(X, 6)) to H a(X, O) forces the latter to be 
larger in dimension than the Kuranishi family, and X will have obstructed 
deformations. 

The individual sections may be summarized as follows: w and 2 
present the formal theory relating global and local deformations of 
surfaces over infinitesimal bases. w shows that H~(X, 63) injects into 
H a (X, ~), if E is a minimal exceptional curve. This local contribution 
is computed in some cases, especially for E the exceptional curve of a 
rational double point. In particular, if a surface X contains a non- 
singular rational E with EZ= - 2 ,  then H a (X, O)#:0. w deals with the 
relations between the infinitesimal deformation theory of a smooth 
surface X with exceptional curves U and that of the variety V obtained 
by blowing each U down to a point P~. These theories are also related to 
deformations of the U and of the P~. The relations are summarized in the 
structure Theorem (2.6). The methods used here were introduced by 
Schlessinger [24]. The computations of w 1 combine to yield "first order 
independence" (2.13). w 3 extends the previous work to the larger (con- 
vergent) analytic category. Here we first have to pick out an appropriate 
class of neighborhoods of E and consider their deformations. Fortunately, 
the necessary convergence theorems needed for this approach have 
recently been proved by several authors (e.g., [1] and [20]). w applies 
the general theory to compute many examples of smooth surfaces with 
obstructed deformations, obtained by resolving hypersurfaces in IP 3 
with rational double point singularities. Corollary(2.11) implies the 
moduli space of such a surface is always a reduced complete intersection. 
If all singularities are nodes, this space is a hypersurface singularity of 
multipIicity two, and Corollary(4.3) gives a very geometric character- 
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ization of regularity of the Kranishi variety in terms of the position of the 
nodes in IP s. 

The particular form of cohomological localization employed here 
seems to be of a very special nature, since it applies mainly to nodal 
exceptional curves (but of. here (1.16)). We always work over the ground 
field 112. 

The authors would like to thank several people for helpfal suggestions and stimulating 
discussions, especially M, Arlin, D. Mumford, and D. C. Spencer. 
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(1,1) Let V be a two dimensionaI algebraic variety with an (isolated) 
normal singularity at P, Let f :  X -* V be a minimal resolution of V; i.e., 
f is a proper birationat map, X is non-singular, f is an isomorphism an 
X - f - I ( P ) ,  and f - l ( P )  contains no non-singular rational curves of 
self-intersection - 1. Such a resolution exists and is unique [5]. For any 
scheme Y, denote by Or the sheaf of IF-derivations, i.e., 

Q1 
O r = H ~ y (  v, (gv). 

If Y is non-singular, 0 v is the (locally free) tangent sheaf. 

(1.2) Proposition. There is a natural isomorphism f .  Ox ~ ' Ov. 

Proof. The existence of the natural inclusion f ,  Ox c Ov follows from 
the inclusion 

0 --, Ox ~ ~ x ( f *  ~2av, (gx) 
and the equalities 

f . ( ~ m r  t2~, (9x))= J f ~ v  (t2 ~ , f ,  Ox)= Og. 

Note 0 v ~ , j .  (9 x by normality. 

For  surjectivity, it suffices to consider an affine open neighborhood 
Spec R of P in V; let P correspond to a maximal ideal m. We show below 
that any derivation d of R is such that d(m)cm.  A direct computat ion 
then shows d extends to an element of H ~ (B, 08), where B--,  Spec R is the 
blowing-up of m. A theorem of Seidenberg [27] implies that any deriva- 
tion of B extends to its normalization/) .  Continue this procedure until d 
extends to a non-singular variety X' birationally dominating Spec R. 
Then X is obtained from X' by biowing down, whence we may push the 
derivation onto X. 

To show d(m)cm,  we may pass to the completion S of R at m. Let 
C[e]  =tlY[z]/z 2. We may view 1 + e d  as a IF [~]-automorphism of S[a] 
inducing the identity on S. This extends to a tlY[[t]]-automorphism 

t 2 d 2 
c r = e t d = l + t d + - ~ - - +  ... of S[[ t ] ] .  But a must send the singular 
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subscheme V(m)cSpecS[[t]J into itself, whence d m c m  (cf, [32], 
Lemrna 4t. 

(1.3) Corollary. Let E c X  be the exceptional subset of f :  X--+V (i.e., 
E = f -  1 (p)); then there is an inclusion Hlu(Ox) c H I (Ox). 

Proof The morphism above arises in the long exact sequence for local 
cohomology [12] 

H~ Ox)--, H ~  Ox)--~ H~(Ox)---~ H 1 (X, Ox). 

Let U - = X - E ,  of course, U =  V-{P} .  So, H~ Ox)=H~ Or), while 
the Proposition implies H~ Ox)~-H~ Ox)= H~ Ov). The local 
cohomology sequence on V is 

H~ Ov)-+ H~ Ov)--" H~(Ov). 

Since V is Cohen-Macaulay at P (being two-dimensional and normal), 
depth~ Ov =2, as Ov is the dual of a non-zero sheaf ([25], Lemma 1); 
thus, H~(Ov)=0, whence the result. (Cf. also Artin [l],  Cot. 4.5.) 

(1.4) Remark. The same result shows that if V has several normal 
singularities, X is its minimal resolution, and E is the union of the ex- 
ceptional fibres, then H~(Ox) c H 1 (Ox). 

(1.5) In order to compute the local group H~(Ox), we may suppose 
V =Spec R is affine. If E is viewed as a reduced divisor on X, then by 
[12] we have 

Hl (Ox) ~ , li_m Ext~((9,E, Ox). 
But 

w ~ x  (r Ox) = o 

~ .  (r ox)= o,, | N.~ (where No, = (9(nE) | r 

hence the standard spectral sequence shows 

H~(Ox) - )lim H~ | N,E). 

The surjection (~--~ (~E yields 

O ~  N~._ I, ~--* N,~--, (gu(n E)---~O. 
Therefore, 

H~ | Nz)= H~(Ox). 

(1.6) Suppose the minimal resolution X-~SpecR is such that E is a 
union of non-singular curves E~, and the only singularities of E are 
transversal intersections of two components (this happens if H'  ((fix)= 0, 
i.e., for rational singularities [7]). Then if Z is an effective divisor on X 
supported on E, one has an exact sequence 

O--, Oz--, O,, | Oz--,@N~ --,O; 
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here, the second map is the sum of the compositions 69 x | (9 z ~ Ox | (9~, 
-*NE,, and the exactness is easily checked formally. One also has the 
exact sequence 

o-~  Ox Q (9( - z )  ~ Ox --, Ox | (~z--. o. 

Since for Z sufficiently large, - Z  is ample relative to f, we have 
Hl(Ox) -~H~(Ox| for such divisors. (This also follows by the 
theorem of holomorphic functions.) 

(1.7) Recall that a singularity Spec R is rational if H 1 ((gx)=0 for some 
(or every) resolution X ~ S p e c  R. Among these are the rational double 
points ([2, 3, 7]), henceforth called R.D.P.'s. These are the singular points 
such that the E[s in a minimal resolution are non-singular rational 
curves of self-intersection - 2 .  They are formally of the following types: 

A,,(x2+yZ+z"+~=O). n > l ;  O.(xZ+y(y"-Z+zZ)=O), n>=4; 

E6(X 2 q_y3 _]_z 4 = 0 ) ;  E7 (x 2 +y(yZ q._ Z3) = 0 ) ;  

a n d  E8 (X 2 _1_ y3 ._}_ Z 5 = 0). 

A t singularities are called nodes. The configurations of the exceptional 
fibres in a minimal resolution are the Dynkin diagrams associated to the 
Lie algebras A,, D,, E6,  E7,  E 8. Finally, the R.D.P.'s are the rational 
singularities of multiplicity two. 

(1.8) Tjurina has proved [29] that H I (~gz)=0 for all effective divisors Z 
supported on E, in case Spec R has a rational double or triple point; this 
is the tautness of these singularities. Thus, by (1.6), we have for R.D.P.'s 
an isomorphism 

H 1 (69x) - , ( ~ ) H  1 (NE,). 

Since NE. = ~)E, ( -- 2), we have 

dim H 1 (Ox) = 4~ of components El. 

(1.9) On the other hand, the sequence 

O---,6)f|174174 
yields 

H ~ (~9 E | Nf) c H ~ (Ox | NE) c/-/El (OX) ~ U 1 (Ox)- 

But one sees easily that 

Of "~@ Of, ( -- ti) =(~)(gE, (2 -- ti), 

where t~ is the number of intersections of E~ with the other E j; in other 
words, derivations of the (reduced) scheme E consist of derivations on 
every component which vanish on the intersections. But E. E~=t~-2, 
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whence 

and dim H~174 NE)= # of components E i. Putting all this together 
and doing one final computation, we have 

(1.10) Proposition. Let X -+ Spec R be the minimal resolution of a rational 
double point, given formally by g(x, y, z )=0  (1.7). Then there is a natural 
isomorphism H~(Ox) ~ ~ H 1 (Ox), where each space has dimension equal 
to the number of components in E. That number is the subscript k in Ak, Dk, 
or Ek, and is also equal to the dimension of 

T~ = �9 El-x, y, z]]/ig, g~, g, ,  g.), 

the space of first-order deformations of the singulariO, [ 15]. 

(1.1I) CoroLlary. Let X be a non-singular projeclive surjace, and let 
E 1 . . . . .  E ~ be disjoint configurations of curves on X which are those of 
R.D.P.'s. Then dim H I (Ox) > k, +. . .  + k,, where k, is the integer associated 
to an R.D.P. of Proposition (1.10). 

Proof Artin has shown [3] that the E i are exceptional fibres in a 
(minimal) resolution f:  X ~ V of a normal algebraic surface. The global 
computation of Corollary (t.3) plus the local computation of (1.i0) now 
suffice. 

(1.12) Corollary. Let X be a non-singular projective surface for which 
H a (Ox)=0. Then X contains no non-singular rational curves E of self- 
intersection - 2. 

(1.13) CorolLary. Let X be a surface of general type (i.e.,for n large, nKx  
defines a birational map). I f  H 1 (Ox)=0, then X is a minimal model and Kx 
is ample. 

Proof First, note that if Y is a non-singular surface, and g: B---, Y 
is the blowing-up at a point P, there is an exact sequence 

O--,g, OB--,O~--, N~--,O, 
where Ne=normal  bundle of P in Y, and where R ~ g.  OB=0. Now, for a 
surface of general type, H ~  [-17]; of course, dim H~ so 
HI(OB)=HI(g .  On)#O. Thus, X in the corollary must be a minimal 
model. 

Finally, observe that on a minimal model, either K is ample or 
K ,  E =0  for some non-singular rational curves E with E 2 = - 2  [19], 

(1.14) Remarks. We shall see in w 4 that the first order deformations of X 
arising from Hle(Ox) may be obstructed. 

(1.15) If X -+ Spec R is the minimal resolution of a rational singularity, 
then H~(Ox) may be thought of as those first order deformations of X 
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which blow down (see (2.3)) to the trivial deformat ion  over  Spec R [e]. 
T o  see this, consider the d iagram with exact rows: 

O----~H~(X, Ox) ,-~(X, Ox)-- ,H'(X-e, Ox) 

0 -  , T~ - - - - - - *  H 1 (Spec R - m, OR) 

The  bo t tom inclusion is L e m m a  2 of [25]. It is easy to check that  the 
c~-construction of (2.3) is compat ib le  with these maps.  

(1.16) In the analytic case (i.e., if we consider analytic spaces with 
isolated normal  singularities), all preceding results remain true, especially 
(1.3) and (1.10) (see w 3, and in par t icular  the proof  of Theo rem (3.7)). 

(1.17) If E c X  is a negative definite configurat ion of non-singular  
curves intersecting transversally,  then E can be blown down (at least 
analytically) to a normal  singuiarity, by Grauer t ' s  result [10]. Therefore,  
if E contains no curves exceptional  of the first kind, then H~(Ox) gives a 
contr ibut ion to the first order deformat ions  of  X ((1.3) and (1.16)). If E is 
one non-singular  curve, then H ~ ( O x ) = 0  unless E is rat ional  and E 2 = - 1 
or - 2. If E is the (minimal) configurat ion of a rat ional  singularity, then 
Hi(Ox) = 0 if and only if E~ z < - 2, all i [311. On the other hand,  one must  
in general look at higher order terms H ~ (Ox | N, e), n > 1, to get hold of 
all of H~(Ox). For  instance, a (non-rational)  configurat ion 

I 
where all curves are rat ional  with self-intersection - 3 ,  has H~(Ox)= ~, 
hence would contr ibute  a first-order deformat ion  to any surface on which 
it lies (1-31]). 

w 
(2.1) Let X be a scheme of finite type over  C, and let C be the category 
of Artin local G-algebras.  We will do infinitesimal deformat ion  theory 
over  this category [24, 30]. Fo r  each A e C ,  let D(A) be the set of defor- 
ma t ion  classes of X over  Spec A, i.e., d iagrams 

X ~x~ 

Spec C - , Spec A 

where X ~ S p e c A  is flat and X - - , X  • is an i somorphism,  modu lo  
A 

equivalence. Schlessinger's theory [24] shows that  if D(C[e ] )  is finite 
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dimensional (e.g., H ~ (Ox) is finite-dimensional and X has only isolated 
singularities), then D is (formally) versal; that is, one has a complete 
local C-aigebra R and a morphism ~0: hR = Horn ( R , ) - *  D of functors on 
C such that 

(i) ~o(1~ [el), the tangent map, is a bijection 

(ii) ~o is smooth, i.e., if A' --, A is surjective, so is 

h R (A ' )~  h R (A)DxA)D(A'). 

If for instance H~ =0, then D is universal, i.e., q0 is a bijection. (We are 
abusing terminology somewhat in that it is usually a deformation, not 
a functor, which is called versal; however, no other adjective seems 
available.) Thus, there is a compatible sequence of deformation classes 
over Spec R/m~ which " represen ts 'D on the category C; we call R the 

formal moduli space of X. If X is a non-singular projective variety, then R 
is the complete local ring of the Kuranishi space of X. In this case, the 
obstructions to the smoothness of D (i.e., of R) lie in H 2 (Ox). We say X 
has obstructed deformations, or is obstructed, if R is not regular, that is, 
if dim R < d i m  Hl(Ox). 

(2.2) If X is an algebraic variety, we consider the subfunctor D ' c D  of 
deformation classes which are locally trivial (either formally or in the 
Zariski t opo logy - see  [30], 2.1,5). Thus, the singularities remain ana- 
lytically unchanged during deformation in D'. If D(IE[@ is finite- 
dimensional, then D' is formally versal, essentially by the smoothness of 
the local automorphism functor in characteristic 0 ([30], 1.3), 

(2.3) Proposition. Let f :  X ~ V be the minimal resolution of a surface 
with only rational singularities. Then there is a morphism ~: D'v -* Dx and 
a "blowing down" morphism fl: Dx---'Dv such that floa is the inclusion 
D~ c Dv. 

Proof Let { Vii} be an affine open cover of V, at most one singular point 
in each Vii. A locally trivial deformation Vto Spec A induces deformations 

which can be trivialized via maps  ~ - , Vii x Spec A. Using these, if 
X i = f  -1 (Vii), one constructs maps X i ~  Vii which must patch to give a 
deformation X. To define c~, one must show the independence of [X] on 
the choice of trivializations. But we claim two such maps ,~i _~ ~ (i = 1, 2) 
built in.this way are uniquely V-isomorphic. Since this is true away from 
the singular points, one need only find some V-isomorphism locally near 
the singularities. Thus, suppose p~: X x A--- ,SpecR| i=1 ,2 ,  differ 
by an A-automorphism a of SpecR|  i.e., p~ =o ' .p2 .  The condition 
f ,  Ox = OR implies a lifts to an A-automorphism ~ of X x A. But one 
then has Pl = P2 �9 ~, as desired. 
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To define fl, let [X]eDx(A), and let (9~ be the sheaf of algebras on 
(the topological space) X. We claim f , l ( fx)=  Ce defines a deformation 
of V to A. This requires checking only near the singularities, so we may 
consider X ~ SpecR. Then (ge is the sheaf for SpecF((gx), which we must 
show is a deformation of SpecR (note R=F((9~) by normality). But 
H ~ ((gx)=0 (the definition of rationality) implies F((9:~) ~ R is surjective 
(e.g., [30], 3.1.3), hence A-I+ F((9 x) is flat (by the infinitesimal criterion 
of f la tness-see  [31]). This process defines fl, and it is clear that flo~ is 
the natural inclusion. 

(2.4) Proposition. Let f: X --~ SpecR be a resolution of an isolated normal 
singularity, R the completion of R at the singular point, and X the formal 
scheme obtained by completing X along the exceptional fibre E. Then the 
natural morphisms DR --~ Di~ and Dx --~ D~ are smooth and bijective on the 
tangent spaces; thus, the Jbrmal moduli spaces depend only on the comple- 
tions. 

Proof Let 

i 
A , C  

define a deformation of R, with ~ ~ R the pull-back of the maximal ideal. 
Then it is easy to check that ii+~_m R/~" is flat over A, hence is a deformation 
of R; this defines DR---*D~. The definition of Dx---' D~ is similar; one 
takes the completion of a deformation of X along the pull-back of the 
sheaf of ideals defining E. We must show the morphisms are bijective on 
the tangent spaces and injective on the obstruction spaces. In the first 
case, these spaces are, respectively, T ~ and T2; see [15] and [30] for 
definitions and the desired result. In the second case, the spaces for Dx 
are H 1 (Ox)=Hl(Ox| and H2(Ox)=H2(Ox@~z), where Z is some 
divisor supported on the exceptional fibre; but we clearly get the same 
spaces for Dx. 

(2.5) Let V be a projective surface whose only singularities P~ . . . . .  Pt 
are rational. Let { Vi} be an affine open cover as in the proof of (2.3). Let 
f :  X ~ V be the minimal resolution and X~=f -~ (V~); let Li=Dx. and 
Di=Dv ,. By Proposition (2.4), L~ and D~ essentially depend only on the 
singularity P~, and not on the particular choices of neighborhoods Vii 

t t 

and Xi. Finally, let L = 1-I L~ and b = 1-[ Di. Note thai all functors are 
i = l  i = 1  

formally versal, and L is smooth. 
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(2.6) 
of functors 

Theorem. Under the above assumptions, there is a cartesian diagram 

D x , L 

Dr - , b 

where the horizontal maps are restrictions, and the vertical maps are 

defined by ft. 

P r o o f  For  the injectivity of D x ---, L x Dr ,  suppose two deformations 

X, X '  of X blow down to isomorphic deformations V, V' of V, and yield 
isomorphic deformations X,, X~ of the X~. G~ven an isomorphism 

- ~ V', one uses f .  6) x ~ , 0 v as in the proof  of (2.3) to find for each 
i a cemmutat ive  diagram 

~ -  - , X ~  

N N 
X X' 

It is then easy to construct an A-isomorphism of X into X'. One shows 
surjectivity similarly. 

(2.7) The morphism Dx--*Dv has been considered in another guise 
by Brieskorn [6] and Artin [I] .  In the algebraic case, let n: ~ T b e  a 
flat surjective map of finite type of algebraic spaces, whose fibres V, are 
normal surfaces and whose singular locus is finite over T. Then Artin 
proves the existence of a (not necessarily separated) T-algebraic space 
~ = R e s ( U / T ) ,  a smooth morphism n': Y'--- ,~,  and a commutat ive 
diagram 

such that for all r eN ,  Xr-- '  Vt(, I is a minimal resolution; furthermore, 
n" represents the functor of such resolutions of ~ over 77 Suppose n 
induces a formal versal deformation of Vo=n- l (0 )  = V, and that the V~ 
have only rational singularities. Then if 0 ' e ~  maps to 0, Lemma (3.3) 
of [1] shows zr': ~r__,~ induces a formal versal deformation of X o =  
nr - t (0') = X. Thus, the map of the completion of T at 0 to the completion 
of ~ at 0' is (up to isomorphism) the map on formal moduli spaces 
associated to D x - *  Dr .  In the local situation, the morphism L i ~ Di is 
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well-understood for rational double points; in fact, on the scheme level, 
it is a Galois covering whose group is the Weyl group of the associated 
Dynkin diagram [8]. In particular, if V as in (2.5) has only nodes, then 
L ~  D is given on the ring level by: 

Xi ~ y/2. 

(2.8) Corollary. Suppose D x is universal (e.g., H~ and the 
versality of  the preceding fi~nctors is given by smooth morphisms h R ~ , Dx, 
h~ ~ ~ Dv, hA ---* L, h B --* D. Then we have an isomorphism 

S @ A  ~ , R .  
B 

Proof  Using the definition of smoothness, one constructs a commu- 
tative diagram: 

h R 

1 Dx 
h s - -  

~"--.....~ ,; 

Dv 

hA 

, L S ~  
q 

[ - /  , hB 

>D 

Since L is smooth, A is smooth, s o  h A ~ L X h B (an isomorphism on the 

tangent spaces) is smooth. Using this, one can find a morphism h R -* h A 
making all squares above commutative. The maps in 

hR ---* hs x hA --* Dv x L ~ -  Dx § =-  hR 

are all injective on the tangent spaces, hence injective, thus bijective, so 

h R ~ ~ h s x h A = h s| a. 
hB B 

(2.9) Corollary. Suppose D x is universal and D is smooth (e.g., ever), 
singularity is a rational double or triple point). Then R is a complete inter- 
section over S, and Spec R--,Spec S is finite, fiat, and surjective. I f  each 
P~ is a node, then R is generated over S by elements of  degree 2. 

Proo f  It follows by [ l] ,  Theorem 3, that SpecA-+SpecB is finite, 
flat, and surjective, whence A is a complete intersection over B (as both 
are smooth). Since B --* A is finite, we may replace the @ in Corollary (2.8) 
by | and conclude the results on SpecR-*  SpecS. For the remark on 
nodes, recall (2.7). 
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(2.10) Remark. If P/is an R.D.P., then Li-+ Di is not a surjective map of 
functors (it is the zero map on the tangent spaces, by (l.10) and (1.15)), 
although the corresponding scheme map is surjective. 

(2.11) Corollary. Let V c I P  3 be a hypersurface of degree n>=5 with 
only R.D.P.'s as singularities, and let f:  X-+ V be the minimal resolution. 
Then the formal moduli space of X is a reduced complete intersection of 

Krull dimension ( n 3 3 )  -16 .  

Proof Since the canonical bundle is K x = f *  C v ( ( n - 4 ) H )  [3], X is 
a surface of general type, hence H~ Let L=f*Cgv(H). Now 
R l j ,  L | =0, r=>0 (by rationality), so H 1 (X, L | r)= H1 (V, (gv(rH))=O. 
Now, Kx lifts under deformations of X (uniquely, since H 1((9x)=0 ), 
hence, by obstruction theory, so does L; further, H ~(L)=0 implies all 
sections of L lift as well. Thus, for every deformation of X, one can lift L 
and four global sections to get a map into IP 3. The image of Dx ~ Dv lands 
therefore in the subfunctor DI c Dv of hypersurface deformations modulo 
projective equivalence; D~ is a subfunctor since H~ implies two 
hypersurface deformations are isomorphic if and only if they are projec- 
tively equivalent. One easily sees Da is smooth and universal, of dimension 

n 3 t - 16; it may be constructed by taking a non-singular subvariety 
! 

of the Hilbert scheme of V transversal at V to the orbit of PGL(3) (again 
since H~ Theorem (2.6) and its corollaries go through for the 
subfunctor Da =hs~ of Dv; so, ifh R + , Dx, then R is reduced if and only 
if it is generically reduced (i.e., (0) has no embedded components). But 
SpecA-+SpecB (Corollary (2.9)) is generically 6tale, hence so is 
SpecR ~ SpecS,, whence R is generically reduced. 

(2.12) Remark. In Theorem (4.2), we give a cohomological necessary 
and sufficient condition for D x to be smooth. 

(2.13) We can now use the computations of w 1, especially Proposition 
(1.10), to conclude the following: 

(2.14) Theorem. Let f :  X ~ V be the minimal resolution of a projective 
surface with only R.D.P.'s at P1 . . . . .  P,, and let 

7: Dx--, L=[-[Dx..  
Then 

(i) 7~ is surjective. 
(ii) Via ~: D'v~Dx, we have D'v is the "fibre" of 7, i.e., D~(A)= 

{ [X] E Dx (A)I 7A ([X]) is the trivial element}. 
(iii) I f  Dx is smooth, then 7 and Dv are smooth. 
(iv) I f  H ~ (19x) = O, Dx is smooth if and only if Dv ~ D is smooth. 
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t 

Proof. ~ is the map H I ( O x ) ~  @ H  1 (Xi, Ox,). Let E i = f  - t  (Pi), and 
i = t  

E = U Ei- Then we have the following commutative diagram: 

H~(Ox) - ,QH~,(Ox,) 

H 1 (Ox) ' @ H  1 (Ox,). 

Since the second vertical map is an isomorphism by (1.10), 7~ is surjective. 
For (ii), one uses the construction ofc~ and/3 (2.3) or Theorem (2.6). If D x 
is smooth and "/g is surjective, 7 is smooth (by the "implicit function 
theorem"); then, the smoothness of D~ follows from (ii), whence (iiil is 
proved. For (iv), first recall the exact sequence [24] : 

o -~ H' (Or) - ,  Dv (~ [~3) --) re  = B(~. [~3). 

Suppose hg - > Dx , hs - ~  Dr.  Via Corollary (2.9), we have 

dim R = dim S < dim Dv ((12 [e]) < dim H 1 (Ov) + dim Tj} = d im H 1 (Ox). 

The last equality follows by (ii) and (1.10). (iv) follows readily. 

(2.15) Remark. The Theorem says that the smoothness of Dx is equiv- 
alent to both the independent behavior of the exceptional curves (i.e., 
the smoothness of ~) and the independent behavior of the singular 
points on V. In particular, if X is unobstructed, then Dv is smooth, and 
one can independently smooth the singular points on V. (See (4.31 below.) 

w 

(3.1) This w is devoted to convergent analytic consequences of the 
formal theory of ,~ 1-2. One of our first tasks will be to discuss the con- 
vergent version of the map [] in (2.3). Such a blowing down map should be 
local in nature about the subvarieties to be blown down, and we describe 
below the proper choice of localization for our purposes. This will con- 
sist of choosing "l-convex tubes" about an exceptional subvariety, so 
that we might apply the 1-convex relative analogues of Grauert 's co- 
herence and blowing down theorems. Intuitively, such a tube is an 
analytic version of a family of resolutions of affine varieties with isolated 

singularities. 
Let n: d//__~ T be a smooth, t-convex map of complex manifolds. By 

definition, this means that there is a differentiabte function q0: ~k'-+IR 
with the properties 

(1) n restricted to q~-1 (( _ ~ ,  c ] )=  oh, c is proper, for every c~tR. 
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(2) qo restricted to ~co=~0-1([Co, oc)) is strictly plurisubharmonic, 
v• �9 (~2~ 0 �9 

for some c0 ~IR. That is, the complex taesslan - -  is a positive definite 
Ozi c3~j 

hermitian form, a condition independent of the choice of local coordinates 
{z~} on ~//. (In particular, each fiber of re is a l-convex manifold.) 

If O c T  is a base point, and U = ~  -1 (0), then we are considering a 
deformation of U. Henceforth, all maps to and from T will be map germs 
about  0. Recall that the exceptional subvariety of a 1-convex manifold U 
is the maximal compact  subvariety of U, all of whose components are 
positive dimensional. Such subvarieties may be blown down to isolated 
normal singular points [10]. In the situation of rc as above, Riemen- 
schneider has proved the following theorem [20] : 

(3.2) Theorem. Suppose HX(U, (gv)=0. Then there exists a complex 
space ~/" and a commutative diagram of holomorphic maps: 

T 
Here we have: 

(1) z is a proper, surjective map which blows down the exceptional 
subvarieties of the fibers of re. 

(2) ~o is a flat map with normal  fibers. 

The existence of such a U and the maps was already shown by 
Markoe-Rossi  [16], and Siu [28]. The rationality H 1 (U, ~/v)=0 is used 
to show flatness and normality by methods formally the same as those 
in algebraic geometry, given the coherence and semi-continaity theorems 
of [28] and [21]. 

Note that, in particular, if the exceptional subvariety of the 1-convex 
manifold U is connected, then V=~o -1 (0) has at most one singular point 
p, and co defines a deformation of the germ of V at p. 

(3.3) Now consider a deformation ~: N---, T of a compact analytic 
manifold X=r~- l (0) ,  i.e., ~ is a proper, smooth map. In (3.3) and (3.4), 
we allow T to be singular, but reduced. Let E c X be a connected excep- 
tional subvariety, and let U be a 1-convex neighborhood of E [10]. 
Let V denote U with E blown down to a point, a normal analytic space 
with one possible singular point P. We want to construct a deformation 
of the local singularity (V, p) from the deformation of X over T, by means 
of (3.2): To this end, let us cut out of N over T the  germ of a 1-convex tube 
about  E as follows: 

Shrinking T about  0 if necessary, we may assume that Y" is diffeo- 
morphic to X •  T. Since U is 1-convex, by definition there exists a 
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differentiable function COo: U--* IR with properties (I) and (2) of (3.11 
above (n maps U to a point). Let ~ =  U x T c X x  T, considered as an 
open subset of Kr; ~o o can be considered as a function from ~' to IR, Since 
cp o is proper  on U, and strict piurisubharmonici ty is defined by a strict 
differential inequality, by shrinking T about  0, we may  assume that q~o 
restricted to any U x {t} is strictly plur isubharmonic on 

U • {t} ~ Oo ~ ( [ q ,  c2]). 

Here ca <c2 are two real constants,  independent of t eT .  Shrinking T 
further, we assume T is strongly pseudo-convex with exhaustion function 
(p~ : T---, IR. Let ~c  = q~6 1 (( _ co, c)), where c~ < c  <c2,  and still denote  by 
the restriction of 7z to ~Tg'. Then the function , r  0) 
exhibits r~: sU-- ,  T as a t-convex smooth  morphism. 

(3.4) Definition. An open set ~ c Y "  such that rc restricted to ~ is a 
l-convex smooth  map, and such that #/c~ X contains E as connected 
maximal  exceptional subvariety, will be called a l -convex tube about  E 
in f .  

Two 1-convex tubes ~'llt, &z about  E are considered equivalent if 
there exists a third 1-convex tube *g3 about  E in ~ such that a# 3 c oh't c~ ~k' 2 , 
perhaps over a smaller ne ighborhood of 0, A germ of i-convex tube 
about  E in 5f is an equivalence class of such tubes. The remarks in (3.3) 
show that a connected exceptional E in X determines a germ of 1-convex 
tube about  E in f .  

Suppose U is a 1-convex ne ighborhood  of E in X, and suppose 
Ha(U, (9v)=0. This condit ion is independent of U, for U sufficiently 
small. V denotes  U with E blown down to a point  P. 

(3.5) Proposition, Let E be as above in ~ ~ , T, with T non-singular, 
I f  H a (U, (gv) = O, then n : X ~ T determines a germ of deformation " f o r  the 

germ o f  V at P. 

Proof. One only has to apply (3.2) to a l-convex tube about  E in ~r. 
The  uniqueness is obvious, by the comments  after [3,4). 

(3.6) Consider  now a deformat ion 

X -  , f  

Spec ~ = 0 , T 

of a smooth,  compact  analytic surface X over the non-singular  base T. 
Assume that X contains disjoint, connected exceptional curves E a , ..., E k, 
which blow d o w n  to rational singular points/]1 . . . . .  Pk, respectively. Let 
q/~ . . . . .  y/k be 1-convex tubes about  E t . . . . .  U ,  respectively, and let 
S~ . . . . .  S, be the base spaces of  the versal deformations of P~,., . ,  Pk, 

6 Inventlones math.,Vol 26 
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respectively [9]. Let S=I - [ s  ~. There is a holomorphic map (/,: T-*S,  
classifying the product of the various local deformations ~ ,  determined 
by the ~ via (3.5) [9]. 

Artin [1] shows that there exists an algebraic space R~, of finite type 
over •, over each S~, classifying resolutions of deformations of the 
singularity V ~ (U i with U blown down). Thus, our map ~b must lift to a 
map 7J: T ~  R =1-[ R~. By the definition of a holomorphic map into the 

i 
algebraic spaces R~, there is, for each i, an analytic space Z~, and a map 
~:  T---, Z~ with the following properties: 

(i) over Zi, there is a deformation Cz~ of V ~, together with a resolution 
~'z. of that deformation. 

(ii) we have a commutative diagram: 

[ 
(Thus, Zi is versal for deformations of neighborhoods of the exceptional 
curve E~.) We also denote by 7 ~ the map 7J: T - + Z = I - I Z  ~, the product 
of the ~'s. i 

Consider the case where n: ~ - - + T  is the Kuranishi family of X, 
where all the singularities P~ . . . . .  Pk are assumed R.D.P.'s, and where 
the U's are the exceptional curves of minimal resolutions. Note that we 
are assuming that T is nonsingular. 

(3.7) Theorem. The map ~P: T--~ Z is locally a submersion at OcT. In 
particular, the exceptional curves E 1 . . . . .  E k have independent behavior in 
deformations of X. 

Proof Of course, this is nothing more than saying that the differential 
of 7 j is surjective at 0~ T. To see this, consider the following commutative 
diagram, with O = Ox or Or,, as the context dictates: 

H 1 (X, O) - - "  , I~ H' (U i, 0 )  Ja__+ I~ H' (U i, O) 
�9 i 

To(T ) a~'. , T~,(o)(Z ) 

Here all the vertical arrows are Kodaira-Spencer characteristic maps, 
r is the restriction map, and id comes from identifying the fiber over 
~(0) in ~/z, and V i. The commutativity of the square comes from (3.6)(ii), 
and the naturality of the characteristic map; that of the triangle from 
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naturality. The map Pl is an isomorphism since T is the Kuranishi 
family.. 

Now, r is surjective, by an analytic analogue of (2.13), where r is 
called 7~, which we shall prove directly below. Thus P3 is also surjective. 
Since T~,(oI(Z) and ~[ H 1 (U i, O) have the same dimension, as noted in 

i 
(1.9) and [1], P3 is an isomorphism. Hence, dT,  is surjective. 

To check that r is surjective, we go back to the proof of (2.13) and see 
that it is enough to show that H~,(U i, 0)--~ H j (U ~, O) is an isomorphism, 
for each i. We'll show this by comparison with the algebraic case proved 
in (2.13). Now each of these cohomology groups is independent of the 
choice of 1-convex U i, provided E i is the only exceptional curve of U i. 
Thus, since pi is an algebraic singularity, we may assume U i is the 
minimal resolution X' of an affine algebraic variety V ~ with one singular 
point Pi. Let us agree to drop the superscript i from the above, and denote 
by X the algebraic variety corresponding to X ~, and X "" the corresponding 
complex manifold. Similarly for coherent algebraic and analytic sheaves, 
maps, etc. It is easy to chec k (by integrating vector fields) that (1.2) above 
remains true in the analytic category. Using the corresponding long exact 
sequences for local cohomology, we obtain: 

0 , H ~ ( X , O )  - , / 4  ~ ( x , o )  
l 

1 
0 ~ ,JEan I.~. 1~'t I 'yan, o a n ) -  I* H l ( X  an, O an) 

The vertical maps are the functorial ones introduced by Serre in GAGA. 
The top isomorphism is by (2.13). We want to show the bot tom row is an 
isomorphism. To see this, consider the commutative diagram arising 
from the Leray spectral sequences for ~ and z"", where r: X---, V is the 
resolution map:  

H l ( X , O )  ~ ~ H ~  l r , O )  - )(R l r , O ) p  

Hl(Xan, o an) - , H ~  x T,an (~an) - , ( R l z .  o)a, 

Here we've used R 1 a"O"" ~ (R 1 z .  O)"", see ~11]. Since R I z .  Of  is of  "/7, 
finite length, the right vertical arrow is an isomorphism, and we are done. 

(3.8) Remarks. As in (2.13), we may note that the fiber of 7 j over 7/(0) 
consists of all small deformations of X, which induce locally trivial 
deformations of V= X with E 1 . . . . .  E k all blown down. 

The proof  of (3.7) is a bit long, but we prefer to keep explicit the 
relation between the algebraic and analytic categories. 
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The theorem on blowing down in families is true for deformations 
of resolutions of R.D.P.'s over singular T as well, and the surjectivity 
of dgJ, follows functorialty, as above. However, the local R.D.P.'s, or 
rather, their exceptional curves, will not, in general, be independent if T 
is singular, since the independence (in the sense of surjectivity of ku) 
depends on the implicit function theorem, invalid for a map from a 
singular space. 

It does not seem that enough is known at present about Kuranishi 
families for deformations of V, or locally trivial deformations of V, to 
make more precise statements fully analogous to (2.7), except in special 
cases. Given the existence of the appropriate Kuranishi families, the 
convergent analogue of(2.7) would follow directly from the formal theory 
leading to (2.7). 

(3.9) Example. Let A be a 2-dimensional complex torus, and let - 1  
denote the automorphism of A sending a to - a ,  the group inverse of 
a in A. Let V= A/( + 1) be the quotient of A by the 7Z/2~: action generated 
by - 1, and let X = V with the 16 nodes of V blown-up. Then X is a 
Kummer K -  3 surface [22], and its Kuranishi space is non-singular, 20- 
dimensional. The above theory applied to this example shows that the 
Kuranishi variety of X fibers over the 16-dimensional family of local 
deformations corresponding to the 16 exceptional, nodal lPl's in X. It 
is easy to see that the fiber over 7~(0), in the notation of(3.7), is the family 
of Kummer deformations of X, i.e., the deformations of X gotten by 
allowing the A in the Kummer  construction to vary in its 4-dimensional 
Kuranishi family. It also happens in this case that K x = 0 ,  and so 
H~(X, fI~x) is naturally isomorphic to H~(X, 0), the isomorphism 
determined up to a non-zero scalar by the choice of a nowhere vanishing 
holomorphic two-form co on X. If E 1 . . . . .  E 16 are the 16 exceptional 
curves in X, then N~=f2~ on E ~, where N~ is the normal bundle of the 
imbedding Ei~--,X. Let [Ei]* denote the class in H 1 (X, f2~) determined 
by E i via Serre duality. Then the [E~]*'s determine a splitting ofy~ in (2.13). 

In fact, using co, we obtain a commutative diagram 

(3.~0) 

O - r '  ,@N,  

~L 
i I ; s 

i 

Here the horizontal arrows are the natural restrictions and the left 
vertical arrow sends a germ of vector field ~ to i(~) co, the contraction of co 
and ~. We have to check that this map induces an isomorphism 

~, 1 N - f2e,. Check this locally, in coordinates (zl,z2) where E i is given 
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by z I =0. Then the kernel of r~ consists of vector fields of the form 

~=az I ~z ,+b , where a,b are arbitrary holomorphic functions; 

the kernel of r 2 consists of forms rt =a  dz~ +bz, dz z, with a, b arbitrary. 
Locally, co = h dz 1 A dz2, where h # 0, and 

i ( J ~ - +  g j~2) (~)=h(f d z2 -g  dzO, 

and our check of (3.10) is complete. 

From (3.10) we get" 

HI[X,O) r~=~,@ H, i (g, N) 

(3.1 ! ) ~[ ; ~l 

H 1 (X, ~ ) ) -  r2 , @ H  1 (E,~ ~E,)t 
i 

To check, finally, the claim about the [Ei]*'s determining a section of ~,~, 
it will suffice to compute rz([U]*) for each i. Denote by [E;], IX] the 
fundamental cycles in homology of U, X, respectively. Then: 

<,-~ C[E']*), [ E q )  = <[E']* u [E']*, [X] )  

= E i . E j 

= - 26is (gij = Kronecker index). 

Here ( , ) denotes natural homology-cohomology pairings. The first 
equality comes from viewing [U]* in HZ(x, ~), via Poincare duality. 
Note that this also proves the surjectivity of,/, at the same time. Such a 
geometric proof of surjectivity also works for U's in a K - 3  surface 
associated to other R.D.P.'s, using the negative definiteness of intersection 
matrices among the components of an U.  

w 
(4.1) Let V c l P  3 be a hypersurface of degree n>5  with only R.D.P.'s, 
and)': X---, V its minimal resolution. We derive in Theorem (4.2) a neces- 
sary and sufficient cohomological criterion for the unobstructedness of X. 
In particular, a nodal hypersurface yields unobstructed X if and only if 
the nodes are in "general position" in IP 3 (Corollary (4.3)). We know of 
no other moduli problem where such a cohomotogical condition is 
necessary as well as sufficient. Examples of obstructed moduli exist for 
all n >_ 5. One should keep in mind that the X as above are diffeomorphic 
to non-singular hypersurfaces of the same degree (Atiyah [4], Brieskorn 
[5]). The only previously known obstructed surfaces were some elliptic 



86 D.M. Burns. Jr. and J. M. Wahl 

surfaces (Kas [131), and some surfaces of general type (E. Horikawa [33]) 
based on a complicated example of Mumford [18]; in neither instance is 
anything known about the order of obstructedness. However, in case V 
is nodal, the moduli space of X is defined by hypersurfaces of degree 2. 

(4.2) Theorem. Let V c P = ] P  3 be a hypersurface of degree n>_>_5 with 
only R.D.P.'s as singularities, with V = V(F). Let I = (Fx, Fy, Fz, Fw) be the 
( invariantly defined) homogeneous polynomial ideal defined by the partial 
derivatives, with T c IP  3 the "scheme of singularities" defined by the asso- 
ciated sheaf [cOp.  Let f: X - + V  be the minimal resolution, and R the 
formal moduli space of X.  Then R is a reduced complete intersection, and 

dim mR/m 2 - d i m  R =dim H 1 (IP 3, [(n)). 

Thus, R is regular if and only if 

H~ H~ is surjective. 

Proof The first assertion is in (2.11). Letting hi=dim H i, and using 
(1.10), we have 

dim mR/m ~ = h 1 (Ox) = h ~ (Ov) + dim Tv ~. 

Consider the exact sequences (where i: VcIP3):  

0-* O, ~ ,  i* Oe---~N(~---~O, 

0-+ (9p - ~  l ( n )  --~ N~ -*0. 

(Cf.[30]; these sequences are easily verified using Nv=(gv(n). Recall 
N~ ~ Nv is the sheaf of germs of locally trivial relative deformations of V 
in lp3.) Note that h ~ (Or)= 0, h ~ (i* Oe)= 15 (by the standard presentation 
of Op); since all locally trivial deformations of V take place in IP a (use the 
morphism ct and the proof of (2.11)), H ~ (N~)--~ H 1 (Or) is surjective. Thus, 

h 1 (Or) = h ~ (N~)-  15 

= h~ ( Nv) - d i m  T ~ - 15 +h  I (N~) 

= ( n  3 3 ) - 1 6 - d i m  T~+h'( i (n)) .  

This and the sequence 

yield the theorem. 

(4.3) Corollary. Let V c I P  3 be of degree n with exactly d nodes at the 
subset T t i p  3. Then X is unobstructed if and only if the set T is n-independ- 
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ent, i.e., for any partition T= T' w T", one may find a hypersurface oJ' 
degree n containing T' and missing T". 

(4.4) Example. Let F be a non-singular quartic form, G and H non- 
singular m-tics (m>4),  such that V[F, G,H) consists of  4m z distinct 
points. If J = (F ,  G, H), then the general form of degree 2m in j2 is irre- 
ducible with exactly 4m 2 nodes (Bertini's T h e o r e m s - o f .  1-30], 3.5); 
further, the associated sheaf [ (as in Theorem (4.2)) is equal to J. The 
s tandard Koszul  resolution shows dim H l ( J (2m))=  1. Thus, we have for 
every even dimension n > 8, a nodal hypersurface of n 2 nodes such that 
R for the resolving surface X is a reduced hypersurface with a singularity 
of  multiplicity two. 

(4.5) Example. If we choose F, G,H to be non-singular m-tics (m>4),  
intersecting in m 3 distinct points, we may use the generic form of degree 
2m or 2 m +  1 in d 2 (J =(F, G, H)) to get nodal hypersurfaces of all de- 
grees n >  8, such that the resolving X are obstructed, and the number  of 
obstructed deformations of  X goes to infinity as n3/48. 

(4.6) Example. In order for H~176 to be surjective, it is 

of course necessary that d=dimHO((~r)<(n-;-- 3).- On the other hand, 
/ 

Segre [26] has given examples of surfaces of all even degrees n with 
(n 3 - n:)/4 nodes. For  such V, the resolving X is of course obstructed. 

(4.7) Example. Let X, 1I, Z, W be coordinates in IP 3, let Lt . . . . .  L, (n > 5) 
be general linear forms in X, K and Z, and let 

n 

F.=W ~  lqLi. 
i = I  

Then a computa t ion  shows V(F,) gives obstructed surfaces for n_>_5. In 
particular, V(F s) is a quintic with ten Ar This is the best 
possible degree for a counterexample,  since a V c l P  3 of degree __<4 
with only R.D.P. 's  has H2(Ox)=O. 
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