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w 1. A framed link L in S 3 is a finite, disjoint collection of smoothly imbedded 
circles, 71 . . . . .  7r, knotted or unknotted, with an integer ~i (the framing) associated 
with each circle. If F is a Seifert surface for a knot K in L, then the zero framing of 
the normal bundle of K is derived from the normal vector to K pointing inward 
along F and the normal  vector to F. The framing associated with the integer n is 
obtained by twisting the zero-flaming n times in a clockwise (right-handed) 
direction. 

L determines a 4-manifold M L obtained by adding 2-handles to the 4-ball B 4 
along the circles in L using their framings. Note that it makes no difference how we 
orient the circles; an orientation for M L and t?ML is determined by extending a fixed 
orientation on B 4 o v e r  M L. 

W.B.R. Lickorish ILl  and A.D. Wallace showed that any orientable 3- 
manifold is ~ M  L for some framed link L. We describe below two operations (the 
calculus) on a framed link and prove that t~M L = ~ M  L, if and only if we can pass 
from L to E by a sequence of these operations. 

Operation one ((91): We may add to or subtract from L an unknotted circle with 
framing 1 or - 1, which is separated from the other circles by an imbedded S 2 in S 3. 

This corresponds in M L to taking connected sum with or splitting off a copy of 
the complex projective plane C P  2 with its "positive" or "negative" orientation 
(CP 2 has two orientations, one giving ( + 1 )  as the intersection form on 
H 2 ( C p 2 ;  Z),  the other ( - 1)). 

Let 70 and 71 be two knots in S 3. Let b: I x I - - *S  3 be an imbedding of [0, 1] 
x [ 0 , 1 ]  for which b ( I x I ) c ~ T i = b ( i x I  ), i=0 ,1 .  Then let 7041:71=7OW71-- 

b 
b(•I x I )w  b(I • t~I) and call this the band (over b) connected sum of 70 and 71. 

Operation two (t92): Given two circles 7i and 7s in L, we "add"  7i to 7~ as follows. 
First push 7i off itself (missing L) using the framing qg~, obtaining ~g. Now change L 
by replacing 7s with 7j = ~i # 7~ where b is any band missing the rest of L. 

b 
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This corresponds in ML to sliding thej  th handle over the ith handle via the band 
b. To compute the framing tkj of 7j, it is helpful to study the intersection form on 
Hz(ML; Z). If we orient each 7k, they determine a basis F for H2(ML; Z), denoted by 
~x . . . .  ,7,. The matrix AL of the intersection form with respect to F has the framings 
~k down the diagonal and a~j is the algebraic linking number of the oriented 7~ with 
the oriented y). Operation two corresponds to either adding ~ to or subtracting 7~ 
from ~ depending on whether or not the orientations on ~ and 7j correspond under 
b. Thus 7j =Yj + ?~ +2a~j. Beware that the plus or minus is determined only by b and 
is independent of the orientations chosen on 7~ and ~. 

Example. (•3 -3)-twists (4, ~3 

Fig. 1.1 

According to the orientations we have subtracted 71 from if2" There are ~bl - 3  full 
twists because the zero framing for the (right-handed) trefoil knot would be drawn 
with - 3  full twists. 

Call two framed links L 1 and L2 g-equivalent if we can obtain L 2 from L1 by a 
sequence of operations one and two; we write L1 7 L2. 

The name boundary equivalent is justified as follows: 

Theorem 1. Given two framed links L1 and L2, then LI "~ L2 <=> ~ML, is diffeomor- 
phic to 3ML~ (preserving orientations). 

The proof is given in w 2, using some 4-dimensional Cerf theory which is 
explained in w 3. Some applications are given in w 4, and w 5 contains miscellaneous 
remarks including more general versions of the theorem. 

As explained in the first remark in w 5, this paper evolved from a topological 
view of some techniques in complex surface theory. Arnold Kas taught me those 
techniques in a geometric fashion; in that sense he is the grandfather of this paper. ! 
am also indebted to Andrew Casson, Allen Hatcher, John Morgan, Colin Rourke, 
and Jack Wagoner for helpful conversations and some simplifications in the proof 
of the main theorem. 

w 2. Proof  of the Theorem: I f L  a ~ L2, then it is clear from the interpretation of (91 
and (9 2 in terms of 4-manifolds that OML, = OML:. 

For  the reverse implication, we start by forming the closed, oriented ma- 
nifold N4=ML, u--ML2 ~ OML, x [1, 2] where we identify OML, With OML, x i. 

1 I understand that Robert Craggs has proven the same theorem [Craggs], although the point of view 
and the proof are quite different 
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By adding copies of - t - C P  2 to ML,, we can arrange that index ( N ) = 0  (this 
changes L 1 b y ~ l ;  we still call the result L1). N bounds an oriented, connected 5- 
manifold W 5. 

8Mr., x [1,2] T |2 
f 

1 

Fig. 2.1 

Let f :  W 5 ~ [1, 23 be a Morse function for which f -  1(i) =ML,, i=  1, 2, and 
f [  ~ML, x [1, 2] is projection. As is true in any dimension, we may cancel the critical 
points of index 0 and 5 since W 5 is connected. 

Pick e > 0  so that there is one critical point of index 1 in f -1 ( [1 ,  1 +e]). Then 
f -  1(1 + 5) = ML, # S 1 x S 3. But we may achieve this by adding a 3-handle instead of 
a 1-handle. In this way, we replace all the critical points of index 1 by critical points 
of index 3 (changing W 5, of course), and similarly we change critical points of index 
4 to those of index 2. The new W 5 has a Morse function f :  W 5 ~ [1, 2] with critical 
points of index 2 belonging to f -  1([1, 3]) and critical points of index 3 belonging to 
f -  1([3, 2]). Since ML, is simply connected, it follows that f -  1(3) can be obtained 
from either ML, by taking connected sums with S 2 x S 2 or S z ~ S 2 (the nontrivial S 2- 
bundle over $2). But we shall see, Proposition 2, w 4, that connected summing with 
either S 2 x S 2 or S 2 ~S  2 can be achieved by a sequence of operations one and two. 
Thus, we have shown so far that each Li can be altered by 601 and 6o 2 so that the new 
Li have the property that ML, is diffeomorphic to ML2 (which is diffeomorphic to 
f-1(3)).Call  this common manifold M 4, and observe that L1 and L 2 give us two 
different handlebody structures, or two Morse functions f/: M --* [ - 1, 1], i = 1, 2, 
with f / -  1( _ I) the only critical point of index 0, f / -  1(0) = S 3, f / -  1(1) = ~M = t~ML, , 

and all critical points of index 2 in f -  1(0, 1). 
It  follows from the results of the next section, after possibly taking connected 

sums with S 2 • S z, that there is a homotopy ft: M ~  [ - 1 ,  1], t~[1, 2], such that 
each f is a Morse function, except for a finite number of t where two critical points 
may have the same value. A critical point of index 2 has a descending 2-disk which 
intersects S 3 in the circle which corresponds to that critical point (or 2-handle). As 
f l  deforms to f2 through f ,  the various descending 2-disks intersected with S 3 
describe an isotopy of L 1 to L2, except for the following possibility. For  some t, a 
descending 2-disk of ft may not reach S 3 but hit instead a critical point with smaller 
critical value. This occurs exactly when a 2-handle is being slid over another 2- 
handle. This is covered by (92. The proof is finished. [] 

w 3. Let M 4 be a D I F F  4-manifold with two boundary components, d_ M 4 and 
~3+ M 4. Let fo,fl: M 4 ~ E - K ,  K] be two Morse functions with f i(d-  M ) =  - K  
and f/(d+ M ) =  + K, no critical points near (3_+ M, and only nondegenerate critical 
points of index 2 at different levels. (In w 2, we take ~ M 4 = S 3 . )  
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We want to compare, for f0 and f l ,  the descending 2-manifolds of the critical 
points intersected with 8 M, i.e., the framed links which determine M. To do this, 
we will find a nice arc connecting fo and f l  in the space o~ of D I F F  functions, of M 
to [ - K ,  K],  a procedure pioneered by Cerf. 

Following [Cerf] or [H-W] ,  o~ has a natural stratification o~ = ~ o  u ~-~ w 
o ~2  u ..., where o ~ is a stratum of codimension i. o ~ ~  is the set of Morse func- 
tions with distinct ctitical values, o ~  consists of two pieces, i f )  and ~ :~,~2 
is the set of Morse functions with distinct critical values except for one critical 
point which is a birth (or death) point, ~,~r the Morse functions with distinct crit- 
ical values except for two which coincide. The standard example of a birth point 
arises from the arc ft: R--, R defined by f ( x ) =  x 3 -  t x; at t = 0 we witness at x = 0 
the birth of a cancelling pair of 1 and 0-handles. 

We pick an arc f =  {f}, te l0 ,  1] between fo and f l ,  f :  m x I ~ [ - K, K],  which 
is transverse to the strata ff~ for all i, so that each f t e ~  ~ w ~,~ and only finitely 
many f belong to if1.  

The graphic o f f  is the set of all pairs (t, u ) s I  x I - K ,  K]  for which u is a critical 
value of ft. If(t, u) belongs to the graphic then it has a neighborhood in I x [ - K, K] 
equal to one of the following 

if f t e f f  ~ near the critical point. 

(~,U) ~ or ~:z~-* (t~ u) if f e o ~  1 near the critical point. 

if f , E ~  ~ near the critical point. 

A simple graphic for f might be Figure 3.1, 

b) 

2 2 

2 

1 1 

0 0 

Fig.  3.1 
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where the integers give the index of the critical point. (The lower left bir th point  is 
the graphic  of  the example  above.) 

Our  first step is to cancel the critical points of index 0 and 4 by deforming f in ~-  
rel fo and fa. For  this we need some lemmas  f rom [Cerf] .  

Triangle L e m m a  [Cerf, p. 78]: Consider  the graphics in Figure 3.2. 

F i g .  3.2 

We m a y  change f, rel f0 and f l ,  so that  its graphic changes f rom the first to the 
second if the indices satisfy il = i2 = i3 < 2; i.e., we can push the second arc up over 
the crossing point. We can change f rom the second graphic to the first if ix = i2 
= i 3 > 2. (This case follows from the first by changing f to - f . )  

Beak L e m m a  [Cerf, p. 83] : In Figure 3.3, we may  always change the first graphic 
to the second if i~ > 0  and the first to the third graphic  if i2<4.  

[ 

I 

[ 
f 

I 

I 
I 

I 
I 

I 

I 
t 

Fig. 3.3 

i 2 I 

I 
I 

I 
I 
I 
t 

Doveta i l  L e m m a  [Cerf, p. 93] : In Figure 3.4, the first graphic can be changed to 
the second in both cases. 

1 

Fig. 3.4 
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Independent Trajectories Principle [Cerf, p. 255], [H-W, p. 64]: Given two 
parts of a graphic, suppose that the ascending and descending manifolds of the 
critical points of one part do not intersect those from the other part. Then we may 
deform one part relative to the other. 

Examples. If i 1 < i 2  then we can deform as in Figure 3.5. 

i 2 
i2 

i 1 

J 

Fig. 3.5 

We can add one more feature to the graphic, a dotted vertical line between (t, u) 
and (t, u'), when u > u', the critical points p and p' associated with u and u' by ft have 
the same index, and the descending manifolds of p intersects (in points) the 
ascending manifold of p'. By transversality, this occurs for only a finite number of t. 
Figure 3.6 is an example. 

Fig. 3.6 

In handle language, the vertical lines indicate that one handle is sliding over the 
other. 

Note that the first three lemmas hold whether or not there are vertical lines 
present and that the hypothesis of the independent trajectories principle implies 
that there are no relevant vertical lines present. In particular, we observe that the 
independent trajectories principle applies as in Figure 3.7 when i 1 = i 2. 
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i 1 

i 2 

i 1 

12 

i 1 

-/- 

Fig. 3.7 

Proposition. The following change in graphics is possible: 

T 

+1 _ ~ -  i+1 

I 

i 

Fig. 3.8 

Proof. This is well known, but not stated explicitly in [Cerf] or [H-W].  The (i + 1)- 
handle geometrically cancels the/-handle in a neighborhood of the birth point. By 
easy deformation, we can move the vertical line left under this neighborhood, and 
then cancel the (i + 1)- and/-handles in the neighborhood, achieving the graphic on 
the right. 

Now we proceed to change f so that its new graphic has no critical points of 
index 0 or 4, and equals the old graphic near c3I • [ - K, K]. 

Step 1. We change f so that a neighborhood of the index 0 critical points in the 
graphic looks like Figure 3.9, 
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Fig. 3.9 

It is easy to arrange the critical points of index 0 as in Figure 3.9, and then to 
move the critical points of index 1 above those of index 0, by the sequence of 
graphics in Figure 3.10. 

1 

B e a k  
l e m m a  1 

i n d e p e n -  
den t  

t raj ect  - 
o n e s  
prmcip le  

1 

0 

Fig. 3.10 

Step 2. We remove the innermost critical point of index zero. 

o 

0 

2 
O 

1 1 1 

III Fig. 3.11. I-III 



A Calculus for Framed Links in S 3 43 

2 

IV 

0 

VI 
Fig. 3.11. IV-VII 

VII 

In Figure 3.11, I represents the typical difficulty in removing the innermost 
index zero critical point; we cannot immediately apply the dovetail lemma. In II we 
introduce a cancelling pair of 1 and 2-handles. This can be done so that the 
descending 1-manifold of the new critical point of index 1 intersects the ascending 
4-manifold of the critical point of index 0 in exactly one point; thus the new index 1 
critical point can be used to cancel the index 0 critical point. We do just that at time 
t in IV and V after spreading out the pair in III. A sequence of moves using the 
triangle lemma gets us to VI, and two applications of the dovetail lemma eliminate 
the innermost index 0 critical point. 

The general case differs only in passing from V to VI where there may be more 
or less applications of the triangle lemma; nothing else is needed since the other 
index 0 and index 2 critical points are below or above. 

Step 3. By the procedure in Step 2, we remove the critical points of index 0 one by 
one. The same method, turned upside down, eliminates the index 4 critical points. 

Next we must eliminate the 1 and 3-handles. Using the beak lemma, we can 
arrange births and deaths of index 1 and 2 critical points as in Figure 3.12. 

Fig. 3.12 
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We restrict attention to the smallest value of t for which two index 1 critical 
points have equal values. 

As noted in the above proposition, we may remove the vertical arrow and then 
interchange the two beaks as in Figure 3.13. 

Fig. 3.13 

By iterating this simple process we may change Figure 3.12 to Figure 3.14. 

Fig. 3.14 

Now move the outermost birth and death points just off the edges. 

Fi~ 3.15 

Let D t denote the descending one-manifold of this index one critical point of f .  
We have arranged that D t always reachs 0 M 4. If we connect the end points of  Dr by 
an arc Et in a collar of 0_ M 4, we get an S~ whose normal  bundle is trivial. Since 
nl (M4) = 0, the tangent bundle of M 4 has a unique trivialization (compatible with 
the orientation of M) over the 1-skeleton. This gives a trivialization of the normal 
bundle of S~, so that after surgery on S~, Mt is changed by connected sum with S 2 
x S 2 (the other trivialization gives connected sum with S 2 ~ $2). The new Morse 
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function on M t #~ S 2 x S 2 will have the critical point of index 1 replaced by a critical 
point of index 2. 

Note that the same comments hold if we are dealing with the ascending one- 
manifold of an index 3 critical point, as we shall be after applying Figures 3.12-15, 
inverted, to the index 3 critical points. 

This surgery must be continuous with respect to t, which means that we must 
choose Et continuously. At t = 0, the critical point of index 2 which cancels our 
index 1 critical point has a descending 2-manifold; its boundary is a circle, part of 
which is equal to Do, and the rest of which can define E o. We have an isotopy "Dr" 
of the descending one-manifold, provided by f ,  which extends to an ambient 
isotopy carrying Eo to what we define to be E,. Thus we surger M continuously with 
respect to t, changing M by ~ S 2 • S z ; the problem is to see what happens to the 
links for t = 0, 1, or equivalently, where do the two new descending 2-manifolds 
intersect ~_ M ~. 

For  t = 0  in Figure 3.14, let Bp be s small 3-ball in 0 M 4, centered at some point 
p, which does not intersect any descending manifolds of critical points. There is an 
obvious column Bp • [ -  K, K]  in M which flows down to Bp at t = 0. When in 
Figure 3.15 we move our one-two (or two-three) birthpoint just past the left edge, 
we can assume by transversality that this is done in the column B~ x E - K ,  K]. 
Then the descending and ascending manifolds of our cancelling pair of critical 
points can be inside Bp• [ - K , K ] ,  so the surgery is carried out inside Bpx 
[ - K ,  K]. The crucial point here is that the descending (or ascending for the two- 
three case) two manifold is in Bp • [ - K, K], so Eo is also. Then it is clear that the 
link at t = 0 is changed by adding o(~)o separated by OBp from the rest of the link. 

When t = 1, we have a similar column Bp • [ - K, K]  containing the ascending 
and descending manifolds of the cancelling pair of critical points. However our 
surgery is along S 1 = D 1 w E1 and E1 is not necessarily inside Bp • [ - K, K]. In the 
special case of the Theorem, ~ M 4 =  S 3, so there is an isotopy carrying E1 inside 
Bp ; then the argument for the t = 0 case works and the surgery results in the addition 
of a separated q ~ o .  But in general ~_ M 4 is not simply connected, as with ~ + M 4. 

For  the case of a cancelling two-three pair in M 4 (t = 1), we observe that the 
descending two-manifold of the index 2 critical point falls into Bp because the death 
point is near. This descending two-manifold is not changed by surgery on "the 
index 3 critical point". After surgery the new descending two-manifold can go 
anywhere. Thus we change the link at t = 1 by adding a pair q ~  where one circle 
is in Bp but the other goes anywhere. But the equivalence in w 4, Proposition 3, 
shows that this is the same as adding a pair q~)o in Bp. 

For  the case of a cancelling one-two pair in M 4 (t = 1), the two new descending 
2-manifolds intersect 0 M 4 in two circles; one can go anywhere (following El) and 
the other is a very small circle linking the first. This case is not so easy to see as the 
previous two-three case, but we leave it to the reader for in the case of the Theorem, 
0_ M 4 is simply connected and we have already given the proof. (For the case 
7z1(~ M4)4=0, see w 5, Remark 4.) 

The outcome is that we have eliminated all index one and three critical points 
and the graphic looks like the one in Figure 3.16, which was required in the proof  of 
the Theorem at the end of w 2. 
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Fig. 3.16 

w 4. Given L 1 and L2, suppose we guess that OML, = t3Mt~. Knowing from the 
theorem that we would then have L 1 -y L2, it becomes plausible to try to prove that 

t3ML, = OML: by proving that L1 "~ L2- When trying to show two framed links are ~- 

equivalent, it is cumbersome to use only (91 and (92; some shortcuts are needed. 
Here is the principle one, called a K-move in [-F-R]. 

Proposition 1A. If L and L' are identical except for the parts shown in Figure 4.1, 
then L,-~ L'. Here 7o is an unknot with framing - 1 which disappears in E, and the o 
box denotes a full right hand twist. The framing on ?'i is given by qS'i = ffz + (2(70, 7~))2. 
In fact, the linking matrix for E is gotten from L by adding multiples of?o to the 7i 
so that the matrix becomes 

~o ol I 1 
and then discarding the first row and column. 

J 

L 

Fig. 4.1 

..... I 
one ful l  

r ight hand 
twist 

III ..... 
L' 

Proposition lB.  The same statement as in Proposition 1A holds when 70 has 
framin~ + 1. the box denotes one full left hand twist, and ~b':=~b~-(2(~n, 7i)) 2. 
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Note  that Propositions 1A 
equivalence in Figure 4.2. 

n-1 

-1 

and 1B imply 

and 

for one vertical strand the O- 

I n+l 

+1 

Fig. 4.2 

Proof We prove only Proposition 1A in the following special case, Figure 4.3. 

Fig. 4.3 

We push off two copies of 70 and add one to each vertical strand ((~02) and then 
eliminate 70 ((90, see Figure 4.4. (One can verify that this does not depend on the 
orientations; the rule is to follow what the linking matrix indicates.) 

II 
~2 

ambient 
isotopy 

Fig. 4.4 

) 
01 
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Proposition 2. Given a link L, then we may add to (or substract from) L a copy of 
either ~ or q ~  (separated from L by an imbedded 2-sphere) without changing 
the ~-equivalence class of L. This corresponds to either of the connected sums 

" ~  2 ML # S 2 x S 2 or ML # S 2 x S . 

Proof For  S 2 ~S  2, we proceed as follows. 

-1 +1 

L (~, O 0  ~2 -- -- Lu b Lu 

Fig. 4.5 

For  S 2 x $2: 

Prop. 1A 0 L--~LU ~, LU ~, LU 

Fig. 4.6 

Corollary. Note that in the presence of a "free" ( ~  1, adding %~)o is the same as 
adding + ~ ) 0 - 1  in that the 4-manifolds are diffeomorphic. 

Proposition 3. If  L and L' are the two links in S 3 in Figure 4.7, then L ~ E. # 

L L' 
Fig. 4.7 

Proof The proof  should be clear from the sequence in Figure 4.8. We push offcopies 
0f71 and add them where needed. This does not change any framing in L 0 because 
nothing in Lo links 71 and 71 has framing zero. Anytime we add 71 to 72 to unknot 
)'2, we also subtract 71 from 72 in a trivial way, thereby preserving the framing 0f72. 

In principle, this argument is the same as the one showing that any knot  K in S 1 
x S 2 is unknotted if K n p x S 2 = one point for some peS 1. If  L 'and L lie in some 

non-simply connected y3, then 72 may be nontrivial in nl(Y), so the argument 
breaks down. 

n 

G ~  ~ . . . .  ~ 1 0 C -  n G . ~ . ~  m 

n m o Q n 

"72 

Fig. 4.8 
substract ~'1 
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An interesting example involves the homology sphere 1;(2, 7, 13). If L is the left 
hand (2, 7) torus knot with - 1 framing, see Figure 4.9, then 0M L has fundamental 

Fig. 4,9 

group {x, y lx  13 = y7 = (x  3 y)2}. Also, if we consider the complex variety V given by 
the solution in C 3 of zl 3+ z~ + z~ = 0 and intersect V with the unit 5-sphere in C 3, 
then we get a 3-manifold 2;(2, 7, 13) which is ~ML. To prove this, we first resolve the 
isolated singularity of V at 0, and obtain the 4-manifold Q with 0 Q =  vc~ S 5 
=2;(2, 7, 13), gotten by plumbing on 

-2  -2 -2  -2 -2 -2 -2 -2 -2 -2 -2 -2  -2 -2  - 4  

(see [ H - N - K ]  for a discussion of this). 

It is not hard to calculate that the intersection form on H2(Q; Z) is unimodular 
(so 0Q is a homology sphere), even, with an index equal to -16 .  There are two 
symmetric, even, integral, unimodular bilinear forms of index - 16 (see [Milnor- 
Husemoller, p. 28]); one is the direct sum of two negative copies of the famous E 8, 
and we have the other here. 

Since 2;(2, 7, 13) bounds an even (co2=0) 4-manifold of index=0 (16), the 
Robertello-Rohlin invariant [Robertello] is zero, so it is possible that 2;(2, 7, 13) 
bounds a homology 4-ball. If so, we get a sought-after, closed, even 4-manifold of 
index + 16 and second Betti number 16 (see [-Milnor], or [Rohlin] for an incorrect 
construction). Whether or not I;(2, 7, 13) bounds a homology ball is a fascinating 
question. 

Q can be described also by the framed link A. 

-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2  -2 -Z. 

Fig. 4.10 

We show that A ~ L  so that I;(2, 7, 13)=0ML. As in the Corollary to Propositions 
0 

1 A and 1 B, we can change the left end of A to 

1 -1 -2 -2 

Fig. 4.11 
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Remove the - 1  by Proposition 1A: 

@ @ @  ....... 
2 -1 -2 

Fig. 4.12 

R. Kirby 

Again, remove - 1: 

+ 3 -1 -2 - 2  . . . .  

Fig. 4.13 

We iterate, obtaining Figure 4.14: 

-1 -2 -4 

Fig. 4.14 

Do the same thing with the - 2  circle hanging down: 

0 -2  

Fi2. 4.15 



A Calculus for Framed Links in S 3 51 

Several applications of Proposi t ions 1A or 1B give: 

0 -1 1 -3 1 2 

1 3 2 1 3 1 - t  1 

1 3 ~ 2 ~ ~ ~ 2 ~  1 3 ~ 2 ~ ~ ~ ~  

Fig. 4.16 

Now remove five + 1 circles successively as in Figure 4.17. 

2 2 
1 

1 

1 

11 2 2 

Fig. 4.17 
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The variety V can be compactified at infinity by adding a complex curve with a 
cusp which is topologically just a 2-sphere imbedded with a non locally flat point 
which comes from a cone on the right-handed (2, 7) torus knot. We see this by 
changing the orientation of M L and adding it to Q. Note that - L 7 - A, where - L 

is the right hand (2, 7) torus knot with + 1 framing, and - A  is the link in Figure 
4.10, with all framings positive. 

w 5. Remark 1. The techniques from complex surface theory which suggested the 
calculus are two. First, a three manifold may be the link of an isolated singularity of 
a complex hypersurface in ~3. The resolution of the singularity and the 
compactification of the hypersurface both involve the two operations in the 
calculus. For  example, if two complex curves intersect at a point p in C 2, one can 
blow up the (non-singular) point p and separate the two curves. In terms of the 
calculus, we consider a 4-ball centered at p, and the curves intersect the boundary S 3 
in Hopf circles. Blowing up is the same as connected sum with - CP 2 which in S 3 
amounts to introducing an unknot with - 1 framing and adding both Hopf  circles 
to it, thereby unlinking the Hopf  circles. 

Second, two rational complex surfaces can be shown to be rationally equivalent 
if certain invariants of the surfaces are equal. Here, a complex surface is rational if it 
can be obtained by blowing up points on CP 2 or a CP 1 bundle over CP 1, and two 
surfaces are rationally equivalent if they become isomorphic complex manifolds 
after possibly blowing up points on each. Again, this is similar to the calculus. 

The calculus was suggested by the above considerations plus the knowledge 
that topologists have long been aware of various cases of the calculus, e.g., see 
[Hempel], page 211 or [Rolfsen], Chapter 10, and Remark 6 below. 

Remark 2. Looking back over the proof of the theorem, we see that we can perform 
(91 on both L 1 and L2 so that the resulting links are equivalent using just (92. This is 
because MLI and ML2 become diffeomorphic after adding enough + CP 2. In w 3 we 
show that after adding enough S 2 x S 2 to ML, the two Morse functions are related 
by isotopy and (92 . But adding an S 2 x S 2, in the presence o f ( ~  1, is done by adding 
C) 1 C)- 1 and then sliding handles over handles (see the Corollary to Proposition 2 
in w 4). 

Remark 3. A framed link L is called even if all the framings are even integers, or 
equivalently, the intersection form on H2(ML; Z) is even (Type II), which is the 
same as M L being parallelizable. It is desirable to know an even link L that gives a 
specific 3-manifold Q3, Q3 = 0ML, for then we can "read off" the Rohlin invariant 
[Robertello] of Q3 if Q3 is a homology 3-sphere, or the #-invariant [E-K] ,  [C-S], 
[-Gordon], [Hirzebruch] if Q3 is a Z/2Z-homology 3-sphere. Steve Kaplan has 
found an efficient algorithm for transforming a link L, via (91 and (9 z, to an even link 
[Kaplan].  

Now suppose Q3 = 0MLI = OML2 where both L 1 and L 2 are even. Can we change 
LI to L z through even links? That is, can we change L1 to L2 using (92 and, in place 
of (91, allowing L i to change by addition (or subtraction) of the link 0(~0, separated 
from the rest of L i by an SZ? Of course, it is necessary that index MLI =index ML~, 
or else to change L~ by adding any even link of index 16k with boundary S 3. Then 
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the answer is yes, for in w 2, N is almost parallelizable, so W can be spin, and then we 
can pass from ML, to M 4 by only connected summing with S 2 x S 2 and not S z ~ S 2 
([Wall], p. 147). The remainder of the proof goes through as in the non-even case. 

Remark  4. What happens to the calculus if we consider links in an arbitrary 3- 
manifold Y The Theorem continues to hold if Y-~S  3 (same proof) or if the 
diffeomorphism from 0ML~ to ~ML2 and the identity from Y to Y extend to a 
homotopy equivalence from MLI to ML:. A proof of the latter (and generalizations) 
is given in [F-Rz] .  But the Theorem fails if Y is not simply connected. 

An easy counterexample occurs when Y= S 1 x S 2. Think of Y as the boundary 
of MLo where L 0 is the unknot with framing 0. Then add a pair of unknots in two 
different ways to get L 1 and L 2 (see Fig. 5.0). Then t?+ ML1 ~--t?+ M L ~ - S  ~ x S 2. But 
there is no way in the calculus to pass from L~ to L2 because one cannot link L0 with 
anything except by sliding Lo over another handle, which is not allowed. This also 
shows that there is no relative version of the theorem stating that we can pass from 
L1 to L 2 by the calculus while fixing a common sublink L 0. 

oo oo o 
L 1 L2 

Fig. 5.0 

Remark  5. The greatest value of the theorem is not in its corollaries (of which I know 
none), but that it suggests a practical method for trying to show that two oriented 3- 
manifolds are diffeomorphic, which is bound to work if in fact they are 
diffeomorphic, e.g. see [Lickorisha]. 

Three manifold have traditionally been studied using our knowledge of 2- 
manifolds, e.g., via Heegard decompositions and their homeomorphisms of 
surfaces, or via imbedded surfaces in the 3-manifold. The philosophy we encourage 
here is to study 3-manifolds by studying some 4-manifolds they bound. 

Along these lines, we have already mentioned Kaplan's work in Remark 2. 
Selman Akbulut and I have used the calculus to fairly efficiently compute the 
Casson-Gordon invariant of some non-rational knots; see [ C - G ]  and [A-K1].  
Also we have investigated, [A-K2],  a conjecture of Zeeman. The conjecture 
[Zeeman, Conjecture (5), p. 357]: If we add a 2-handle to S 1 x B a along the curve J 
(see Fig. 5.1) with framing n and t full twists, does the curve K bound a P L  imbedded 
2-ball in the resulting contractible 4-manifold. The crossings may vary and the 
integers t and n may vary over the integers. 

/ / ~ " \  

Fig. 5.1 
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Akbulut and I have tried to find a homology 3-sphere with Rohlin (or #- 
invariant zero which does not bound a contractible manifold, or even a homology 
ball. We conjecture that the (2, 3, 11)-homology sphere does not. It is the link of the 
hypersurface x 2 + y3 + z 11 = 0 in C 3 (with fundamental group {a, b, c l a  2 = b 3 = C 11 

and a = b c2}), and is also described by the links in Figure 5.2. 

2 

Fig. 5.2 

Remark  6. There is a description in [Rolfsen], Chapter 10, of a related calculus for 

Dehn surgeries on a link in S 3. Briefly, a knot and an associated rational number q 
P 

describe a 3-manifold obtained by removing a solid torus (the thickened knot) from 
S 3 and sewing it back in so that the meridian goes to p times the longitude and q 
times the meridian, where the longitude lies on the Seifert surface of the knot. This 
"Dehn surgery" corresponds to ordinary surgery when p = 1 and then q is just our 
framing. Rolfsen gives a calculus for these links with associated fractions which 
shows how to change to a link where all fractions are integers. Then we have the 
obvious corollary that two links with fractions give the same 3-manifold iff they are 
equivalent in Rolfsen's calculus to framed links which are 0-equivalent in our 
calculus. 

R e m a r k  7. R.A. Fenn and C.P. Rourke have shown [ F - R ]  that the operation in 
Figure 4.1 (and its companion) is equivalent to our (91 and (.o z. Propositions 1 A and 
1 B prove half this equivalence and here is Fenn and Rourke's argument for the 
other half. 

Their operation, which they call a K-move, consists of introducing or removing 
an unknotted circle with framing _+ 1, twisting left or right all arcs passing through a 
spanning disk of the circle, and changing the framings as explained in Propositions 
1A and 1 B. Thus (91 is just a K-move with no arcs passing through the spanning 
disk. 

What  remains is to show that we can achieve an (92 by a sequence of K-moves. 
Suppose we want to "add"  Vi to Yi. Ifv~ is unknotted with framing - 1, then two K- 
moves achieve the addition, as in Figure 5.3. If there are other strands going through 
y~, including arcs of y j, then we may gather them into a tube represented by the dotted 
line in Figure 5.3. When we "blow down" ?i the framings of the strands are changed, 
but they are changed back when y~ is "blown up" again. 
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K- move 

~'~+I 

o 2 
~ x , . . . ~  n - I  

isotopy 

i s o t o p y ~  -move 

@ 
Fig. 5.3 

In  general, we can make 7i unkno t t ed  with framing - i by a series of K-moves, 
"b lowing up" circles to change crossings and unkno t  71 (e-g-,X---~ , ' c ~ , -  1) and 
blowing up circles to make the framing - 1. We proceed as in Figure 5.3 and then 
reverse this process, "b lowing  down"  the circles to restore ?g to its original 
knot tedness  and  framing. 
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