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Abstract. For a system Y¢ of partial differential equations, the notion of a covering ~o ~ °2/~ is introduced 
where Y¢~ is infinite prolongation of ~'. Then nonlocal symmetries of ~ are defined as transformations of 
~ which conserve the underlying contact structure. It turns out that generating functions of nonloeal 
symmetries are integro-differential-type operators. 
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O. Introduction 

In [1] local symmetries and local conservation laws were discussed, i.e., such that are 
defined by differential operators. For example, any higher infinitesimal symmetry of an 
equation Y¢ c Jk(rr) is determined by its generating function ([ 1 ], Section 3.5), the latter 
being, in general, a nonlinear differential operator. As we saw, the local point of view 
effects in consistent and self-contained theory. Nevertheless, there are certain experi- 
mental facts, as well as purely theoretical considerations, which indicate its limitations. 
First of all it could be seen that the number of local symmetries and conservation laws 
in cases is just too small. Thus, an evolution equation u, -- f (u ,  ux) + u~,,,, the form of 
which is quite similar to the Korteweg-de "Cries equation, as a rule has no local 
symmetries other than translations. The KdV equation U t --- UU x + Ux,~ itself is not 
completely integrable in the framework of the local theory. 

A natural geometric generalization of the local theory consists of constructing such 
extensions of objects like ~¢~ functions on which could be interpreted as some kind of 
generalized differential operators (e.g., as integro-differential operators). We call sym- 
metries and conservation laws determined by such functions nonlocal. 

Nonlocal symmetries of special types were considered in a number of recent publi- 
cations (see, for example, [2-7]). The simplest examples of such symmetries arise 
naturally when acting by so-called reeursion operators on local symmetries. For 

1 -1  instance, by acting by Lenard's recursion operator D E + ~u + gu,,D on KdV scale 
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symmetry tU~xx + (tu + ½x)u x + 2u we shall get a nonlocal symmetry which depends on 
~ u d x .  

Below, we give a sketch of nonlocal symmetries theory emphasizing the illustrative 
calculations of particular examples rather than discussing the general theoretical aspects. 
As in [ 1 ], our chief model is Burgers' equation. A more detailed exposition, as well as 
other applications, will be published elsewhere. 

1. Naive  Approach  

Consider Burgers' equation Y= {ut = uu~ + u~} and its infinite prolongation 
~¢~ e J~(N=). Choose functions x~ = x=, x 2 = t, T(o) = u . . . .  , T(k), ... as coordinates 

on q¢o~ (cf. [1], Section 3.6). Then the algebra Sym ~ of Burgers' equation local 
symmetries coincides with the kernel of the operator l~- = ~2 + P(o)~, + p<,) - D2, where 
vector fields 

8 0 8 
= = - - +  " ' "  + P ( k + l )  - -  D 1 D~ 8x +pO) @(o) @(k) 

+ ' . . ,  

- 8 8 
D 2 = Dt = ~ + (P(o)P(I)+ P(2)) )opt(o-- 

+ . , . +  

k + Dx(P(o)Po) + P(2)) - -  + "" " 
~P(k)  

determine the contact structure on ~ (see [1], Section 3.5). Let us extend ~o~ up to 
a new manifold °~o~ by introducing another, 'nonlocar, variable ~P(0)dx = ~ u dx. 
Formally speaking, this means that we have added another one to the coordinates 
described above, namely p(_ 1), the total derivatives of which with respect to x is equal 
to P(o) = u. It is quite natural to define the total derivative of p(_ 1) with respect to t as 

Dr(p(_ 1)) = D,(Dff '(P(o)) = D~- l(D,(p(o)) 
1 2 

= Dff ~(P(o) P(1) + P(2)) = ~P(o) + P o )  + c, 

where c = c(t) is the 'constant of integration' which may be put as equal to zero. In other 
words, we extend total derivations D~ and D t up to operators 

0 8 1 2 
, Dt  = D,  + (-~P(o) + P o ) )  - -  D:¢ =- ax  + P(o) Op(_ 1) gP(- 1) 

Obviously, we have [/~x,/~t] = 0. 
Now, the operator lF naturally extends up to the operator 

7e = / ~  + P(o)D~ + Po) - /~ , ,  and we call a nonlocal symmetry of Burgers' equation 
depending on p(_ ~), any solution of the equation 

=- o = p.¢o + p(o)SAgo) + (I) 
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where q~ is a function on ~ .  When cp depends on x, t, p( _ l) and Pro) only, Equation (1) 
transforms into 

0cp 1 &p 

& 2 3p(_ t) 

8q) c32q0 c92q0 
= - - + - - +  2p(o ) OX ~p(i l) P(1)(P + P(o) Ox 8X 2 

+ 2Po) 02~°  ~'P~o) 82---~ + 
ax Op(o) ap~_ 1) 

a2 rp 32 ~o 
+ 2pm)po) + P~I) 

ap _, ap(o, ap o " 
The solutions of this equation are of the form 

cP tP[a] (aP(°) 2 8a exp ( ' ) )  
. . . . .  2P( - 1) ' 

c~x 

(2) 

( 3 )  

where a = a(x, t) is an arbitrary solution of the heat equation a, - - -  axx. 
if we now repeat all the reasonings from [1], Section 3.6, using symmetries 

q) = q~(x, t, p(  _ 1), P ( k )  instead of classical ones, then we shall see that any solution of 
(1) is of the form q~ = tPt + ~n where q~l is a local symmetry of the Burgers equation, while 
q), is defined by (3). 

For those functions q~ on a ~  which are of the form q) =/$~(f )  we can formally define 
'evolutionary differentiations' 

8 ? 0 
§~ = D:~'(~0) - -  + q) - -  + "" + D~(q)) - -  + "" 

ap(_ , ap,,:, 

where D ;  t (~o) is the general solution of the equation ~0 = Dx(f). For such functions, 
an 'extended Jacobi bracket' is defined as: 

{¢, ¢,}- : - 

For example, for any function (3) we have D ;  l(~o[a]) = 0c- 2a exp ( -1  ~p(_ ~)) and 
consequendy 

{~[a], ~[b]} ~ = ½q~[fla - ~ ]  (4) 

where ~ and fl are arbitrary functions of t. 
Which solutions of Burgers' equation are invariant with respect to the nonlocal 

symmetry (3)? To fred them it is necessary to solve Burgers' equation together with the 
equation 

q)[a] = (ap(o) - 2ax)exp(-½p(_l,) = (au - 2ax)exp ( -½  f u d x ) = 0 .  
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In particular, it follows that u = 2a,:/a, i.e., we get the well-known Cole-Hopf trans- 
formation which reduces Burgers' equation to a heat equation. This fact clearly 
demonstrates the usefulness, of nonlocal symmetries. 

2. Criticism of the Naive Viewpoint 

The situation which stimulates the introduction of nonlocal symmetries in the manner 
described above is connected with the so-called recursion operators. Namely, an 
operator ~ is said to be a recursion operator for the equation ~1 if IF ° ~ -- ~ o l~- holds. 
From Theorem 6 of [1], Section 3.5, it follows immediately that ~0~ Sym o~ implies 
~(¢p) s Sym ~¢ when ~(~0) is a smooth function on ~¢o~. The latter is always true when 

is a differential operator. However, all the recursion operators which are now known 
for the simplest nonlinear equations are not differential ones. For example, such opera- 
tors for Burgers' and KdV equations are of the forms ~ = Dx + ½u + ½Ux D~ 1 and 

1 = D 2 + 2u + guxDx 1 respectively. Therefore, by usingthe latter operator when acting 
on, say, the scale symmetry ~o = tu~x + (tu + ½X)Ux + 2u of a KdV equation, we 

1 (~ tu  x + _Su)ux. ~ + shall get the function ~ = ~(¢p) = tuxxx,~ + (~tu ÷ ~x)u~,¢,~ + 1 
4 2 (Stu2 + ½xu + 1 S u dx)ux + ~u . It seems attractive to treat this function as a nonlocal 

solution of the equation le(q~) -- 0 and, therefore, as it follows from Theorem 6 of [ 1 ], 
as a nonlocal symmetry of the KdV equation. The reader can find a more precise 
formulation of this thesis in [ 1 ], where we discuss Burgers' equation. Yet such a point 
of view is inadequate for a number of reasons. 

In the first place, there are difficulties of a purely technical nature which hinder the 
practical realization of this scheme. The reader will understand them if he tries, for 
instance, to find nonlocal symmetries of Burgers' equation depending on S u 2 dx. 

Secondly, there are no reasons, except for the formal analogies to Theorem 6 of [ 1 ], 
to regard the solutions of the equation le(q~) = 0 as nonlocal symmetries. Obviously, here 
one needs to analyse the very conception of nonlocal symmetry. 

At last, the naive point of view is unaesthetical. This can be seen, for example, from 
the fact that the 'nonlocal' Jacobi bracket { ", • } ~ is not defined everywhere and is 
multivalued (compare with (4)). 

For these reasons we shall give up the naive viewpoint and try to arrive at the 
definition of nonlocal symmetry by analysing the geometry of manifolds ~7o~ exactly in 
the same way as was done in [1] when discussing manifolds ~ .  

3. Coverings 

The reader will find the motivations for the theory of coverings which is fundamental 
for our approach to the notion of nonlocal symmetries, in [8]. Below we informally 
describe the basic concepts of this theory. Note that the prolongation structures 
introduced by Wahlquist and Estabrook (see [9]) are a particular case of coverings. 
From now on we use the term 'infinitely-dimensional manifold' just in the same sense 
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as was done in [ 1 ] with respect to the objects J ~ ( n )  or ~ .  By n we denote the number 
of independent variables in the equation ~. 

Consider an infinitely-dimensional manifold ~ equipped with an n-dimensional 
integrable distribution. This means that in the tangent space Y r ( ~ ) ,  which is infinitely- 
dimensional, at any point y e ~7o~, an n-dimensional subspace ~ e Ty(~7o~) is determin- 
ed and that the system (~y)  of these subspaces satisfies the conditions of the classical 
Frobenius theorem. If, in addition, there is a regular map ~ from ~ onto ~/~ inducing 
an isomorphism of ~ and ~¢y )e  T.:(y)(~), then we say that ~7o~ is the covering of 
the equation ~. This implies that any integral manifold Ue ~ 7  (i.e., such a manifold 
that Ty(U) = ~ ,  Vy e U) is mapped by z onto an integrable manifold V = z(U) ~ ~/~ ; 
that, is onto a solution of the equation ~. 

Consider the coordinate interpretation of the above. Let W~ ~ 0 < N ~< ~ ,  be a 
domain in R" and w~, Wz... be the standard coordinates in W. Every manifold ~ can 
be represented locally as the Cartesian product ~ = ~¢~ x W while the mapping z is 
the natural projection ~¢~ × W ~  ~¢~. Recall that the contact structure on ~ is 
determined by the system consisting of n vector fields D,., where D; is the restriction of 
the total derivative operator on ~¢o~ (see [1], Section 3.5 and 3.6), and, what is more, 
the equalities [D,,D/] = 0 hold. Then an n-dimensional contact structure on 
~o~ = ~o~ x W may be determined by a system of vector fields /~; = D~ + X~, 
i = 1, . . . ,  n, where X i = ~,jXg 3/awj, Xue  C°~(~/~). Frobenius conditions can now be 
rewritten as [/~,.,/~.] = 0, which is equivalent to 

IDa, X/] + [X~, Dj] + [X~, Xj] = O, i , j  = 1 . . . .  , b. (5) 

Relations (5) constitute a system of differential equations with respect to functions X~ 
which describe all the coverings of the equation ~¢ with the fibre W. It can be seen from 
the following examples that we can consider the coordinates w e as 'nonlocal variables' 
and the operators /~ as total derivations. 

EXAMPLE 1. Suppose n = N =  1, ~ =J~(G~,) ,  0,w denotes the trivial one- 
dimensional bundle over M, while w = wl is the coordinate in W. Then Equations (5) 
are obviously trivial and, therefore, any function X =  X ( w , x , u  . . . . .  p . . . . .  ) on 
~ = J ~ ( l ~ )  x W determines a coveting over J~(0~,) ,  the operator/~1 being of the 
form/~1 = /~  = X(c3/~w) + D~. Hence, from/~(w) -- X it follows that the function X is 
the total derivative of the variable w. In other words, i fX --- X(x,  u . . . . .  p . . . . .  ) then w 
can be understood as the integral ~ X(x,  u, . . . , O"u/dx . . . .  ) dx. 

EXAMPLE 2. Any 'regular' differential operator acting from the sections of a bundle n 
into the sections of a bundle re' over M induces the mapping J ~(n) ---, J ~(rc') which is 
a covering over J ~ (re') at its nonsingular points. The operator d/dx, for instance, leads 
to the covering J ~ (  0 w ) - J ~ ( I ~ , )  which, in terms of the previous example, can be 
described by means of the function X = u (that is w -- ~ u dx).~ 

Now, let Ve ~/~ be an integral manifold, i.e., a solution of ~ It is easy to see that 
the restriction of the contact structure over a2¢o~ on the inverse image z- I(V) is an 
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integrable n-dimensional distribution. In particular, when dim W = 1 it follows that the 
manifold z- I(V) is foliated by one-dimensional family of integral manifolds. We have 
a similar but rather more complex situation in the case dim W -- oo. Hence, the entire 
family of integral manifolds in ~o~ corresponds to a single solution of ~ That is why 
it is pertinent to interpret such manifolds as solutions of q¢ with nonlocal parameters. 
For example, in the covering with the nonlocal variable w = ~ u dx, this nonlocal 
parameter is a constant of integration, while integral manifolds in q 7  are identified with 
pairs of the form (f(x),  c), where f is a solution of q¢ and c is a constant of integration 
in ~ f (x )  dx. 

4. Nonlocal Symmetries: The Exact Definition 

Consider a differential equation ~ and its coveting ~oo. A transformation f: qToo ~ ~oo 
is said to be a nonlocal symmetry of q / i s  and only if it preserves the contact structure 
on ~oo. In other words, f is a nonlocal symmetry when f.(gTy) = ~(y) for any point 

y E  ~oo. 
The grounds for such a definition are as follows: When investigating differential 

equations we use operators which, in general, are in some sense inverse to differential 
ones. These operators are nonlocal by their nature. They are multi valued, but become 
one-valued when some sort of parameters, such as integration constants, are fixed. That 
is why any actual reasoning concerning the construction of the solutions of ql deals with 
the consideration of these constants, explicitly or not. In other words, we do not have 
to consider 'plain' solutions as such, but rather solutions equipped with 'integration 
constants' in the sense described above. Thus, nonlocal symmetries transform such 
solutions into each other. Indeed, as it follows from the previous subsection, integral 
manifolds in any covering qToo of the equation ~ could be understood as 'equipped' 
solutions of adO. 
The differential-geometric structure of coverings ~oo is quite analogous to the structure 
of manifolds ~/oo. Therefore, the definition of infinitesimal nonlocal symmetries does not 
differ from that of higher symmetries (cf. [1], Section 3.3). Namely, the Lie factor- 
algebra 

D ( oo) 
Sym~ ~ / =  

is said to be the algebra of nonlocal symmetries of the type • for the equation ~. Here 
• : a~oo ~ ~oo is a covering, D~¢(°~o~) consists of such vector fields S on °~o o that 
[ s ,  wh i l e  

= 

This definition could be motivated just in the same way as was done in Sections 3.4 and 
3.5 of [1 ]. Moreover, the elements of Sym, ~r can be identified with such vector fields 
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S on ~oo, that 

[S,/~;] = 0, i--  1 , . . . , n ,  and S(q~) = 0 for any ~0 = q~(x). 

(Here x denotes the set of independent variables for the equation ~.) The condition 
S(q~) = 0, q~ = q~(x), is obviously equivalent to the vanishing of the coefficient of the field 
S which correspond to a/Ox¢, i = 1 . . . .  , n, components. 

EXAMPLE 3. Consider the covering described in Example 1 and corresponding to the 

function X = u. Taking into consideration (6), we shall seek the elements S e Sym~ 

as being represented in the form 

S = q j  O ~ O - - +  P k - - ,  [s ,~]=0,  B = B ~ .  
~w ;=o Op(~) 

Then 

[s,O]--eo ~w+ e;+, 
i = 0  (~P(i) 

- B ( + )  ~ - - -  = 0 ,  

i = 0 Op( i )  

or, equivalently, 

eo = i f ( + ) ,  Pi + l = D(Pi),  i = O, 1, 2 . . . . .  

Consequently, 

0 ~ Oh + 0 S = ¢p - -  +/~(¢p) - -  + " '" + '(¢p) - -  + " " ,  (7) 
aw 0% Op(k) 

i.e., (7) is the formula for evolutionary differentiations but 'shifted one position to the 

left'. 

5. Coverings over Burgers' Equation 

Now we return to Burgers' equation Y/ --- {u t = uu x + u ~ } .  In this section, we shall 
describe a class of its coverings which subsequently will be used for the calculation of 

nonlocal symmetries. We preserve the notations for the coordinates and operators from 
Section 1. 

Let z : YTo~ = ~ × W ~  ~¢oo be the natural projection, wi, i --- 1, 2 , . . . ,  coordinates 

in 141, and/~l  =/gx = Dx + X,/~2 =/~t = Dt + T, where 

i~ l OWl" i>~ 1 Owj 
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Then according to (5), the fields X and T should satisfy the equation 

[Dx, T] + IX, D,] + iX, T] = 0. (8) 

We shall find all the solutions of the latter equation for which the functions Xg, Tj do 
not depend on the variables x, t and P(k), k > 1. For such X and T (8) can be rewritten 

P(1) 

as 

~T OT ~3X 
Op(o~) + P(2) gP~o) (P(2) + P(o~Po)) c3pco) 

~X 
- - +  [X, TI =0,  (p(s) + p ~  + P(o)P(2)) Op(1) (9) 

where the symbol 8Y/dz for the field Y = )'~'i Yt(~/~Yi) m e a n s  ~i(0Y//Sg)  O / ~ y  i . The left- 
hand side of (9) is a 'vector-valued' polynomial in variables P(2) and P(3). Hence, its 
coefficients vanish, and so it follows that functions X,. do not depend on Po) and 

~T OX OX 
= ~ - -  + R, (10) 

?P(,) @(o) T = P(l) c~p(o) 

where the coefficients of the fields R do not depend on p(~). Now, substituting (10) into 
(9) we get 

p L  +P(') -p(o) + + Ix, R]  = o. 

As X and R do not depend on Po), this equation is equivalent to the following system 

02X 

ap o, 

OR 

- - = 0 ,  

 p o-Z --  p o-Z - 

[X, RI  = o 

From the first of these equations it follows that 

X =p(o)A + B, (12) 

where the coefficients of the fields A and B depend on the variables w i only. In other 
words, A and B are fields on IX/. With regard to (12), the second equation in (11) 
transforms into 

~R 
- -  = P(o) A + [A,  B ], 
~P(o) 
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which is equivalent to 

I 2 (13) R = 5p(o)A +p(o)[A,B] + C. 

Here C is a field on W. At last, substituting (12) and (13) into the last of Equations 04) 
we shall get 

p~o) ([A, [A,B]] + ½[B,A]) + p(o)([A, C] + [B, [A, B]]) + [B, C] = 0 

or, equivalently, 

[A, [A, B]] = ~[A, B], 

[B, [B, AI] = [A, el ,  (14) 

[B,  C]  = 0. 

Thus, we have proved the following statement. 

THEOREM 1. Any covering of Burgers' equation in which the coefficients of the fields X 
and T do not depend on x, t and PCk), k > 1, are determined by the fields of the form 

Dx = Dx + P(o)A + B, 

a ~ [ A , B ]  + C (15) D, = D, + (P(l) + 2P'(o)) A +Pco) 

where A, B and C are fields on W which satisfy (14). 

Here the following remarkable fact should be noted. Consider an abstract Lie algebra 
generated (as a Lie algebra) by the elements a, b, c and which satisfy the relations (14) 

where A ~, a, B ~, b, C ~ c. Then the Lie algebra of the vector fields generated by the 
fields A, B and C is a representation of the algebra • in the algebra of the vector fields 
on W. Thus, from Theorem 1 it fo//ows that any covering of Burgers' equation of the 
type considered here is uniquely determined by some representation of the algebra 6i as 
an algebra of the vector fields. By this reason we shall call the algebra (~ universal. 

6. Nonlocal Symmetries of Burgers' Equation 

Now we shall consider the problem of calculating of Burgers' equation nonlocal 
symmetries in the coverings described in Theorem 1, According to (6), we identify the 
elements of S y m ~  with such fields S on o ~ ,  that S = P +  ~, where 
? -- z,~>o e,(a/ap(,)), • = zj>~, ~:(a/~w A, ?,, ~:~ c~ (R~) ,  and IS, 5x] = Is, 5,] - 0. 

Taking into consideration (15), we get the equations 

O 
- -  + ? o , 4  + [ ~ ,  5 x ]  = o,  [s, 5x] = E, (?, +, - g~(?,)) ap~,) 

= S" ( ~  Pk --O (D~(P(z)+P(o)Po)))-Dt(Pi)) o -  + [s,O,] 
"7. ~p(~ ~P(o 

+ (?, +p<o)eo)a + eo [a ,B] + [¢, B,] = 0. 
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The coefficients of the fields [O, f~ ]  and [O, f t ]  corresponding to the components 
(9/~p(i) vanish for all i, that is, these fields are vertical with respect to the projection ,. 
Hence, the first of these equations is equivalent to 

e,+~=f~(e,) ,  i = 0 , 1  . . . .  , e0A + [O ,5A ~ 0, 

from which it follows that P~ =/~(~b), where S now denotes Po. Similarly, the second 
equation is equivalent to 

(Pt + P(o)Po)A + eo[A,S] + [(I),/9,] = 0, 

B~(S) ~ ( ~  (P(2~ + p(o)p(1))) =/~ /~(~ ' ) .  (16i) 
~P(k) 

Let 

k ~P(k) 

Then obviously [~,,/~x] = 0. Since (16i) can be rewritten in the form 

(9~,o D~) (P(2) + P(o)P(o) = ( f~o f , )  (~h) 

it follows that it can be obtained by applying the operator 5~ to the equality 06o): 

5~(p(:) + P(o)P(1)) = f , (S )  

or  

f2x(S) + P(o)fix(S) + PO)~ h = Dr(S). 

Note, that the last equation can be rewritten as TF(S ) = 0, where F = PH + PoP~ - P :  
(see Section 1). Thus, we see how the exact theory from Section 4 correlates with the 
naive approach. Namely, the equation ~(S) = 0 is not the sole condition which must 
be satisfied by the function $. More precisely, the results of the previous calculations 
lead to the following: 

PROPOSITION. Any nonlocal symmetry of Burgers' equation in the covering (15)/s of 
the form S = ~ ,  + ep, where ep = ~.i epi(O/Ow~), S, epie C°°(~I~) while the function Sand 
the field eP satisfy the system of the following differential equations 

SA = 01, 

(Dx(S) +p(o)S)A + S[A, B] : [/~,, ¢'1, (17) 

tAS) - f (S) + p(o, 5x(S) + p < , S -  = o. 

Note that when the covering is trivial, i.e., A = B = C = 0, the first two equation s in (17) 
are satisfied in a trivial way, and so this system is reduced to the equation IF(S) = 0. 
Thus, the local theory of symmetries is a natural part of the nonlocal one. 

Further analysis of system (17) should be based on particular realizations of the 
universal algebra o. Below we shall consider several examples. 
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7. One-Dimensional Coverings 

Suppose W = ~. First consider the case A --- 0. Then the system (15) transforms into 

a single equation [B, C] = 0. I f  the field B is nonzero,  then we can choose a coordinate 

w on Win such a way that B --- d/~w. Then it follows that C = ?(d/Ow) where ? --- const. 

The case B = 0, C # 0 can be treated in a similar way. Thus, it is always possible to 

choose a coordinate w in such a way that B = fl(3/Ow) and C = ?(3/Ow), fl, ? = const. 

In this case we have 

0 

Suppose v = w - fix - ?t. Then Dx(V) = 5,(v) = 0, hence, in v, x, t ..... P(k) .... coordi- 
nate system the equalities 5 x = Dx, 5, = D, hold. Thus, in this case the two-dimensional 

distribution determined by the fields 5, 5x on ~o~ is tangent to the surfaces 
l--[~ = {v = 2[2 = const}. Therefore, this distribution induces two-dimensional inte- 

gable distributions on I-Ix. The surface l-[~, together with such a distribution, is 
isomorphic to the pair (~/~, :d) where c~ is the Cartan distribution on ~/o~. This 

isomorphism is induced by the projection T. In other words, in this case :~ equipped 
with the corresponding contact structure can be represented as a one-parameter family 

of the manifolds ~o~, v being the parameter. Thus, any nonlocal symmetry in such a 
covering is simply a v-parameter family of local symmetries. Obviously, such coverings 

are of no interest and so we caU them trivial. 

Now we shall suppose that A # 0. Choose a coordinate w on W in such a way that 

A = ~/Ow locally. In this case B = b(w) ~/Ow, C = c(w) O/Ow, and the system (14) acquires 
the form 

b" 1 , - b " b  c',  = ~ b ,  (b') 2 = b ' c = b e ' ,  

when f '  = d f /d w .  Solving this system we get two kinds of  solutions: b = const, 

c = const  and 

b = # exp(w/2) + v, c = - v/2b, g = const  # O, v = const. (18) 

In the first case, in accordance to (15), we have 

0 0 1 2 5x = D.  + (p(o) + b) B, = D, + (p(,) +  P(o) + c) - - .  
Ow 

Using the coordinate v = w - b x  - ct instead of  w, we get 

t~ 1 2 
5x = D.  + P(o) ~w' D, = D, + (P(1) + ~P(o)) (~w" 

In other words, we may assume b and c to be equal to zero. In this case 0 7 )  transforms 
into 

= 5,(<o), TA ) = o, 
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where ~ = ~p(O/cgv). It is easy to see that the third equation in this system is the 
consequence of the first two and so it can be transformed into 

~O =/~x(~0), /~2(~p) + P(o)/~(q)) =/~,(¢P). (19) 

REMARK. Denoting v by p(_ 1) we see that the covering considered here is identical 
to the extended manifold ~ which was introduced in Section 1. Then Equation (1) is 

the consequence of Equations (19) but not vice-versa. This again points out the 
drawback of the naive viewpoint. 

t 2 The second of the relations (19) is of the form lo(¢p) = 0, where G = v ~  + ~v~ - v t. 

This gives an idea that the manifold o ~  is of the form ~ ' ,  where Y¢' is the equation 
1 2 t 

v, = v ~  + ~Vx. In fact, we can identify ~ and ~o~ together with respective contact 
structures by patting x = x ' ,  t = t', P(k) = P~,+ o,  v = P~o), where x ' ,  t ', P~k) are the 
standard coordinates on Y¢~. Then it follows that Sym~ ~ = Sym @'. Calculating the 
algebra Sym Y¢' by the same schema as was used in [ 1 ], we fred that this algebra is 
generated by the elements ~0_ ~ = a(x, t) exp ( - ~ v), where a~  = a, 

~o°_2 = 1 

• = t Ptk) + l ( (  k + 1)fP(o) + i x f - l ) p ( k _  13 + . . . .  

k = 0 ,  1 . . . . .  i = 0 ,  1 , . . . ,  k +  1. 

It should be noted that the form of the system (17) depends essentially on a coordinate 
system in E~, i.e., on a representation of the field A. IfA = a(w)t3/Ow, then in the case 

considered, Equations (17) transform into 

~k = I (/~(~p) _ P(o) a'q~), 
a 

+ [ ( a ' )  2 - a a "  ' ' 
- ~ a  ] P ~ o ) ~  = 5 , ( ~ ) .  

The latter equation is of the form L(q~) = 0, where 

L =/~2 _ (1 - 2a ' )p (o )D"  x - Dt  + [(a') 2 - aa"  - ~al, ] p 2 .  

The simpliest form of the operator L could be obtained when killing its component with 
1 ~2  O t .  / ~ .  For this, it suffices to have 2a' = 1, or a = 5w. Then L = Dx - 

For the same reasons as above, we conclude that ~o~ = ~¢~, where ~ "  = {Wxx = wt} 

is the heat equation. Thus, the covering considered here is of the form ~ ~ ~¢oo, where 
~ "  is the heat equation. Therefore Burgers' equation is the factor equation of heat 
equation Wxx = wt with respect to the one-parameter transformation group 
A~ = { w  ~ e w } ,  e being the parameter. Note that all linear equations admit such a group 
of transformations. 
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In the coordinate system on YTo~ considered here (i.e., when A = ½w (d/dw) the algebra 
Sym~ Y¢ = Sym o~,, is of  the form 

02~ O~ 
q~_ ~ = ~(x, t), - -  - , ~o ° ~x 2 c~t 1 = w, 

q~ik = w[tlp(k) + ½((k + 1) tiP(o) + it i -  I x ) p ( k _  1) + . . . .  

k = 0 ,  1 , . . . , i = 0 , 1 , . . . , k +  1. 

Now we shall consider the coverings which are described by functions (18). Obviously, 
there is such a coordinate transformation w' = w + const which results in I/~1 = 1, i.e., 
b = + exP(½W) + v. It is easy to show that all such coverings are pair-wise different. 

For the coverings considered, system (17) can easily be transformed into 

[]  (q~) = 0, ~ =/~x(q~) - b' q~, (20) 

where S = q~(O/~w) + 5~,, S ~  Sym~ ~, while 

[] = D~ + P(o)Dx - b ' (p(o)  + b) - / 9 , .  (21) 

System (22) (in fact, the equation [] (q~) = 0) can be solved in the same way as was done 
for the equation IF = 0, where F = 0 was Burgers' equation (cf. [1]). Furthermore, the 
algebra Sym~ ~ happens to be isomorphic to Sym ~ For example, the functions ¢p 
which are the solution of  (20) depending on x, t, w, Pw), o(1) only, are the linear 
combinations of the following 

q~O = P(o) + b, 

q~ = t(p(o) + b) - ( b ' ) -  1, 

1 2 V b, 
q~O = PO) + ~P(o) + b' P(o) - 2 

, 2 1 ½b(x vt) + ~0~ = t(P(1 ) + iP(o)) + (tb' + 5x)P(o) + - 

+ 1 + ½v(b ' ) -1 ,  
1 2 q~ = t2(po)  + iP(o)) + ( t2b'  + tx)P(o) + ½b(2tx - vt  z )  + 

+ 2t + (vt  - x)  ( b ' ) -  l 

Respectively, the functions ~ are of  the form 

~kl = tPo)  + ½(P(o) + v) ( b ' ) - '  + 2,  

1 1 ~ = t(P(2) + P(o)P(~)) + ~[xp(~) + P(o) - ~v(p(o) + b ) ( b ' )  -1 ] 
1 

~ = tZ(P(2) + P(o)P(a)) + t [ x po )  + P(o) - ~v(P(o) + b ) ( b ' ) - ~ ]  + 
1 + [~x(P(o ) + b + 2b')  - 1](b ' ) -  
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Let Sj be the symmetry corresponding to the function ~o~.. Then, from this list of 
symmetries it follows that S O and S O are local symmetries while $2 ~ is essentially nonlocal 
when v # 0 and S~, S~ are always essentially nonlocal symmetries. 

The existence of an isomorphism between the algebras Sym~ ~¢ and Sym ~ gives an 
idea that the contact manifold ~o~ is diffeomorphic to Y¢~, where Y¢' is Burgers' 
equation. In order to verify this hypothesis, we shall try to represent YT~ in the form ~ ,  
where Y/' is some differential equation. Assuming x and t to be independent variables 
in Y¢' and w to be a dependent one, we shall introduce the coordinates x, t, w = 1-[o . . . .  , 
I-L- =/9~(w) on ~ .  Now, it is natural to assume that Y¢' is an evolutionary equation. 
Then it must be of the form w, ---/~(w). Calculating/~,(w) in terms of the variables 
w~ ........ = ]-L(i times), we shall find that Y¢' is 

1 2 I Wxx + ~W x -- OW x -  W t = O. (22) 

Here, as it should be, the operator of the universal linearization for (22) coincides with 
the operator (21). 

If we now try to transform (22) into Burgers' equation by the coordinate trans- 
formation v = f ( w ) ,  we shall immediately get that v = -b .  Thus, by choosing the 
coordinates x ,  t, v = % , . . . ,  n i = / ~ ( v ) , . . .  on Y/we discover that ~ ~ ~ .  Hence, 
the mapping z: ~ ~ ~ call be treated as the mapping of Burgers' equation into itself. 
An explicit formula for this mapping can be found from the expression 
v x = D x ( v )  = - b ( u  + b)  = ½(v + v) (u  - v). Then it follows that 

2v~ 
u--- + v. (23) 

u + v  

Thus, we have come to the following remarkable result: if v is a solution of Burgers' 
equation, then the function u defined by (22) is also a solution of Burgers' equation for 
any value of parameter v. 

8. One Infinitely-Dimensional Covering 

In conclusion, we shall consider the following infinitely-dimensional covering of Burgers' 
equation: 

~3 
A =  

OW 1 

t3 ~ 
B=exP(½W 0 - + w  2 - + . . . + w  i - +  . . . .  (24) 

0W2 263W3 t~Wi + 1 

C -- exp(½wl) - -  + w2 - -  + . . .  + w, - -  + . . . .  
~w 3  2 0 w 4  ~ w t +  2 
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The fields A, B and C obviously satisfy Equations (15). Let S = ~ ,  + Z ~  1 • (d/Ow~) be 
a symmetry in the covering (24), ~ e C ~ ( ° ~  ). Then taking into account the relation 
[A, B] = ½ exp()wl)O/Ow2 we can rewrite system (17) in the form 

~1 = / ~ x ( O l ) ,  

O, = 2 exp( - ½w,)/5x(02), 

= zL(o . ) ,  

= / L ( o A ,  

p ( ,  q' + p(o  zL(¢)  + = 

P ( o ~  + / ~ ( ~ )  =/~,(01), 
1 ~O + ~P~o~ 01 --- 2 e x p ( -  I W l ) / ~ , ( ( I ) 2 )  , 

O, = 2 e x p ( -  ½w,)/~(~3), 

This system, as can be easily verified, is equivalent to the following: 

= D~(01), P(,~ +P{o~ffx(¢) +/52(¢) =/~t(ff), (250) 

O, = 2 e x p ( -  ½w,)/~x(OZ), p(o~/)'x(O,) +/~2(O1) =/~,(O,), (25,) 

(I) 2 = /~c((ID3) , D 2 ( ( I ) 2 )  = Ot ( ( I )2 )  , ( 2 5 2 )  

03 =/0"~(O4), /5'2(O3) =/~,(O3), (253) 

Before solving this infinite system of differential equations, let us introduce a filtration 
into the algebra C~°(ffoo) by putting for any q ~  C°°(~oo ) deg q~ ~ k when O~o/Opu ) = 0 
for all i > k and deg ~0 ~< - k when Oq~/Ow~ = 0 for allj < k and Oq~/Opu) = 0 for all i >/0. 
Now it should be noted that if the equations in the left-hand column of (25) are satisfied 
and if some of Equation (25/,) is satisfied, then all Equations (25;) for i > k are satisfied 
too. Two cases are to be considered: (a) deg ~2 t> 4; (b) deg Oz < 4. Consider case (a) 
first: Since deg/~x(~o ) = deg 9 + 1 for all q ~  C ~ ( ° ~ )  then from the left-hand column 
of (25), it follows that there is such a number k that for all j />  k functions Oj depend 
on the variables t, x, w 4, w5 . . . .  only, i.e., deg Oj. ~< - 4. Let (~, ¢ , ,  O2 . . . .  , Ck,'" ") be 
a solution of (25) and k be such that 

O, -- Ok(t, x, w4, w5 . . . . . . . . .  w~), O¢k # 0, k >/2, (26) 
Ow4 

i.e., deg • k = - 4. For the functions (26) Equation (25/,) transforms into 

020~ c~20k - - + 2  ~ w~_ , - -  + ~ w,_ t wj_ , 020k _ tgOk 
OX 2 i = 4 OX OWi i , j  = 1 OW i OWj Ot 

It is easy to prove by the induction that any solution of this equation is of the form 

(~k = ~Ok4 W4 + q~k5 W5 + " " " +" q)kr Wr + ~kO " 
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where q3ke, i = 4 , . . . ,  r, are functions in t and x only which satisfy the following system 
of differential equations 

(gtok4 
- -  0 ,  

OX 

v2tok_ ~ 4 + 2 Otok5 -- Oq)k4 

cgx 2 t3x tgt 

(27) 

Ox 2 Ox ~t 

02 tOk~ _ OtOk~ 

OX 2 ~t 

while tOm = tOko(t, X) is an arbitrary solution of the heat equation O2tOko/OX2 = OtOko/Ot. 

It is easy to show that all the solutions of (27) are polynomials in t and x while %4 is 

a polynomial of the degree r - 4 depending on t only. For the calculation of the 
symmetries it suffices to know the solutions of(27) determined up to such solutions for 

which tOk4 = 0. The dimension of this space is equal to r - 3 and its basis is determined 

by the functions tOk4 = 1, t, . . . ,  t r -4 .  

Suppose ~k = tOk4 w4 + ... + tOk~ W~ is a solution of (25k). NOW tO find the corre- 

sponding symmetry of Burgers' equation, it suffices to construct such functions ~k + ~, 

i = 1, 2 . . . .  that ~k+;+ 1 = /~x(¢k+,') and ~k+; satisfies Equation (25k+;). Let 

(1)k+ I = ( _ I)~+ X tOgs WS + ~. 
j>~4, ct>O OX ~- 1 

Since all tOkj are polynomials in x, the function ~k+ 1 is well defined, From (27), it follows 
that -2 = Dx(~k+ 1 )  Ot(~k+ 1). Just in the same way the functions Ck+; are constructed 

which satisfy (25k+ ;). 
The second case, i.e., 42 = (I)2(t , X, Xs, . . . ,  Wr), is treated analogously to the first one. 
Denote by 0~, k >~ - 2, i >1 0, the symmetry of Burgers' equation for which the 

function ~k+4 is of the form ~k+4 = ti W4 + ~(t,  X, W5 . . . . .  Wr) and by ¢~,, k < - 2, 
i>~ 0, the symmetry for which (I) 2 = tiW2_k-{-~'/(t,  X, W 2 _ k +  1 . . . . .  Wr). Then the 
following result holds. 

T H EOR EM 2. Lie algebra o f  the symmetr ies  o f  Burgers '  equation in the covering (24) is 

additively generated by the funct ions ¢~k, k = O, + 1, + 2 . . . .  , i -- O, 1, 2 , . . . ,  and by the 

functions ¢2---tO(t,  x),  where tO is an arbitrary solution o f  the heat equation 
O 2 t O / O X 2  = O~O/Ot. 

It should noted that the local symmetries ~ = t~p(k) + . . .  correspond to the functions 
• ~ with k > 0 and i < k, while all the other generators have no local analogs. The 
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correspondence between the generators of the algebra Sym~ ~¢ and the 'generating 
functions' ~k can be obtained from the left-hand column of system (25). Some examples 
of such correspondence are adduced in Table I. 

Table I 

A generator of Sym, a~ A generating function 

(l) o- 2 

~b 2 = ~O(t, X), 
q ~  = q~t 

~k = (2w 2 - w 3 P(o)) exp( - ½w I ) 

~= 1 - wzP¢o)exp(- twl )  

= tp( 0 - 2wzP(o))exp(-½wl) + 5 

¢=(2 02-a~ ) t3t a-'x P(o) e x p ( - ~ w , )  

9. Concluding Remarks 

The facts above, as well as other examples we know, convince us that the nonlocal 
symmetries theory has its natural origin in covering theory. Therefore, its further 
development will greatly depend on progress in the latter. 

It is now clear that all remarkable phenomena in soliton-type equations (the Backlund 
transformations, the Cole-Hopf substitution, the Miura transformation, the inverse 
scattering equations, etc.) may be naturally and rather simply explained in terms of the 
covering theory. Moreover, the latter one leads to some efficient algorithms for searching 
these and other similar properties for equations of particular interest. Also, coverings 
are quite important for conservation laws theory. The relevant techniques (the C~-spectral 
sequence and its generalizations) allow us to treat, along the same lines, such different- 
looking topics as characteristic classes, the Gelfand-Fucks cohomology, conservation 
laws, Lagrangian formalism, etc. 

We will discuss these topics in more details in a later publication. 
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