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1 Introduction 

Recently there has been introduced a number of new mixed finite element spaces 
for the approximation of second order elliptic problems [5-7]. These new meth- 
ods are of the same type as the methods in the classical Raviart-Thomas-Nedelec 
families [13, 143, but they differ in that they are more accurate for the same 
computational cost. 

One of the reasons for the increased interest in this field is the success of 
these methods in certain applications. For  some problems in geophysics and 
semiconductor physics they have been shown to be more efficient than more 
conventional "displacement methods"; cf. [8, 11, 19] and the references therein. 

In this note we will consider the application of these spaces for the approxi- 
mation of the Stokes equations: Find the velocity n and the pressure p such 
that 

- A u + V p = f  inK2, 

(1.1) d ivu=O inO, 

U=Uo on a~2, 

where for simplicity f 2 c R  N, N = 2 ,  3, is assumed to be a bounded polygonal 
or polyhedral domain. 

Let us assume that feL2(f2) N and uoeH1/2(~Q) N with 

uo.nds=O 
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so that there is a unique solution to (1.1) (as usual the pressure is normalized 
to have a zero mean value over f2). 

When deriving optimal L2-estimates for the velocity we will need the usual 
regularity assumption for the solution to (1.1) when no=0  

(1.2) Ilull= + IlpEI1 ~ Cltflf o. 

Below we will show that the spaces of [5-7, 13, 14-] can be used as building 
blocks for producing "Tay lor -Hood"  type methods for the Stokes problem, 
i.e. methods with a continuous approximation for the pressure. 

Let us here also mention that we in [16] used the same basic finite element 
spaces for the construction of a family for the discretization of the equations 
of linear elasticity. The estimates of [16] are uniformly valid with respect to 
the Poisson ratio, and hence a trivial notational change in the constitutive equa- 
tion gives yet another family for discretizing Stokes problem. 

2 The Finite Element Families 

We will give the construction for the triangular and tetrahedral families of [5, 
7-]. From the presentation it will be evident that the same construction can 
be done for the triangular and tetrahedral Raviart-Thomas-Nedelec elements 
[13, 14], and also for all the rectangular and brick elements of [5-7, 13, 14] 
except the lowest order methods with a piecewise constant approximation for 
the velocity. For  the rectangular and brick elements of [5-7] all estimates 
obtained are, however, not optimal. 

In order to discretize (1.1) we write it as the system 

(2.1) 

a -  Vu=0 in (2, 

- div a + Vp = f in ~2, 

div u = 0 in (2, 

H = U  0 on63~Q, 

where a =  {a,j}, aij=Ojul, i , j=  1, ... ,  N, and 

N 

(div a)i = E ~J aij, 
j = l  

N 

div u = Z aj uj. 
j = l  

i=1  . . . . .  N, 

Let cg n be the partitioning of ~ into closed triangles or tetrahedrons. The ele- 
ments of ~n are assumed to be regular in the usual sense (cf. [10]). The quasiuni- 
formity of the mesh will not be assumed. 
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Our finite element approximation of (2.1) is now defined as: Find 
(ah, Uh, Ph)eHh X Vh X Ph such that 

(2.2) 

(tr h, z)+(div z, Un) = <Uo, x" n>, xzHh, 

- (d iv  ah, V)+(Vph, V) =(f, V), WVh, 

(uh, Vq) = O, q ~ Ph, 

where for the index k>  1 the finite element spaces are defined through 

(2.3 a) 

(2.3b) 

(2.3c) 

Hh = {zeH(div; O)IZlKePk(K) N • KeCgh}, 

Vh= {veL~(O)NlvtKePk_l(K)r', KeC6~h}, 

Ph = {p6C(Q)c~ L2 (f2)IpIK~Pk(K), K eCgh}. 

As usual (-,-) denotes the inner product in L 2(Q)N or L 2 (O) N• N, whereas <-,-> 
stands for that in L2(OO) N. L2(~) stands for the subspace of Lz(O) consisting 
of functions with zero mean value over O. We point out that for the functions 
in Hh the assumption ~eH(div; O), where 

H(div; O)= {,eL2(O) N• Nldiv teL:(O)N}, 

is equivalent to the continuity of the normal component of �9 along inter element 
boundaries. We also note that the spaces (2.3a), (2.3b) are N copies of the 
spaces of Brezzi et al. [-5, 7]. 

The finite element method (2.3) gives a poor approximation to the velocity, 
but it is possible to construct a considerably better approximation by various 
Element-by-Element Postprocessing Techniques [1, 5, 7, 17]. Here we will consider 
a slight variation of a method introduced by us in [17]. We define 

(2.4) Vh* = {wL2(Ve)NIvtK~P~+I(K)~, K ~ h } ,  

and calculate a new approximation u* e Vh* to the velocity separately on each 
KeCgh by solving the following problem 

(VuL Vv)K = (~h, Vv)K, 
(2.5) 

Qh U~[K : UhIK, 

v~(I- Qh)V~K, 

where Qh: L2(O) N~V* denotes the L2-projection and (', ")K stands for the inner 
product in L 2 (K) N • N 

Remark. We note that the postprocessing is performed separately for each com- 
ponent of u and that the local stiffness matrices to invert on each element 
are the same for all components. [] 

The analysis technique to be utilized in this paper is the one based on 
mesh dependent norms, first introduced in [2] for certain mixed approximations 
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of the biharmonic equation and later adapted for mixed methods for second 
order problems [15]. The norms to be used are the following 

(2.6) 

(2.7) 

and 

tl~tloZ h = 11~11o2+ ~ hT j" 1o. nl2ds, 
T~Fh  T 

for oeL2(f2) N• with o.neLZ(7) N, TeFh, 

t]uIl~,h-- ~ IIVul]oZ, x+  ~ h r ' S l [ u ] l  2as, 
KetCh TEFh T 

for u~L2(f2) N with ulgeHl(K) ~, K~r 

I1~, ull~ = 11ollo2 h+ Ilnll ~,h- 

Here T stands for a side of an element, n is the unit normal to T and Fh denotes 
the collection of the sides of the elements of Cgh- For element sides in the interior 
of f2 [u] denotes the jump in u whereas for sides on ~f2 it denotes the value 
of u. We note that an integration by part on each KEC~oh yields 

(2.8) (div a, u)< I}allO.h IluIll,h 

for each a and u for which the corresponding norms are finite. Also, simple 
scaling arguments (cf. [2]) give the estimates 

(2.9) inf [Io-~llO,h~Chrlalr, 1/2<r<k+l,  
~'EH h 

(2.10) inf {{u--vlll,h <ChS-l[ul~, 1 <_s<_k, 
veVh 

and 

(2.11) 11~tlo~ II~ltO, h~Cliaf lo ,  a e H h .  

In order to see that the problem (2.2) can be analyzed with Brezzi's theory 
of saddle-point problems [3] we write it in the following way: Find 
(Oh, nh, ph)~Hh X V h x Ph such that 

(2.12) 

where 

and 

a(ah, Uh;~,v)+b(~,v;ph)=(f,v)+(Uo,~'n), (~, v)eHh • Vh 

b(oh,nh; q ) = O ,  qePh, 

a(a, u; ,, v) = (a, z) + (div ~, u ) -  (div a, v) 

b (~, v; p) = (v, Vp). 

Hence, the analysis now consist of the verification of the two following lemmas. 
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Lemma 2.1. There is a positive constant C such that 

a(a, u; ~, v) 
sup > Cjl~,VIlh, 

(~, u) * (0, O) 

and 

where 

(z, v) E Zh, 

a(~r, u; ~, v) 
sup >Clla,  ullh, 

(~, v)*(O, O) 

(a, u) ~ Zh, 

Zn= {(a, u)eHh • Vhlb(a, u; q ) : 0 ,  q6Ph}. 

Proof The pair (Hh, Vn) is well known to constitute a stable discretization of 
the (in this case vector) Laplace operator; cf. [7, 5]. 

Using our mesh dependent norms the stability can be stated as follows: 
There exist a constant C1 such that for every V~Vh there is a ?eHh satisfying 

(div ?, v) > C 1 II v II 2, h 

and 

I[~'tlO, h< [IVlll,h- 

Now, let (x, v)SZh, and choose (a, u )=(T-6? ,  v) with ? be as above. This gives 

a(~, u; x, v)= a(T-67,  v; z, v)= I1~fl g-6( : ' ,  ~)+ 6(div ?, v) 

>_- 11~1102+6Cx 2 Ilvll x ,h-6  I1~110 II~llo >_-I1~112 +~C1 Ilvll~,h-0 ilvlla.h I[~llo 

> C(i l~l l  0 2 + Itvlj ~,h), 

when choosing 0 < 6 < 2 e < 4 C1. 
Since 

II~lto,h + Ilul[1,h_ -< ll~llo, h +(1 +~)Ilv[l~,h 

and (~r, u)eZh, the first asserted estimate follows from above and (2.11). 
The second estimate is proven similarly. [] 

Lemma 2.2. 7here is a positive constant C such that 

sup b(a, u; q)>ctlqJlo, q~Ph. 
~,, u)~n,, • v,, IIa, Uljh 
(~, u)=r O) 

Proof Since for q~Ph it holds VqeVh, we can choose u through 

ulr = h ~  Vqlr, K S~gh. 
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With a = 0 this gives 

b(a,u;q)= ~, h~ z IIVqllo. K. 
K e ~ '  h 

R. S tenbe rg  

II~[IO,h + ITVIIx,h + IlqlJo~ C 

II~h--~Jlo,h + [luh--QhUN,,h+ IlPh--Pllo 

<=a(ah--a, Uh-- Qnu; ~, v)+ b(x, v; ph--~)+b(ah--6, uh-- Qh u; q), 

(2.16) 

and 

(2.17) 

Scaling arguments yield 

2 - 2  2 Itultl,h-- -<C ~ K=C hr IFU]lo. ~ h 2 2 JlVqllo, K. 
K E ~  h KECt~h 

By combining the above estimates we get 

b(a, u; q) > 
sup C( ~, h~c IlVqll2~) ~/~. 

{O',U)CEHhXVh II~,ullh = KE~ 
(~,a)*(O,O) 

The assertion now follows from an argument by Verffirth [18, Proposition 3.3]. 
We remark that by using the above locally weighted norm for the pressure, 
the quasiuniformity assumption (i.e. hK>Ch VKe~h)  of [18] can be 
avoided. [] 

We now get the following error estimates. 

Theorem 2.1. For the solution u*eVh* and phePh to (2.5) and (2.2) we have 

(2.13) Ilu-@'lll,h+ [IP-- PhIlo <= C hk + l(lu[k + 2-k lPlk+ ~) �9 

Moreover, if (1.2) is valid we have 

(2.14a) Ilu--u~lIo~fhk+2(lu[k+2-klplk+l) for k > 2 ,  

(2.14b) Ilu-u*llo <Ch2(lula +lPl2) for k = l .  

I f  in addition f~Vh, then (2.14a) is also valid for k = 1. 

Proof Let us split the proof into four steps. 

Step I. Let us prove the estimate 

(2.15) Ila--trhllo,h + ]{Uh--QhuHl.hq-]}P--PhHo'(Chk+l(lalk+lq-lP[k+l). 

Using [3, Proposition 2.1], Lemmas 2.1 and 2.2 imply the existence of a triple 
(z, v, q )En  h x V h X Ph such that 
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where ~ and p are the interpolants to 6 and p, respectively. Using (2.1) and 
(2.2) we get 

(2.18) a ( 6  h - -  ~, lib - -  Q h  lI ; "r V) q- b (~, v; Ph - -  P)  + b (6h -- #, Uh - -  O h  t l ;  q) 

=a(6 6, U--QhU; T,v)+b(~,v;p--p)+b(6--6,  li--Qhu;q) 

= (6 -- 6, ~) + (u -- Qh u, div z) -- (v, div (6 - 6)) 

+ (v, V(p --/~)) + (u -- Qh u, Vq). 

Let us now estimate the terms on the right hand side of (2.I8). Since VqeV h 
and div TeVh the definition of Qh yields 

(u - Qh u, div v) = 0 

(u --  Qh U, Vq) = O. 

Further,  s tandard interpolation theory gives 

(2.21) ( 6 - &  ~)__< 116-r II~llo_-< c hk+l[6lk+l, 

and using (2.8) and (2.9) we get 

(2.22) (v, d iv (6 -6 ) )  < C 116- 61[O.h I[vl{ 1.h < C hk+ll6ik + 1" 

Finally, the last term is estimated as follows 

(2.23) (v, V ( p - / ~ ) ) = -  ~ (divv, p - / 5 )~+  Z ~ (Iv. n]) (p-p)ds  
KE~h T e F  h T 

<(  ~ Ildivvll~,r+ ~, h; ~ ~ [[v.n]lZds) t/2 
KEtCh TEFh T 

-(llp-/~ll2+ ~ hr S IP-ff[Eds) ~/2 
T e F h  T 

_-<Cllvll~,h(llp-Pll~+ ~ hT ~ Ip-pl2ds) ~/2 
T~Fh T 

<chk+llPlk+ l, 

where we in the last step used an interpolation estimate easily obtained by 
scaling; cf. I-2, Lemma 3]. 

By collecting (2.17)-(2.23), using the triangle inequality and (2.9) we get (2.15) 
which contains the asserted estimate for the pressure. 

Step 2. Let us derive an estimate for IIQh(U~'-u)tlo. 

We first note that Qh II* = U h. 

(2.19) 

and 

(2.20) 



834 R. Stenberg 

Suppose  tha t  (1.2) is val id so that  the so lu t ion  (z,~,, q)eH~(f2)N• L2(y2) N• 
• L~(~)  to 

),-- V z = 0  in O, 

- div ~ + Vq = u h - -  Qh !1 in f2, 

div z = 0 in f2, 

z = 0  on  (3f2, 

(2.24) 

satisfies 

(2.25) IIZII2 -{- t[~ll 1 -~-llqlll < C t l u h -  Qh Ul[o. 

Let  ~ a nd  c~ be the in te rpo lan ts  to  ~ and  q. Us ing  the relat ions 

(div ~, u) = (div ~, Qh u) and (g~, u) = (V#, Qh u) 

s t a n d a r d  a r g u m e n t s  gives 

(2.26) [{Uh--Qhu][~ 

= (a - a h , ~ -  ~) + (div (a - a,), z -  Qh z) -- (V(p -- Ph), Z-- Qh z) 

+ (div ~', Qh u - Uh) -- (div ~, u --  Uh) -- ( Vq, Qh u -- Uh) + (V O, u --  Uh) 

= (O -- O h, y - -  ~') + (div (o --  ah), Z -- Q, z) - (V(p - Ph), Z-- Qh z) 

+ (div (~ ' -  ~ ,  Qh U-- Uh) --  (V(q -- ~t), Qh U -- Uh) 

5~ C( I]O--ah{[O,h-]- lluh--Qh Ul]l,h ~ - [Ip-- Ph]]O + ( ~ hr ~ [P-- phl2 ds) 1/2) 
TeFh T 

�9 (l[~--~[Io,h+ [[Z--QhZIil,h+ f l q - q l [ o + (  ~ hT I [q-qt2ds)l/2) 
TeFh T 

< C h k+ l(Iolh+l + lPlk+l) 

�9 (]l~'--~]lo,h+ ][z-QhZ]l l ,h+Hq-qNo+( ~ hr I [q -~12ds)1/2)" 
TeFh T 

F o r  k_>_ 2, (2.9), (2.10) and  the in t e rpo la t ion  es t imate  of  [2, L e m m a  3] give 

(2.27) ( lI~,-~I[O,h+llz-Qhzlix,h+llq-?tl[o+( ~ hT S [q-Ol2ds)  1/2) 
T~Fh T 

< C h(lyll  + Iq]l + [z[2). 

Recal l ing  tha t  Qh t l *  : Uh, (2.25)--(2.27) give 

(2.28) t lQh(u~--u)tlo<fhk+2(Iolk+l+lPlh+l) for k > 2 .  

F o r  the case k = 1 a n d  f~Vh we have  

(div ( o -  Oh) + V(p-- Ph), Z-- Qh Z) = ( f - -  div Oh + Vph, Z-- Qh Z) : O, 

a nd  (2.28) is still valid. 
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If fCVh we only get 

(2.29) [IQh(U~-U)Jlo<Ch2(ltrlz+[Pl2) for k=X. 

Step 3. Next  we estimate I1(I - Qh) (n~' - -  U)It o and I[(I- Qh) (u~' -- u)[ll, h- 

First, since (I--QhlK)VlK = 0  for wP0(K)  N, we have 

(2.30) ll(l--Qh)(U*--u)llo, K < f hKl(I--Qh)(U*--u)ll,K. 

Next  we write 

(2.31) [(I--Qh)(U*--u)12,K=(17(I--Qh)(U'~--u), V(I--Qh)(U*--U))K 

= ( V ( u *  - u),  v ( x  - Qh) ( u *  - u))K 

-- (VQh (U* -- U), V(I -- Qh) (u* -- U))g. 

Now, (2.1) and (2.5) give 

(2.32) (V(u*-u) ,  V(I--Qh)(U*--U))g=(as--a, V(I-Qh)(u*-u))g 

< [la-ahljo,~l(I-Qh)(u*- u)ll. K. 

Further ,  a local inverse inequality yields 

(2.33) (VQh (u~' -- u), V(1-- Qh)(u* -- u))K 

----< IQh( u* -- U)II,K I(I -- Qh)(u~' -- u))h,K 

< C h~ 1 [1Qh (u~' - u)I[ o, K I ( I -  Qh) (u~' - u)[l, K. 

Combining (2.30)-(2.33) and summing over all K~Cgh gives 

(2.34) [1(I- Qh) (u~' -- u) lI o < C(h II~-~r~ll o + I IQh(n~ ' -  n) l[ o). 

Also, from (2.31), (2.32), (2.33) and the inequality (proven by scaling) 

h~ 1 ~ I(I-Qh)v[2 ds<CIV(I-Qh)Vl2 K, VeVh~K, 
OK 

we get 

(2.35) Ii(I--Qh)(U~--u)ilt.h<f(ll~r--ahllo+ IIQh(U~'--u)lll,h). 

Step 4. By combining (2.28), (2.29), (2.34) and (2.15) we obtain the asserted esti- 
mates for Ilu-u*llo, and that  for Ilu--u*III,h follows from (2.15) and (2.35). [ ]  

3 The  Implementat ion  by Hybridizat ion 

Let us close the paper  by briefly considering the solution of the discrete system 
(2.2). The method  advocated in [-1, 5-7] is the Fraijs de Veubeke hybridizat ion 
technique. In that  the condit ion diva~L2(f2)  N for o ' E H h ,  which is equivalent 
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to the continuity of a- n along interelement boundaries, is enforced by introduc- 
ing Lagrange multipliers. More precisely, define 

Mh= {mlmfrePk(T) N, TeFh, m l r = 0  for ToOl2}, 

and let I2Ih be as in (2.3 a) with the condition div aEL 2 (~2) N dropped. The modified 
discretization now reads: Find (a'h, Ilh, mh, ph)E~lh X V h x M h • Ph such  t ha t  

(3.1) 

(ah,~)+ ~ {(divl:,Uh)K--(Xh" nK,mh)oK} = ( r "  n, uo), xeI2lh, 
K~Cga 

- E (div ah, V)K + (Vph, U) = (f, V), V e Vh, 
KetCh 

(uh, Vq) = O, q e ph, 

(ah" nK, 1)o,:= O, 16:Mh. 
Kerffh 

Above n K stands for the unit outward normal to OK. 
Clearly, the three first components of (2.2) and (3.1) coincide. The physical 

meaning of the new unknown m h is that of an approximation to the velocity 
u along the inter element boundaries. 

For  m h we have the following error estimate which is needed if any of the 
postprocessing methods of [1, 5, 7] is used. 

Lemma 3.1. For T~Fh let IT: L2(T)N-~MhlT be the LZ-projection. Then we have 

Ilmh-- ITIi{[o,T <= C {h 1/2 tl(r--(rhllO, K + hK 1/2 IIQh U--IlhtlO, K}. 

for Tc(3K, KeCga. [] 

For the proof of this result we refer to [7, Lemma 4.1]. 
The algebraic equations generated by (3.1) are of the form 

d Z  + NU--C~M=O, 

- ~ I T z + ~ P = F ,  

~TU=O, 

c~rz =0 ,  

where X, U, M and P are the vectors for the degrees of freedom for ah, Uh, 
m h and Ph, respectively. 

Now the matrix ~r is positively definite and block diagonal. Hence, 2; can 
be eliminated separately on each element which gives the system 

~0+~P=L 
~rO=O, 
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where [?r=(U, M) r, ~ r  =(Nr,  0), fr=(F, O) r and 

~ = \ _ ( ~ T ~ - I  ~ (~Tj2~- 1 ( ~ ] '  

w h i c h  is p o s i t i v e l y  def in i te .  H e n c e  t he  s y s t e m  is of  t he  s a m e  f o r m  as for  m o r e  

c o n v e n t i o n a l  T a l o r - H o o d  t y p e  d i s c r e t i z a t i o n s  o f  S t o k e s  p r o b l e m .  T h u s  a n y  o f  

t h e  m e t h o d s  fo r  s o l v i n g  l i n e a r  s y s t e m s  o f  t h i s  k i n d  (cf. [ t 2 ] )  c a n  be u t i l ized .  

F u r t h e r ,  ~ r d - l ~ r  is a l so  pos i t i ve ly  de f in i t e  a n d  b l o c k  d i a g o n a l ,  a n d  h e n c e  

U c a n  be  e l i m i n a t e d  o n  e a c h  e l e m e n t  s epa r a t e l y .  T h i s  r e su l t s  in  a s y s t e m  of  

t h e  f o r m  

N M + N P = G ,  

C~ T M -  Jt~ p = H, 

where both g and • are symmetric and positively definite. Now the system 
has the same form as that of some recent stabilized mixed methods [4, 9]. 
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