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On the Integral Manifolds of the N-Body Problem

H.E. Cabral (Rio de Janeiro)*

Abstract. Here we make a topological study of the map I =(E, J), where E is the energy
and J is the angular momentum of the n-body problem in 3-space. Part of the bifurcation
set of I is characterized and some topological information is given on the integral manifolds
of negative energy and zero angular momentum.

§ 0. Introduction

In [6] Smale makes a complete study of the topology of the map
I=(E,J) where E is the energy and J the angular momentum of the
planar n-body problem of celestial mechanics. Explicit descriptions of
the topological type of the integral manifolds I,,=I1"'(c, p) are given
when n=3. By using different methods Easton [2] also finds the topo-
logical structure of the I_’s for n=3 in the planar case.

Questions of similar nature were already asked by Birkhoff and
Wintner concerning the 3-body problem in space of three dimensions.
Not much is known in this case and in this paper we give some informa-
tion on the map I of the n-body problem in 3-space along these lines.

Here the topological characterization of the integral manifolds
becomes very hard due to the existence of points x in the configuration
space for which the induced linear map J, is not surjective (see observa-
tions in § 3). We obtain partial results in this direction which are stated
in Theorems 2 and 3 below. As to the bifurcation question, Theorem 4
gives more complete information.

Recall that we are given n positive real numbers, the masses m, ..., m,
and consider the configuration space of the n-body problem in 3-space,
center of mass at the origin, as the subset M —4 of the linear space

M={(x,, ooy X)ER) Y m; x; =03,

where 4=\ 4,;, i<jand 4;;= {xeM|x,;=x;}.
The energy E and the angular momentum J are then defined on
(M — A4) x M respectively by E(x, v)=K(v)+ V(x) and J(x, v)=), m; x; X v;,
. . . mi m:.
where K(v)=1Y m;|v,|* is the kinetic energy and V(x)= —Ejm

* This paper is the author’s doctoral dissertation prepared under the supervision of
Professor S. Smale at the University of California, Berkeley. Part of this work was done
during a 3 months visit at the Institut des Hautes Etudes Scientifiques.
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the potential energy. We have an inner product on M given by K(x, v)=
4Y m;x;- v, and we denote by Sy the unit sphere of M with respect to
the induced norm, |x|; = K(x, x)*.

We consider the map I=(E,J): (M —A4)x M — R x R? defined by
I(x,v)=(E(x,v), J(x,v)) and call the spaces I,,=1"'(c,p) the integral
manifolds of the n-body problem.

Given a smooth (C*) map f: M- N of smooth manifolds, we denote
by Z'(f) the set of its critical values and by Z(f) its bifurcation set. We
recall that yeX’(f) means that for some xef ~!(y) the derivative Df(x)
is not surjective, while y¢ X ( f) means that f ~1(y) is a manifold and there
exist an open neighborhood U of y in N and a smooth map g: f ~(U)—
f7Y(y) such that the map h: f~*(U)— U x f~1(y) is a diffeomorphism,
where h(x)=(f(x), g(x)). If y¢ Z(f) we say that f is locally trivial at y;
in this case, f=noh where = is the projection on the first factor, and so
it follows not only that y is a regular value of f, i.e., y¢ Z’(f) but also that
on U the fiber £ ~1(z), ze U does not change the diffeomorphic type.

We now state our results on the topology of the map I.

For the n-body problem in 3-space with arbitrary positive masses
my, ...,m,, we have the following theorems.

Theorem 1. (a) The maps ¢ and  defined below are diffeomorphisms.
Therefore Z(E)=0

0! E-(R ") R~ x (Sy—4)x M, w(x,v)=(E(x,u),i,u)
|x|K

Y1 E-{R*)— R* x (Sg—A)x(M—0), ¥ (x, )= (E(x, 0 1xlk v).
lx|x

(b) Z(J)=0.
Theorem 2. (a) I, ¢ <0 has the same homotopy type of Sy—A.

(b) In case n=3, the homology groups of Sy—4 are Z, ZOLZDZ and
Z®DZ in dimensions 0,2 and 4 respectively. The homology is 0 otherwise.

(¢c) For n=3 and ¢<0, I~CO=ICO/SO(3) is a contractible space, where
the rotation group SO(3) acts on I, by restriction of the action g - (x, v)=
(g-x,g-v)on(M—A4)x M.

Theorem 3. I, c <0 has the topological type of the space F(S*) x R"™!

where F(S?) is a topological fiber bundle over S* with fiber
F={(u,y, Ye(R?)" 2 x (R?)""2x R""2|Y u; x y;=0 and (5) holds}
where in R? a x b=a' b*>—a? b, and the condition (5) means

w=u; for ij=>2A+4;
u,=0 =A;+0and 1.
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In particular, if n=3, I, c<0 is not a manifold. If n=2, I
diffeomorphic to S* x R.

Theorem 4. (a) The map I=(E,J): (M —-A)x M- R xR?* is locally
trivial on the region R* x (IR®—0).

(b) The set of critical values of 1 is

c<0is

co?

I (D=(Rx0)US

where S is the image, under the action g - (¢, p)=(c, g - p) of SO(3)on R x R?,
of the set 2'(1,) of the critical values of the map I, of the planar n-body
problem.

Remarks. (i) J. Palmore has already computed, in the planar case, the
homology of Sy —4 for all n.

(ii) Comparing Theorem 4 with Theorem D of [6], it is natural to
ask whether there is bifurcation on the set c=0 and whether the map I
is locally trivial at (c, p)¢ Z'(I), c<0. We were not able to answer these
questions and judging by the planar situation it seems that they may
depend very heavily on a knowledge of the topological structure of I,
for p=%0.

The rotation group G =SO(3) acts naturally on RR? and hence on M
by means of the diagonal action g - (x;, ..., x,)=(g- X, ..., 8 X,), leaving
A, V and K invariant. Therefore the induced action on (M —A)yxM
given by g - (x, v)=(g - x, g - v) leaves invariant the energy E. The angular
momentum J is equivariant with respect to the actions of G on (M —4)x M
and R3, i.e, J(g-x, g-v)=g- J(x,v), since for geSO(3)det(g)=1. Then
for peR3 the isotropy group G,={gsS0(3)|g-p=p} acts on I, and it
is the quotient I, ,=1,,/G, that we mean in (c) of Theorem 2.

For acR?® and yeM write ax y for (ax yy,...,axy,), and similarly
for yxa. Then one can easily check the useful relations J(x,v)-a=
2K(ax x,v)=2K(x,v x a), the first of which is Proposition (4.7) of [5].
The angular momentum given by that proposition is1J and this accounts
for the factor 2 in the above formulae.

For x=(x,, ..., X,)éM the following conditions are equivalent:

(i) J,: M— R3 is not surjective.
(i) x,, ..., X, are collinear.

(iii) The isotropy group G,= {geSO(3)|g - x=x} has positive dimen-
sion.

Proof. (i) is equivalent to the existence ofa vector ae IR* —0 orthogonal
to the subspace ImJ,, that is, a vector a+0 such that 2K(a x x, v)=
J(x,v)-a=J (v)-a=0for all ve M. Taking v=ax x we get ax x=0, i.e,
x;= A;a, for all i.



62 H.E. Cabral:

To prove the equivalence of (ii) and (iii) we consider, for each
a=(a,,a,,a;)eR>, the 1-parameter subgroup exp(t4) of SO(3), where

0 -—a; a,

—a, a 0
Then dim G,> 0 if and only if there exists a#0 such that exp(t4)- x=x

for all t. Since 4-x=axx we have i exp(tAd) - x=exp(tA4)-(axx).
The result follows. dt

We denote by A the set of points in M satisfying, equivalently, (i), (ii)
or (iii) above. These points are called syzygies. Notice that for a non-zero
syzygy X, the map J, maps M onto the subspace orthogonal to the direc-
tion determined by x.

Now a few words on how the paper is organized. It consists of this
introduction containing the statements of the theorems and seven more
sections, arranged as follows: In Sections 1 and 2 we prove respectively
(a) and (b) of Theorem 1, while Section 3 contains the proof of parts (a)
of Theorems 2 and 4. In Sections 4 and 5 we prove respectively (b) and
(c) of Theorem 2. In Section 6 we give the proof of Theorem 3 and finally
in Section 7 we prove (b) of Theorem 4.

§ 1. Proof of Part (a) of Theorem 1

Identifying M — 4 with R* x (Sg— 4) by means of the diffeomorphism
xX— (lex, —I;CXI—K—) and writing (1, z, v) for the points of R* x(Sx—4)x M
the maps ¢ and  can be expressed as follows

@(t,2,0)=(E(tz,v),z,v) and yY(t,z0)=(E(tz,0),ztv).
Since E-'(R~) and E~!(R*) are open submanifolds of
R*x(Sx—4)xM

it is clear that ¢ and y are smooth.

The inverse of @ is clearly the smooth map ¢~ (¢, z, v)=(t, z, v) where ¢

. V(z
is the positive solution of the equation E(tz,v)=c, i.e, t=c—_%5.

1
As to ¥ its inverse is the smooth mapy~'(c,z, v)=(t, z,Tv),

. 1 .
where ¢ is the positive solution of the equation E (tz,?~ v) =c, L€,

t=—21? (V) +(V(z2*+4c K@)}, a smooth function of (c,z,v) in
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R* x (Sg—4) x (M —0). For instance, y = Y (t, z, v)=¢ "1 (E(t z, v), z, tv)=
(r, z, % tv) where 1 is the positive solution of E (r z,% v) =E(tz,v),
and we must show that t=t. If, for fixed (¢, z, v), we consider the function
g(s)=E (s z, % v) =-§1—2— K(t v)+v;— V(2) defined for s >0, then elementary

calculus shows that it is strictly decreasing on the region where it is
positive. Since g(t)=g(t)=E(t z, v)> 0 it follows that t=t.

We have thus proved that ¢ and ¢ are diffeomorphisms.

The conclusion X(E)=0 is clear since the trivializations ¢ and ¥ of
E induce diffeomorphisms from E~!(c) to (Sy—4) x M in case ¢ <0 and
to (Sg—4) x (M —0) in case ¢ > 0, and these spaces are not homeomorphic.

It is interesting to notice that 0 is a regular value of E since

0E -1
e V(z) is never zero.

§ 2. Proof of Part (b) of Theorem 1
We first prove the following resuit.

(2.1) Proposition. (z, v) is a critical point of J: (Sx—4)x M — R3if and
only if ze A, say z=(4,¢, ..., A, ), ecS? and v;x e=0 for all i.

Proof. Since J is the restriction of a bilinear map we have, for
(éa 11)6 T;z, v)((SK_A) X M)= T; SK x M’
DJ(Z’ U) - (é’ ’7)=J(Z, T’)+J(é, U)'

If z¢ A, then J,: M— R3 is surjective and it follows that DJ(z,v) is
surjective.

Suppose now ze 4, say z=(4,e, ..., 4, ¢) with e S? Then J, maps M
onto the subspace orthogonal to e. If for some {,€ T, Sy J(&o, v)¢ImJ,
then R3=Im J,@ L where L is the subspace spanned by J(¢,, v). Hence
DJ(z,v) is surjective. The converse is obviously true. Therefore (z,v) is
a critical point of J, i.e. DJ(z, ) fails to be surjective, if and only if J(&, v)
is orthogonal to e for any £e T, Sy, that is to say if and only ifK(¢,vxe)=
1J(¢,v)-e=0 for any ¢eT,Sg. But K(z,vx e)=1J(z,v)- e=0 so that
vx eeT,Syand taking {=v x e we getv x e=0,i.e,v;xe=0fori=1,...,n

Note. It is clear that the proposition remains valid if we take the
domain of J to be (M —A4)x M or even (M —0)x M.

It follows from this proposition that Z'(J)=0.

We now prove that J is locally trivial at every p #+0. Choose an open
neighborhood U of p/|p| in S and a smooth map B: U— SO(3) such that
B()-p/lpl=p for all peU, ie, take a local section B at p/|p| of the
map a: SO(3)— %, a(g)=g - p/Ip|-
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Let W be the open subset of IR? consisting of all points g =0 such that
g/lqle U and consider the positive real-valued function defined on W
by a(q)=|pl/|q}- For (x, v)eJ ~*(W) write a(x, v)=a(J (x, v)) and f(x, v)=
B (x, v/ (x, 0)).

Then, noticing that J~!(p) is a smooth manifold and considering the
action on (M —A4)x M of the Introduction, we get a smooth map g:
J~YW)— J~(p) defined by g(x, v)=pB(x, v)~* - (x, a(x, v) v) and such that
the map h: J~1(W)— W xJ~!(p) is a diffeomorphism, where h(x, v)=
(J (x, v), g(x. v)). Its inverse is the map h~='(q; x, v)=PB(g/lq]) - (x,a(q) "' v)
which is smooth since it is smooth as a map on W x (M —A4)x M. This
completes the proof of (b) of Theorem 1.

Remark. 1t is clear that the above proof works equally well if we con-
sider the induced action on (Sy— 4) x M, so that the map J: (Sy—4) x
M — IR3 is locally trivial at every p=+0. It is this situation that we will
meet in the next section.

§ 3. Proofs of Part (a) of Theorem 2 and Part (a) of Theorem 4

To prove (a) of Theorem 2 we notice that the diffeomorphism ¢ of
Theorem 1 induces a homeomorphism from I, onto the space

Jo={(z,v)e(Sx—A)x M|J(z,v)=0}.

Now J, has Sy—4 as a strong deformation retract. Indeed the
map H: Sy x M x [0, 1]—> Sg x M given by H(z,v,s)=(z, (1 —s)v) is con-
tinuous and maps J;, x [0, 1] into J,. Since H(z,v,0)=(z,v), H(z,v,1)=(2,0)
and H(z,0,s)=(z,0) for all s, it follows that H is a strong deformation
retraction from J, to (Sy—4)x 0 and this space can be identified with
Sg—4.

To prove (a) of Theorem 4 consider the smooth map

idxJ: Rx(Sg—A)x M—>RxR3, (1, zv)—(t,J(z0).
Then I=(id x J)oiy where ¢ is the diffeomorphism of Theorem 1. By
the remark at the end of § 2, J is locally trivial on R*—0, hence id x J
is locally trivial on R* x (IR®—0) and the same is true of the map I since
¥ is a diffeomorphism.

Observations. 1) If for each zeSg — 4 the linear map J,: M— R? were
surjective, then we would have an exact sequence of vector bundles

(Sx—4)x M— (Sg—4)x R*— 0

where the first map is h== x J, = being the projection on the first factor.
Hence the kernel J, of the bundle homomorphism h would be a vector
space bundle over Sy — A. This is actually the case in the planar n-body
problem (see [6]). Due to the existence of syzygies in Sy —4 we do not
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have such a situation in 3-space. In fact, here J, is not even a manifold
(cf. Theorem 3).

2) For ¢>0 and p=0, the map ¢ of Theorem 1 induces a diffeo-
morphism from I, onto the manifold

J,={(z, v)e(Sg—4) x M|J(z, v)=p}

given by (¢, z, v)— (z, t v). But, because of the sysygies in S — 4, it is still
very difficult to study the manifold J,. Compare with the planar situation
where the map (z, v)— (2, v—a,(2)) gives a diffeomorphism from J, onto
Jo. Here o, is the vectorfield on M — A considered in [5].

§ 4. Proof of Part (b) of Theorem 2

Here and in the next two sections we use the same symbol 4 to denote
the generalized diagonal in a product of copies of R>.
We first exhibit the structure of S — 4.

(4.1) Proposition. S, — A is diffeomorphic to Q(S?),a smooth fiber bundle
over S%, with fiber
0, = {ye(R?*~0y'~2\y¢A and y+n,, alli}  for n,eS?.

Proof. Consider the isomorphism 7@ M— (R3%"~! given by
T(x,, ..., X,)=(X; =X, ..., X,_, —X,) and notice that xe4 if and only if
T(x)ed or (T(x));=0, for some i=1,...,n—1.

Then T induces a diffeomorphism

10 Sg—A4—{EeSPmH—A[¢ %0, all i},
defined by z— T(2)/|T(z)|.
We further get a diffeomorphism ¢ from this manifold onto

Q(5%)={neS* x(R*—0y~*|n¢ 4},

by mapping £=(&;, .-, {,_y) into p()=E/1¢, -

Now Q(5?) is a smooth fiber bundle over 52 with projection map
n(n)=n,, and fiber, the space Q, , described in the proposition. To show
the local triviality of  choose, for each n,€S%, an open neighborhood U
of 1, in §? and a smooth map f: U— SO(3) such that B(n;) -0, =1, for
1€ U. Then define the diffeomorphism h: = ({U)-»Uxg,, by

B Mgy +oes M) =0 BU) ™ g, BOD ™Y 1y)

In case n=3, the fiber is F=IR3—2 points which has the homot‘opy
type of the space S? v S2. Indeed, let p be the continuous map described

5 Inventiones math., Vol. 20
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in Fig. 1. Then p is a retraction of F to $? v §? and the homotopy H(g, t)=
g+t{p(g)—q), 0=t=1is a strong deformation retraction of F to S* v §%.
Therefore the homology of F is Z and Z@Z in dimensions 0 and 2,
respectively, and 0 otherwise.

Fig. 1

We can now apply the Wang homology sequence
—H/(Q)— H,_,(F)— H,_,(F)—>H,_,(Q)—H,_;(F)—

in order to get the homology of Q =Q(S?). For example, taking r =3, we
get
H,(F)— H,(F)— H,(Q)— H,(F)— H,(F)
or
0-Z®dZ - H,(Q)»Z—0.

Since Z is a free module this exact sequence yields H,(Q)=Z®ZDZ.
The other cases are handled just as easily.

§ 5. Proof of Part (c) of Theorem 2

(5.1) Proposition. Fix eeS2. Then I, c<O0 has the homotopy type of
the space Q,/S*, where

Q.= {ye(R*—0)"2|y¢A and y,+e, all i}

and S'={geSOQ3)|g-e=e} acts on Q, by restriction of the diagonal
action on (R3)"2,

Proof. The homeomorphism from I_, onto J, induced by the map ¢
of Theorem 1, the strong deformation retraction H of J, to S, —4 given
in § 3 and the diffeomorphisms ¢ and 7 of § 4, all these maps are equivariant
with respect to the actions of G=S0(3) on these spaces (the action on
Jyx [0,1] being g-(z,v,t)=(g-z g-v,t) and restrictions of diagonal
action elsewhere).
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Therefore, fco, ¢ <0 is homeomorphic to J,/G, which has (Sx—4)/G
as strong deformation retract, which is in turn homeomorphic to Q(5%)/G.
Hence I, ¢ <0 has the homotopy type of Q(S?)/SO(3).

To conclude the proof we will now show that this space is homeo-
morphic to Q,/S*. Brackets will be used to denote equivalence classes,
i.e., elements in the quotient spaces. The map

F: Q(89)—Q,/S', Fmy=I[g-y]

where yegQ,, neS8? and geSO(3) is such that g - n=e is well-defined and
continuous. To see the continuity at (1, y), let U be an open neighborhood
of nin 8% and B: U— SO(3) a smooth map such that $(&)-£=e¢, all £€U.
Then, on n~Y(U)c=Q(S?), F is the composition y'eQ,— B({)-y—
[B(&)- ¥'], which shows that F is continuous.
Now the map F: Q,—Q(5%)/S0(3), F,(y)=[e, y] is continuous as
composition of continuous maps y— (e, y}— [e, y].

It is now easily checked that
F'=F: Q./8'—Q(5%/S0(3)

so that F is a homeomorphism.

Forn=3,Q,={yeR?*|y+0and y#e}, hence Q,/S'={(s, )eIR?|s 20} —
{(0, 0), (0, 1)}, which is a contractible space.

§ 6. Proof of Theorem 3

In addition to the isomorphism T: M —(R3*)"~! of § 4, we consider
the one given by S(v,...,v,)=(mv,,...,m,_;v,_,). Then, one easily
checks that J,(T(x), S(v)}=J (x, v), where

n—

1
Jn,wy= Y n;xw;, for n, we(R)"1.
i=1

By considering the diffeomorphisms o and © of § 4, we get a diffeo-
morphism

(S—4)x M= {(n, W)(S? x (R>—0)" ) x (R*)' " [n¢ 4}
defined by (z, v)— (o 7(z), S(v)), which maps
Jo={(z, V)e(Sx— ) x M|J(z,v)=0}
onto the topological space
N={(n, w)e(S? x (R3—0y"~? = 4)x (R34, (7, w)=0}.

We now decompose 7;, i=2,...,n—Land w;, j=1,2,..., n.—l alpng
1, and the orthogonal complement ni of n,. From now on in this section,

5%
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when we write the subscripts i and j, we always mean these ranges. We

have m=An -+, A=nen (*)
W= s F W =
A straightforward computation shows that
Ty, wy=my x (wy + 3, (2w} — ) + D i X wi,
so that the condition J; (n, w)=0 is equivalent to the conditions
wi =D (it — A wi) (+0)

Y i x wi=0.
The assignment (1, w)— (1, ;> Wi, 4, ;) clearly defines a smooth map f
from §2 x (R3)"2x (R3)"~! into S2x(R3)" 2x (R3¥)""2x R 2xR""!.
Conversely, given a point (1, ;, i, 4;, #;) in the second space, we take
w; as defined by the first of the equations () and then use the first set of
equations (*) to determine a point (n, w), which obviously depends
smoothly on the given point; this defines a smooth map g which goes on
the opposite direction to f.
For the decomposition ;= 4; %, +1;, the conditions n¢4 and 5;+0
for all j are equivalent to the conditions

n.=n. with r$s=>21+4i
n,=0 =A,+0 and 1.
Now consider the space
F($)={(n;, ', W', DeS? x (R3)" 2 x (R*)'~2 x R"™ |}, wien;,
Y n; x wj=0&(J) holds}.

Then restricted to N and F(S?)x R"™!, the maps f and g are inverse
to each other. Therefore these spaces are homeomorphic, which means
that J,, hence I_,, ¢ <0 (cf. § 3), is homeomorphic to F(S?)x R"~!.

But one can easily verify that F(S?) is a fiber bundle over S2, with
projection map = (n,, ¥, ', A)=n, and fiber, the topological space

F={(u,y, )e(R2" 2 x (R2)"~2x R"~2|Y u; x y,=0&() holds}

(%)

where the condition (8) is with respect to u and A, and this completes
the proof of the first part of Theorem 3.

Now let n>3 and take 1°¢IR"~2 such that 1 <A <---<A_,. Then
there exists an open ball B in R""? centered at 1° and such that
l<A; <--<4,_,, for all AeB. Therefore, {(u,y, )eF|ieB}=CxB,
where C is the cone

C={(u, )R x (R*"*| T u; x y;=0}.
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Therefore, in a neighborhood of some point, the space I, ¢ <0 has

the topological structure of Cx R?"~! and so it is not a manifold.
Finally, if n=2, then

N={(n, w)eS* x R3}|n x 0 =0},

which is diffeomorphic to S? x R under the map (4, ®)— (1,1 - w); this is
a trivialization of the line bundle N over S2.

§ 7. Proof of Part (b) of Theorem 4

(7.1) Proposition. (x, v)e(M — 4)x M is a critical point of 1=(E,J) if
and only if DJ(x,v) is not surjective or (x,v) is a critical point of
E,=E|J~'(p), where p=J(x,v).

Proof. Assume DJ(x, v) surjective and write M xM =T, | J (p@eP
so that DJ(x,v): P— R? is an isomorphism. Then
DE,(x,v): T, ,J '(p)~ R
is surjective if and only if
(DE(x,v), DJ(x,v)): T, ,J ' (P)®P—>RxR?
is surjective.
(7.2) Corollary. 2'(I)=(R x 0)u {(c, p)eR x 1R3|p4=0&ce2’(Ep)} .
Proof. This follows from (7.1) and the fact that 2'(J)=0.
To study the structure of Z'(E,) for p+0 we consider the direct sum
decomposition M =M, ® M,, where
M,={x'eM|x!xp=0} and M,={x*eM|x} p=0}.
Let E? be the subspace of R® orthogonal to p. Then
M, ={(x3, ..., x2)e(E?"|Y, m; x} =0}.

Considering M, — 4, as the configuration space of the planar n-body
problem with masses m,...,m,, then the energy E, and the angular
momentum J, are the restrictions to (M, —4,)x M, of the energy E and
the angular momentum J.

Let L denote the map J with domain M x M and L, the map J, with
domain M, x M,. Then, since L is an antisymmetric bilinear map, we
see that for x=x! +x2, v=v' +v% in M, +M,, we have

(7.3) Lemma. L(x,v)=p if and only if (i) L,(x* v¥)=p and (ii)
L(x!, v®)+ L(x?,v")=0.
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By condition (i) the projection #: M — M,, n(x)=x? induces a smooth
map from the manifold L~!(p) onto the manifold L;'(|p))=L"'(p)n
(M, x M,), defined by n(x, v)=(x?, v?).

(7.4) Propeosition. n: L™ (p)— L;'(Ip|) is a vector bundle with fiber
F={(x!,v)e M, x M,| L(x*, v*)+ L(x?, v')=0},

Jor (x2, v%)e L3'(|p)).

Proof. Let o(x, v)= L(x', v¥) + L{x?, v*). Then, for fixed (x?, v¥)e L;*(ip|)
the linear map @,z ;0 M;x M;— E? is surjective. Indeed, if not let
e E* -0 be orthogonal to the image of this map so that 2K(x!, v* x e)+
2K(e x x%,v')=L{x',v®) - e+ L(x%,v") - e=0, for all x',v'eM,. Since
v?x e, exx*eM,, we get |v® x e|2 +|ex x?|z=0, hence x7 =, e, v =p;e,
all i and so L,(x?, v¥)=0, a contradiction.

Therefore, if h=¢ xn, where m, is the projection on the second
factor, the sequence of vector bundles

(M x My) x L;!(|pl)—" E* x L3 (1p) — 0

is exact. Hence its kernel, which by Lemma (7.3) is L™'{p), is a vector
space bundle over L;!(|p}).

A configuration xe M — 4 is said to be a relative equilibrium if there
exists a 1-parameter subgroup g, of SO(3) which acting on x induces a
motion of the system, i.e.,

d2
moT 8 xX= —grad V(g, - x).

A solution of relative equilibria is always planar (see [8]). Therefore,
if the angular momentum along the trajectory is p=0, then the configura-
tions have to lie in the plane orthogonal to p.

The set R, of relative equilibria is invariant under the action of SO(3)
on M —A. Indeed, let x(t)=g, - x, xeR, and set h,=gg, g !. Then, for
y=g-x we have y(t)=h,- y=g - x(t) so that

my’'=g-mx"=—g-grad V(x(t))= —grad V(g - x(1))= —grad V(y),
hence yeR,.

(7.5) Propesition. (x, v)=(x', v*) +(x?, v¥)eJ ~1(p) is a critical point of
E,=E|J~*(p) if and only if x' =0, v' =0 and (x*,v?) is a critical point of
E,, ,=E,|J5 (Ip).

Proof. Since J~*(p)=((M —4) x M)~ L™ (p) is an open submanifold
of the vector bundle L™!(p) of Proposition (7.4), we can write

DE, (x, v)=DE(x, v)|F + DE(x, 0)| Ty, 2y J5 1P
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Now,
DE(x, oIF (€' 1) =2K (e, 1) 4o () €
and
oV .
T 8= E s (e —adel -,

Since (x!,v')eF and ) m; x; =0, we have DE(x, v)| F=0<>x' =0 and
v! =0. Therefore, both factors in the above expression for DE (x,v)
vanish if and only if x' =0, v' =0 and (x?,v®) is a critical point of E, ,.

(7.6) Corollary. X'(E,)='(E, ).

Now fix eeS?, say e=(0,0, 1) and take ge SO(3) such that g- p=|p| e.
Let M{Y be the configuration space of the planar n-body problem
determined by e. Then the isomorphism M,— MY, x— g - x induces a
bijection between the sets R and R of relative equilibria in M, and
M{?, which shows that the following equality holds:

{—V(p| 2|z R®, K(z)=1}={ - V(p| 2)*|ze R, K(z)=1}.

This means that (see Section 2 of [6]) 2'(E, ,)=2"(E; |,.)-

Therefore if S={(c,p)eR x R*|p+0 and ceX'(E))} is the set of
Corollary (7.2), then by Corollary (7.6)

(c,P)eS<ep+0 and ceX'(Ey )< (c Pl e (L)

where I, is the map I of the n-body problem with configuration space M o
(notice that in the planar case, Proposition (7.1) also holds and the angular
momentum has no critical points).

Therefore,
S=G-Z(l,),

where G=S0(3) acts on R x R?, trivially on R, naturaily on R>.

I wish to acknowledge the assistance of the Conselho Nacional de Pesquisas, Rio de
Janeiro, during the preparation of this work. I am indebted to my adviser, Professor
S. Smale, for many helpful suggestions specially concerning the reduction to the planar
case stated in Corollary (7.6).
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