Inventiones math. 20, 59 – 72 (1973) © by Springer-Verlag 1973

On the Integral Manifolds of the N-Body Problem

H.E. Cabral (Rio de Janeiro)*

Abstract. Here we make a topological study of the map I = (E, J), where E is the energy and J is the angular momentum of the *n*-body problem in 3-space. Part of the bifurcation set of I is characterized and some topological information is given on the integral manifolds of negative energy and zero angular momentum.

§ 0. Introduction

In [6] Smale makes a complete study of the topology of the map I = (E, J) where E is the energy and J the angular momentum of the planar *n*-body problem of celestial mechanics. Explicit descriptions of the topological type of the integral manifolds $I_{cp} = I^{-1}(c, p)$ are given when n=3. By using different methods Easton [2] also finds the topological structure of the I_{cp} 's for n=3 in the planar case.

Questions of similar nature were already asked by Birkhoff and Wintner concerning the 3-body problem in space of three dimensions. Not much is known in this case and in this paper we give some information on the map I of the *n*-body problem in 3-space along these lines.

Here the topological characterization of the integral manifolds becomes very hard due to the existence of points x in the configuration space for which the induced linear map J_x is not surjective (see observations in § 3). We obtain partial results in this direction which are stated in Theorems 2 and 3 below. As to the bifurcation question, Theorem 4 gives more complete information.

Recall that we are given *n* positive real numbers, the masses m_1, \ldots, m_n and consider the configuration space of the *n*-body problem in 3-space, center of mass at the origin, as the subset $M - \Delta$ of the linear space

$$M = \{ (x_1, \ldots, x_n) \in (\mathbb{R}^3)^n | \sum m_i x_i = 0 \},\$$

where $\Delta = \bigcup \Delta_{ij}, i < j$ and $\Delta_{ij} = \{x \in M | x_i = x_j\}.$

The energy E and the angular momentum J are then defined on $(M - \Delta) \times M$ respectively by E(x, v) = K(v) + V(x) and $J(x, v) = \sum m_i x_i \times v_i$, where $K(v) = \frac{1}{2} \sum m_i |v_i|^2$ is the kinetic energy and $V(x) = -\sum_{i < j} \frac{m_i m_j}{|x_i - x_j|}$

^{*} This paper is the author's doctoral dissertation prepared under the supervision of Professor S. Smale at the University of California, Berkeley. Part of this work was done during a 3 months visit at the Institut des Hautes Etudes Scientifiques.

the potential energy. We have an inner product on M given by $K(x, v) = \frac{1}{2} \sum m_i x_i \cdot v_i$ and we denote by S_K the unit sphere of M with respect to the induced norm, $|x|_K = K(x, x)^{\frac{1}{2}}$.

We consider the map I = (E, J): $(M - \Delta) \times M \to \mathbb{R} \times \mathbb{R}^3$ defined by I(x, v) = (E(x, v), J(x, v)) and call the spaces $I_{cp} = I^{-1}(c, p)$ the integral manifolds of the *n*-body problem.

Given a smooth (C^{∞}) map $f: M \to N$ of smooth manifolds, we denote by $\Sigma'(f)$ the set of its critical values and by $\Sigma(f)$ its bifurcation set. We recall that $y \in \Sigma'(f)$ means that for some $x \in f^{-1}(y)$ the derivative Df(x)is not surjective, while $y \notin \Sigma(f)$ means that $f^{-1}(y)$ is a manifold and there exist an open neighborhood U of y in N and a smooth map $g: f^{-1}(U) \to$ $f^{-1}(y)$ such that the map $h: f^{-1}(U) \to U \times f^{-1}(y)$ is a diffeomorphism, where h(x) = (f(x), g(x)). If $y \notin \Sigma(f)$ we say that f is locally trivial at y; in this case, $f = \pi \circ h$ where π is the projection on the first factor, and so it follows not only that y is a regular value of f, i.e., $y \notin \Sigma'(f)$ but also that on U the fiber $f^{-1}(z), z \in U$ does not change the diffeomorphic type.

We now state our results on the topology of the map I.

For the *n*-body problem in 3-space with arbitrary positive masses m_1, \ldots, m_n , we have the following theorems.

Theorem 1. (a) The maps φ and ψ defined below are diffeomorphisms. Therefore $\Sigma(E)=0$

$$\varphi \colon E^{-1}(\mathbb{R}^{-}) \to \mathbb{R}^{-} \times (S_{K} - \Delta) \times M, \qquad \varphi(x, v) = \left(E(x, v), \frac{x}{|x|_{K}}, v\right)$$

$$\psi \colon E^{-1}(\mathbb{R}^{+}) \to \mathbb{R}^{+} \times (S_{K} - \Delta) \times (M - 0), \quad \psi(x, v) = \left(E(x, v), \frac{x}{|x|_{K}}, |x|_{K}v\right).$$

$$(b) \quad \Sigma(J) = 0.$$

Theorem 2. (a) I_{co} , c < 0 has the same homotopy type of $S_K - \Delta$.

(b) In case n=3, the homology groups of $S_K - \Delta$ are $\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ and $\mathbb{Z} \oplus \mathbb{Z}$ in dimensions 0, 2 and 4 respectively. The homology is 0 otherwise.

(c) For n=3 and c < 0, $\tilde{I}_{co} = I_{co}/SO(3)$ is a contractible space, where the rotation group SO(3) acts on I_{co} by restriction of the action $g \cdot (x, v) = (g \cdot x, g \cdot v)$ on $(M - \Delta) \times M$.

Theorem 3. I_{co} , c < 0 has the topological type of the space $F(S^2) \times \mathbb{R}^{n-1}$ where $F(S^2)$ is a topological fiber bundle over S^2 with fiber

$$F = \{(u, y, \lambda) \in (\mathbb{R}^2)^{n-2} \times (\mathbb{R}^2)^{n-2} \times \mathbb{R}^{n-2} | \sum u_i \times y_i = 0 \text{ and } (\delta) \text{ holds} \}$$

where in $\mathbb{R}^2 a \times b = a^1 b^2 - a^2 b^1$, and the condition (δ) means

$$u_i = u_j \quad for \ i \neq j \Rightarrow \lambda_i \neq \lambda_j$$

$$u_i = 0 \qquad \Rightarrow \lambda_i \neq 0 \text{ and } 1.$$

In particular, if $n \ge 3$, I_{co} , c < 0 is not a manifold. If n = 2, I_{co} , c < 0 is diffeomorphic to $S^2 \times \mathbb{R}$.

Theorem 4. (a) The map I = (E, J): $(M - \Delta) \times M \rightarrow \mathbb{R} \times \mathbb{R}^3$ is locally trivial on the region $\mathbb{R}^+ \times (\mathbb{R}^3 - 0)$.

(b) The set of critical values of I is

$$\Sigma'(I) = (\mathbb{R} \times 0) \cup S$$

where S is the image, under the action $g \cdot (c, p) = (c, g \cdot p)$ of SO(3) on $\mathbb{R} \times \mathbb{R}^3$, of the set $\Sigma'(I_2)$ of the critical values of the map I_2 of the planar n-body problem.

Remarks. (i) J. Palmore has already computed, in the planar case, the homology of $S_K - \Delta$ for all *n*.

(ii) Comparing Theorem 4 with Theorem D of [6], it is natural to ask whether there is bifurcation on the set c=0 and whether the map I is locally trivial at $(c, p) \notin \Sigma'(I)$, c < 0. We were not able to answer these questions and judging by the planar situation it seems that they may depend very heavily on a knowledge of the topological structure of I_{cp} for $p \neq 0$.

The rotation group G = SO(3) acts naturally on \mathbb{R}^3 and hence on Mby means of the diagonal action $g \cdot (x_1, \ldots, x_n) = (g \cdot x_1, \ldots, g \cdot x_n)$, leaving Δ , V and K invariant. Therefore the induced action on $(M - \Delta) \times M$ given by $g \cdot (x, v) = (g \cdot x, g \cdot v)$ leaves invariant the energy E. The angular momentum J is equivariant with respect to the actions of G on $(M - \Delta) \times M$ and \mathbb{R}^3 , i.e., $J(g \cdot x, g \cdot v) = g \cdot J(x, v)$, since for $g \in SO(3) \det(g) = 1$. Then for $p \in \mathbb{R}^3$ the isotropy group $G_p = \{g \in SO(3) | g \cdot p = p\}$ acts on I_{cp} and it is the quotient $\tilde{I}_{cp} = I_{cp}/G_p$ that we mean in (c) of Theorem 2.

For $a \in \mathbb{R}^3$ and $y \in M$ write $a \times y$ for $(a \times y_1, \dots, a \times y_n)$, and similarly for $y \times a$. Then one can easily check the useful relations $J(x, v) \cdot a = 2K(a \times x, v) = 2K(x, v \times a)$, the first of which is Proposition (4.7) of [5]. The angular momentum given by that proposition is $\frac{1}{2}J$ and this accounts for the factor 2 in the above formulae.

For $x = (x_1, ..., x_n) \in M$ the following conditions are equivalent:

(i) $J_{x}: M \to \mathbb{R}^{3}$ is not surjective.

(ii) x_1, \ldots, x_n are collinear.

(iii) The isotropy group $G_x = \{g \in SO(3) | g \cdot x = x\}$ has positive dimension.

Proof. (i) is equivalent to the existence of a vector $a \in \mathbb{R}^3 - 0$ orthogonal to the subspace Im J_x , that is, a vector $a \neq 0$ such that $2K(a \times x, v) = J(x, v) \cdot a = J_x(v) \cdot a = 0$ for all $v \in M$. Taking $v = a \times x$ we get $a \times x = 0$, i.e., $x_i = \lambda_i a$, for all *i*.

To prove the equivalence of (ii) and (iii) we consider, for each $a=(a_1, a_2, a_3) \in \mathbb{R}^3$, the 1-parameter subgroup $\exp(tA)$ of SO(3), where

$$A = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}.$$

Then dim $G_x > 0$ if and only if there exists $a \neq 0$ such that $\exp(tA) \cdot x = x$ for all t. Since $A \cdot x = a \times x$ we have $\frac{d}{dt} \exp(tA) \cdot x = \exp(tA) \cdot (a \times x)$. The result follows.

We denote by Λ the set of points in M satisfying, equivalently, (i), (ii) or (iii) above. These points are called syzygies. Notice that for a non-zero syzygy x, the map J_x maps M onto the subspace orthogonal to the direction determined by x.

Now a few words on how the paper is organized. It consists of this introduction containing the statements of the theorems and seven more sections, arranged as follows: In Sections 1 and 2 we prove respectively (a) and (b) of Theorem 1, while Section 3 contains the proof of parts (a) of Theorems 2 and 4. In Sections 4 and 5 we prove respectively (b) and (c) of Theorem 2. In Section 6 we give the proof of Theorem 3 and finally in Section 7 we prove (b) of Theorem 4.

§1. Proof of Part (a) of Theorem 1

Identifying $M - \Delta$ with $\mathbb{R}^+ \times (S_K - \Delta)$ by means of the diffeomorphism $x \rightarrow \left(|x|_K, \frac{x}{|x|_K}\right)$ and writing (t, z, v) for the points of $\mathbb{R}^+ \times (S_K - \Delta) \times M$ the maps φ and ψ can be expressed as follows

$$\varphi(t, z, v) = (E(tz, v), z, v)$$
 and $\psi(t, z, v) = (E(tz, v), z, tv)$.

Since $E^{-1}(\mathbb{R}^{-})$ and $E^{-1}(\mathbb{R}^{+})$ are open submanifolds of

$$\mathbb{R}^+ \times (S_K - \Delta) \times M$$

it is clear that φ and ψ are smooth.

The inverse of φ is clearly the smooth map $\varphi^{-1}(c, z, v) = (t, z, v)$ where t is the positive solution of the equation E(tz, v) = c, i.e., $t = \frac{V(z)}{c - K(v)}$. As to ψ its inverse is the smooth map $\psi^{-1}(c, z, v) = (t, z, \frac{1}{t}v)$, where t is the positive solution of the equation $E(tz, \frac{1}{t}v) = c$, i.e., $t = \frac{1}{2c} \{V(z) + (V(z)^2 + 4c K(v))^{\frac{1}{2}}\}$, a smooth function of (c, z, v) in $\mathbb{R}^{+} \times (S_{K} - \Delta) \times (M - 0). \text{ For instance, } \psi^{-1} \psi(t, z, v) = \psi^{-1}(E(t z, v), z, tv) = \left(\tau, z, \frac{1}{\tau} tv\right) \text{ where } \tau \text{ is the positive solution of } E\left(\tau z, \frac{t}{\tau} v\right) = E(t z, v), \text{ and we must show that } \tau = t. \text{ If, for fixed } (t, z, v), \text{ we consider the function } g(s) = E\left(sz, \frac{t}{s}v\right) = \frac{1}{s^{2}} K(tv) + \frac{1}{s} V(z) \text{ defined for } s > 0, \text{ then elementary calculus shows that it is strictly decreasing on the region where it is positive. Since <math>g(\tau) = g(t) = E(tz, v) > 0$ it follows that $\tau = t$.

We have thus proved that φ and ψ are diffeomorphisms.

The conclusion $\Sigma(E) = 0$ is clear since the trivializations φ and ψ of *E* induce diffeomorphisms from $E^{-1}(c)$ to $(S_K - \Delta) \times M$ in case c < 0 and to $(S_K - \Delta) \times (M - 0)$ in case c > 0, and these spaces are not homeomorphic. It is interesting to notice that 0 is a regular value of *E* since $\frac{\partial E}{\partial t} = \frac{-1}{t^2} V(z)$ is never zero.

§ 2. Proof of Part (b) of Theorem 1

We first prove the following result.

(2.1) Proposition. (z, v) is a critical point of $J: (S_K - \Delta) \times M \to \mathbb{R}^3$ if and only if $z \in \Lambda$, say $z = (\lambda_1 e, ..., \lambda_n e)$, $e \in S^2$ and $v_i \times e = 0$ for all *i*.

Proof. Since J is the restriction of a bilinear map we have, for

$$\begin{aligned} (\xi,\eta) &\in T_{(z,v)}\big((S_K - \varDelta) \times M\big) = T_z \, S_K \times M \,, \\ DJ(z,v) \cdot (\xi,\eta) &= J(z,\eta) + J(\xi,v) \,. \end{aligned}$$

If $z \notin A$, then $J_z: M \to \mathbb{R}^3$ is surjective and it follows that DJ(z, v) is surjective.

Suppose now $z \in A$, say $z = (\lambda_1 e, ..., \lambda_n e)$ with $e \in S^2$. Then J_z maps M onto the subspace orthogonal to e. If for some $\xi_0 \in T_z S_K J(\xi_0, v) \notin \text{Im } J_z$, then $\mathbb{R}^3 = \text{Im } J_z \oplus L$ where L is the subspace spanned by $J(\xi_0, v)$. Hence DJ(z, v) is surjective. The converse is obviously true. Therefore (z, v) is a critical point of J, i.e. DJ(z, v) fails to be surjective, if and only if $J(\xi, v)$ is orthogonal to e for any $\xi \in T_z S_K$, that is to say if and only if $K(\xi, v \times e) = \frac{1}{2}J(\xi, v) \cdot e = 0$ for any $\xi \in T_z S_K$. But $K(z, v \times e) = \frac{1}{2}J(z, v) \cdot e = 0$ so that $v \times e \in T_z S_K$ and taking $\xi = v \times e$ we get $v \times e = 0$, i.e., $v_i \times e = 0$ for i = 1, ..., n.

Note. It is clear that the proposition remains valid if we take the domain of J to be $(M - \Delta) \times M$ or even $(M - 0) \times M$.

It follows from this proposition that $\Sigma'(J) = 0$.

We now prove that J is locally trivial at every $p \neq 0$. Choose an open neighborhood U of p/|p| in S² and a smooth map $\beta: U \rightarrow SO(3)$ such that $\beta(p') \cdot p/|p| = p'$ for all $p' \in U$, i.e., take a local section β at p/|p| of the map $\alpha: SO(3) \rightarrow S^2$, $\alpha(g) = g \cdot p/|p|$. Let W be the open subset of \mathbb{R}^3 consisting of all points $q \neq 0$ such that $q/|q| \in U$ and consider the positive real-valued function defined on W by a(q) = |p|/|q|. For $(x, v) \in J^{-1}(W)$ write a(x, v) = a(J(x, v)) and $\beta(x, v) = \beta(J(x, v)/|J(x, v)|)$.

Then, noticing that $J^{-1}(p)$ is a smooth manifold and considering the action on $(M-\Delta) \times M$ of the Introduction, we get a smooth map $g: J^{-1}(W) \rightarrow J^{-1}(p)$ defined by $g(x, v) = \beta(x, v)^{-1} \cdot (x, a(x, v) v)$ and such that the map $h: J^{-1}(W) \rightarrow W \times J^{-1}(p)$ is a diffeomorphism, where h(x, v) = (J(x, v), g(x, v)). Its inverse is the map $h^{-1}(q; x, v) = \beta(q/|q|) \cdot (x, a(q)^{-1}v)$ which is smooth since it is smooth as a map on $W \times (M - \Delta) \times M$. This completes the proof of (b) of Theorem 1.

Remark. It is clear that the above proof works equally well if we consider the induced action on $(S_K - \Delta) \times M$, so that the map $J: (S_K - \Delta) \times M \rightarrow \mathbb{R}^3$ is locally trivial at every $p \neq 0$. It is this situation that we will meet in the next section.

§ 3. Proofs of Part (a) of Theorem 2 and Part (a) of Theorem 4

To prove (a) of Theorem 2 we notice that the diffeomorphism φ of Theorem 1 induces a homeomorphism from I_{co} onto the space

$$J_0 = \{(z, v) \in (S_K - \Delta) \times M | J(z, v) = 0\}.$$

Now J_0 has $S_K - \Delta$ as a strong deformation retract. Indeed the map $H: S_K \times M \times [0, 1] \rightarrow S_K \times M$ given by H(z, v, s) = (z, (1 - s)v) is continuous and maps $J_0 \times [0, 1]$ into J_0 . Since H(z, v, 0) = (z, v), H(z, v, 1) = (z, 0) and H(z, 0, s) = (z, 0) for all s, it follows that H is a strong deformation retraction from J_0 to $(S_K - \Delta) \times 0$ and this space can be identified with $S_K - \Delta$.

To prove (a) of Theorem 4 consider the smooth map

id
$$\times J$$
: $\mathbb{R} \times (S_{\kappa} - \Delta) \times M \to \mathbb{R} \times \mathbb{R}^3$, $(t, z, v) \to (t, J(z, v))$.

Then $I = (id \times J) \circ \psi$ where ψ is the diffeomorphism of Theorem 1. By the remark at the end of § 2, J is locally trivial on $\mathbb{R}^3 - 0$, hence $id \times J$ is locally trivial on $\mathbb{R}^+ \times (\mathbb{R}^3 - 0)$ and the same is true of the map I since ψ is a diffeomorphism.

Observations. 1) If for each $z \in S_K - \Delta$ the linear map $J_z: M \to \mathbb{R}^3$ were surjective, then we would have an exact sequence of vector bundles

$$(S_K - \Delta) \times M \rightarrow (S_K - \Delta) \times \mathbb{R}^3 \rightarrow 0$$

where the first map is $h = \pi \times J$, π being the projection on the first factor. Hence the kernel J_0 of the bundle homomorphism h would be a vector space bundle over $S_K - \Delta$. This is actually the case in the planar *n*-body problem (see [6]). Due to the existence of syzygies in $S_K - \Delta$ we do not have such a situation in 3-space. In fact, here J_0 is not even a manifold (cf. Theorem 3).

2) For c > 0 and $p \neq 0$, the map ψ of Theorem 1 induces a diffeomorphism from I_{cp} onto the manifold

$$J_p = \{(z, v) \in (S_K - \Delta) \times M | J(z, v) = p\}$$

given by $(t, z, v) \rightarrow (z, tv)$. But, because of the sysygies in $S_K - \Delta$, it is still very difficult to study the manifold J_p . Compare with the planar situation where the map $(z, v) \rightarrow (z, v - \alpha_p(z))$ gives a diffeomorphism from J_p onto J_0 . Here α_p is the vectorfield on $M - \Lambda$ considered in [5].

§ 4. Proof of Part (b) of Theorem 2

Here and in the next two sections we use the same symbol Δ to denote the generalized diagonal in a product of copies of \mathbb{R}^3 .

We first exhibit the structure of $S_{\kappa} - \Delta$.

(4.1) Proposition. $S_K - \Delta$ is diffeomorphic to $Q(S^2)$, a smooth fiber bundle over S^2 , with fiber

$$Q_n = \{ y \in (\mathbb{R}^3 - 0)^{n-2} | y \notin \Delta \text{ and } y_i \neq \eta_1, \text{ all } i \} \quad \text{for } \eta_1 \in S^2.$$

Proof. Consider the isomorphism $T: M \to (\mathbb{R}^3)^{n-1}$ given by $T(x_1, \ldots, x_n) = (x_1 - x_n, \ldots, x_{n-1} - x_n)$ and notice that $x \in \Delta$ if and only if $T(x) \in \Delta$ or $(T(x))_i = 0$, for some $i = 1, \ldots, n-1$.

Then T induces a diffeomorphism

$$\tau: S_K - \varDelta \to \{\xi \in S^{3n-4} - \varDelta | \xi_i \neq 0, \text{ all } i\},\$$

defined by $z \rightarrow T(z)/|T(z)|$.

We further get a diffeomorphism σ from this manifold onto

$$Q(S^2) = \{\eta \in S^2 \times (\mathbb{R}^3 - 0)^{n-2} | \eta \notin \Delta\},\$$

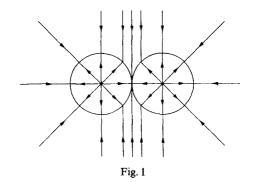
by mapping $\xi = (\xi_1, ..., \xi_{n-1})$ into $\rho(\xi) = \xi/|\xi_1|$.

Now $Q(S^2)$ is a smooth fiber bundle over S^2 with projection map $\pi(\eta) = \eta_1$, and fiber, the space Q_{η_1} , described in the proposition. To show the local triviality of π choose, for each $\eta_1 \in S^2$, an open neighborhood U of η_1 in S^2 and a smooth map $\beta: U \to SO(3)$ such that $\beta(\eta'_1) \cdot \eta_1 = \eta'_1$ for $\eta'_1 \in U$. Then define the diffeomorphism $h: \pi^{-1}(U) \to U \times Q_{\eta_1}$, by

$$h(\eta'_1,\eta_2,\ldots,\eta_{n-1}) = (\eta'_1,\beta(\eta'_1)^{-1}\cdot\eta_2,\ldots,\beta(\eta'_1)^{-1}\cdot\eta_{n-1}).$$

In case n=3, the fiber is $F = \mathbb{R}^3 - 2$ points which has the homotopy type of the space $S^2 \vee S^2$. Indeed, let ρ be the continuous map described

in Fig. 1. Then ρ is a retraction of F to $S^2 \vee S^2$ and the homotopy $H(q, t) = q + t(\rho(q) - q), 0 \le t \le 1$ is a strong deformation retraction of F to $S^2 \vee S^2$. Therefore the homology of F is \mathbb{Z} and $\mathbb{Z} \oplus \mathbb{Z}$ in dimensions 0 and 2, respectively, and 0 otherwise.



We can now apply the Wang homology sequence

$$\rightarrow H_r(Q) \rightarrow H_{r-2}(F) \rightarrow H_{r-1}(F) \rightarrow H_{r-1}(Q) \rightarrow H_{r-3}(F) \rightarrow$$

in order to get the homology of $Q = Q(S^2)$. For example, taking r = 3, we get

$$H_1(F) \rightarrow H_2(F) \rightarrow H_2(Q) \rightarrow H_0(F) \rightarrow H_1(F)$$

or

 $0 \to \mathbb{Z} \oplus \mathbb{Z} \to H_2(Q) \to \mathbb{Z} \to 0.$

Since \mathbb{Z} is a free module this exact sequence yields $H_2(Q) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. The other cases are handled just as easily.

§ 5. Proof of Part (c) of Theorem 2

(5.1) Proposition. Fix $e \in S^2$. Then \tilde{I}_{co} , c < 0 has the homotopy type of the space Q_e/S^1 , where

$$Q_e = \{y \in (\mathbb{R}^3 - 0)^{n-2} | y \notin \Delta \text{ and } y_i \neq e, \text{ all } i\}$$

and $S^1 = \{g \in SO(3) | g \cdot e = e\}$ acts on Q_e by restriction of the diagonal action on $(\mathbb{R}^3)^{n-2}$.

Proof. The homeomorphism from I_{co} onto J_0 induced by the map φ of Theorem 1, the strong deformation retraction H of J_0 to $S_K - \Delta$ given in § 3 and the diffeomorphisms σ and τ of § 4, all these maps are equivariant with respect to the actions of G = SO(3) on these spaces (the action on $J_0 \times [0, 1]$ being $g \cdot (z, v, t) = (g \cdot z, g \cdot v, t)$ and restrictions of diagonal action elsewhere).

Therefore, \tilde{I}_{co} , c < 0 is homeomorphic to J_0/G , which has $(S_K - \Delta)/G$ as strong deformation retract, which is in turn homeomorphic to $Q(S^2)/G$. Hence \tilde{I}_{co} , c < 0 has the homotopy type of $Q(S^2)/SO(3)$.

To conclude the proof we will now show that this space is homeomorphic to Q_e/S^1 . Brackets will be used to denote equivalence classes, i.e., elements in the quotient spaces. The map

$$F: Q(S^2) \rightarrow Q_e/S^1, \quad F(\eta, y) = [g \cdot y]$$

where $y \in Q_{\eta}$, $\eta \in S^2$ and $g \in SO(3)$ is such that $g \cdot \eta = e$ is well-defined and continuous. To see the continuity at (η, y) , let U be an open neighborhood of η in S^2 and $\beta: U \to SO(3)$ a smooth map such that $\beta(\xi) \cdot \xi = e$, all $\xi \in U$.

Then, on $\pi^{-1}(U) \subset Q(S^2)$, F is the composition $y' \in Q_{\xi} \to \beta(\xi) \cdot y' \to [\beta(\xi) \cdot y']$, which shows that F is continuous.

Now the map $F_1: Q_e \rightarrow Q(S^2)/SO(3)$, $F_1(y) = [e, y]$ is continuous as composition of continuous maps $y \rightarrow (e, y) \rightarrow [e, y]$.

It is now easily checked that

$$\tilde{F}^{-1} = \tilde{F}_1: \ Q_e/S^1 \to Q(S^2)/SO(3)$$

so that \tilde{F} is a homeomorphism.

For n=3, $Q_e = \{y \in \mathbb{R}^3 | y \neq 0 \text{ and } y \neq e\}$, hence $Q_e/S^1 = \{(s, t) \in \mathbb{R}^2 | s \ge 0\} - \{(0, 0), (0, 1)\}$, which is a contractible space.

§ 6. Proof of Theorem 3

In addition to the isomorphism $T: M \to (\mathbb{R}^3)^{n-1}$ of §4, we consider the one given by $S(v_1, \ldots, v_n) = (m_1 v_1, \ldots, m_{n-1} v_{n-1})$. Then, one easily checks that $J_1(T(x), S(v)) = J(x, v)$, where

$$J_1(\eta, w) = \sum_{i=1}^{n-1} \eta_i \times w_i, \quad \text{for } \eta, \, w \in (\mathbb{R}^3)^{n-1}.$$

By considering the diffeomorphisms σ and τ of §4, we get a diffeomorphism

$$(S_{K} - \Delta) \times M \to \{(\eta, w) \in (S^{2} \times (\mathbb{R}^{3} - 0)^{n-2}) \times (\mathbb{R}^{3})^{n-1} | \eta \notin \Delta \}$$

defined by $(z, v) \rightarrow (\sigma \tau(z), S(v))$, which maps

$$J_0 = \{(z, v) \in (S_K - \Delta) \times M | J(z, v) = 0\}$$

onto the topological space

$$N = \{ (\eta, w) \in (S^2 \times (\mathbb{R}^3 - 0)^{n-2} - \Delta) \times (\mathbb{R}^3)^{n-1} | J_1(\eta, w) = 0 \}.$$

We now decompose η_i , i=2, ..., n-1 and w_j , j=1, 2, ..., n-1 along η_1 and the orthogonal complement η_1^{\perp} of η_1 . From now on in this section,

when we write the subscripts *i* and *j*, we always mean these ranges. We have n - i n + n' = i - n + n

$$\eta_i = \lambda_i \eta_1 + \eta_i, \quad \lambda_i = \eta_i \cdot \eta_1$$

$$w_j = \mu_j \eta_1 + w'_j, \quad \mu_j = w_j \cdot \eta_1.$$
(*)

A straightforward computation shows that

$$J_{1}(\eta, w) = \eta_{1} \times (w'_{1} + \sum (\lambda_{i} w'_{i} - \mu_{i} \eta'_{i})) + \sum \eta'_{i} \times w'_{i},$$

so that the condition $J_1(\eta, w) = 0$ is equivalent to the conditions

$$w_1' = \sum (\mu_i \eta_i' - \lambda_i w_i')$$

$$\sum \eta_i' \times w_i' = 0.$$
(**)

The assignment $(\eta, w) \rightarrow (\eta_1, \eta'_i, w'_i, \lambda_i, \mu_j)$ clearly defines a smooth map f from $S^2 \times (\mathbb{R}^3)^{n-2} \times (\mathbb{R}^3)^{n-1}$ into $S^2 \times (\mathbb{R}^3)^{n-2} \times (\mathbb{R}^3)^{n-2} \times \mathbb{R}^{n-2} \times \mathbb{R}^{n-1}$. Conversely, given a point $(\eta_1, \eta'_i, w'_i, \lambda_i, \mu_j)$ in the second space, we take w'_1 as defined by the first of the equations (**) and then use the first set of equations (*) to determine a point (η, w) , which obviously depends smoothly on the given point; this defines a smooth map g which goes on the opposite direction to f.

For the decomposition $\eta_i = \lambda_i \eta_1 + \eta'_i$, the conditions $\eta \notin \Delta$ and $\eta_j \neq 0$ for all j are equivalent to the conditions

$$\begin{aligned} \eta'_r &= \eta'_s \quad \text{with} \quad r \neq s \Rightarrow \lambda_r \neq \lambda_s \\ \eta'_r &= 0 \qquad \Rightarrow \lambda_r \neq 0 \text{ and } 1. \end{aligned} \tag{\delta}$$

Now consider the space

$$F(S^{2}) = \{ (\eta_{1}, \eta', w', \lambda) \in S^{2} \times (\mathbb{R}^{3})^{n-2} \times (\mathbb{R}^{3})^{n-2} \times \mathbb{R}^{n-2} | \eta'_{i}, w'_{i} \in \eta_{1}^{\perp}, \\ \sum \eta'_{i} \times w'_{i} = 0 \& (\delta) \text{ holds} \}.$$

Then restricted to N and $F(S^2) \times \mathbb{R}^{n-1}$, the maps f and g are inverse to each other. Therefore these spaces are homeomorphic, which means that J_0 , hence I_{co} , c < 0 (cf. § 3), is homeomorphic to $F(S^2) \times \mathbb{R}^{n-1}$.

But one can easily verify that $F(S^2)$ is a fiber bundle over S^2 , with projection map $\pi(\eta_1, \eta', \omega', \lambda) = \eta_1$ and fiber, the topological space

$$F = \{(u, y, \lambda) \in (\mathbb{R}^2)^{n-2} \times (\mathbb{R}^2)^{n-2} \times \mathbb{R}^{n-2} | \sum u_i \times y_i = 0 \& (\delta) \text{ holds} \}$$

where the condition (δ) is with respect to u and λ , and this completes the proof of the first part of Theorem 3.

Now let $n \ge 3$ and take $\lambda^0 \in \mathbb{R}^{n-2}$ such that $1 < \lambda_1^0 < \cdots < \lambda_{n-2}^0$. Then there exists an open ball *B* in \mathbb{R}^{n-2} centered at λ^0 and such that $1 < \lambda_1 < \cdots < \lambda_{n-2}$, for all $\lambda \in B$. Therefore, $\{(u, y, \lambda) \in F | \lambda \in B\} = C \times B$, where *C* is the cone

$$C = \{(u, y) \in (\mathbb{R}^2)^{n-2} \times (\mathbb{R}^2)^{n-2} | \sum u_i \times y_i = 0 \}.$$

Therefore, in a neighborhood of some point, the space I_{co} , c < 0 has the topological structure of $C \times \mathbb{R}^{2n-1}$ and so it is not a manifold.

Finally, if n = 2, then

$$N = \{(\eta, \omega) \in S^2 \times \mathbb{R}^3 | \eta \times \omega = 0\},\$$

which is diffeomorphic to $S^2 \times \mathbb{R}$ under the map $(\eta, \omega) \rightarrow (\eta, \eta \cdot \omega)$; this is a trivialization of the line bundle N over S^2 .

§ 7. Proof of Part (b) of Theorem 4

(7.1) Proposition. $(x, v) \in (M - \Delta) \times M$ is a critical point of I = (E, J) if and only if DJ(x, v) is not surjective or (x, v) is a critical point of $E_p = E | J^{-1}(p)$, where p = J(x, v).

Proof. Assume DJ(x, v) surjective and write $M \times M = T_{(x, v)}J^{-1}(p) \oplus P$ so that $DJ(x, v): P \to \mathbb{R}^3$ is an isomorphism. Then

$$DE_p(x,v): T_{(x,v)}J^{-1}(p) \rightarrow \mathbb{R}$$

is surjective if and only if

$$(DE(x, v), DJ(x, v)): T_{(x, v)} J^{-1}(p) \oplus P \to \mathbb{R} \times \mathbb{R}^3$$

is surjective.

(7.2) Corollary. $\Sigma'(I) = (\mathbb{R} \times 0) \cup \{(c, p) \in \mathbb{R} \times \mathbb{R}^3 | p \neq 0 \& c \in \Sigma'(E_p) \}.$

Proof. This follows from (7.1) and the fact that $\Sigma'(J) = 0$.

To study the structure of $\Sigma'(E_p)$ for $p \neq 0$ we consider the direct sum decomposition $M = M_1 \oplus M_2$, where

$$M_1 = \{x^1 \in M | x_i^1 \times p = 0\}$$
 and $M_2 = \{x^2 \in M | x_i^2 \cdot p = 0\}.$

Let E^2 be the subspace of \mathbb{R}^3 orthogonal to p. Then

$$M_2 = \{ (x_1^2, \ldots, x_n^2) \in (E^2)^n | \sum m_i x_i^2 = 0 \}.$$

Considering $M_2 - \Delta_2$ as the configuration space of the planar *n*-body problem with masses m_1, \ldots, m_n , then the energy E_2 and the angular momentum J_2 are the restrictions to $(M_2 - \Delta_2) \times M_2$ of the energy E and the angular momentum J.

Let L denote the map J with domain $M \times M$ and L_2 the map J_2 with domain $M_2 \times M_2$. Then, since L is an antisymmetric bilinear map, we see that for $x = x^1 + x^2$, $v = v^1 + v^2$ in $M_1 + M_2$, we have

(7.3) Lemma. L(x, v) = p if and only if (i) $L_2(x^2, v^2) = p$ and (ii) $L(x^1, v^2) + L(x^2, v^1) = 0$.

By condition (i) the projection $\pi: M \to M_2, \pi(x) = x^2$ induces a smooth map from the manifold $L^{-1}(p)$ onto the manifold $L_2^{-1}(|p|) = L^{-1}(p) \cap (M_2 \times M_2)$, defined by $\pi(x, v) = (x^2, v^2)$.

(7.4) Proposition. $\pi: L^{-1}(p) \rightarrow L^{-1}_2(|p|)$ is a vector bundle with fiber

$$F = \{ (x^1, v^1) \in M_1 \times M_1 | L(x^1, v^2) + L(x^2, v^1) = 0 \},\$$

for $(x^2, v^2) \in L_2^{-1}(|p|)$.

Proof. Let $\varphi(x, v) = L(x^1, v^2) + L(x^2, v^1)$. Then, for fixed $(x^2, v^2) \in L_2^{-1}(|p|)$ the linear map $\varphi_{(x^2, v^2)}$: $M_1 \times M_1 \rightarrow E^2$ is surjective. Indeed, if not let $e \in E^2 - 0$ be orthogonal to the image of this map so that $2K(x^1, v^2 \times e) + 2K(e \times x^2, v^1) = L(x^1, v^2) \cdot e + L(x^2, v^1) \cdot e = 0$, for all $x^1, v^1 \in M_1$. Since $v^2 \times e, e \times x^2 \in M_1$, we get $|v^2 \times e|_K^2 + |e \times x^2|_K^2 = 0$, hence $x_i^2 = \lambda_i e, v_i^2 = \mu_i e$, all *i* and so $L_2(x^2, v^2) = 0$, a contradiction.

Therefore, if $h = \varphi \times \pi_2$ where π_2 is the projection on the second factor, the sequence of vector bundles

$$(M_1 \times M_1) \times L_2^{-1}(|p|) \xrightarrow{h} E^2 \times L_2^{-1}(|p|) \rightarrow 0$$

is exact. Hence its kernel, which by Lemma (7.3) is $L^{-1}(p)$, is a vector space bundle over $L_2^{-1}(|p|)$.

A configuration $x \in M - \Delta$ is said to be a relative equilibrium if there exists a 1-parameter subgroup g_i of SO(3) which acting on x induces a motion of the system, i.e.,

$$m \frac{d^2}{dt^2} g_t \cdot x = -\operatorname{grad} V(g_t \cdot x).$$

A solution of relative equilibria is always planar (see [8]). Therefore, if the angular momentum along the trajectory is $p \neq 0$, then the configurations have to lie in the plane orthogonal to p.

The set R_e of relative equilibria is invariant under the action of SO(3)on $M-\Delta$. Indeed, let $x(t)=g_t \cdot x$, $x \in R_e$ and set $h_t=gg_tg^{-1}$. Then, for $y=g \cdot x$ we have $y(t)=h_t \cdot y=g \cdot x(t)$ so that

$$m y'' = g \cdot m x'' = -g \cdot \operatorname{grad} V(x(t)) = -\operatorname{grad} V(g \cdot x(t)) = -\operatorname{grad} V(y),$$

hence $y \in R_e$.

(7.5) **Proposition.** $(x, v) = (x^1, v^1) + (x^2, v^2) \in J^{-1}(p)$ is a critical point of $E_p = E|J^{-1}(p)$ if and only if $x^1 = 0$, $v^1 = 0$ and (x^2, v^2) is a critical point of $E_{2,p} = E_2|J_2^{-1}(|p|)$.

Proof. Since $J^{-1}(p) = ((M - \Delta) \times M) \cap L^{-1}(p)$ is an open submanifold of the vector bundle $L^{-1}(p)$ of Proposition (7.4), we can write

$$DE_{p}(x, v) = DE(x, v)|F + DE(x, v)|T_{(x^{2}, v^{2})}J_{2}^{-1}(|p|).$$

Now,

$$DE(x,v)|F\cdot(\xi^1,\eta^1)=2K(v^1,\eta^1)+\frac{\partial V}{\partial x^1}(x)\cdot\xi^1$$

and

$$\frac{\partial V}{\partial x^1}(\mathbf{x}) \cdot \xi^1 = \sum_{i < k} \frac{m_i m_k}{|x_i - x_k|^3} (x_i^1 - x_k^1) (\xi_i^1 - \xi_k^1).$$

Since $(x^1, v^1) \in F$ and $\sum m_i x_i^1 = 0$, we have $DE(x, v) | F = 0 \Leftrightarrow x^1 = 0$ and $v^1 = 0$. Therefore, both factors in the above expression for $DE_p(x, v)$ vanish if and only if $x^1 = 0$, $v^1 = 0$ and (x^2, v^2) is a critical point of $E_{2,p}$.

(7.6) Corollary. $\Sigma'(E_p) = \Sigma'(E_{2,p}).$

AT7

Now fix $e \in S^2$, say e = (0, 0, 1) and take $g \in SO(3)$ such that $g \cdot p = |p| e$. Let $M_2^{(0)}$ be the configuration space of the planar *n*-body problem determined by *e*. Then the isomorphism $M_2 \rightarrow M_2^{(0)}, x \rightarrow g \cdot x$ induces a bijection between the sets $R_e^{(p)}$ and $R_e^{(0)}$ of relative equilibria in M_2 and $M_2^{(0)}$, which shows that the following equality holds:

$$\left\{-V(|p|z)^2 | z \in R_e^{(p)}, K(z) = 1\right\} = \left\{-V(|p|z)^2 | z \in R_e^{(0)}, K(z) = 1\right\}.$$

This means that (see Section 2 of [6]) $\Sigma'(E_{2,p}) = \Sigma'(E_{2,|p|e})$.

Therefore if $S = \{(c, p) \in \mathbb{R} \times \mathbb{R}^3 | p \neq 0 \text{ and } c \in \Sigma'(E_p)\}$ is the set of Corollary (7.2), then by Corollary (7.6)

$$(c, p) \in S \Leftrightarrow p \neq 0$$
 and $c \in \Sigma'(E_{2, |p||e}) \Leftrightarrow (c, |p||e) \in \Sigma'(I_2)$

where I_2 is the map I of the *n*-body problem with configuration space $M_2^{(0)}$ (notice that in the planar case, Proposition (7.1) also holds and the angular momentum has no critical points).

Therefore,

$$\mathbf{S} = \mathbf{G} \cdot \Sigma'(\mathbf{I}_2),$$

where G = SO(3) acts on $\mathbb{R} \times \mathbb{R}^3$, trivially on \mathbb{R} , naturally on \mathbb{R}^3 .

I wish to acknowledge the assistance of the Conselho Nacional de Pesquisas, Rio de Janeiro, during the preparation of this work. I am indebted to my adviser, Professor S. Smale, for many helpful suggestions specially concerning the reduction to the planar case stated in Corollary (7.6).

References

- 1. Birkhoff, G.D.: Dynamical Systems. Rev. Ed. Colloq. Publ. 9, Amer. Math. Soc., Providence, R. I., 1966.
- 2. Easton, R.: Some Topology of the 3-Body Problem. Journal of Differential Equations 10, 371-377 (1971).
- 3. Lang, S.: Introduction to Differentiable Manifolds. New York: Wiley (Interscience) 1962.

- 72 H.E. Cabral: On the Integral Manifolds of the N-Body Problem
- 4. Robbin, J.W.: Relative Equilibria in Mechanical Systems. Preprint. Univ. of Wisconsin, Madison, Wis.
- 5. Smale, S.: Topology and Mechanics. I. Inventiones math. 10, 305-331 (1970).
- 6. Smale, S.: Topology and Mechanics. II. Inventiones math. 11, 45-64 (1970).
- 7. Spanier, E.H.: Algebraic Topology. New York: McGraw-Hill 1966.
- 8. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton, N.J.: Princeton Univ. Press 1941.

H.E. Cabral Instituto de Matematica Pura e Aplicada Rua Luiz de Camões, 68 Rio de Janeiro, Brasil

(Received December 3, 1972)