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On the Integral Manifolds of the N-Body Problem 

H. E. Cabral (Rio de Janeiro)*" 

Abstract. Here we make a topological study of the map I = (E, J), where E is the energy 
and J is the angular momen tum of the n-body problem in 3-space. Part of the bifurcation 
set of I is characterized and some topological information is given on the integral manifolds 
of negative energy and zero angular momentum.  

w 0. Introduction 

In [6] Smale makes a complete study of the topology of the map 
I =(E,  J) where E is the energy and J the angular momentum of the 
planar n-body problem of celestial mechanics. Explicit descriptions of 
the topological type of the integral manifolds I c p = I - l ( c , p )  are given 
when n = 3. By using different methods Easton [2] also finds the topo- 
logical structure of the lcv's for n = 3 in the planar case. 

Questions of similar nature were already asked by Birkhoff and 
Wintner concerning the 3-body problem in space of three dimensions. 
Not  much is known in this case and in this paper we give some informa- 
tion on the map I of the n-body problem in 3-space along these lines. 

Here the topological characterization of the integral manifolds 
becomes very hard due to the existence of points x in the configuration 
space for which the induced linear map Jx is not surjective (see observa- 
tions in w 3). We obtain partial results in this direction which are stated 
in Theorems 2 and 3 below. As to the bifurcation question, Theorem 4 
gives more complete information. 

Recall that we are given n positive real numbers, the masses m 1 . . . . .  m n 
and consider the configuration space of the n-body problem in 3-space, 
center of mass at the origin, as the subset M - A  of the linear space 

M = {(x1,  . . . ,  Xn)~(~x3)nl~  rni Xi ~---0}, 

where A = [.J A O, i<  j and Aii= { x e M l x i = x ~ } .  
The energy E and the angular momentum J are then defined on 

(M - A) x M respectively by E(x,  v) = K (v)+ V(x) and J(x, v ) = ~  m i x i x vi, 
m i mj 

wherc K(v)=�89 2 is thc kinctic cncrgy and V(x)=-,<j.~ ixi_x# [ 

" This paper is the author's doctoral disscrtation prepared under the supervision of 
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60 H.E. Cabral: 

the potential energy. We have an inner product on M given by K(x, v)= 
�89 m~x~.v~ and we denote by S x the unit sphere of M with respect to 
the induced norm, Ix Ix = K(x, x) ~. 

We consider the map I=(E,J ) :  ( M - A ) x M - - ~ I R •  IR a defined by 
I(x, v)=(E(x,  v),J(x, v)) and call the spaces Icp=I-l(c ,  p) the integral 
manifolds of the n-body problem. 

Given a smooth (C ~) map f :  M ~  N of smooth manifolds, we denote 
by 27'(f) the set of its critical values and by 27(f) its bifurcation set. We 
recall that ye,Y,'(f) means that for some x e f - l ( y )  the derivative Df(x)  
is not surjective, while y r 27 ( f )  means that f - 1  (y) is a manifold and there 
exist an open neighborhood U ofy  in N and a smooth map g: f - l ( u ) ~  
f - i ( y )  such that the map h: f-l(U)---~ U x f-X(y) is a diffeomorphism, 
where h(x)=(f(x) ,g(x)) .  If yr we say that f is locally trivial at y; 
in this case, f = n o h  where rc is the projection on the first factor, and so 
it follows not only that y is a regular value of f ,  i.e., yr but also that 
on U the fiber f -a(z ) ,  ze  U does not  change the diffeomorphic type. 

We now state our results on the topology of the map I. 
For  the n-body problem in 3-space with arbitrary positive masses 

m 1, . . . ,  m,, we have the following theorems. 

Theorem 1. (a) The maps q) and ~ defined below are diffeomorphisms. 
Therefore Z(E) = 0 

@: E-I(IR-)--*IR - x ( S K - A ) x M  , 

~J: E-I(IR+)--~IR+ x ( S K - A ) x ( M - O ) ,  

(b) ,~(J) = O. 

qg(x, v)= (E(x, v), l~[r , v ) 

~(x, v)= (E(x, v), I~IK , IXlK V ) �9 

Theorem 2. (a) Ico, c < 0 has the same homotopy type of S r -  A. 
(b) In case n = 3, the homology groups of  S g -  A are 7Z, 7Z G 7Z ~ 71 and 

Z(~ 71 in dimensions O, 2 and 4 respectively. The homology is 0 otherwise. 

(c) For n = 3  and c<0 ,  Ico=Ico/SO(3) is a contractible space, where 
the rotation group SO(3) acts on I~o by restriction of the action g- (x, v)= 
(g. x, g.  v) on (M - A) x M. 

Theorem 3. Ico, c < 0 has the topological type of  the space F(S 2) x IR"- 1 
where F(S 2) is a topological fiber bundle over S 2 with fiber 

F = {(u, y, 2) e (IR2),- 2 x (IR2),- 2 x IR"- 2[~ ui x Yl = 0 and (6) holds} 

where in IR 2 a x b = a 1 b 2 - a 2 b I, and the condition (6) means 

ui=u J for i=l=j=~2i#2j 

u i = 0 =~ 2 i ~ 0 and 1. 
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In particular, if n> 3, /co, c <0  is not a manifold. I f  n=2, /co, c < 0  is 
diffeomorphic to S 2 x IR. 

Theorem 4. (a) The map I =(E, J): (M - d )  x M ~  IR x IR3 is locally 
trivial on the region IR+ x (IR3-0). 

(b) The set of critical values of I is 

z'(I)=(iR x 0 ) u s  

where S is the image, under the action g . ( c, p) = ( c, g . p) of S0(3) on IR x IRa, 
of the set Z'(I 2) of the critical values of the map 12 of the planar n-body 
problem. 

Remarks. (i) J. Palmore has already computed, in the planar case, the 
homology of S K - zl for all n. 

(ii) Comparing Theorem 4 with Theorem D of [6], it is natural to 
ask whether there is bifurcation on the set c = 0 and whether the map I 
is locally trivial at (c, p)~ 27(1), c <0.  We were not able to answer these 
questions and judging by the planar situation it seems that they may 
depend very heavily on a knowledge of the topological structure of Icp 
for p =1= 0. 

The rotation group G = S0(3) acts naturally on IR a and hence on M 
by means of the diagonal action g. (xl, ..., x,) = (g. xl, ..., g. x,), leaving 
A, V and K invariant. Therefore the induced action on ( M - A ) x M  
given by g. (x, v)= (g. x, g.  v) leaves invariant the energy E. The angular 
momentum J is equivariant with respect to the actions of G on ( M -  3) x M 
and IRa, i.e., J(g-  x, g. v )=g .  J(x, v), since for g~SO(3) det(g)= 1. Then 
for peiR 3 the isotropy group Gp= {g~SO(3)lg-p=p} acts on lop and it 
is the quotient i~p = I~p/Gp that we mean in (c) of Theorem 2. 

For aeiR a and y e M  write a x y for (a x Yt,-.., a x Yn), and similarly 
for y xa .  Then one can easily check the useful relations J ( x , v ) . a =  
2K(a x x, v)=2K(x,  v x a), the first of which is Proposition (4.7) of [5]. 
The angular momentum given by that proposition is �89 and this accounts 
for the factor 2 in the above formulae. 

For  x = (xl . . . . .  x,)e M the following conditions are equivalent: 

(i) J, :  M - *  N a is not surjective. 

(ii) x 1, ..., xn are collinear. 
(iii) The isotropy group G~= {geSO(3)lg. x = x }  has positive dimen- 

sion. 
Proof. (i) is equivalent to the existence of a vector a ~ IRa _ 0 orthogonal 

to the subspace I m J , ,  that is, a vector a # 0  such that 2 K ( a x  x ,v)= 
J(x, v). a =Jx(v) �9 a = 0  for all veM.  Taking v=a x x we get a x x =0,  i.e., 

xi = ~ a, for all i. 
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To prove the equivalence of (ii) and (iii) we consider, for each 
a=(al ,  a2, aa)~lR 3, the 1-parameter subgroup exp(tA) of SO(3), where 

A =  a a 0 - 1 �9 

- -  a 2 a 1 

Then dim Gx>0 if and only if there exists a~=0 such that exp(tA), x = x  
d 

for all t. Since A . x = a x x  we have ~ - { e x p ( t A ) . x = e x p ( t A ) . ( a x x ) .  
The result follows. 

We denote by A the set of points in M satisfying, equivalently, (i), (ii) 
or (iii) above. These points are called syzygies. Notice that for a non-zero 
syzygy x, the map Jx maps M onto the subspace orthogonal to the direc- 
tion determined by x. 

Now a few words on how the paper is organized. It consists of this 
introduction containing the statements of the theorems and seven more 
sections, arranged as follows: In Sections 1 and 2 we prove respectively 
(a) and (b) of Theorem 1, while Section 3 contains the proof of parts (a) 
of Theorems 2 and 4. In Sections 4 and 5 we prove respectively (b) and 
(c) of Theorem 2. In Section 6 we give the proof of Theorem 3 and finally 
in Section 7 we prove (b) of Theorem 4. 

w 1. Proof of Part (a) of Theorem 1 

Identifying M - A with IR + x (S K -  A) by means of the diffeomorphism 

x - .  (Ixl~, I-i-~-..) and writing (t, z, v) for the points of ~ +  x ( S K - A )  • M 

the maps ~0 and ~k can be expressed as follows 

q~(t ,z ,v)=(E(tz,  v),z,v) and ~( t , z , v )=(E( t z ,  v),z, tv). 

Since E - I ( R  -) and E-x(R  +) are open submanifolds of 

~ + x ( S r - A ) x M  

it is clear that tp and ~ are smooth. 
The inverse ofq~ is clearly the smooth map ~p-1 (c, z, v) =(t, z, v) where t 

V(z) 
is the positive solution of the equation E(tz ,  v)=c, i.e., t = - -  

c - K ( v )  

(z!) As to 0 its inverse is the smooth map O-1(c,z,v)= t, , t ' 

( ' )  where t is the positive solution of the equation E t z , -  t- v =c, i.e., 

1 {V(z)+(V(z)2+4cK(v)) �89 ' a smooth function of (c,z ,v)  in t = ~ -  c 
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IR + x (S K - A )  x ( M -  0). For  instance, ~O-1 ~O (t, z, v)= ~b-l(E(t z, v), z, t v)= 

- - t  where z is the positive solution of E zz ,  v = E ( t z ,  v), Z, Z~ "C 

and we must show that z = t. If, for fixed (t, z, v), we consider the function 

- -  v = K( t  v)+ 1 V(z) defined for s > 0, then elementary g ( s ) = E  sz,  s s 

calculus shows that  it is strictly decreasing on the region where it is 
positive. Since g (z) = g (t) = E (t z, v) > 0 it follows that z = t. 

We have thus proved that  q~ and 0 are diffeomorphisms. 
The conclusion Z(E)=O is clear since the trivializations q~ and 0 of  

E induce diffeomorphisms from E- l ( c )  to ( S t - A ) x  M in case c < 0  and 
to (S K -  A) x ( M -  0) in case c > 0, and these spaces are not homeomorphic .  

It is interesting to notice that  0 is a regular value of E since 
0E - 1 
Ot t~-  V(z) is never zero. 

w 2. P roof  of Par t  (b) of Theorem 1 

We first prove the following result. 

(2.1) Proposition. (z, v) is a critical point o f  J: (SK-- A) x M---~ IR 3 if and 
only if z ~ A, say z = (21 e, . . . ,  2, e), e e S 2 and v i x e = 0 for all i. 

Proof. Since J is the restriction of a bilinear map  we have, for 

(~, r/)E Ttz, v)((SK- A) x M ) =  T z S r x M ,  

DY(z, v). (~, n)= Y(z, n)+ Y(~, v). 
If zg~A, then Jz: M - .  F, a is surjective and it follows that DJ(z, v) is 

surjective. 
Suppose now z e A ,  say z = ( )  u e . . . . .  ~., e) with e e S  2. Then J~ maps M 

onto  the subspace or thogonal  to e. If for some ~oeTzSK J(~o, v)r 
then F, a = I m  J ~ G L  where L is the subspace spanned by J(~o, v). Hence 
DJ(z, v) is surjective. The converse is obviously true. Therefore (z, v) is 
a critical point  of J ,  i.e. DJ (z, v) fails to be surjective, if and only if J(~, v) 
is o r thogonal  to e for any ~ e T z S K, that  is to say if and only if K(~, v x e)= 
� 89  for any ~ T ~ S  K. But K(z,  v x e ) = � 8 9  so that 
v x ee  T z S r a n d t a k i n g ~ = v  x ewe getv x e = 0,i.e., vi x e = 0  for i= 1 . . . . .  n. 

Note.  It is clear that the proposit ion remains valid if we take the 
domain  of  J to be ( M -  A) x M or even (M - ~3) x M. 

It follows from this proposi t ion that Z' (J)= O. 
We now prove that  J is locally trivial at every p 4=0. Choose an open 

ne ighborhood  U ofp/lp[ in S 2 and a smooth map fl: U--~ SO(3) such that 
fl(p'), p / Ipl=p ' for all p'E U, i.e., take a local section fl at p/lpl of the 
map  ~: S O ( 3 ) ~  S 2, ct(g) = g .  p/Ipl. 



64 H.E. Cabral: 

Let W be the open subset of IR 3 consisting of all points q + 0 such that 
q/Iql~U and consider the positive real-valued function defined on W 
by a (q) = I P I/I q I- For  (x, v) ~ J -  1 (W) write a (x, v) = a (J (x, v)) and fl (x, v) = 
# (J (x, v)llJ (x, v)l). 

Then, noticing that J -1  (p) is a smooth manifold and considering the 
action on ( M - A ) x M  of the Introduction, we get a smooth map g: 
j -  1 (W)__~ J -  1 (p) defined by g (x, v) = fl (x, v)- 1. (x, a (x, v) v) and such that 
the map h: J - I ( W ) ~  W x j - l (p)  is a diffeomorphism, where h(x, v)= 
(J(x, v), g(x, v)). Its inverse is the map h-l(q; x, v)=fl(q/lq[)" (x,a(q)-lv) 
which is smooth since it is smooth as a map on W x ( M - A ) x  M. This 
completes the proof of (b) of Theorem 1. 

Remark. It is clear that the above proof works equally well if we con- 
sider the induced action on ( S x - A ) x  M, so that the map J:  (SK--A)x 
M ~  ~ a  is locally trivial at every p * 0 .  It is this situation that we will 
meet in the next section. 

w 3. Proofs of Part (a) of Theorem 2 and Part (a) of Theorem 4 

To prove (a) of Theorem 2 we notice that the diffeomorphism q~ of 
Theorem 1 induces a homeomorphism from leo onto the space 

Jo = {(z, v)e(SK- A ) x MIJ(z, v)=0}. 

Now Jo has SK-A  as a strong deformation retract. Indeed the 
map H:  SK x M x [0, 1 ] ~  S K x M given by H(z, v, s)=(z, (1 - s )  v) is con- 
tinuous and maps Jo x [0, 1] into Jo. Since n(z, v, O) = (z, v), n(z,  v, 1) = (z, 0) 
and H(z, O, s)=(z, 0) for all s, it follows that H is a strong deformation 
retraction from Jo to (SK-A)xO and this space can be identified with 
S K-  A. 

To prove (a) of Theorem 4 consider the smooth map 

i d x J :  I R x ( S K - A ) x M - - * ~ x l R  3, (t,z,v)-*(t,J(z,v)). 

Then I=( idxJ )o~k  where ~k is the diffeomorphism of Theorem 1. By 
the remark at the end of w 2, J is locally trivial on R 3 _  0, hence id x J 
is locally trivial on R+ x (Ra _ 0) and the same is true of the map I since 

is a diffeomorphism. 

Observations. 1) If for each z s S K - A  the linear map Jz: M---~ IR 3 were 
surjective, then we would have an exact sequence of vector bundles 

(S r -  A) x M--~ (S x -  A) x IR 3--~ 0 

where the first map is h = • x J, n being the projection on the first factor. 
Hence the kernel J0 of the bundle homomorphism h would be a vector 
space bundle over S x - A .  This is actually the case in the planar n-body 
problem (see [6]). Due to the existence of syzygies in S r -  A we do not 
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have such a situation in 3-space. In fact, here Jo is not even a manifold 
(cf. Theorem 3). 

2) For  c > 0  and p4=0, the map r of Theorem 1 induces a diffeo- 
morphism from Icp onto the manifold 

Jp = {(z, v) E (S r - A) • M tJ (z, v) = p} 

given by (t, z, v ) ~  (z, t v). But, because of the sysygies in S t - A ,  it is still 
very difficult to study the manifold Jp. Compare  with the planar situation 
where the map (z, v ) ~  (z, v - % ( z ) )  gives a diffeomorphism from Jp onto  
J0. Here ~p is the vectorfield on M -  A considered in [5]. 

w 4. Proof of Part (b) of Theorem 2 

Here  and in the next two sections we use the same symbol A to denote  
the generalized diagonal in a product  of copies of R3. 

We first exhibit the structure of  S K -  A. 

(4.1) Proposition. S r -  d is diffeomorphic to Q (SZ), a smooth f iber bundle 
over S 2, with fiber 

Q ~ = { y ~ ( l R a - O ) ~ - Z l y S A  and yi4=rla, all i} for rll~S 2. 

Proof. Consider the isomorphism T: M---~(IR3) n-1 given by 
T(x l ,  ..., x . ) = ( x  1 - x  . . . . . .  x , _ ~ - x . )  and notice that xEA if and only if 
T(x )eA  or (T(x))i=O, for some i=  1, . . . ,  n -  1. 

Then T induces a diffeomorphism 

z: S ~ - A ~ , { ~ S a " - 4 - A [ ~ i ~ O ,  all i}, 

defined by z ~ T(z)/[T(z)l. 
We further get a diffeomorphism a from this manifold onto  

Q(S2)={ /~ES  2 x ( l R  3 - 0 )  n - 2 l t l e A } ,  

by mapping ~ = ( ~ ,  . . . ,  ~,_~) into p( r  ~/1r 
Now Q(S 2) is a smooth  fiber bundle over S 2 with projection map 

rc (r/)= ~/1, and fiber, the space Qn,, described in the proposition. To  show 
the local triviality of zr choose, for each r h ~ S 2, an open ne ighborhood U 
of  r/1 in S 2 and a smooth  map fl: U ~  S0(3) such that fl(r/~), r/t =~/'t for 
r/~ ~ U. Then  define the diffeomorphism h: n -  1 (U)--~ U x Q~,, by 

h (r/'l, r/2 , . .., r/,_l ) = (r/'~, fl (r/'l) -~ .r/2 . . . . .  fl (r/'l) - 1 .  r/,_,). 

In case n = 3, the fiber is F = IR 3 -  2 points which has the homotopy  
type of the space S 2 v S 2. Indeed, let p be the continuous map described 

5 lnventiones math,, Vol. 20 
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in Fig. 1. Then p is a retraction o f F  to S 2 v S 2 and the homotopy H(q, t)= 
q + t(p (q)-  q), 0 _< t -< 1 is a strong deformation retraction of F to S 2 v S 2. 
Therefore the homology of F is Z and 7rq)Z in dimensions 0 and 2, 
respectively, and 0 otherwise. 

Fig. 1 

We can now apply the Wang homology sequence 

--+ H,(Q)-+ H,_ 2 (f)---+ H,_ I (F)--* H,_ i (Q)---+ H,_ 3 (f)----~ 

in order to get the homology of Q = O ($2). For example, taking r = 3, we 
get 

H 1 (F)-* H2 (F)--~ H 2 (Q)-* H o (F)-~ H 1 (F) 
o r  

0-~ z @ z ~  H2(Q)-~ 7-~0. 

Since Z is a free module this exact sequence yields H2(Q)=7z.OZt~Z. 
The other cases are handled just as easily. 

w 5. Proof of Part (c) of Theorem 2 

(5.1) Proposition. Fix eES 2. Then Ico, c < 0  has the homotopy type of 
the space Qe/S 1, where 

Qe={y~(IR3-O)n-2[y~d and y ~ e ,  all i} 

and St={geSO(3)lg.e=e} acts on Qe by restriction of the diagonal 
action on (IRa) n- 2 

Proof. The homeomorphism from/co onto Jo induced by the map tp 
of Theorem 1, the strong deformation retraction H of Jo to S K -  d given 
in w 3 and the diffeomorphisms a and z ofw 4, all these maps are equivariant 
with respect to the actions of G = SO(3) on these spaces (the action on 
Jo x [(3, 1] being g.  (z, v, t)= (g- z, g- v, t) and restrictions of diagonal 
action elsewhere). 
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Therefore,  ico, c < 0  is homeomorphic  to Jo/G, which has (S K-A)/G 
as strong deformat ion retract, which is in turn homeomorph ic  to Q(S2)/G. 
Hence [co, c < 0  has the homotopy  type of Q($2)/S0(3). 

To conclude the proof  we will now show that  this space is homeo-  
morphic  to Qe/S 1. Brackets will be used to denote equivalence classes, 
i.e., elements in the quotient  spaces. The map 

F: Q(S2)--~ Qe/S 1, F(t/, y)= [g"  y]  

where y~ Q~, t/~ S 2 and g ~ SO(3) is such that g - t / =  e is well-defined and 
continuous.  To see the continuity at (t/, y), let U be an open ne ighborhood 
o f t / i n  S 2 and fl: U ~  S0(3) a smooth map such that fl(~). ~=e ,  all r  

Then, o n  Ir,-I(U)cQ(S2), F is the composit ion y'~Qe--~fl(~).y---~ 
[_fl(r �9 y'], which shows that F is continuous. 

Now the map FI: Qe--~Q(S2)/SO(3), F~(y)= [e, y] is cont inuous as 
composi t ion of cont inuous maps y ~  (e, y ) ~  [e, y]. 

It is now easily checked that 

p - 1  =P l :  QJ $1---* Q(S2)/SO(3) 

so that  P is a homeomorphism.  
For  n = 3, Q~= {yEIR3 [y:t=0 and y ~ e}, hence Qe/S 1 = {(s, t)EIR2 Is >__ 0} - 

{(0, 0), (0, 1)}, which is a contractible space. 

w 6. Proof  of Theorem 3 

In addit ion to the isomorphism T: M - *  (JR3) n - I  of w 4, we consider 
the one given by S(v 1, ...,vn)=(mlvl . . . . .  mn_lv,_ O. Then, one easily 
checks that  Jl ( T(x), S (v))= J (x, v), where 

n--1 
Jx(t/,w)= ~'t/i• for t/, W~(IR3) n-1. 

i=1 

By considering the diffeomorphisms a and r of w 4, we get a diffeo- 
morph i sm 

(S K - A)x M--~ {(t/, w)~(S 2 x (IR a - 0 ) " - 2 )  • (IR3).-, I~/~ A } 

defined by (z, v)-* (a z(z), S (v)}, which maps 

J0 = {(z, v)~(Sr-A) • MIJ(z, v)=O} 

on to  the topological  space 

N = {(t/, w)~(S z x (IR3 _ 0)~- 2 - A ) x  (IRa)n-'l I, (t/, w)=0}.  

We now decompose rh, i = 2, . . . ,  n -  1 and w j, j = 1, 2 . . . . .  n -  1 along 
t/1 and the or thogonal  complement  t/~- of t h.  F rom now on in this section, 
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when we write the subscripts i and j, we always mean these ranges. We 
have 

t/i= 2i t/l + t/'i, 2i=qi . t/l (,) 
wj=#jt/1 +w~, l~j=wj" t/l" 

A straightforward computation shows that 

J1 (t/, w) = t/1 • (wl + Y. (2, w~ -- p, r + Y. r • w',, 

so that the condition ,/1 (t/, w)= 0 is equivalent to the conditions 

wl  = Y~ (~, r - ;t, w 3  (**) 
Y t/', • w', = o. 

�9 - - . k  I ! The assignment (t/, w) (t/1, rh, wi, 2i, I~j) clearly defines a smooth m a p f  
from S 2 x (Na).-  2 x (~3) , -  1 into S 2 x (lR3) "- 2 x (p,3),- 2 x F,"- 2 x N"-  1. 

Conversely, given a point (th, t/',, w',, 2 i, #~) in the second space, we take 
w' 1 as defined by the first of the equations (**) and then use the first set of 
equations (.) to determine a point (t/, w), which obviously depends 
smoothly on the given point; this defines a smooth map g which goes on 
the opposite direction to f .  

For  the decomposition t/,= 2, t h + t/',, the conditions t/~A and t/j+ 0 
for all j are equivalent to the conditions 

t/'r=t/'s with r4:s::~ 2,:l:2 ~ 

t / ;=0 ~ 2 r # 0  and 1. 

Now consider the space 

F(S2)={(t/1,t/,W,2)~S2x(]R3)n-2x(~3)n-2xt t lRn-21t/i,t wiEz_t/1 .L 

Y't/', x w',=O&(6) holds}. 

Then restricted to N and F(S 2) x F-f- 1, the maps f and g are inverse 
to each other. Therefore these spaces are homeomorphic, which means 
that Jo, hence/co, c <0  (cf. w 3), is homeomorphic to F(S 2) x IR "-x. 

But one can easily verify that f(S 2) is a fiber bundle over S 2, with 
projection map x (t/l, t/', a~', 2)-- t/1 and fiber, the topological space 

F =  {(u, y, 2)~(1R2) "-2 x (N2).-  2 x N,"- 2[~, ui x yi=0&(6)  holds} 

where the condition (6) is with respect to u and 2, and this completes 
the proof of the first part of Theorem 3. 

Now let n > 3 and take 2 0 ~ IR"- 2 such that 1 < 2 o < . . .  < 2 ~ 2. Then 
there exists an open ball B in R "-2 centered at 2 0 and such that 
1<21< '"<2n_2 ,  for all 2~B. Therefore, {(u,y, 2 ) ~ F l 2 e B } = C x B ,  
where C is the cone 

C = {(u, y)e(lR2) "- 2 x (R2)"- 21~ ui x yi=O}. 
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Therefore,  in a ne ighborhood of some point, the space/co,  c < 0 has 
the topological  s tructure of  C x IR 2"-1 and so it is not a manifold. 

Finally, if n = 2, then 

N =  {(q, o~)~S 2 x IR3lr / x o3= 0}, 

which is dif feomorphic  to S 2 x IR under the m a p  (t/, co)~ (q, ~/. ~0); this is 
a trivialization of  the line bundle N over  S 2. 

w 7. Proof of Part (b) of Theorem 4 

(7.1) Proposition. (x, v)~(M - A )  x M is a critical point of I =(E, J) if 
and only if DJ(x, v) is not surjective or (x, v) is a critical point of  
Ep=ElJ- l (p) ,  where p =J(x,  v). 

Proof Assume DJ(x, v) surjective and write M • M = T~x" v)j-1 (P)G P 
so that  DJ(x, v): P--~ IR3 is an isomorphism.  Then 

DEp(x, v): T~x.v)J-a(p) -~ IR 

is surjective if and only if 

(DE(x, v), OJ(x, v)): Ttx, v)J- l (p)~)P ---~ IR x IR a 

is surjective. 

(7.2) Corollary.  Z'(I)  =(IR x 0)w {(c, p)EIR x IR31p+O&c~Z'(Ep) } . 

Proof This follows f rom (7.1) and the fact that  Z'(J)=O. 

To study the structure of Z'(Ep) for p ~=0 we consider the direct sum 
decompos i t ion  M = M~ • M 2 , where 

M l = { X l ~ M l x ~ x p = O }  and  M 2 = { x 2 E M I x 2 " p = O }  �9 

Let  E 2 be the subspace of IR3 or thogonal  to p. Then 

M 2 =  . . . . .  x. ) (e2)nlZ 

Considering M z - A  2 as the configuration space of the planar  n-body 
p rob lem with masses  m 1, . . . ,  m,,  then the energy E 2 and the angular  
m o m e n t u m  Jz are the restrictions to (M 2 - A 2) x M 2 of the energy E and 
the angular  m o m e n t u m  J. 

Let L denote the m a p  J with domain  M x M and L z the m a p  J2 with 
dom a in  M 2 • m 2 �9 Then, since L is an ant isymmetr ic  bilinear map,  we 
see that  for x---x x + x  2, v=v  ~ + v  2 in M 1 + M 2 ,  we have 

(7.3) Lemma .  L(x, v)=p if and only if (i) L2(X 2, v 2 ) = p  and (ii) 
L(X 1 ' i)2)..~ L(X2, v l )=  0. 
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By condit ion (i) the projection n: M ~ M2, • (X) = X 2 induces a smooth  
map  from the manifold L-l (p)  onto  the manifold L21(IPl)=Z-l(p)c~ 
( M  2 • M2), defined by n(x, V)=(X 2, V2). 

(7.4) Proposition. n: L-l(p)---~ L~X(IPl) is a vector bundle with fiber 

F = {(x 1 , v l) �9 M 1 x MIIL(x 1 , v 2 ) + L(x 2 , v 1 ) = 0}, 

for (x 2, v2)�9 L31(IPl). 

Proof. Let q~ (x, v) = L(x 1 , v 2 ) + L(x 2 , vl). Then, for fixed (x 2, v2)�9 I) 
the linear map  q~x2,v2): M ~ x M x ~ E  2 is surjective. Indeed, if not  let 
e � 9  2 -  0 be or thogona l  to the image of  this map  so that 2K(x  ~, v 2 x e)+ 
2 K ( e x x Z ,  v l )=L(x l ,  v2) .e+L(x2 ,  v l ) .e=O,  for all xl,  v l �9  Since 
V 2 X e, e x x 2 e M 1 , we get Iv 2 x el 2 + [e x .x7 212 -m- 0 ,  hence x 2 = 2, e, v 2 =/~, e, 
all i and so L2(x 2, v2)=0,  a contradict ion.  

Therefore, if h = cp x n 2 where n 2 is the projection on the second 
factor, the sequence of  vector bundles 

(M 1 x M1) x Z21(Ipl) h , E 2 X L21(Ipl)~ 0 

is exact. Hence its kernel, which by L e m m a  (7.3) is L-l(p), is a vector 
space bundle over L21(Ipl). 

A configurat ion x � 9  A is said to be a relative equilibrium if there 
exists a 1-parameter  subgroup gt of  S0(3) which acting on x induces a 
mot ion  of  the system, i.e., 

d 2 
m ~ -  gt" x = - grad V(g t �9 x). 

A solution of  relative equilibria is always planar  (see I-8]). Therefore, 
if the angular  m o m e n t u m  along the trajectory is p :t= 0, then the configura- 
t ions have to lie in the plane o r thogona l  to p. 

The set R e of  relative equilibria is invariant  under the action of  S0(3) 
on M - A .  Indeed, let x ( t ) = g t . x ,  x � 9  e and set h t=gg tg  -~. Then, for 
y = g  . x we have y( t )=h,  . y = g .  x(t)  so that  

m y "  = g .  m x" = - g .  grad V(x (t)) = - grad V(g. x (t)) = - grad V(y), 

hence y �9 R e. 

(7.5) Proposition. (x, v) = (x 1, v 1) + (x 2, v 2) e J -  1 (p) is a critical point of  
E p = E I J - l ( p )  if  and only i f  x 1 =0 ,  v ~ = 0  and (x 2, v 2) is a critical point of  

E2, p= E21Jf l (IPl). 

Proof. Since J - I ( p ) = ( ( M - A ) x  M)c~ L-l(p) is an open  submanifold 
of  the vector bundle L-1(p) of Propos i t ion  (7.4), we can write 

DE v (x, v) = DE (x, v) lF + DE (x, v) l Ttx2 ' v2) ,/2 1 (IP I). 
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Now,  

and 

1" 0 V  . ~ l  DE(x, v)[F. (~', qx)=2K(v ' ,  ~/) +~Tx~ (x) 

OX 1 (X) i<k~ iXi__Xk[3 (X~ 1 1 t 

Since (x 1, v 1) e F and ~ mi x~ = O, we have DE (x, v) lF = 0 ~ x a = 0 and 
U 1 =0 .  Therefore,  bo th  factors in the above  expression for DE~,(x, v) 
vanish if and only if x ~ =0 ,  v: = 0  and (x 2, v 2) is a critical point  of  E2, p . 

(7.6) Corollary. ~'(Ep)=E'(E2,p). 

N o w  fix eES 2, say e----(0, 0, 1) and take geSO(3) such that  g. p---lp] e. 
Let Mr2 ~ be the configurat ion space of the p lanar  n-body p rob lem 
determined by e. Then  the i somorphism M2---~ M~2 ~ x--~ g - x  induces a 
bijection between the sets R~ ) and R~ ~ of relative equilibria in M 2 and 
M t~ which shows that  the following equality holds: 

{ -- V([pl z)2 ]z ER(eP) , g ( z ) =  1} = { - V(lp[ z)2]z~R (~ K ( z ) =  1}. 

This means  that  (see Section 2 of [-6]) Z ' (E2,p)= ~'(E2, Ipl e)- 
Therefore  if S={(c,p)elRxIR31p*-O and c~2;'(Ep)} is the set of  

Corol la ry  (7.2), then by Corol lary  (7.6) 

(c ,p)ES~p+O and c~Z'(Ez, lpLe)c~(c,[p]e)~'(I2) 

where 12 is the m a p  I of the n-body problem with configurat ion space Mr2 ~ 
(notice that  in the planar  case, Proposi t ion  (7.1) also holds and the angular  
m o m e n t u m  has no critical points). 

Therefore,  
S--G.  z~' (I2), 

where G = SO(3) acts on ~ x IR 3, trivially on IR, naturally on IR 3. 

I wish to acknowledge the assistance of the Conselho Nacional de Pesquisas, Rio de 
Janeiro, during the preparation of this work. I am indebted to my adviser, Professor 
S. Smale, for many helpful suggestions specially concerning the reduction to the planar 
case stated in Corollary (7.6). 
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