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On Zeros of Dirichlet’s L Series

H. Iwaniec (Warszawa)

In a recent paper in this journal P.X. Gallagher has estimated the
least prime in some special arithmetic progressions. It is the aim of the
present work to show how his result can be extended to the general case.

Let y=3.d=]]p. I=logq(t|+3), 5" =1 1(log2 1)}

rlq
9 1=4-10*(logd +(1 log21)?).
We shall prove the following two theorems:

Theorem 1. Let s=a+it,6>1~n, x be a nonprincipal character modg.

Then .
[L(s, x)| < (d" exp [ ¥)'°°.

Theorem 2. There exists ut most one character y+y, modgq and a

number p such that
Rep>1-9. L(p.y)=0.

If there does exist such a character then it is real and its zero p is real and
simple.

Let p,...(c g) be the least prime=a(mod g), where (a, g)}=1. It follows
from Theorem 2 and from the estimation

Ny(T.0)<(qT)" = log*(qT)
that
Prin(d: ) <"

which extends the result of Gallagher concerning the case g=p’. Also
other results of [27] can now be extended without any essential change in
the argument. Let us point out that for d small enough comparison with ¢,
Theorem 1 gives a good estimation of L(s, y) simultaneously with respect
to rand ¢. This has been achieved by combining an idea of Postnikov (see
Lemma 2) with Vinogradov’s estimation of trigonometric sums (see
Lemmata 3 and 5).

Remark. 1t has been recently proved by M. Jutila that
h<E:(9+71/17)=2.4605 -
(see M. Forti and C. Viola [ 1]).

I conclude thts mtroduction by expressing my thanks to Professor A.Schinzel for
his help m writing this paper
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1
N (_x)l
Lemma 1 (Gallagher). Let Ly=— ) P Then
i=1
Ly(x+y+xn—Ly(x)—Ly()= Y ¢;x'y
N<i1+j)<2N

where the numbers [, j] c,; are integers.
Proof. See { 2], p. 192.

Lemma 2. (An extension of Postnikov's result). Let

t=4,9/2.9), ¢*d. My= T[] =,

nEN,(nq)=1

x —a primitive character modq. Then there exists an integer L such that

(L,q)=1 and LM, L (edu )

q
Proof. Clearly My, Ly(du)eZ [u]. It follows from Lemma 1 that

x(1+rdu)=e( (1)

My Ly(du+dv+d*uvy=My Ly(du)+ My Ly(dv) modq.
My Ly(zrdu)

q
group of residue classes modq congruent to 1 modztd. It is easy to see
that the order of & equals g/7d i.e. it coincides with the order of the group.
Thus, we have for a certain L

X(H—tdu):e(

Hence, the function &(1 +rdu)=e( ) is a character of the

LM, Ly(tdu) )
— )

Since g is the conductor of y, we have (L, ¢/td)=1. On the other hand the
number L is determined only modg/zd. thus it can be chosen so that

(L.p=1

Lemma 3. Let g= npal’, O<e<], g,= Hp[”“rd, ¥ —a primitive cha-
racter mod q. Then there exists an integer T such that (T, q)=1 and
Tl 4. “’)

1+ 8u)=e(
x(1+q p

LM, LN(un))

Proof. 1t follows from Lemma 2 that y(1+g4,u)=e (
q

_ . LM, MyL .
The i-th coefficient of the polynomial —;- Lylg,uw)equals — T (—q,).

. .2
50 it is integer for 1>?.
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Lemma 4 (Vinogradov). Let 2<P<A~'<P3 Q=(0,0+P), k=12,
J(x)e CYQ) and
Iéjk" [fRx) <25 for xeQ.

max | Y e(f(n)| <y Pt

O<R<P o wZ0+R

Then

where y, =exp(k log? 6k), &, =(3k) % log™" 6k.
Proof. See [4].

Lemma5 (Vinogradov). Let f(x)=a,x+a,x*+...+a x*eR[x],
k=12,2<1<k, a;=a/b,(a,b)=1,2<P<b<P'"'. Then

| Y e(f)| <y P

O<n<P
Proof. See [4].
2

Lemma 6. Let y be a primitive character modq, d*°° <N <N’ <2N,
q(|t|+3)=N*z21. Then

N
Y x(ny A" | <y,00, N1TH6007, 2)
N
Proof. We can assume that
),200:<N56()Oz’ (3)

since otherwise the estimation (2) is trivial. We consider two cases:
(1) g+3=|t) and (ii) g+ 3>|t].
(1) Putd=75.¢=(1—-38)logN/logq, P=N/q,, P*~ 2 <|t|< P*~!. Hence

N?jzrd<P<N?, (4)
112202+ 1<k<6624+2570z, (5)
k=2, (6)

2k <P, (7)

P<i '<P3 where A= 2|7tz|k P K @)
g, <tdg"=tdN'°. 9)

Every integer n from the interval N <n=<N" can be represented uniquely
in the form n=a+ ¢, u, where 0<a<y,. Thus

N
Yxmn'= 3% x( y r(1+g.a*uw)(a+q,uf, (10)
N

O<a<gq, N—¢£<u<N’—a
= 4

(a. q)=1 4 =
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where aa*=1 (mod g). The last sum is of length < P. In virtue of Lemma 3
it can be represented 1n the form ) e( f(u)). where

T t
f‘(u)::]* L[Z/s](qga* u)+?;10g(a+q£ll).

Since k>[2/e] we have

I [t] q,
Sy (k) — < ')k/{
= k! ) 2nk ((H—qf )
Thus the sum Z f(u)) can be estimated by means of Lemma 4 and we
get | e(f ) <y P'~*. Hence

it

<g, i P! T =y NI gy NT 0% (Td) ™ <y 0, NT TR0,

(i) Put 5=g, e=5logN/logq k= [ ] _N'0° p—Hqy..
Hence
NO%rd<P< N (11)
2 2z
1z§k<r=[_]< 2 _180:. (12)
I3 0

Let NEmZ2N. m<n<m+ H. Then
n\" ) n—m
(m) =exp lrlog(H—M)
m m
(i (n—m) ‘o ZI(H)"
BT e Ve \m /o

where |6,| < 1. If (4, g)=1 we solve the congruence aa*=1 (mod ¢) and set

- T t +
Q-——[mq a],f(u)z; L,(q&a*uH—?;Lk_l (g"—li - m) By Lemma 3

&

and (13) we get

t n—m 2tH H .
_ L {—— ) —
Y xmn Y X("W(zn k71< m )>+(2 k ( m)

m<n<m+H m<n<m+H

2tH [ H\t
Yol ¥ e(fw)+0, <%_ (Tn“) ‘HL;)

0<a<¢iE Q<u<Q+P
(a, g)=

m

= T 1@ Y e(futQ)+o, (7%{{'(‘%)1(*‘“)‘

O<a<qe. O<u<?P
(a, g)=
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where [0, <1, i=2.3, 4. The k-th coefficient of the polynomial f(u+Q)
equals

T rk k+i—1
—_ — *yk _ * Oy
== (=q.a )E,O( g, a* Q) ( ; )

Thus a, represented as a fraction in its reduced form, has the denomnator
contained in the interval (q/q* kq)=(P.P*¥"'). Therefore the sum
Y e(f(u+Q))can be estimated by means of Lemma 5 and we get

211t H
| Y xmnt<qy, P+ — i (N)Jrla

m<n<m+H l‘
whence

Sy

<P, NP o+ 14+ NP '+ H<y,y,, N0z,

N’ k

it N 1 -1
Y xmn < 4 P +NP~'+H
N

By Lemma 6 we get

Lemma 7. Ler y be a primitive character mody, d'°° <N <N'<2N,
q{|t]+3)=N".z21 and Res>0. Then

N
Z x(n) ”*s‘ <%Y3200= N1 Resreon s,
N

Lemma 8. If y is a nonprincipal primitive character modgq then in the
region Res> 1 —n we have

nIL(s, )l <d °°"+exp(6015).

Proof. Clearly ¢ 23.n<4,|R(x)|=]| Y. x(n)] <q/2,

nsx

s ¢ R{x) R(N)
nng(n)n ~sN o dx—— (Res>0).

Hence, setting log Z =21, log Y=60(l log2I)* we get

| Y xmn~s|<q(t|+3)Z2" ' <1,

n>2Z
[Y x| < Y n <y (Y= 1)+1
n<} n<Y

If Y > Z there is nothing more to prove. Assume therefore that Y <7 and
put z; =I/log ¥. An easy computation shows that

<8600z, and 3ly,q,. Y" %0u<],
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It follows from Lemmata 6 and 7 that if d'°° <N <N'S2N,YSN<Z we

Zx(n)n

1
have <,},200:1 Y1600z <§T’ hence

21 1

n—1 100 __ —1
log? 3I+L<"§dwon <(d Dy t+1

z
Y xmnE <
Y

and the proof is complete

Lemma9. Let y be a nonprincipal character mod g, M = (d" exp I#)'°°,
Then in the region Res> 1 —n we have |L(s, y)| <M.

Proof. We get from Lemma 8
[L(s, )| <y ~! H(l +P”~l)(d100"+eXp(6OI%))<M

p/d

3

Lemma 10. Let F(s) be a function regular in the circle |s—sy|<r and
satisfving there the inequality |F(s)| £ M |F (s,)). Then

F' 4
Re——(sy)= ——logM +R
e % (s9)2 ——~logM + eg p—

where p runs over the zeros of F(s) in the circle |s—s,|<7/2 consted with
their multiplicities.

Proof. This is a simple consequences of the maximum principle, see [3],
p. 384.

Lemma 11. Let y be a nonprincipal character mod ¢, $=#/400 log M.
If the function L(s, ) has a zero in the region Res>1—9 then it is
unique, simple and real. The character y is then real.

Proof For 0> 1 we have

’ ’ ’

L L I
3Rez(0, x0)+4Ref(a+it, x)+Re—E(a+2it, <0, (14)

For s=o0+it,9|t}|<1 <o we have

”’ 1 L
~»(q)+—-<3 ’ (S, Xo)— i <Z <2loglog3d
1 L C plq
Hence
L l—-o
Re — (s, 7)) 2——5—5—2 . 1
e L(s To) = T log 51 (15)

The proof will be completed in two steps.
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(i) Put
r- {s; Res>1-9]} if ¥2=+1,-
{s:Res>1—9,4|Ims|>n} if y*=y,.
and suppose that for certain p=f+iyel” we have L(p, y)=0. Put also

0o=14+5% so=0o+i7.5, =0, +2iy. It follows from Lemma 9 that in the
circle |s —s,| <# we have

Lis D o <M S Py,
n=1
Hence by Lemma 10 we get
L 4 1
Re (s, 2)= ——log(M/53)+ . (16)
L 7 o=

The function Lis, x?) is regular in the circle |s—s;|<#/2 and satisfies
there the inequality |L(s, x?) L' (s,, x>)}<2M/59. Hence by Lemma 10
we get

!

Re%(sl,xz); —%log(.’!M/SS). (17)

The formulae (14)-(17) give

3 4 16
+ ﬁ§6log5l+r~10g(M/59)+ilog(2M/59)§
h h

-6, 04—

159°

hence <1 — 3. This contradiction shows that the function L(s, y) does
not vanish in I

(i) Let x-be a real character, A= {s; Res>1—3,4 |Ims|=#}. Suppose
that p=pf+iyis a zero of L(s, x) in A with the greatest imaginary part and
that if p is real and simple L(s, y) has in the region Res> 1 — 9 still another
zero p*.

Put 0 if p+p,

pL=3p if p=p is a multiple zero,
p* if p=p is a simple zero.

Hence p,=pf,+iy,, where f,>1-9, |1 |=Z|yIEn/4 Set oy=1+59,
50="0¢ +17. Thus the numbers p and p, are in the circle |s—sy|<#/2 and
are zeros of L(s, y) (if p=p, then p is a muitiple zero). It follows from
Lemma 9 that in the circle |s—s,| <7 we have |L(s, x) L' (sq, x)| <M/5 9.
Hence by Lemma 10 we get

L 4 1 go— P

Re —(s,.y7)= ——log(M/593)+ + .
L( 0 X)_ r] g( / ) Uo—ﬁ (O_O_!fl)2+(,),__,),1)..

. (18)
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Since
4oy —fy) > 4(00*/” > gy 1 .
=B HG=11 T (go= B +29) T (0o— 11+
we get by (14), (15) and (18)
3 4 16
—< I+ —1 —
o, + Jo_ﬁ_8log5 + " og(M/59)< 59

hence <1~ 9. The obtained contradiction completes the proof of the
Lemma
In order to prove Theorem 2 it remains to show.

Lemma 12, Let y,(i=1.2) be distinct non-principal real characters
modyg, B; real zeros of L(s. y,). Then

min(f;, f;)=1 -39

Proof. The character yy=y, ¥, is not principal. Put g,=14+58. It
follows from Lemma 9 that in the circle |s—o4] <5 we have

|L(s,x) L Yoo, x)|<M/5% for i=1,2.3.
Suppose that min(f; . 8,)>1— 9. Hence by Lemma 10 we get

/

3
1
Z (G4 7, <210g51+710g(M/5‘9)+—

II/\

O

1 o2
Coo—B  o,—B, 159 5% 69 69

The contradiction obtained completes the proof.
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