Inventiones mathematicae © Springer-Verlag 1987

Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space

Robert Hardt^{1*} and Fang-Hua Lin^{2**}

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

² Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

In the upper half space model, n+1 dimensional hyperbolic space is given as the set

$$\mathbf{I}\!\mathbf{H} = \{(x, y) \in \mathbf{\mathbb{R}}^n \times \mathbf{\mathbb{R}} : y > 0\}$$

equipped with the hyperbolic metric $y^{-2}(dx^2 + dy^2)$. A standard compactification of IH involves adding the boundary $(\mathbb{R}^n \times \{0\}) \cup \{*\}$ so that $\overline{\mathbb{H}}$ is simply the one point compactification of the Euclidean closed half-space $\mathbb{R}^n \times [0, \infty)$. Suppose $0 \leq \alpha \leq 1$ and Γ is a compact n-1 dimensional $\mathscr{C}^{1,\alpha}$ smooth submanifold of $\mathbb{R}^n \times \{0\}$. In [A₁], M. Anderson proved that there exists an n dimensional hyperbolic-area minimizing locally rectifiable current T in \mathbb{H} whose support has Γ as its asymptotic limit. (See also $\lceil A_2 \rceil$.) By the interior regularity theory of geometric measure theory, the support M of any such hyperbolicarea minimizing T is a relatively closed subset of \mathbb{H} which is a real analytic submanifold away from a relatively closed singular set of Hausdorff dimension n-7. Anderson's construction gives M for which, in the Euclidean topology, $\overline{M} \sim M = \Gamma$. The question of the behavior of M near Γ was raised in [A₁] and [LR]. Here we prove the "boundary regularity at infinity" result that, for any such hyperbolic-area minimizing T, the set $M \cup \Gamma$, in the ordinary Euclidean metric, is, near Γ , a finite union of $\mathscr{C}^{1,\alpha}$ submanifolds with boundary Γ ; these have disjoint analytic interiors and meet $\mathbb{R}^n \times \{0\}$ orthogonally at Γ . (For the particular T, constructed by Anderson only one submanifold will occur.) It follows that, for $n \leq 6$, $M \cup \Gamma$ has finite genus, and, for $n \geq 7$, any interior singularities of M must remain in a bounded region of hyperbolic space. Near points of Γ (in the Euclidean topology), $M \cup \Gamma$ may thus be described as the graph of a function. This function is the solution of an interesting partial differential equation that becomes degenerate along the part of the boundary corresponding to Γ . The second author has recently established [L] a boundary higher-regularity result for this equation, which implies, in particular, that $M \cup \Gamma$ is $\mathscr{C}^{k,\alpha}$ if Γ is $\mathscr{C}^{k,\alpha}$ for $k=2,3,\ldots,\infty$. Finally, in case Γ bounds a star-

^{*} Research partially supported by the National Science Foundation

^{**} Research partially supported by the Mathematical Sciences Research Institute

shaped domain in $\mathbb{R}^n \times \{0\}$, we deduce in §4 the uniqueness (up to a constant factor) of *T*, among stationary currents having asymptotic limit Γ .

§1. Preliminaries

For convenience, we adopt the following convention:

All unspecified statements about topology and metric will refer implicitly to the usual Euclidean metric on $\mathbb{R}^n \times \mathbb{R}$, and the word "hyperbolic" will be stated explicitly when appropriate.

Throughout, we assume that

 $\Gamma = \tilde{\Gamma} \times \{0\}$ is a fixed compact submanifold of $\mathbb{R}^n \times \{0\}$ and that T is an n dimensional hyperbolic-area minimizing locally rectifiable current in IH with $\Gamma = \tilde{M} \sim M$ where $M = \operatorname{spt} T$.

We make some preliminary observations on the location of M near Γ . These are all based on the following:

(1.1) If $x \in \mathbb{R}^n$ and $0 < r < d(x) = \text{dist}(x, \tilde{\Gamma})$, then $M \cap \mathbb{B}_r(x, 0) = \emptyset$.

This follows from a standard argument (see e.g. [A₁, Lemma 5]) using first variation because the sets $\mathbb{H} \cap \partial \mathbb{B}_s(x, 0)$, for 0 < s < r, are totally geodesic hyperbolic hyperplanes that foliate $\mathbb{H} \cap \mathbb{B}_r(x, 0)$ and serve as barriers. Let v_r be a unit normal vectorfield for $\tilde{\Gamma}$ in \mathbb{R}^n and, for $a \in \tilde{\Gamma}$ and r > 0,

 $\delta(a, r) = \min \{ d(a + rv_{\Gamma}(a)), d(a - rv_{\Gamma}(a)) \}.$

We observe that

- (i) $r^{-1}\delta(a,r) \rightarrow 1$ as $r \rightarrow 0$ if Γ is differentiable at (a, 0).
- (ii) $\sup [1-r^{-1}\delta(a,r)] \to 0$ as $r \to 0$ if Γ is $\mathscr{C}^1 = \mathscr{C}^{1,0}$.
- (iii) $\sup_{\mathbf{a}\in\Gamma} [1-r^{-1}\delta(a,r)] \leq c_{\Gamma}r^{\alpha} \text{ if } \Gamma \text{ is } \mathscr{C}^{1,\alpha} \text{ for } 0 < \alpha < 1.$

(iv) $r^{-1}\delta(a,r) = 1$ for all positive $r < 1/|| \max$. principle curv. $||_{L^{\infty}(\Gamma)}$ if Γ is $\mathscr{C}^{1,1}$.

We will first consider the case when Γ is \mathscr{C}^1 . The $\mathscr{C}^{1,\alpha}$ cases, with $0 < \alpha \leq 1$, will be treated in § 3. Choose a positive number ρ_{Γ} so that $r^{-1}\delta(a,r) > \frac{1}{2}$ for all $(a,0) \in \Gamma$ and $0 < r < 2\rho_{\Gamma}$. By (1.1),

 $M \cap \{y < \rho_{\Gamma}\}$ is contained in the set

(1.2)
$$W = [\mathbb{R}^n \times (0, \rho_{\Gamma})] \sim \bigcup_{\mathbf{d}(\mathbf{x}) > 2\rho_{\Gamma}} \mathbb{B}_{2\rho_{\Gamma}}(x, 0) \sim \bigcup_{\mathbf{0} < \mathbf{d}(\mathbf{x}) \leq 2\rho_{\Gamma}} \mathbb{B}_{\mathbf{d}(\mathbf{x})}(x, 0).$$

Clearly W contains the product $\tilde{\Gamma} \times (0, \rho_{\Gamma})$. We will show that W is also asymptotic to $\tilde{\Gamma} \times (0, \rho_{\Gamma})$ as $y \to 0$. To see this, suppose that (x_i, y_i) is a sequence of points in W with $y_i \to 0$. Since every point $x \in \mathbb{R}^n \sim \tilde{\Gamma}$ is included in the above definition of W, $d(x_i)$ must approach 0. We now wish to show that $d(x_i)/y_i$ also approaches 0. For this, we may assume that $y_i < d(x_i)^{\frac{3}{2}}$. Choose a point $(a_i, 0) \in \Gamma$ Regularity at infinity for area-minimizing hypersurfaces

with $d(x_i) = |x_i - a_i|$; hence, $x_i = a_i \pm d(x_i)v_{\Gamma}(a_i)$. Letting $r_i = d(x_i) + d(x_i)^{-1}y_i^2$, we see that the three points, $(a_i, 0)$, (x_i, y_i) , and $(a_i \pm r_i v_{\Gamma}(a_i), 0)$, are vertices of a right triangle. Letting δ_i be the distance between the latter two vertices, we conclude that, as $i \to \infty$.

$$d(x_i)/y_i = [r_i^2 - \delta_i^2]^{\frac{1}{2}}/\delta_i = [(r_i/\delta_i)^2 - 1]^{\frac{1}{2}} \to 0$$

because $r_i \leq d(x_i) + d(x_i)^{\frac{1}{2}} \to 0$, $\delta(a_i, r_i) \leq d(a_i \pm r_i v_{\Gamma}(a_i)) \leq \delta_i \leq r_i$, and $r_i / \delta(a_i, r_i) \to 1$ by (ii). It now follows that

(1.3) at each edge point $(a, 0) \in \Gamma$, the tangent cone of the containing set W equals the vertical half-hyperplane $Tan(\tilde{\Gamma}, a) \times [0, \infty)$.

§ 2. $\mathscr{C}^1 - \mathscr{C}^1$ regularity at ∞

We will sometimes identify \mathbb{R}^n with $\mathbb{R}^{n-1} \times \mathbb{R}$ and use the projection

$$p: (\mathbb{R}^{n-1} \times \mathbb{R}) \times \mathbb{R} \to \mathbb{R}^{n-1} \times \mathbb{R}, \quad p((w, z), y) = (w, y).$$

2.1. Lemma. (Interior regularity.) For any nonnegative integer κ and positive number ε , there exists a positive δ so that if S is an n dimensional hyperbolic-area minimizing rectifiable current in IH with

spt
$$S \subset \mathbb{B}_2^{n-1}(0) \times [-\delta, \delta] \times [\frac{1}{2}, 4],$$
 spt $\partial S \subset p^{-1} \partial (\mathbb{B}_2^{n-1}(0) \times [\frac{1}{2}, 4]),$

and $p_*S = \kappa \llbracket \mathbb{B}_2^{n-1}(0) \times [\frac{1}{4}, 4] \rrbracket$, then $S \sqcup p^{-1}(\mathbb{B}_1^{n-1}(0) \times [\frac{1}{2}, 2])$ is the sum of κ oriented graphs (which are pairwise either disjoint or identical) of real analytic functions $z = u_i(w, y)$ with $\|u_{i \notin 1, 1} \leq \varepsilon$.

(If $\kappa = 0$, then $S \sqcup p^{-1}(\mathbb{B}_1^{n-1}(0) \times [1, 2]) = 0$.)

Proof. Here $\kappa \llbracket \mathbb{B}_{2}^{n-1}(0) \times [\frac{1}{4}, 4] \rrbracket$ denotes κ times the current corresponding to oriented integration, with respect to the hyperbolic metric, over the set $\mathbb{B}_{2}^{n-1}(0) \times [\frac{1}{4}, 4]$. Hyperbolic area may be described by the parametric integrand [F, 5.1.1] $\Psi((x, y), \zeta) = y^{-n} |\zeta|$. On the region $\mathbb{R}^{n} \times (\frac{1}{4}, 4)$, this integrand is elliptic [F, 5.1.2] with ellipticity bound 4ⁿ. As in the proof of [F, 5.3.18] one may find a decomposition $S = \bigcup_{j=-\infty}^{\infty} S^{(j)}$ where each nonzero $S^{(j)}$ satisfies the hypothesis with $\kappa \in \{-1, 0, +1\}$. Then one deduces, as in [F, 5.1.1], a mass estimate for each $S^{(j)}$ from the Ψ -minimality and the small height.

To prove the lemma one may now argue by contradiction, and consider, for any positive ε , a sequence of positive numbers δ_i approaching 0 and a corresponding sequence $S_i = \bigcup_{j=-\infty}^{\infty} S_i^{(j)}$ as above satisfying the hypothesis but not the conclusion of 2.2. By the lower density bound [F, 5.1.6], the support of each $S_i^{(j)}$ with zero projection does not meet $p^{-1}(\mathbb{B}_1^{n-1}(0) \times [\frac{1}{2}, 2])$ for *i* large. Using the mass bounds, the *BV* compactness theorem, the convergence of supports, and the regularity theory [F, 5.3.14], one finds that, for *i* large, the support of each $S_i^{(j)}$ with nonzero projection, is, on the smaller cylinder $p^{-1}(\mathbb{B}_{3/2}^{n-1}(0) \times [\frac{1}{3}, 3])$, an oriented graph of a $\mathscr{C}^{1, \frac{1}{2}}$ function $z = u_{i,j}(w, y)$. Moreover, a simple cutting and pasting argument shows that, for each such *i*, these all have parallel orientation. Thus, for each such *i*, there are precisely κ currents $S_i^{(j)}$ with $p_{\#}S_i^{(j)} \neq 0$, and each has $p_{\#}S_i^{(j)} = +[\mathbb{I}\mathbb{B}_2^{n-1}(0) \times [\frac{1}{4}, 4]]$. Finally each $u_{i,j}$ is analytic by [M, 5.8], and

$$\lim_{i \to \infty} \|u_{i,j}\|_{\mathscr{C}^{1,1}(\mathbb{B}^{n-1}_{1}(0) \times [\frac{1}{2},2])} = 0$$

by interior estimates [GT, 15.2] because $\lim_{i \to \infty} \delta_i = 0$. This now contradicts, for *i* sufficiently large, the choice of S_i . \Box

2.2. Theorem. If Γ , T, and M are as in § 1, and Γ is \mathscr{C}^1 , then there exists a positive $\rho < \rho_{\Gamma}$ so that $(M \cup \Gamma) \cap \{y < \rho\}$ is a finite union of \mathscr{C}^1 submanifolds with boundary; these have disjoint analytic interiors and meet $\mathbb{R}^n \times \{0\}$ orthogonally at Γ .

Proof. We will first verify the statement:

for some positive ρ , the set $M \cap \{y < \rho\}$ has no interior singularities and

 $v_{\mathbf{M}}(x_i, y_i) \rightarrow (v_{\mathbf{\Gamma}}(a), 0)$ whenever $(x_i, y_i) \in \mathbf{M} \rightarrow (a, 0) \in \mathbf{\Gamma}$.

If the statement were false, then there would exist a sequence (x_i, y_i) in M approaching a point (a, 0) in Γ so that

either $(x_i, y_i) \in \text{Sing}(M)$ for all *i* or $\lim_{i \to \infty} |v_{\mathbf{M}}(x_i, y_i) - (v_{\mathbf{\Gamma}}(a_i), 0)| > 0$

for any choice of orienting normal field $v_{\mathbf{M}}$. Since a rotation or translation of \mathbb{R}^n induces a hyperbolic isometry of IH, we may assume, for convenience, that a=0 and that $v_{\mathbf{\Gamma}}(a)=(0,1)\in \mathbb{R}^{n-1}\times \mathbb{R}$.

By the \mathscr{C}^1 smoothness of Γ , we may choose, for each positive ρ , a positive σ so that p projects $\Gamma \cap [\operatorname{IB}_{2\sigma}^{n-1}(0) \times (-\sigma\rho, +\sigma\rho) \times \{0\}] \mathscr{C}^1$ -diffeomorphically onto $\operatorname{IB}_{2\sigma}^{n-1}(0) \times \{0\}$. It then follows from the discussion of the set W in §1 that

 $M \cap [\operatorname{IB}_{\sigma}^{n-1}(0) \times \{\pm \sigma \rho\} \times (0, \tau)] = \emptyset$

for some sufficiently small positive τ . By the constancy theorem [F, 4.1.7] (which holds in any metric),

$$p_{\#}(T \sqcup \llbracket \mathbb{B}_{\sigma}^{n-1}(0) \times (-\sigma\rho, +\sigma\rho) \times (0, \tau) \rrbracket) = \kappa \llbracket \mathbb{B}_{\sigma}^{n-1} \times (0, \tau) \rrbracket$$

for some integer κ . Replacing T by -T if necessary, we may assume that κ is nonnegative.

Next we wish to scale T appropriately. To do this note that, for each positive r, the homothety map that sends (x, y) to (rx, ry) induces a hyperbolic isometry of IH. Thus, for each i, the expression

$$\Phi_i(x, y) = y_i^{-1}(x - x_i, y),$$

defines a hyperbolic isometry, and the current

$$S_i = \Phi_{i \#} \left(T \bigsqcup \left[\mathbb{R}^{n-1} \times (-\sigma\rho, +\sigma\rho) \times (0, \infty) \right] \right) \bigsqcup p^{-1} \left(\mathbb{B}_2^{n-1}(0) \times \left[\frac{1}{4}, 4 \right] \right)$$

Regularity at infinity for area-minimizing hypersurfaces

is hyperbolic-area minimizing. Moreover, for any positive δ , we easily verify, using (1.2) and (1.3), that S_i satisfies the hypotheses of Lemma 1.1 for all *i* sufficiently large. We conclude that, for such *i*, (x_i, y_i) is a regular point of *M* because $((0, 0), 1) = \Phi_i(x_i, y_i)$ is, by 2.1, a regular point of spt S_i . Moreover, letting $u_{i,j}$ denote the functions provided by the conclusion of 2.1 and letting δ_i correspond in 2.1 to a sequence of positive ε_i approaching 0, we may, by (1.2) and (1.3), pass to a subsequence to have

$$\lim_{i\to\infty}\|u_{i,j}\|_{\mathscr{C}^{1,1}}=0.$$

In particular

$$\lim_{i \to \infty} |v_{\mathbf{M}}(x_i, y_i) - (v_{\mathbf{\Gamma}}(a), 0)| = \lim_{i \to \infty} |v_{\mathbf{M}}(x_i, y_i) - ((0, 1), 0)| = 0$$

because $\lim_{i \to \infty} \nabla u_{i,j}(0) = 0$. This now contradicts the choice of (x_i, y_i) and a, and completes the proof of the statement.

Defining $v_{\mathbf{M}}(a, 0) = (v_{\Gamma}(a), 0)$ for $(a, 0) \in \Gamma$, we infer from the statement, the continuity of v_{Γ} on Γ , and the continuity of $v_{\mathbf{M}}$ on $M \cap \{y < \rho\}$, that $v_{\mathbf{M}}$, so extended, is continuous on $\Gamma \cup [M \cap \{y < \rho\}]$.

Let Γ_k be a component of Γ , and consider a component M_j of $M \cap \{y < \rho\}$ with $\Gamma_k \subset \overline{M}_j$. Then M_j is, by interior regularity, an analytic submanifold, and $\Gamma_k \cup M_j$ is \mathscr{C}^1 regular at Γ_k . The M_j are disjoint by the maximum principle. By orienting each n-1 plane Tan (Γ_k, a) continuously in $a \in \Gamma_k$, we may define a continuous family of currents $[[Tan(\Gamma_k, a) \times (0, \rho)]]$. Arguing as above, there is an integer κ_k , independent of $a \in \Gamma_k$, so that the orthogonal projection onto Tan $(\Gamma_k, a) \times \mathbb{R}$ locally projects $T \sqcup \{y < \rho\}$ to a piece of $\kappa_k[[Tan(\Gamma_k, a) \times (0, \rho)]]$. Again by minimality and cutting and pasting, we see that the currents $T \sqcup M_j$ all must induce the same orientations under these projections. Thus there are at most κ_k such M_j . In particular, the number of components of $M \cap \{y < \rho\}$ is finite. \Box

§ 3. $\mathscr{C}^{1,\alpha} - \mathscr{C}^{1,\alpha}$ regularity at ∞

If Γ is \mathscr{C}^1 , then, we may, as in 2.2, change coordinates to view each component of $M \cap \{y < \rho\}$ locally, near $(0, 0) \in \Gamma$, as lying in the graph of a function z = u(w, y) that is \mathscr{C}^1 on a region $\mathbb{B}_{\rho}^{n-1}(0) \times [0, \rho)$. For any compact $K \subset \mathbb{B}_{\rho}^{n-1}(0) \times (0, \rho)$, the hyperbolic area of the graph of $u \mid K$ is

$$\int_{\mathbf{K}} (1+u_w^2+u_y^2)^{\frac{1}{2}} y^{-n} dw dy.$$

The minimality of T leads to the Euler-Lagrange equation

$$\sum_{j=1}^{n-1} \left[(1+u_w^2+u_y^2)^{-\frac{1}{2}} u_{\mathbf{w}_j} \right]_{\mathbf{w}_j} + \left[(1+u_w^2+u_y^2)^{-\frac{1}{2}} u_{\mathbf{y}} \right]_{\mathbf{y}} - \left(\frac{n}{y} \right) \left[(1+u_w^2+u_y^2)^{-\frac{1}{2}} u_{\mathbf{y}} \right] = 0.$$

We find it more convenient and natural to view M using polar graphs over regions in a hemisphere centered in $\mathbb{R}^n \times \{0\}$.

Let $\mathbb{S}_{+}^{n} = \{(x, y) \in \mathbb{R}^{n} \times \mathbb{R} : |x|^{2} + y^{2} = 1, y > 0\}$. For a region $\Omega \subset \mathbb{S}_{+}^{n}$ and a positive \mathscr{C}^{2} function u on Ω , the polar graph of u is the set

graph
$$(u) = \{u(\omega)\omega : \omega \in \Omega\}.$$

We want to calculate the hyperbolic area of graph (u|K) for any compact $K \subset \mathbb{S}_{+}^{n}$. For this purpose, we represent points in $\mathbb{S}_{+}^{n} \sim \{(0, 0, ..., 1)\}$ using pairs $(\theta, \eta) \in \mathbb{S}^{n-1} \times (0, \frac{1}{2}\pi]$ where $\theta = x/|x|$ and $\eta = \sin^{-1} y$ (i.e., $\eta = \frac{1}{2}\pi - \varphi$). In these coordinates, \mathbb{S}_{+}^{n} has the standard metric $d\eta^{2} + \cos^{2} \eta d\theta^{2}$. The hyperbolic area is

$$\int_{\mathbf{K}} [(u^2 + |\nabla u|^2)u^{2(n-1)}]^{\frac{1}{2}} (u \cdot \sin \eta)^{-n} \cos \eta \, d\theta \, d\eta$$
$$= \int_{\mathbf{K}} (1 + u^{-2} |\nabla u|^2)^{\frac{1}{2}} (\sin \eta)^{-n} \cos \eta \, d\theta \, d\eta$$

where $|\nabla u|^2 = |\nabla_{\theta} u|^2 + |\nabla_{\eta} u|^2$. Note that, as expected, the graphs of u|K and $\lambda u|K$, for $\lambda > 0$, have the same hyperbolic area.

3.1. Theorem. If $0 < \alpha \leq 1$ and Γ is $\mathcal{C}^{1,\alpha}$, then each of the manifolds in the conclusion of Theorem 2.1 are $\mathcal{C}^{1,\alpha}$ regular at their boundaries.

Proof. We first consider the case $\alpha = 1$. Suppose that N is one of the components of $M \cap \{y < \rho\}$ and $(a, 0) \in \Gamma \cap \overline{N}$. After applying hyperbolic isometries induced by a suitable translation and rotation of $\mathbb{R}^n \times \{0\}$, we may assume that a = (0, ..., 0, 1) and the $v_{\Gamma}(a) = (0, ..., 0, 1, 0)$. By Theorem 2.1, there is a positive δ so that $N \cup \Gamma$ is, near a, the polar graph of a positive \mathscr{C}^1 function u on a region $\Omega \subset \mathbb{S}^n_+$ defined by $|\theta - a| < \delta$ and $0 \le \eta < \delta$. Here u(a, 0) = 1 and Vu(a, 0) = 0.

The function $v(\theta, \eta) = \log(u(\theta, \eta))$ is also \mathscr{C}^1 on Ω . It locally minimizes the integral $\int (1 + |\nabla_{\theta}|^2)^{\frac{1}{2}} (\sin \theta) = n \cos \theta \, d\theta \, d\theta$

$$\int (1+|\nabla v|^2)^{\frac{1}{2}}(\sin\eta)^{-n}\cos\eta d\theta d\eta,$$

and has v(a, 0) = 0 and $\nabla v(a, 0) = 0$. Since Γ is $\mathscr{C}^{1,1}$ there is, as in §1(iv), a positive *r*, depending only on Γ , so that the two closed balls in $\mathbb{R}^n \times \mathbb{R}$,

$$\bar{\mathbf{B}}_{r}(0,\ldots,0,1-r,0)$$
 and $\bar{\mathbf{B}}_{r}(0,\ldots,0,1+r,0)$,

which are tangent to Γ at a, do not intersect M. Since these have quadratic contact with the unit sphere \mathbb{S}^n ,

$$|v(\theta, \eta)| \leq c(\Gamma)(|\theta-a|^2+\eta^2)$$
 for all $(\theta, \eta) \in \Omega$,

where $c(\Gamma)$ depends only on Γ . Letting $\gamma_{\theta}(\lambda)$ be the shortest constant speed geodesic on \mathbb{S}^n going from $\gamma_{\theta}(0) = a$ to $\gamma_{\theta}(1) = \theta$, it follows that, for $0 < \lambda < 1$, the scaled function v_{λ} , defined by $v_{\lambda}(\theta, \eta) = \lambda^{-1} v(\gamma_{\theta}(\lambda), \lambda\eta)$, satisfies

$$|v_{\lambda}(\theta,\eta)| \leq c(\Gamma)\lambda(|\theta-a|^2+\eta^2).$$

Moreover, since v_{λ} locally minimizes an integral of the type

$$\int (1+|\nabla v|^2)^{\frac{1}{2}} \lambda^n (\sin \lambda \eta)^{-n} \cos \eta \, d\theta \, d\eta,$$

Regularity at infinity for area-minimizing hypersurfaces

we infer from the interior gradient estimates [GT, 15.2] that

 $|\nabla v_{\lambda}(\theta,\eta)| \leq c(n,\Gamma)\lambda$ and $|\nabla^2 v_{\lambda}(\theta,\eta)| \leq c(n,\Gamma)\lambda$

for $0 < \lambda < \frac{1}{2}\delta$, $|\theta - a| \le 1$, and $\frac{1}{2} \le \eta \le 1$. For such λ, θ, η , this means that

$$\nabla v(\lambda\theta,\lambda\eta) \leq c(n,\Gamma)\lambda$$
 and $|\nabla^2 v(\lambda\theta,\lambda\eta)| \leq c(n,\Gamma)$,

hence,

$$|\nabla v(\theta, \eta)| \le C(n, \Gamma)(|\theta - a| + \eta)$$
 and $|\nabla^2 v(\theta, \eta)| \le C(n, \Gamma)$

for $|\theta - a| \leq \frac{1}{2}\delta$, and $\frac{1}{2}|\theta - a| \leq \eta \leq \frac{1}{2}\delta$. Since these estimates are independent of a, the function v, and hence u, is $\mathscr{C}^{1,1}$ in a neighborhood of (a, 0) in Ω , and $\Gamma \cup N$ is $\mathscr{C}^{1,1}$ near (a, 0).

To treat the $\mathscr{C}^{1,\alpha}$ case with $0 < \alpha < 1$, we again choose u and v as above. Now by §1 the two closed balls in $\mathbb{R}^n \times \mathbb{R}$,

$$\mathbb{B}_{b(a,r)}(0,\ldots,0,1-r,0)$$
 and $\mathbb{B}_{b(a,r)}(0,\ldots,0,1+r,0),$

which are no longer tangent to Γ at a, do not intersect M. Taking the envelopes of these balls over all small positive r, we obtain functions v_{\pm} on Ω which have $v_{\perp} \leq v \leq v_{\perp}$ and which satisfy, by §1(iii) and the argument in §1, estimates

$$\sup_{|\theta-a|+|\eta|< r} |v_{\pm}(\theta,\eta)| \leq c(\Gamma)r^{1+\alpha}.$$

Following the $\mathscr{C}^{1,1}$ argument above, we now infer that

$$|\nabla v(\theta, \eta)| \leq C(n, \Gamma)(|\theta - a| + \eta)^{\alpha}$$

and

$$|\nabla^2 v(\theta, \eta)| \leq C(n, \Gamma)(|\theta - a| + \eta)^{\alpha - 1}$$

for $|\theta - a| \leq \frac{1}{2}\delta$, and $0 \leq \eta \leq \frac{1}{2}\delta$. Now, v, and hence u, is $\mathscr{C}^{1,\alpha}$ in a neighborhood of (a, 0) in Ω , and $\Gamma \cup N$ is $\mathscr{C}^{1,\alpha}$ near (a, 0). \Box

§ 4. Star-shaped domains at ∞

4.1. Theorem. Suppose Ω is a bounded \mathscr{C}^1 star-shaped domain in \mathbb{R}^n and $\Gamma = \partial \Omega \times \{0\}$. There exists a unique, up to multiplicity, n dimensional hyperbolic-stationary locally rectifiable current T in IH such that $\Gamma = \overline{M} \sim M$ where $M = \operatorname{spt} T$. Moreover, T is hyperbolic-area minimizing, and M is the polar graph of a function defined on an open hemisphere centered in $\Omega \times \{0\}$.

Proof. As noted in the introduction, M. Anderson showed, in $[A_1, \text{Theorem 3}]$, the existence of a hyperbolic-area minimizing T with $\Gamma = \overline{M} \sim M$ where M = spt T. We will first verify that this particular M is a completely regular polar graph.

To see this, we first apply a suitable translation to get Ω to be star-shaped about the origin. We may choose positive numbers r and s so that

$$\mathbb{B}_r^{n-1}(0) \subset \Omega \subset \overline{\Omega} \subset \mathbb{B}_s^{n-1}(0).$$

Then, by (1.1), $M \subset IB_s(0) \sim IB_r(0)$; hence,

$$\left(\frac{r}{s}\right) M \cap M = \emptyset = M \cap \left(\frac{s}{r}\right) M.$$

We claim that $(\lambda M) \cap M = \emptyset$ for all positive $\lambda \neq 1$. Otherwise, we could choose λ with either $\frac{r}{s} < \lambda < 1$ or $1 < \lambda < \frac{s}{r}$ so that the sets of regular points, Reg(M) and Reg(λM), intersect transversally. Near $\mathbb{R}^n \times \{0\}$ the sets M and λM are disjoint because Ω is star-shaped about the origin. One may then, by minimality, replace a piece of T by the piece of $\mu_{\lambda \neq} T$ that is cut off by T and still have a minimizing current. But then the singular set of the resulting current would include the intersection Reg(M) \cap Reg(λM), whose n-1 dimensionality contradicts the n-7 dimensional bound on the singular set. From this claim, it follows that M is a polar graph of a function u on \mathbb{S}_{+}^n . Moreover, by the small size of Sing(M), all the singularities of the function u are, as in the proof of [HS, 2.1], removable, and u is analytic on \mathbb{S}_{+}^n .

Next we assume that S is any n dimensional hyperbolic-stationary locally rectifiable current in IH with $\overline{\operatorname{spt} S} \sim \operatorname{spt} S = \Gamma$. By the argument in §1, we again find that

spt
$$S \subset \mathbb{B}_{s}(0) \sim \mathbb{B}_{r}(0)$$
.

Let $\lambda_{+} = \inf \{\lambda : \lambda M \cap \operatorname{spr} S \neq \emptyset\}$. If λ_{+} were strictly greater than one, then we could (because Ω is star-shaped about the origin) find a point $b \in \lambda M \cap \operatorname{spt} S$. By the regularity and connectedness of M and the argument of [H, 4.4], we would find that $\lambda M \subset \operatorname{spt} S$, contradicting that $\overline{\lambda M} \sim \lambda M \subset \lambda \Gamma$ and $\lambda \Gamma \cap \Gamma = \emptyset$. Thus $\lambda_{+} \leq 1$. Similarly, $\sup \{\lambda : \lambda M \cap \operatorname{spt} S \neq \emptyset\} \geq 1$. Thus $\operatorname{spt} S \subset M$, and S is, by the constancy theorem [F, 4.1.4], a multiple of T. \Box

References

- [A1] Anderson, M.: Complete minimal varieties in hyperbolic space. Invent. math. 69, 477-494 (1982)
- [A₂] Anderson, M.: Complete minimal hypersurfaces in hyperbolic n-manifolds. Comment. Math. Helv. 83, 264-290 (1983)
- [F] Federer, H.: Geometric measure theory. Berlin, Heidelberg, New York: Springer 1969
- [GT] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977
- [H] Hardt, R.: On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Comment. P.D.E. 2, 1163-1232 (1977)
- [HS] Hardt, R., Simon, L.: Area minimizing hypersurfaces with isolated singularities. J. Reine Angew. Math. 362, 102-129 (1985)
- [L] Lin, F.-H.: On the Dirichlet problem for minimal graphs in hyperbolic space. Preprint, MSRI
- [LR] Levitt, G., Rosenberg, H.: Symmetry of constant mean curvature hypersurfaces in hyperbolic space. Duke Math. J. 52, 53-59 (1985)
- [M] Morrey, C.B., Jr.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966