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In the upper half space model, n+1 dimensional hyperbolic space is given as
the set
H={(x, y)eR"xR: y>0}

equipped with the hyperbolic metric y~?(dx?+dy?). A standard compactifi-
cation of IH involves adding the boundary (R"x{0})uU {*} so that IH is simply
the one point compactification of the Euclidean closed half-space R" x [0, co).
Suppose 0<« =1 and I' is a compact n—1 dimensional €"* smooth sub-
manifold of R”x {0}. In [A;], M. Anderson proved that there exists an n
dimensional hyperbolic-area minimizing locally rectifiable current T in IH whose
support has I' as its asymptotic limit. (See also [A,].) By the interior regularity
theory of geometric measure theory, the support M of any such hyperbolic-
areca minimizing T is a relatively closed subset of IH which is a real analytic
submanifold away from a relatively closed singular set of Hausdorff dimension
n—7. Anderson’s construction gives M for which, in the Euclidean topology,
M ~M =T. The question of the behavior of M near I' was raised in [A,] and
[LR]. Here we prove the “boundary regularity at infinity” result that, for any
such hyperbolic-area minimizing T, the set M UT, in the ordinary Euclidean
metric, is, near I, a finite union of %“* submanifolds with boundary I'; these
have disjoint analytic interiors and meet R" x {0} orthogonally at I'. (For the
particular T, constructed by Anderson only one submanifold will occur.) It
follows that, for n<6, MuI has finite genus, and, for n=7, any interior
singularities of M must remain in a bounded region of hyperbolic space. Near
points of I' (in the Euclidean topology), M uTI' may thus be described as the
graph of a function. This function is the solution of an interesting partial
differential equation that becomes degenerate along the part of the boundary
corresponding to I'. The second author has recently established [L] a bound-
ary higher-regularity result for this equation, which implies, in particular, that
Mur is €% if I' is €%* for k=2,3, ..., . Finally, in case I bounds a star-
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shaped domain in R" x {0}, we deduce in §4 the uniqueness (up to a constant
factor) of T, among stationary currents having asymptotic limit I.

§ 1. Preliminaries

For convenience, we adopt the following convention:

All unspecified statements about topology and metric will refer implicitly to
the usual Euclidean metric on R"” xR, and the word ”hyperbolic” will be stated
explicitly when appropriate.

Throughout, we assume that

I'=I"x{0} is a fixed compact submanifold of R"x {0} and that T is an n
dimensional hyperbolic-area minimizing locally rectifiable current in IH with I
=M~M where M=spt T.

We make some preliminary observations on the location of M near I.
These are all based on the following:

(1.1) If xeR” and 0 <r <d(x)=dist(x, I'), then M A 1B, (x, 0)=0.

This follows from a standard argument (see e.g. [A;, Lemma 5]) using first
variation because the sets HNoIB,(x,0), for O<s<r, are totally geodesic hy-
perbolic hyperplanes that foliate IHNIB,(x, 0) and serve as barriers. Let v, be a
unit normal vectorfield for I" in R" and, for ael’ and r>0,

o(a,r)=min {d(a+rvp(a)),d(a—rvp(a))}.

We observe that
(i) r~16(a,r) > 1 as r -0 if I' is differentiable at (a, 0).
(ii) sup[l—=r~'6(a,r)]»0asr—0if I'is ¢* =¢"".
ael

(iii)) sup [1—r~'d(a,r)]Scpr*if I'is €% for O<a<1.
ael
(iv) r='é(a,r)=1 for all positive r<1/|max. principle curv.| ., if I' is
@,
We will first consider the case when I' is €. The ¥'* cases, with O0<a <1,
will be treated in § 3. Choose a positive number p, so that r~'d(a, r)>3 for all
(a,0)el' and O<r<2p,. By (1.1),

Mn{y<pr} is contained in the set
(1.2) W=[R"x(0, pp)]~ Ud(x)> zm-IBz pr(X, 0)~U, <d(x)§2prIBd(x)(x’ 0).

Clearly W contains the product I’ x (0, p;). We will show that W is also
asymptotic to I x(0, p,) as y = 0. To see this, suppose that (x;, ;) is a sequence
of points in W with y, — 0. Since every point xeR"~T is included in the above
definition of W, d(x,) must approach 0. We now wish to show that d(x;)/y; also
approaches 0. For this, we may assume that y,<d(x,)>. Choose a point (a;, 0)el’
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with d(x})=|x,~a;|; hence, x;=a,+d(x;)v.(a). Letting ri=d(x)+d(x)" 'y we
see that the three points, (a;,0), (x;,y), and (a;+rv(a),0), are vertices of a
right triangle. Letting J, be the distance between the latter two vertices, we
conclude that, as i — o0.

d(x)/y;= [ _5;‘2]%/’51': [(r/0)* = 17¥ =0

because r,<d(x)+d(x)* -0, 6(a;, r)<d(a,trvp{a) S5, <r;, and r/ola, ) —1
by (ii). It now follows that

(1.3) at each edge point (a,0)€l, the tangent cone of the containing set W
equals the vertical half-hyperplane Tan(I', a) x [0, cc).

§2. €' —6" regularity at oo

We will sometimes identify R” with R"~! xR and use the projection
pr(R"IxR)xR—-R"' xR,  plw,2),y)=,).

2.1. Lemma. (Interior regularity.) For any nonnegative integer x and positive
number ¢, there exists a positive 3 so that if S is an n dimensional hyperbolic-area
minimizing rectifiable current in IH with

sptScB) ' (0)x [ —8,0]x[3,4],  sptdS=p~'a(By"(0)x [3,4]),

and p,S=x[B} ' (0) x [, 411, then SLp YB" 1(0)x [3,2]) is the sum of «
oriented graphs (which are pairwise either disjoint or identical) of real analytic
functions z=u;(w, y) with [[u; 4. Se.

(If k=0, then S p~'(IB}"'(0)x [1,2])=0.)

Proof. Here x[IB%1(0) x [£,4]] denotes x times the current corresponding to
oriented integration, with respect to the hyperbolic metric, over the set B3~ (0)
x [L,4]. Hyperbolic area may be described by the parametric integrand [F,
5.1.17 ¥((x, y), &)=y~ "|¢|. On the region R"x (3, 4), this integrand is elliptic [F,
5.1.2] with ellipticity bound 4" As in the proof of [F, 5.3.18] one may find a

decomposition S= [) SY where each nonzero SV satisfies the hypothesis

j=—o
with ke{—1,0, +1}. Then one deduces, as in [F, 5.1.1], a mass estimate for
each SV from the ¥-minimality and the small height.

To prove the lemma one may now argue by contradiction, and consider,
for any positive & a sequence of positive numbers J; approaching 0 and a

corresponding sequence S;= |} SY as above satisfying the hypothesis but
j= -

not the conclusion of 2.2. By the lower density bound [F, 5.1.6], the support of

each S with zero projection does not meet p~'(IB}~'(0) x [3,2]) for i large.

Using the mass bounds, the BV compactness theorem, the convergence of

supports, and the regularity theory [F, 5.3.14], one finds that, for i large, the

support of each SY¥ with nonzero projection, is, on the smaller cylinder
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p~'(IB3;' (0) x [3, 3]), an oriented graph of a ¥':* function z=u, ,(w, y). More-
over, a simple cutting and pasting argument shows that, for each such i, these
all have parallel orientation. Thus, for each such i, there are precisely x
currents SY with p, S +0, and each has p, S¥= +[IB%3~(0) x [£, 4]]. Finally
each u, ; is analytic by [M, 5.8], and

m fu; sl - o) x (1,29 =0

1=
by interior estimates [GT, 15.2] because lim 6,=0. This now contradicts, for i
sufficiently large, the choice of S;. [ 7

2.2. Theorem. If I', T, and M are as in §1, and I' is €', then there exists a
positive p<py so that (M o) {y<p} is a finite union of €' submanifolds with
boundary; these have disjoint analytic interiors and meet IR" x {0} orthogonally
at T,

Proof. We will first verify the statement:
Jor some positive p, the set M ~{y <p} has no interior singularities and

vu(X;, v) = (vp(a),0)  whenever (x;,y)eM —(a,0)el".

If the statement were false, then there would exist a sequence (x;,y;) in M
approaching a point (a,0) in I" so that

either (x;,y,)eSing(M) for all i
or lm [vy(x;, ) = (vr(a;), 0) >0

for any choice of orienting normal field v,,. Since a rotation or translation of
R" induces a hyperbolic isometry of IH, we may assume, for convenience, that
a=0 and that v (a)=(0, DeR""* x R.

By the ' smoothness of I, we may choose, for each positive p, a positive ¢
so that p projects I' n[IB; '(0) x (—ap, +0ap) x {0}] €'-diffeomorphically onto
B%>1(0) x {0}. It then follows from the discussion of the set W in § 1 that

M B~ (0) x {+op} x(0,7)]=0

for some sufficiently small positive 7. By the constancy theorem [F, 4.1.7]
(which holds in any metric),

P(T LB (0)x(—0p, +0p)x (0, )])=x[B; " x (0, 7)]

for some integer k. Replacing T by — T if necessary, we may assume that « is
nonnegative.

Next we wish to scale T appropriately. To do this note that, for each
positive r, the homothety map that sends (x, y) to (rx,ry) induces a hyperbolic
isometry of IH. Thus, for each i, the expression

P,(x, y) =y (x—x;, ),
defines a hyperbolic isometry, and the current

5;=@; 4 (TL[R" ' x(—0p, +0p)x (0, 0)]) L p~ ' (IB}~1(0) x [, 4])
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is hyperbolic-area minimizing. Moreover, for any positive 5, we easily verify,
using (1.2) and (1.3), that S, satisfies the hypotheses of Lemma I.1 for all i
sufficiently large. We conclude that, for such i, (x;,y,) is a regular point of M
because ((0,0), 1)=,(x;,y,) is, by 2.1, a regular point of sptS,. Moreover,
letting u, ; denote the functions provided by the conclusion of 2.1 and letting 9;
correspond in 2.1 to a sequence of positive ¢, approaching 0, we may, by (1.2)
and (1.3), pass to a subsequence to have

lim [, ;4. =0.

i— oo

In particular

lim |vy(x;, ;) —(vp(@), 0)) = lim | vy (x;, y) —((0, 1), 0)| =0

i—w i— w0

because lim Vu; ;(0)=0. This now contradicts the choice of (x,, ;) and a, and
completes the proof of the statement.

Defining v (a,0)=(vp(a),0) for (a,0)el’, we infer from the statement, the
continuity of v, on I, and the continuity of vy on M n{y<p}, that vy, so
extended, is continuous on N'U[M n{y<p}]

Let I} be a component of I', and consider a component M; of M~ {y<p}
with I =M;. Then M; is, by interior regularity, an analytic submanifold, and
LuM;is &' regular at I,. The M; are disjoint by the maximum principle. By
orienting each n—1 plane Tan(l}, a) continuously in ael,, we may define a
continuous family of currents [Tan([}, a) x (0, p)]. Arguing as above, there is
an integer k,, independent of ael, so that the orthogonal projection onto
Tan ([, a) xR locally projects TL {y<p} to a piece of x,[Tan(l;,a) = (0, p)].
Again by minimality and cutting and pasting, we see that the currents T L M;
all must induce the same orientations under these projections. Thus there are
at most k;, such M;. In particular, the number of components of M {y<p} is
finite. [

§3. €1'*— €' regularity at co

If I' is ¥, then, we may, as in 2.2, change coordinates to view each component
of Mn{y<p} locally, near (0,0)el’, as lying in the graph of a function z
=u(w, y) that is " on a region B%~*(0) x [0, p). For any compact K <IB}~'(0)
x (0, p), the hyperbolic area of the graph of u|K is

JL+ul +ulyiy "dwdy.
K

The minimality of T leads to the Euler-Lagrange equation

n-1 . . n R

YL +ul+ul)Fu, 1, + L +ul +u)) ] — (;) [ +ul +u)) Fu,]=0.
j=1 ’

We find it more convenient and natural to view M using polar graphs over
regions in a hemisphere centered in IR" x {0}.
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Let 8" ={(x,y)eR"xR:|x|*+y*=1, y>0}. For a region Q<$" and a
positive €* function u on €, the polar graph of u is the set

graph (u) = {u(w)w: weQ}.

We want to calculate the hyperbolic area of graph(u|K) for any compact
K <8". For this purpose, we represent points in $” ~{(0,0, ..., 1)} using pairs
(6, m)eS" ' x(0,47] where 8=x/|x| and y=sin"'y (ie, y=Ln—¢). In these
coordinates, §”, has the standard metric dn*+ cos®#d6% The hyperbolic area is

| L@? +1Vul>)u*"=D]*(u-sin ) " cos ndOdy
K

= | (1+u~2|Vu|?)*(siny) " cos ndOdy
K

where |Vul®=|Vu|®+|V,ul>. Note that, as expected, the graphs of u|K and
AulK, for 1> 0, have the same hyperbolic area.

3.1. Theorem. If O<a <1 and T is €"° then each of the manifolds in the
conclusion of Theorem 2.1 are €% * regular at their boundaries.

Proof. We first consider the case a=1. Suppose that N is one of the com-
ponents of Mn{y<p} and (a,0)eI' " N. After applying hyperbolic isometries
induced by a suitable translation and rotation of R” x {0}, we may assume that
a=(0,...,0,1) and the v (a)=(0,...,0,1,0). By Theorem 2.1, there is a positive
0 so that NuT is, near a, the polar graph of a positive ¢! function u on a
region Qc$” defined by {# —a|<od and 0<#n<d. Here u(a,0)=1 and Vu(a,0)
=0.

The function v(6, n)=log(u(d,n)) is also ¥* on Q. It locally minimizes the

integral o
[+ [Pv®)(sinn)~" cos ndldn,

and has v(a,0)=0 and Vv(a,0)=0. Since I' is €' there is, as in §1(iv), a
positive r, depending only on I, so that the two closed balls in R" xR,

B,(0,...,0,1—r,0) and IB,(0,...,0,1+r0),

which are tangent to I' at a, do not intersect M. Since these have quadratic
contact with the unit sphere 7,

lo(0, ML c(I)(0—al*+n*)  for all (6, n)eq,

where ¢(I') depends only on I'. Letting y,(4) be the shortest constant speed
geodesic on $” going from y,(0)=a to y,(1)=0, it follows that, for 0<i<1, the
scaled function v,, defined by v,(6, 7)=/4""v(7,(4), An), satisfies

0,00, Wl S (D) A0 —al* +17).
Moreover, since v, locally minimizes an integral of the type

[(L+]Vo[*)? A"(sin A1) " cos ndOdn,
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we infer from the interior gradient estimates [GT, 15.2] that
Vo, 0, mISc(n )2 and Vv, (0, n<c(n A
for 0<A<}4,|0—a|<1, and $=n<1. For such 2, 0, 7, this means that

[Vo(26, An) Sc(n, I)i and  |V?0(46, An)|Sc(n, T),
hence,
Vo, m| £ C(n, I)(|0—al+n) and [V2u(0, )< C(n,T)

for |6 —a|£$4, and 3|0 —a] <5 <3 4. Since these estimates are independent of a,
the function v, and hence u, is ¢! in a neighborhood of (a,0) in @, and ' UN
is ¢! near (a, 0).

To treat the €%* case with 0<a<1, we again choose u and v as above.
Now by § 1 the two closed balls in R" xR,

B, ,0,...,0,1-r,0) and 1B,, ,(0,...,0,1+r0),

which are no longer tangent to I’ at g, do not intersect M. Taking the
envelopes of these balls over all small positive », we obtain functions v, on £
which have v_ <v<v, and which satisfy, by § 1(iti) and the argument in §1,

estimates
sup o (O, p)|Sc(D)rt e

|8—a|+|nf<r
Following the %!*! argument above, we now infer that

Vo0, )l < Cn, 1)(|0 —a|+n)*
and
[72u@, M < Cn, D)(|0—al+ny !

for |0 —a| <16, and 0<y <} . Now, v, and hence u, is ¥'* in a neighborhood
of (a,0) in ©, and T'UN is ¥"* near (4,0). []

§ 4. Star-shaped domains at oo

4.1. Theorem. Suppose Q is a bounded €' star-shaped domain in R" and I =08
x {0}. There exists a unique, up to multiplicity, n dimensional hyperbolic-sta-
tionary locally rectifiable current T in H such that [ =M~ M where M =spt T.
Moreover, T is hyperbolic-area minimizing, and M is the polar graph of a

function defined on an open hemisphere centered in Q x {0}.

Proof. As noted in the introduction, M. Anderson showed, in [A,, Theorem 3],
the existence of a hyperbolic-area minimizing T with '=M~M where M
=spt T. We will first verify that this particular M is a completely regular polar
graph.

To see this, we first apply a suitable translation to get Q to be star-shaped
about the origin. We may choose positive numbers r and s so that

B/~ 1(0)c Q= Q< IB"1(0).
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Then, by (1.1), M < IB,(0)~IB,(0); hence,
r S
(;) MAM=0=Mn (—) M.
r

We claim that (AM)~nM=0@ for all positive i%1. Otherwise, we could

. . ro, N .
choose /4 with either —<A<1 or 1<A<— so that the sets of regular points,
s r

Reg(M) and Reg(AM), intersect transversally. Near R" x {0} the sets M and
AM are disjoint because Q is star-shaped about the origin. One may then, by
minimality, replace a piece of T by the piece of u, . T that is cut off by T and
still have a minimizing current. But then the singular set of the resulting
current would include the intersection Reg (M)~ Reg(AM), whose n—1 dimen-
sionality contradicts the n—7 dimensional bound on the singular set. From
this claim, it follows that M is a polar graph of a function u on $". Moreover,
by the small size of Sing(M), all the singularities of the function u are, as in the
proof of [HS, 2.1], removable, and u is analytic on $",.

Next we assume that S is any n dimensional hyperbolic-stationary locally
rectifiable current in IH with spt S~sptS=T". By the argument in § |, we again
find that

spt S = IB,(0) ~ IB, (0).

Let 4, =inf{A: AM ~sprS=+@}. If A, were strictly greater than one, then we
could (because Q is star-shaped about the origin) find a point beAM Aspt S. By
the regularity and connectedness of M and the argument of [H, 4.4], we wouid
find that AM csptS, contradicting that AM ~AM c Al and AI'~nI'=§. Thus
A, =1. Similarly, sup {i: AM ~sptS+@} = 1. Thus sptScM, and S is, by the
constancy theorem [F, 4.1.4], a multiple of T. [
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