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In the upper half space model, n + 1 dimensional hyperbolic space is given as 
the set 

IH = {(x, y)eR" x R '  y>0}  

equipped with the hyperbolic metric y-Z(dxZ+dy2). A standard compactifi- 
cation of IH involves adding the boundary (R"• {0})w {*} so that I[-I is simply 
the one point compactification of the Euclidean closed half-space R" • [0, ~). 
Suppose 0 < ~ < 1  and F is a compact n - 1  dimensional cgl., smooth sub- 
manifold of R " x  {0}. In [A1], M. Anderson proved that there exists an n 
dimensional hyperbolic-area minimizing locally rectifiable current T in ]H whose 
support has F as its asymptotic limit. (See also [A2]. ) By the interior regularity 
theory of geometric measure theory, the support M of any such hyperbolic- 
area minimizing T is a relatively closed subset of IH which is a real analytic 
submanifold away from a relatively closed singular set of Hausdorff dimension 
n - 7 .  Anderson's construction gives M for which, in the Euclidean topology, 
f I ~ M = F .  The question of the behavior of M near F was raised in [A1] and 
[-LR]. Here we prove the "boundary regularity at infinity" result that, for any 
such hyperbolic-area minimizing T, the set M u F ,  in the ordinary Euclidean 
metric, is, near F, a finite union of c~1,~ submanifolds with boundary F; these 
have disjoint analytic interiors and meet Rnx {0} orthogonally at F. (For the 
particular T, constructed by Anderson only one submanifold will occur.) It 
follows that, for n<6,  M w F  has finite genus, and, for n>7,  any interior 
singularities of M must remain in a bounded region of hyperbolic space. Near 
points of F (in the Euclidean topology), M w F  may thus be described as the 
graph of a function. This function is the solution of an interesting partial 
differential equation that becomes degenerate along the part of the boundary 
corresponding to F. The second author has recently established [L] a bound- 
ary higher-regularity result for this equation, which implies, in particular, that 
M w F  is r if F is cgk,~ for k=2 ,  3 .... , ~ .  Finally, in case F bounds a star- 
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shaped domain  in ~ "  x {0}, we deduce in w 4 the uniqueness (up to a constant  
factor) of T, among  s ta t ionary currents having asympto t ic  limit F. 

w 1. Preliminaries 

For  convenience,  we adopt  the following convent ion:  

All unspecified statements about topology and metric will refer implicitly to 
the usual Euclidean metric on N " x  IR, and the word "hyperbolic" will be stated 
explicitly when appropriate. 

Throughout ,  we assume that  

F = F  x {0} is a f i x ed  compact submanifold of  N " x  {0} and that T is an n 
dimensional hyperbolic-area minimizing locally rectifiable current in IH with F 
= MI ~ M where M = spt T. 

We make  some pre l iminary  observat ions  on the location of M near  F. 
These are all based on the following: 

(1.1) I f  x ~ ~ "  and 0 < r < d(x) = dist (x, F), then M c~ IB~ (x, O) = O. 

This follows f rom a s tandard  a rgument  (see e.g. [-A1, L e m m a  5]) using first 
var ia t ion because the sets IHc~OIB~(x, 0), for 0 < s < r ,  are totally geodesic hy- 
perbolic  hyperplanes  that  foliate IHc~IB~(x, 0 )and  serve as barriers. Let v r be a 
unit no rmal  vectorfield for /~  in IR" and, for a~/~ and r > 0 ,  

We observe that  

(i) 
(ii) 

6(a, r) = min  {d(a + rvr(a)), d(a - rvr(a)) }. 

(iii) 

(iv) 
(~1, 1. 

We 

r -16(a, r) ~ 1 as r ~ 0  if F is differentiable at (a, 0). 

sup [ 1 - r - 1 6 ( a , r ) ]  ~ 0  as r--*0 i f F  is wl=c(1.0 .  
a ~ r  

sup [1 -r -16(a ,r )]<=Cr r" i f F  is cgl,, for 0<c~<  1. 
aEf  

r - 1 6 ( a , r ) = l  for all posit ive r < l / l t m a x ,  principle curv.llL~(r) if F is 

will first consider the case when F is cgl. The  cgl., cases, with 0 < c~ =< 1, 
will be t reated in w 3. Choose  a positive number  Pr  so that  r-16(a,  r)>�89 for all 
(a, 0)6F and 0 < r < 2 p r .  By (1.1), 

M c~ {y < Pr} is contained in the set 

(1.2) W =  [IR" x (0, Pr)] ~ ~)d(x)> 2prlg2pr( X, 0 ) ~  ~)0 <d(x)=< 2pr]gd(x)( X, 0). 

Clearly W contains the produc t  f x(0,  Pr). We will show that  W is also 
asymptot ic  t o / ~  x (0, Pr) as y ~ 0. To  see this, suppose that  (x i, Yi) is a sequence 
of points in W with yi ~ 0 .  Since every point  x~lR" ~ f  is included in the above 
definition of W, d(xi) must  app roach  0. We now wish to show that  d(xl)/y i also 
approaches  0. For  this, we m a y  assume that  y i < d ( x y .  Choose  a point  (a~, 0 )eF  
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with d(x i )=[x i -a i l ;  hence, xi=ai+_d(xi)vr(ai). Letting r i=d(x i )+d(x i ) -ay{ ,  we 
see that the three points, (ai,O), (x~,yi), and (a~+rivr(a~),O), are vertices of a 
right triangle. Letting 6~ be the distance between the latter two vertices, we 
conclude that, as i--, oo. 

d(xi)/y i = [ri z - i3~]~/'6i = [(ri/15i) 2 - 1] ~ ~ 0 

because ri<d(xi)+d(xi)~ ~O,  g)(a i, r i)<d(ai+rivr(ai))<6i <ri, and r]6(a i, q) --* 1 
by (ii). It now follows that 

(1.3) at each edge point (a,O)eF, the tangent cone of  the containing set W 
equals the vertical halfhyperpIane Tan (/~, a) x [0, oe). 

w 2. ~ ~ - ~ 1  regulari ty  at 

We will sometimes identify IR" with IR"- 1 x IR and use the projection 

p: (IR"-x x N) x N ~ N " - i  x N, p( (w,z ) , y )=(w,y ) .  

2.1. Lemma. (Interior regularity.) For any nonnegative integer ~c and positive 
number ~, there exists a positive 6 so that if  S is an n dimensional hyperbolic-area 
minimizing rectifiable current in IH with 

spt S c IBm-l(0) x [- ,5,  6] x [1, 4], spt ~S c p -  1 #(IBm- 1 (0) x [�89 4]), 

- -  n -  and p , S - M [ I B  2 1(0) x[�88 then St-p- l ( IB~- l (0)  x[�89 is the sum o f  ~c 
oriented graphs (which are pairwise either disjoint or identical) o f  real analytic 
functions z=u j (w ,  y) with [luje,.1 <e. 

( I f  K=0, then S I_ p-X(IB~-l(0) x [1,2])=0.)  

Proof  Here M[IB~-I(0)x [�88 denotes tc times the current corresponding to 
oriented integration, with respect to the hyperbolic metric, over the set IBm-1(0) 
x [,~,4]. Hyperbolic area may be described by the parametric integrand IF, 
5.1.1] tP((x, y), ~)=y- ' ]~[ .  On the region R " x  (�88 4), this integrand is elliptic [F, 
5.1.2] with ellipticity bound 4". As in the proof of [F, 5.3.18] one may find a 

decomposition S =  ~) S I~) where each nonzero S Ij~ satisfies the hypothesis 

with K e { - 1 , 0 ,  +1}. Then one deduces, as in [F, 5.1.1], a mass estimate for 
each S (J~ from the ~-minimality and the small height, 

To prove the lemma one may now argue by contradiction, and consider, 
for any positive e, a sequence of positive numbers (~, approaching 0 and a 

corresponding sequence Si= ~J SI ~ as above satisfying the hypothesis but 
j =  - o o  

not the conclusion of 2.2. By the lower density bound [F, 5.1.6], the support of 
each SI i) with zero projection does not meet p- l ( IB~-l (0)x  [�89 2]) for i large. 
Using the mass bounds, the B V  compactness theorem, the convergence of 
supports, and the regularity theory [F, 5.3.14], one finds that, for i large, the 
support of each _~S (J) with nonzero projection, is, on the smaller cylinder 
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p-l(lB~/21(0) X [1, 3]), an oriented graph of a (o r189 function z=ui ,~(w,y ). More-  
over, a s imple cutt ing and past ing a rgument  shows that, for each such i, these 
all have parallel orientat ion.  Thus,  for each such i, there are precisely ~c 
currents SI j) with p# SI J) 4=0, and each has p~ SIJ'= + [[IB~-1(0)x [�88 4]] .  Finally 
each ui, j is analytic by [M, 5.8], and 

l im Hzg,jrl~,,,(~7_,ml • t�89 2]1 = 0 
i + o o  

by interior est imates [GT,  15.2] because lim a~=0. This now contradicts,  for i 
sufficiently large, the choice of  S i. [ ]  /~ ~ 

2.2. Theorem. I f  F, T, and M are as in w 1, and F is ~ ,  then there exists a 
positive p < Or so that (M ~ F) n {y < p} is a f inite union of  cgl submaniJblds with 
boundary; these have disjoint analytic interiors and meet lR"x {0} orthogonally 
at F. 

Proof  We will first verify the s ta tement :  
for  some positive p, the set M c~ {y < p} has no interior singularities and 

v M(Xi, Yi) --+ (Vr(a), O) whenever (xi, y l ) e m  -+ (a, O)eF. 

If the s ta tement  were false, then there would exist a sequence (x~,y~) in M 
approach ing  a point  (a, 0) in F so that  

either (x i, yl)eSing(M) for all i 

o r  lim IVm(Xi, Yi) --(Vr(ai), 0)l > 0  

for any choice of orienting normal  field v M. Since a ro ta t ion  or t ranslat ion of 
N" induces a hyperbol ic  isometry of IH, we may  assume, for convenience,  that  
a = 0  and that  Vr(a)=(0, 1 ) e R  "-a  x N. 

By the g t  smoothness  of  F, we may  choose, for each positive p, a positive a 
so that  p projects F m [ I B ~ * ( 0 ) x  ( - a p ,  + a p ) x  {0}] g~-dif feomorphical ly  onto 
IB~;I(0) x {0}. It then follows f rom the discussion of the set W in w 1 that  

M c~ E]B;-  ~ (0) x { _+ ~p}  x (0, t ) ]  = 0 

for some sufficiently small posit ive z. By the constancy theorem [F, 4.1.7] 
(which holds in any metric), 

p e ( T  L_ [IBm- 1(0) x ( - a p ,  + a p )  x (0, z)]) = ~c[IB] -1 x (0, t)]] 

for some integer ~c. Replacing T by - T if necessary, we may  assume that  tc is 
nonnegative.  

Next  we wish to scale T appropr ia te ly .  To  do this note that, for each 
positive r, the homothe ty  m a p  that  sends (x, y) to (rx, ry) induces a hyperbol ic  
isometry of IH. Thus, for each i, the expression 

ebi(x, Y) = YF ~ (x - x i, y), 

defines a hyperbol ic  isometry,  and the current  

Si = ~i ~ ( g  [_ []R"- 1 x ( - ap, + ap) x (0, oo)]) L_ p -  1 (IBm- 1 (0) x [�88 4]) 
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is hyperbolic-area minimizing. Moreover ,  for any positive 6, we easily verify, 
using (1.2) and (1.3), that S~ satisfies the hypotheses of Lemma 1.1 for all i 
sufficiently large. We conclude that, for such i, (x~,y~) is a regular point  of M 
because ((O, O), l)=cI)~(xi, Yi) is, by 2.1, a regular point of sptS v Moreover,  
letting u~,j denote the functions provided by the conclusion of 2.1 and letting cs~ 
correspond in 2.1 to a sequence of positive e~ approaching 0, we may, by (1.2) 
and (1.3), pass to a subsequence to have 

lira Iluz,jllr =0. 
i ~  oC~ 

In particular 

lim IvM(xi, Yi) -(Vr(a),  0)l = lira Ivm(x i, yi) - ( (0 ,  1), 0)l = 0  

because lim Vu~,j(O)=O. This now contradicts the choice of (x~,y~) and a, and 
i~oc, 

completes the proof  of the statement. 
Defining vM(a,O)=(Vr(a),O ) for (a,O)eF, we infer from the statement, the 

continuity of v r on F, and the continuity of v~ on M c ~ { y < p } ,  that v M, so 
extended, is continuous on F w [M m {y < p}]. 

Let F k _be a component  of F, and consider a component  Mj of M m { y < p }  
with FkCM a. Then Mj is, by interior regularity, an analytic submanifold, and 
F k u Mj is rgx regular at F k. The Mj are disjoint by the maximum principle. By 
orienting each n - 1  plane Tan(Fk, a } continuously in a~F k, we may define a 
continuous family of currents [[Tan(F> a )x  (0, p)]]. Arguing as above, there is 
an integer G,  independent  of a e F  k, so that the or thogonal  projection onto  
Tan  (Fk, a) x ]R locally projects T t_ {y < p} to a piece of ~Ck[]-Tan (Fk, a) x (0, p)]]. 
Again by minimality and cutting and pasting, we see that the currents T t_ Mj 
all must induce the same orientations under these projections. Thus there are 
at most  tq such Mj. In particular, the number  of components  of Mc~ {y<p} is 
finite. [ ]  

w 3. (~1,~__(~1,~ regularity at oo 

If F is (gl, then, we may, as in 2.2, change coordinates to view each component  
of M c ~ { y < p }  locally, near (0 ,0)eF,  as lying in the graph of a function z 
= u(w, y) that is (gl on a region IBm,- 1 (0) x [0, p). For  any compact  K c IBm,-~ (0) 
x (0, p), the hyperbolic area of the graph of u IK is 

(1 + U~w + u,z) ~ y-"clwcly. 
K 

The minimality of T leads to the Euler-Lagrange equation 

.1  (,;) 
2 [(1 -l-U2,-} - 2 - � 89  +uw+uy) uy]y [(1 +u~)-~Uy] =0. u,) Uw,]w+[(1 2 2 21 +u~ 

j = l  

We find it more  convenient  and natural to view M using polar  graphs over 
regions in a hemisphere centered in ~ "  x {0}. 
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Let $ + = { ( x , y ) e l R " x l R : J x l 2 + y 2 = l ,  y>0}.  For  a region ~2c$+ and a 
positive (~2 function u on ~2, the polar graph of u is the set 

graph (u) = {u(e~)~o: ~oe~2}. 

We want to calculate the hyperbolic area of graph(u[K) for any compact 
K c ~ + ,  For this purpose, we represent points in $+ ~ {(0, 0 . . . .  ,1)} using pairs 
(0, q)e~;"- lx(0 , �89 where O=x/txl and r/=sin ly  (i.e., q=�89 In these 
coordinates, ~;+ has the standard metric dq2+ cos 2 qdO 2. The hyperbolic area is 

[(u 2 +lVul2)u 2("- 1)]+(u.sin q)-" cos qdOdq 
K 

= ~ (1 +u-2iVulZ)~(sinq) -" cosqdOdq 
K 

where IVul2=lVoulZ+lV, u] 2. Note that, as expected, the graphs of ulK and 
2uIK, for 2>0 ,  have the same hyperbolic area. 

3.1. Theorem. I f  0 < ~ < 1  and F is ~1,,, then each of the manifolds in the 
conclusion of Theorem 2.1 are cg*,, regular at their boundaries. 

Proof We first consider the case ~=1.  Suppose that N is one of the com- 
ponents of M c~ {y < p} and (a, 0)eF c~ N. After applying hyperbolic isometries 
induced by a suitable translation and rotation of R" • {0}, we may assume that 
a = (0  . . . . .  0, 1) and the Vr(a)=(O , ..., 0, 1, 0). By Theorem 2.1, there is a positive 
6 so that N w F  is, near a, the polar graph of a positive c~ function u on a 
region f 2 c $ +  defined by ]O-al<6 and 0 < q < 3 .  Here u(a, 0 ) = l  and Fu(a,O) 
~ 0 .  

The function v(O,q)=log(u(O, q)) is also W~ on Q. It locally minimizes the 
integral 

(1 + I Vvl2)+(sin q)-" cos qdOdq, 

and has v(a, 0 )=0  and Vv(a,O)=O. Since F is ~ l , t  there is, as in w a 
positive r, depending only on F, so that the two closed balls in l ( " x  ~ ,  

IBm(0 . . . . .  0, l - r ,  0) and IB~(0, . . . ,0,1+r,  0), 

which are tangent to F at a, do not intersect M. Since these have quadratic 
contact with the unit sphere ~", 

Iv(O, r/)] ~C(F)(]0 --ala-+-r/2) for all (0, q)e~2, 

where c(F) depends only on F. Letting 70(2) be the shortest constant speed 
geodesic on $" going from ?0(0)=a to 70(1)=0, it follows that, for 0 < 2 < 1 ,  the 
scaled function va, defined by v,(O, r/)=2 -1 v(70(2), 2r/), satisfies 

IRA0, .)1 < c(V)2([O _<2  + ~t2). 

Moreover, since v~ locally minimizes an integral of the type 

~(1 + I Vvl2)+2"(sin ,~v/) -" cos vldOdvl, 
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we infer from the interior gradient  est imates [-GT, 15.2] that 

for 0 < 2 < � 8 9  1 0 - a l  ~ 1, and �89 

IVy(R0, 2~/)1 < c(n, F)2 
hence, 

I Vv(O, t/)l < C(n, F)(IO - a l  

and Ivzvx(O,q)l~c(n,r)2 

1. For  such 2, 0, q, this means  that  

and IV2v(20,2tl)l<c(n,F), 

+q)  and IVZv(O,~I)I<C(n,F) 

for 10- a l _-<5&1 and 5110 - a l < t/ =<�89 6. Since these est imates are independent  of a, 
the function v, and hence u, is cg~,l in a ne ighborhood  of (a, 0) in f2, and F u N 
is cgl, 1 near  (a, 0). 

To treat  the cgl'~ case with 0<cr  we again choose u and v as above. 
Now by w 1 the two closed balls in IR" x N,, 

1Bbla, r)(0 . . . . .  0, l - - r ,  0) and IBb(,,,)(0 . . . .  ,0, l + r ,  0), 

which are no longer tangent  to F at a, do not intersect M. Taking the 
envelopes of these balls over all small posit ive r, we obtain  functions v• on f2 
which have v <_v<v+ and which satisfy, by w l(iii) and the a rgument  in w 1, 
est imates 

sup Iv + (O, ~)1 <=C(F) rl +~. 
IO-al+l.l<r 

Following the ~1,1 a rgument  above, we now infer that  

I Vv(O, n)l _-< C(n, r ) ( lO-a l  +~)~ 
and 

IV2v(O, tl)l<= C(n, F)( lO-al+n) ~-~ 

for [O-a[<�89 and 0__<t/<�89 Now, v, and hence u, is ~1, ,  in a ne ighborhood 
of (a, 0) in f2, and F u N is ~1,~ near  (a, 0). [ ]  

w 4. Star-shaped domains at oo 

4.1. Theorem. Suppose (2 is a bounded @ star-shaped domain in ~"  and F=~?~? 
x {0}. There exists a unique, up to multiplicity, n dimensional hyperbolic-sta- 
tionary locally rectiJ~able current T in IH such that F = f f l~  M where M =  spt T. 
Moreover, T is hyperbolic-area minimizing, and M is the polar graph of a 
Ji~nction defined on an open hemisphere centered in • x {0}. 

Proof As noted in the introduct ion,  M. Anderson  showed, in [A 1, Theorem 3], 
the existence of a hyperbol ic-area  minimizing T with F = M ~ M  where M 
= s p t  T. We will first verify that  this part icular  M is a complete ly  regular polar  
graph. 

To see this, we first apply a suitable t ranslat ion to get • to be s tar-shaped 
about  the origin. We may  choose positive numbers  r and s so that  
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Then, by (1.1), MclBs(0)~IBr(0); hence, 

We claim that ( 2M)r~M=0  for all positive 2+1.  Otherwise, we could 

choose 2 with either - r < 2 < l  or 1 < 2 <  s so that the sets of regular points, 
s r 

Reg(M) and Reg(2M), intersect transversally. Near lR"x {0} the sets M and 
2M are disjoint because Q is star-shaped about the origin. One may then, by 
minimality, replace a piece of T by the piece of/~a~ T that is cut off by T and 
still have a minimizing current. But then the singular set of the resulting 
current would include the intersection Reg(M)c~ Reg(2M), whose n - 1  dimen- 
sionality contradicts the n - 7  dimensional bound on the singular set. From 
this claim, it follows that M is a polar graph of a function u on ~+. Moreover, 
by the small size of Sing (M), all the singularities of the function u are, as in the 
proof of [HS, 2.1], removable, and u is analytic on ~;+. 

Next we assume that S is any n dimensional hyperbolic-stationary locally 
rectifiable current in IEI with sptS~sptS=F. By the argument in w 1, we again 
find that 

spt S c IBs (0) ~ IBr(0 ). 

Let 2+ =inf{2:  2Mr~sprS4=0}. If 2+ were strictly greater than one, then we 
could (because f2 is star-shaped about the origin) find a point be2Mc~sptS. By 
the regularity and connectedness of M and the argument of [H, 4.4], we would 
find that 2 M ~ s p t S ,  contradicting that 2M~2M~2F and 2F~F=O. Thus 
2+ _-< 1. Similarly, sup {2: 2M c~ spt S 4 = 0} > 1. Thus spt S ~ M, and S is, by the 
constancy theorem [F, 4.1.4], a multiple of T. [] 
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