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Summary. For an arbitrary triangulated (d-1)-manifold without boundary 

C with fo vertices and j ;  edges, define 7 < C ) : f , - d [ 0 +  "t d +  1].- Barnette 
�9 \ 2 ] 

proved that 7(C)>0. We use the rigidity theory of frameworks and, in 
particular, results related to Cauchy's rigidity theorem for polytopes, to give 
another proof for this result. We prove that for d__>4, if 7(C)=0 then C is a 
triangulated sphere and is isomorphic to the boundary complex of a stack- 
ed polytope. Other results: (a) We prove a lower bound, conjectured by 
Bj6rner, for the number of k-faces of a triangulated (d-1)-manifold with 
specified numbers of interior vertices and boundary vertices. (b) If C is a 
simply connected triangulated d-manifold, d>4 ,  and y(lk(v, C))=0 for every 
vertex v of C, then 7(C)=0. 0k(v, C) is the link of v in C.) (c) Let C be a 
triangulated d-manifold, d>3.  Then skell(Ae+2) can be embedded in 
skell(C)iffT(C)>0. (A d is the d-dimensional simplex.) (d) If P is a 2-sim- 

plicial d-polytope then J~(P)>dJo(P)- (d21 ) . Related problems concern- 

ing pseudomanifolds, manifolds with boundary and polyhedral manifolds 
are discussed. 

1. The lower  bound theorem 

Barnette's lower bound theorem (LBT) ([9, 10]) asserts that if P is a simplicial 
d-polytope with n vertices, then fk(P), the number of k-dimensional faces of P, 
satisfies the inequality fk(P) > (0k(n, d), where 

- ( d +  1)(d-2)  

for l < k < d - 2  

for k = d -  l. 
(1.1) 

Barnette's theorem settled an old conjecture in the theory of convex poly- 
topes. (See [3l, pp. 183-188] for the history of this conjecture.) 
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The main purpose of this paper is to show the connection between the 
lower bound theorem and the rigidity theory of frameworks. The basic idea is 
quite simple. Let P be a simplicial d-polytope, d_->3, with n vertices. The 
inequality Jl(P)>=qol(n,d) follows from the fact that P is rigid. This means that 
every small perturbation of the vertices of P, which does not change the length 
of the edges of P, is induced by an affine rigid motion of IR d. The crucial result 
is Cauchy's rigidity theorem ([22]) which gives the rigidity of simplicial 3- 
polytopes. The result for higher dimensions follows by a simple inductive 
argument. (See [66, 60, p. 119]). We use rigidity theory to prove several 
extensions of the lower bound theorem and to study the cases of equality. 

Barnette's inequality fk(P)>~Ok(n,d) is sharp, and equality holds for every 
1 < k < d  if P belongs to the family of stacked polytopes defined as follows: A 
d-simplex is stacked, and each simplicial d-polytope obtained from a stacked d- 
polytope with one fewer vertex by adding a pyramid over some facet is 
stacked. Alternatively, a simplicial d-polytope P is stacked if P is the union of 
simplices S 1, S 2 . . . . .  S t such that each (d-2)-face of any of these simplices is a 
face of P. 

Let P be a simplicial d-polytope. The set ~(P)  of proper faces of P forms a 
triangulation of the boundary of P. Thus, ~(P)  can be regarded as an abstract 
triangulation of S ~- i, the (d- l ) -dimensional  sphere. ~(P)  is called the bound- 
ary complex of P, [31, Sect. 3.2]. Define a stacked (d-l)-sphere to be a 
triangulated (d-1)-sphere which is isomorphic to the boundary complex of a 
stacked d-polytope. 

A few years before Barnette proved the LBT, Walkup ([63]) settled the 
cases d<5.  Walkup considered arbitrary triangulated (d-1)-manifolds and 
proved the case d = 4 of the following theorem. 

Theorem 1.1. Let C be triangulated (d-1)-maniJold, d >4, with n vertices, then." 

(i) s  for l <_k<d-1, 
(ii) l f  fk(C)=(Pk(n,d ) for some k, 1 <k <d, then C is a stacked (d-1)-sphere. 

Note that the situation for d = 3  is quite simple. A triangulated 2-manifold 
C with n vertices has 3 n - 3 z ( C )  edges and 2 n - 2 z ( C )  triangles, where Z(C) is 
the Euler characteristics of C. For every 2-manifold M, z (M)<2  and z(M) 
= 2 i f f M  is a 2-sphere. Thus, fi(C)=~oi(n, 3) for i=1 or i = 2 i f f C  is a tri- 
angulated 2-sphere. 

Our first purpose is to prove Theorem 1.1 for every d>4 .  Major portions of 
this result have been proved before by other methods: Part (i) and the special 
case k = d - 1  of part (ii) were proved by Barnette (see [10, p. 354], [11]). Part 
(ii) for the special case of simplicial d-polytopes was proved by Billera and Lee 
in [15]. Their proof relies on the (necessity part of the) "g-theorem" - the 
complete characterization of f-vectors of simplicial polytopes, which was con- 
jectured by McMullen ([47, 48]), and was proved by Stanley (necessity, [55]) 
and Billera and Lee (sufficiency, [15])). However, it was not known before that 
fk(C)=~Ok(n,d) occurs only if C is a triangulated sphere, (this was conjectured 
by Walkup [63, p. 77]). Nor was it known whether equality may holds for 
non-polytopal spheres. 
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A well-known and easy reduction due to McMullen, Perles and Walkup 
(see Sect. 5) reduces Theorem 1.1 to the case k = 1. 

We recall some definitions on rigidity of graph embeddings (frameworks). 
(See [5, 51, 28, 26, 33]). Given a graph G = (V, E),  a d-embedding of G is a map 
0: V~IR e. A d-embedding 0 is rigid if any small perturbation ~0 of ~ which 
keeps the distances fixed between the images of adjacent vertices in G, keeps 
the distances fixed between every pair of vertices of G (and thus extends to an 
isometry of IRa). A graph G is generically d-rigid if "almost  all" embeddings of 
G into IRd are rigid. Such a graph having n vertices must have at least dn 

_ ( d + l ) "  - - edges. (Detailed definitions are given in Sect. 3.) 

inquality f l(C)>~ol(n,d)=dn-( d+l)'" for a triangulated (d -1 ) -  The 
2 

manifolds C, d_-> 4, with n vertices, follows from 

Theorem 1.2. The graph (1-skeleton) of every triangulated (d-  1)-mani[old, d > 4, 
is generically d-rigid. 

The proof is given in Sect. 6. Using some basic results on rigidity we reduce 
Theorem 1.2 to the generic 3-rigidity of graphs of triangulated 2-spheres which 
was proved by Gluck [28] (see Sect. 4). (Compare Gromov  [67, Ch. 2.4.10].) 

For  a triangulated (d-1)-manifold  C define 7(C)=f l (C) -dn+(d21  ). 

(The same definition applies to simplicial d-polytopes.) For d__>4, 7(C) is, by 
Theorem 1.2, the dimension of the space of stresses of a generic d-embedding of 
the graph of C. 

In Sect. 7 we study those triangulated manifolds C for which 7(C)=0.  We 
prove that if 7 (C)=0  then 7(lk(v, C))=0 for every vertex v of C. 0k(v, C) is the 
link of v in C, see Sect. 2.) Using this result, we reduce Theorem 1.1 (ii) to the 
known case k = d - 1 .  A direct proof of Theorem 1.1 (ii) is given in Sect. 9. 

In Sect. 8 we determine the class of triangulated d-manifolds C, d>4 ,  which 
satisfy the condition: lk(v, C) is a stacked ( d -  1)-sphere for every vertex v of C. 
This condition implies a severe restriction on C, and, in particular, if C is 
simply-connected, then C itself must be a stacked d-sphere. We also derive a 
useful combinatorial characterization of stacked spheres among all triangulated 
manifolds. 

Klee proved in [42] that the inequality fa_l(C)>~Od_l(n,d) holds for an 
arbitrary ( d -  1)-pseudomanifold C. Other cases of Theorem 1.1 are still open 
for this general setting. In Sect. 10 we show how the assertion of Theorem 1.1 
for arbitrary (d-1)-pseudomanifold  reduces to the old standing conjecture: 

Conjecture G [28, 25]. The graph of every triangulated 2-manijold is generically 
3-rigid. 

In Sect. 11 we prove a sharp lower bound, conjectured by BjSrner [17], for 
the number of k-faces of a triangulated manifold with boundary, when the 
numbers of interior vertices and boundary vertices are specified. 

Theorem 1.3. Let C be a triangulated (d-1)-maniJold d>3 with non-empty 
boundary. I f  C has n i vertices in the interior and n b vertices on the boundary then 
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L ( C) >= qo~ (ni, rib, d), where 

b d nb+ nl -- qo k (n~, rib, ) = k k k + 

(nb +(d-- 1 ) n i - ( d -  1) 

k for l < _ k < _ d - 2  
1 (1.2) 

for k = d - 1 .  

Equality occurs only for a special type of triangulated balls. Theorem 1.3 for 
the special case when C is the dual of an unbounded simple polyhedra was 
proved (using the "g-theorem",) by Billera and Lee [16]. 

In Sect. 12 we discuss an extension of the LBT to arbitrary polytopes and 
polyhedral manifolds. For a polyhedral complex C, let f2(C) denotes the 
number of 2-faces of C which are k-gons. The following theorem, which 
was conjectured in [35, p. 67], extends the lower bound theorem to arbitrary 
d-polytopes. 

Theorem 1.4. I f  P is a d-polytope with n vertices then 

f l (P )+k~3(k - -3 ) f2k (p )>dn- - (d21  ) (1.3) 

The analogous statement for arbitrary polyhedral (d-1)-maniJblds (even poly- 
hedral ( d -  1)-spheres,) is still open. 

Theorem 1.4 follows from a recent theorem of Whiteley ([66], Sect. 4) on 
infinitesimal rigidity of certain embedded graphs associated with d-polytopes. 
(See Sect. 4.) Previously, it was proved for rational d-polytopes (namely, 
d-polytopes whose vertices have rational coordinates,) using some deep results 
from algebraic geometry ([58, Ch. 4, 46, 59]). In the second part of this paper 
([38]) we study the class of d-polytopes which satisfy (1.3) as an equality. 

Grtinbaum proved ([31, p. 200],) that the graph of every d-polytope con- 
tains a refinement of the complete graph on d +  1 vertices. Barnette extended 
this result ([11]) to arbitrary polyhedral (d-1)-manifolds. In Sect. 13 we prove 

Theorem 1.5. The graph of a triangulated (d-1)-manifold C, d>__4, contains a 
refinement o[ the complete graph on d + 2  vertices iff C is not a stacked (d -1 ) -  
sphere. 

In Sect. 14 we present a few open problems which were raised during this 
research. In particular, we briefly consider the LBT in the context of McMul- 
len-Walkup "generalized lower bound conjecture" and discuss related prob- 
lems on J-vectors of triangulated manifolds. 

The basic reference (and source of inspiration) for convex polytope theory 
is Grtinbaum's book [31]. We try to follow the definitions and notations of 
[31]. Other books on the subject are [48] and [21]. 

I would like to thank Richard Stanley for many valuable discussions on f- 
vectors of polytopes, and for introducing to me the recent exotic applications 
of algebraic geometry. I am thankful to Margaret Bayer, Louis Billera, Anders 
Bj6rner, Robert Connelly, Henri Crapo, Micha Perles, and Walter Whiteley for 
helpful discussions during the various stages of this work. I would like to 
thank Lou Billera also for the warm hospitality during my visit at Cornell in 
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summer 1984. Being familiar to some of Perles' unpublished work was, as 
usual, a great advantage. This research was supported by the Weizmann 
postdoctoral fellowship. My work at Cornell was supported in part by NSF 
grant DMS 8403225. 

2. Preliminaries 

We shall use the following definitions and notation on simplicial complexes: 
Let C be a finite abstract simplicial complex on the vertex set V. Thus, C is a 
collection of subsets of V (called the Jaces of C,) and if Te C and S__ T then 
SeC. For SeC the dimension of S is d i m S = l S J - l .  Jk(C) denotes the number 
of k-dimensional faces (briefly k-faces) of C. The J:vector of C is the vector 
f (C)=(1,jo(C),f l(C ) . . . .  ). The k-th dimensional skeleton of C, skelk(C ) is de- 
fined by 

skelk(C) = {SeC: d i m S < k} .  

V(C) denotes the set of vertices (0-faces) of C. (Thus, V(C)~_ V.) l-faces of C are 
called edges and skell(C ) is called the graph of C and is denoted by G(C). 

For a face SeC the link of S in C, lk(S, C), is defined by: 

lk(S, C)= (T \S :  TeC, T ~S}. 

Ok(S,C) is also called the quotient complex of C by S.) Let V be a set of 
vertices and A be a family of subsets of V. A denotes the simplicial complex 
spanned by A. (I.e., A = { S c V : S c T f o r  some TEA}.) For a face SeC, the star 

of S in C is defined by st(S, C)= {TeC: T=S}.  The antistar of S in C is defined 
by ast(S, C)= {TeC: T c~S=0}. 

Let C and D be simplicial complexes with V= V(C), U= V(D) and Vr~ U 
=~. C'D, the join of C and D is defined by: 

C ' D =  {TeVw U: Tr~ VeC, Tc~ UeD}. 

Note that st(S, C)=S* lk(S, C). 
A simplicial complex C is pure if all its maximal faces have the same size. 

Maximal faces of a pure simplicial complex are called facets. Two facets S, T 
of a pure simplicial complex are adjacent if they intersect in a maximal proper 
face of each. A pure simplicial complex C is strongly connected if for every two 
facets S and T of C, there is a sequence of facets S=So,S  1 . . . . .  S, ,= T, such that 
S i and Si+ 1 are adjacent, O<i<m. 

A d-pseudoman!fold is a strongly connected d-dimensional simplicial com- 
plex, such that every (d-1)- face  is contained in exactly two facets. A d- 
pseudomanifold with boundary is a strongly connected d-dimensional simplicial 
complex, such that every (d-1)- face  is contained in at most two facets. For a 
d-pseudomanifold with boundary C, the boundary of C, 8C, is the (d -1 ) -  
dimensional pure simplicial complex whose facets are those (d - l ) - faces  of C 
which are included in a unique facet of C. 

Let C be a pure simplicial complex and let F be a facet of C. The stellar 
subdivision of C at the facet F is defined by C IF] 
= (C \F)w  {R w {u}'R c F, R ,t:F}. ttere, u is a new vertex. 
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C is a triangulated manifold if[CI is a manifold. (I cI is the topological space 
associated with C. See, [53, Ch. 3]). It is usually more  convenient to consider 
the larger class of homology  manifolds. A pure d-dimensional complex C is a 
homology manifold if for every c)+SeC, ISl=k, the link of S in C has the same 
homology  groups as a (d -k ) -d imens iona l  sphere. A homology d-manifold 
which has the same homology  groups as a d-sphere is called a homology d- 
sphere. 

3. Rigidity of frameworks 

Let G=(V,E)  be a graph with vertex set V=V(G) and edge set E=E(G). A d- 
embedding of G into N d is a map ~o: V ~ I R  e. A J?amework ~ is a pair Y 
= (G, q)) where G = (V, E )  is a graph and ~o is a d-embedding of  G. 

Two d-embeddings ~o and ~ of a graph G are isometric if for every two 
vertices a, beV, d(~o(a),cp(b))=d(O(a),O(b)). (d(x,y) denotes the Euclidian dis- 
tance between x and y.) Equivalently, ~o and 0 are isometric if there is an affine 
rigid mot ion  T of R e such that q)=T(~9). Two d-embeddings qo and O of a 
graph G are G-isometric if for every two adjacent vertices a,b~V, d(q)(a),~o(b)) 
=d(O(a),  O(b)). (The vertices a and b are called adjacent if {a, b}eE(G).) 

For  two d-embeddings q) and 0 of G define their distance d(q~,~) 
= max d(~o (a), ~ (a)). 

a E V  

DeJ~nMon3.1. A d-embedding ~o of a graph G is rigid if there is an ~:>0 such 
that every embedding ~ of G which is G-isometric to ~o and satisfies d(~o, ~ )<~  
is isometric to ~0. ~o is flexible if it is not  rigid. 

Definition 3.2. A graph G is generically d-rigid if the set of rigid d-embeddings 
of G is an open dense set in the set of  all embeddings. (The set of all 
embeddings is a topological  vector space of dimension IV[ x d.) 

Remarks. (1) We will freely use these definitions for an arbitrary simplicial (or 
more general) complex C and they will apply to the graph of C. (2) When we 
consider rigidity of d-polytopes or embedded manifolds this will be (unless 
stated otherwise) w.r.t, the given embedding. 

A systematic study of rigidity of frameworks may be found in I-5, 6, 28, 51]. 
We shall need the following basic facts: 

0. If H = (F, E ' )  is generically d-rigid and G = (V, E )  where E = E' then G is 
generically d-rigid (obvious). 

1. If  G is not  generically d-rigid then the set of rigid d-embeddings of G has 
empty interior. (In this case G is generically d-flexible.) 

2. I f  G is a generically d-rigid graph with n vertices and e edges then e >dn 

("; 1t 
3. Let G = (V(G), E(G)) be a graph and let u be a vertex not in V(G). Define 

G*{u}=(V' ,E')  where V'=V(G)w{u} and E'=E(G)w{{u,v}'v~V(G)}. a*{u} 
is called a cone over G. 
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Cone Lemma (Whiteley, [65]). G is generically d-rigid iffG* {u} is generically (d 
+ l)-rigid. 

4. Replacement Lemma. Let G = ~V, E~ be a graph and let U be a subset of 
V. I f  the restriction of G to U is generically d-rigid and G•K(U)  is generically 
d-rigid then G is generically d-rigid. (K(U) denotes the complete graph on U.) 
(The proof is easy.) 

Given a fixed set V of vertices, the set of edges of minimal (w.r.t. inclusion) 

generically d-rigid graphs on V, is the set of bases of a matroid ,~,~ of rank 

D4"inition 3.3. A graph G = ( V , E )  is (generically) d-acyclicl if the set of its 
edges is independent in ~,~. 

For the reader who is not familiar with matroid theory terminology (a 
good reference is Welsh [64]), here is an equivalent definition: Let p be a d- 
embedding of a graph G. An edge {a,b}, not in E(G) depends on G (w.r.t. p), if 
for every embedding ~ which is G-isometric and close enough to ~o, 
d(~(a), ~(b))=d(p(a),~o(b)). G is d-acyclic if for a generic d-embedding of G no 
edge E of G depends on G' = < V(G), E(G)\E) .  

An important variant of rigidity is the notion of infinitesimal rigidity. The 
definition given below follows Connelly [26]. For the geometric motivation 
behind the definition and a full treatment of the relations between the different 
notions of this section see [26] and [51]. 

Let ~o be a d-embedding of a graph G. An inJi'nitesimal flex of qo is a d- 
embedding ~ of G such that for every two adjacent vertices a and b of G, (~0(a) 
-~o(b)).(O(a)-~(b))=O. (Here , .  is the usual scalar product.) An infinitesimal 
flex 0 of ~ is trivial of for every two vertices a, b of G, (~o(a)-~o(b)).(O(a)-~(b)) 
=0. A d-embedding ~0 of G is infinitesimally rigid if every infinitesimal flex 
of ~0 is trivial. 

Infinitesimally rigid frameworks are rigid, and the generic behavior w.r.t. 
rigidity and infinitesimal rigidity coincide. If a graph G is infinitesimally rigid 
w.r.t, one d-embedding then it is generically d-rigid. (In particular, 

]E(G)I > dIV(G)I-  ( d 2 1 ) . )  

Given a d-embedding r of a graph G, a stress of G w.r.t. r is a function 
w: E ( G ) ~ R  such that for every vertex veV  

y, {w({v, u})(cp(v) - ~o(u)): {v, u} ~ E(G)} = 0. 

~ n  For a graph G=~V,E) ,  aa(G) will denote the rank of G in ,~d. Alter- 
natively, ad(G ) is the number of edges of a maximal d-acyclic subgraph of G. 
(All maximal d-acyclic subgraphs of G have the same number of edges.) Define 
b~(G)=IE(G)I-aj(G), b~(G) is the dimension of the space of stresses of G w.r.t. 
a generic d-embedding. In particular, G is d-acyclic if a generic d-embedding of 
G has no non-zero stress. 

This  definition is s l ight ly  different from the defini t ion in [37] which relies on a different 
ma t ro id  
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4. Theorems of Cauchy, Steinitz, Alexandrov, Giuck and Whiteley 

We make an essential use on the following theorem of Gluck [28]. 

Theorem G. A triangulated 2-sphere is generically 2-rigid. 

Let us give a quick survey of Gluck's proof. Theorem G follows from the 
fundamental theorems of Cauchy and Steinitz. Cauchy's rigidity theorem ([-22]) 
asserts that if P and Q are two convex 3-polytopes and (p: V(P)--*V(Q) is a 
combinatorial isomorphism, which induces an isometry between every face of 
P and its image in Q, then P and Q are isometric. Steinitz's theorem (see [61, 
31, p. 235, 14]) asserts that every polyhedral 2-sphere is combinatorially isom- 
orphic to the boundary complex of a 3-polytope. 

Cauchy's theorem implies that every simplicial 3-polytope P is rigid. Since 
the set of embeddings of P which actually realize P as a convex polytope is an 
open subset of the set of all embeddings, the graph of P is generically 3-rigid. 
By Steinitz's theorem every triangulated 2-sphere is isomorphic to the bound- 
ary complex of a simplicial 3-polytope and is therefore generically 3-rigid. 

A d-polytopal framework is an embedded graph obtained from the graph of 
a d-polytope P by triangulating the 2-faces of P in an arbitrary way. 

Alexandrov ([1]) extended Cauchy's arguments and proved that every 3- 
polytopal framework is infinitesimally rigid. (Note that Alexandrov's theorem 
combined with Steinitz's theorem give an even more direct proof of Theorem 
G. This is the variant in [28].) 

Whiteley ([66]) have recently found a significant generalization of 
Alexandrov's theorem to higher dimensions 

Theorem W. A d-polytopal framework, d > 3, is infinitesimally rigid. 

The basic connection between rigidity and the LBT can be seen at this point. 
Note that in a d-polytopal framework ;~(P), based on a d-polytope P, there are 
( k - 3 )  additional edges for each k-gonal 2-face. Thus, ~-(P) has exactly J)(C) 
+ ~ (k-3)f2(C) edges. Theorem 1.4 follows from Theorem W and the basic 

inequality e > d n -  for the number e of edges of an infinitesimally rigid 

d-embedded graph with n vertices. In particular, this gives the essential case k 
= 1 of the lower bound inequalities for simplicial polytopes. 

Remark. Gluck's proof of the generic 3-rigidity of triangulated 2-spheres is 
unusual. Convexity is not involved in the assertion of the theorem but is very 
much present in the proof. Steinitz's theorem is a sort of a low dimensional 
miracle, and Cauchy's theorem gives a much stronger rigidity property than 
needed. Recently, Tay and Whiteley ([62]) found a direct proof for Gluck's 
theorem which does not depend on Cauchy's or Steinitz's theorems. Graver's 
approach ([30]) may also supply a direct proof for Gluck's theorem. 

5. The MPW-reduction 

The result of this section were found (independently) by McMullen, Perles and 
Walkup (see [10, 49]). Recall that q)k(n,d) is the number of k-faces in a stacked 
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d-polytope with n vertices and is given by formula (1.1). For a pure (d-1)- 
dimensional simplicial complex C with n vertices define 7(C)=f~(C)-(p~(n,d). 

Thus, for d>3,  7(C)=f l (C)-dn+ and for d=2,  7(C)=f~(C)-n. Define 
also 

~k(c) = L ( c ) -  ~ok(n, d), 
and 

7~(C)= ~ {7(lk(S, C)): Se C, ISl =k}. 

Thus, ,/ , ( C) = y~ ( C)= ?( C). 

Proposition 5.1. Let C be a (d-1)-dimensional simplicial complex, and let k, d be 
integers, l <_k<_d-1. There are positive constants wi(k,d ), O<i<__k-l, such that 

k - - I  

?k(C)= ~ w,(k,d)7~(C). (5.1) 
i = 0  

Proof First note that 
n 

(k + 1)fk(C) = Y, fk-,(lk(v, C)). (5.2) 
i = 1  

ld\ 
Put ~ok(n,d)=ak(d)n+bk(d ). (Thus, ak(d)={,  ] for l<_k<_d-2 and ad_l (d)=d 

\ K I  -1.) Easy calculation gives 

2 ( d n -  (d21)  )ak_ l(d-- l)+nbk_ ~(d-1)=(k + l)~ok(n,d). (5.3) 

Let C be a pure (d-l)-dimensional  simplicial complex, d>3,  with n vertices 
vl, ... ,v,. Assume that the degree of v i in G(C) is n i (i.e., fo(lk(v~, C))=ni). Note 

t ha t i~on i=2 f l (C)=2(dn- (d21)+7(C) ) .  Therefore 

~, q)k-l(ni,d--1)=ak--l(d-l) ~ n i+nbk- l (d - l )  
1 = 1  i = 1  

=._,( ._ ,)2 2 ) +2ak- l (d-1)7(C)+nbk- l (d- l )"  

= (k + 1 ) q)k (n, d) + 2 a k _ 1 (d - 1) y (C). (5.4) 

From (5.2) and (5.4) we get 

(1 + k) 7k(C) = 2a k_ ~(d- 1) 7(C) + ~ 7k- ~(lk(vi, C)). (5.5) 
i ~ l  

Repeated applications of formula (5.5) give (5.1). The value of wi(k, d) is 

(2/(k+l)k  i = k - 1  
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Corollary (the MPW-reduction). Let d>2 be an integer. Let C be a (d-1)-  
dimensional simplicial complex with n vertices, such that 7(lk(S, C))=>0 jor every 
SeC,  [S[ <k. Then (i)L(C)>~pk(n,d). (ii) I f  L(C)=q~k(n,d ) then 3,(C)=0. 

Remark. Note that if C is a (d-1)-pseudomanifold then 7d-2(C)=0. 

6. The lower bound inequalities for triangulated manifolds 

For d > 3 define a class Wd of (d-- l)-pseudomanifolds inductively as follows : ~3 
is the class of triangulated 2-spheres. For d>4,  a (d-1)-pseudomanifold C 
belongs to ~d if for every vertex v of C, lk(v,C)e~d_ 1. Note that every 
homology 2-sphere is a triangulated 2-sphere. Therefore for d>4, Wd includes 
all homology (d-1)-manifolds (and, in particular, all triangulated ( d - I F  
manifolds), g4 is exactly the class of homology 3-manifolds. 

Theorem 6.1. I f  C e ~  d then C is generically d-rigid. 

Lemma6.2. Let C be a strongly connected d-dimensional simplicial complex. 
Then C is generically d-rigid. 

Proof (Compare [36].) If every two vertices of C are adjacent then C is clearly 
generically d-rigid. Otherwise, since C is strongly connected, there are two non- 
adjacent vertices u, v of C, and two adjacent d-faces S and T, such that ueS 
and veT. Let (~ be the simplicial complex obtained from C by adding to C all 
d-faces of S w T .  The affect of the operation C--* if' on G(C) is just adding one 
new edge {u,v}. The graph induced by G(C) on the vertices of S u T  is a 
complete graph on d + 2  vertices minus an edge ("{"u,v"}"). This graph is 
clearly generically d-rigid and by the Replacement Lemma (Sect. 3) if C is 
generically d-rigid so is C. Repeated application of this operation will ter- 
minate with a complex (~ whose graph is complete. C is clearly generically d- 
rigid. 

Proof oj Theorem6.1. By induction on d. For d=3 ,  gd is the class of tri- 
angulated 2-spheres which are generically 3-rigid by Gluck's theorem, we 
assume the truth of the theorem for d -  1 and prove it for d. Let CeCgd. For a 
vertex veC, the neighborhood N(v) of v is defined by N(v)={v}~{ueV(C):  
{u,v}eC}. For a vertex veC, lk(v,C)eCgd_a and by the induction hypothesis 
lk(v,C) is generically (d-1)-rigid. By the cone lemma (Sect. 3), st(v,C) 
= {v}* lk(v, C) is generically d-rigid. Let Ka(N(v)) denote the complete d-dimen- 
sional complex on N(v). By the replacement lemma (Sect. 3), C is generically d- 
rigid iff C wKa(N(v) ) is generically d-rigid. Repeated application of this argu- 
ment shows that C is generically d-rigid iff(~= U{Kd(N(v))." veV(C)} is generi- 
cally d-rigid. But (~ easily seen to be a strongly connected d-dimensional 
complex, hence generically d-rigid. 

Theorem 6.1 and the MPW reduction give: 

Theorem 6.2. I f  CECga and C has n vertices then fk(C)~q~k(n,d) for all d>_k >_ 1. 

Remarks. 1. The inductive argument in the proof of Theorem 6.1 seems to be 
quite old. It is hinted in [60, foornote p. t19] and perhaps goes back to the 
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works of Alexandrov and Pogorelov. Whiteley's proof of Theorem W uses 
similar (but more delicate) inductive argument. 

2. Theorem 6.1 strengthened the fact that the graph of a triangulated (d 
-D-manifo ld  is d-connected. Barnette [11] proved that the graph of every 
polyhedral (d-1)-manifold is d-connected, thus extending a result of Balinski 
[7] which asserts that the graph of every d-polytope is d-connected. 

Let G be a graph with n vertices and e edges, n>d. Recall that ba(G) is the 
dimension of the space of stresses of G w.r.t, a generic d-embedding, bd(G ) >e 

_dn+~d+- 1~ and equality holds iff G is generically d-rigid. Theorem6.l  thus 
2 ! 

implies that for C~Cg~, 7(C) is the dimension of the space of stresses of a 
generic d-embedding of G(C). 

Theorem6.1 implies also an upper bound for the number of edges of 
subgraphs of graphs of triangulated manifolds. 

Theorem6.3. Let C~C~ and let H be a subgraph of G(C). Then fl(H)<=djo(H) 

Proof Let H be a subgraph of G(C). (We may assume that H has at least d 

Denote ~(H)=f l (H) -dJo(H)+(d+l] . "  - - Note that i f H  vertices.) is a subgraph 
\ A / 

of G then be(H ) < bd(G ). Therefore, 

7(C) = b.(G(C)) >= b.(H) >= 7(H). 

We conclude this section by showing that the proof of Theorem 6.1 applies 
in a slightly more general situation. (We use this fact in Sects. 9 and 11.) Let C 
be a strongly connected (d-1)-dimensional simplicial complex and let T be a 
tree in G(C). It is easy to see that U {Ka(N(v)): v a vertex of T} is a strongly 
connected d-dimensional simplicial complex. Therefore, the proof of Theorem 
6.1 gives. 

Proposition6.4. Let C be a strongly connected (d-l)-dimensional simplicial 
complex. Let T be a tree in G(C) which satisfy: (i) Every vertex u of C is 
adjacent to some vertex of T, (ii) lk(v, C) is generically (d-l)-rigid Jbr every 
vertex v of T. Then C is generically d-rigid. 

7. The extremal cases in the lower bound theorem 

Recall that a stacked (d-1)-sphere is a triangulated (d-1)-sphere which is 
isomorphic to the boundary complex of a stacked d-polytope. As easily seen, C 
is a stacked (d-1)-sphere iff C can be obtained from the boundary complex of 
a d-simplex by repeated applications of stellar subdivisions of facets. 

Theorem7.1. Let d,k be fixed integers d>3,  d > k > l .  Let C be a simplicial 
complex in ~ with n vertices and ~ok(n,d ) k-faces. Then C is a stacked ( d - l ) -  
sphere. 
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Proof The MPW reduction shows that for CeCKd, if Jo(C)=n and fk(C) 
=q~k(n,d) for some l < k < d ,  then fl(C)=~ol(n,d), i.e., v(C)=0. Define: c~o 
={CeCgd:7(C)=O}. By Theorem 6.1 every CeCgd is generically d-rigid. There- 
fore, for CeCga, C ~  ~ iff C is d-acyclic. (See Sect. 3.) 

Lemma 7 .2 . / f  C~Cg ~ d >4, then for every vertex v~ C, lk(v, C)~C~~ a. 

Proof Assume to the contrary that CeCg ~ v is a vertex of C, and 
lk(v, C)r176 Thus, lk(v, C) is not (d-1)-acyclic and from the Cone Lemma 
(Sect. 3) it follows that st(v, C)=v*lk(v, C) is not d-acyclic. Since C~st(v, C), C 
is not d-acyclic as well. A contradiction. 

Proof of Theorem 7.1 (end). The case d = 4  of Theorem 7.1 was proved already 
by Walkup ([63, Th. 1]). (Barnette's result mentioned below also covers this 
case.) Assume now that for d>5 ,  if CsCg~ 1 then C is a stacked ( d -  1)-sphere. 
Let C~C~ ~ d>5 .  Recall that vk(C)=~{7(lk(S,C)): SeC, [Sl=k}. (See Sect. 5.) 
Lemma 7.2 implies that for every SsC, 7(lk(S, C))=0. Therefore, for every k >  1, 
7k(c)=0. By Proposition 5.1, fd_~(C)=q~d_l(n,d). By Lemma 7.2 for every 
vertex veC, lk(v, C)e~g~ By the induction hypothesis lk(v, C) is a stacked 
sphere, and therefore C is a triangulated (d-1)-manifold. Barnette proved ([-9, 
11]) that if a triangulated (d-1)-manifold C with n vertices satisfies fd_i(C) 
=~%_~(n,d) then C is a stacked (d-1)-sphere. This completes the proof of 
Theorem 7.1. 

A direct proof of Theorem 7. l is given in Sect. 9. We use there a character- 
ization of stacked spheres which is proved in the next section. 

The proof of Lemma 7.2 gives more: 

Theorem7.3. Let C be a generically d-rigid pure (d-1)-dimensional simplicial 
complex. Then Jor every vertex v of C, 7(lk(v, C))=<7(C). 

Proof Define G 1 =G(lk(v, C)), Gz=G(st(v, C)) (=Gl*{V}). Let H be a maximal 
(d-1)-acyclic subgraph of G~. By the cone Lemma, H* {v} is a maximum d- 
acyclic subgraph of G 2. Therefore 

7(lk(v, C)) < b e_ a(G 1): bd(G2) <= bd(G(C)) = 7(C). 

8. Triangulated manifolds with stacked links 

In this section we study triangulated manifolds C such that lk(v, C) is a 
stacked sphere for every vertex v of C. For manifolds of dimensions greater 
than 3 this condition implies a severe topological restriction. We also derive a 
characterization of stacked spheres among pseudomanifolds in c~ d which is used 
in the next sections. 

Consider the following two operations on triangulated manifolds. Let C 
and D be pure simplicial complexes with disjoint sets of vertices, S be a facet 
of C and T be a facet of D. Let ~b be a bijection between V(S) and V(T). The 
connected sum C#oD of C and D is the simplicial complex obtained by 
identifying the vertices of S with the vertices of T by tp and deleting the facet S 
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(-----T). Connected sums of two triangulated manifolds is a triangulated man- 
ifold. Note that if E=C@oD then for veS, lk(v,E) is a connected sum of 
lk(v, C) and lk(q/(v),D). All other links are unchanged. 

Let C be a pure (d-1)-dimensional simplicial complex, S and T be two 
disjoint facets of C, and ~, be a bijection from V(S) to V(T). Assume further that 
no vertex of S is adjacent to a vertex of T and that no vertex in C is adjacent 
to both a vertex v in S and to its image ~,(v) in T. Let C ~ be the simplicial 
complex obtained from C by identifying the vertices of S to the vertices of T 
via ~ and deleting the facet S(= T). We say that C ~' is obtained by forming a 
handle over C. Note that lk(v, C~ C) unless v~S (=  T), and then Ik(v, C ~ 
=lk(v, C)~ lk(~,(v), C). 

Note also that 
?(C ~0 D) = 7(C) + 7(D), (8.1) 

?(CO)=7(C) + (d+2 1) (d=dim C - 1 ) .  (8.2) 

Walkup defined the class o~e(k) of (d-1)-dimensional simplicial complexes 
as follows: ~a(0)  is the class of stacked ( d -  1)-spheres. Ce d e ( k )  if C=D ~ for 
some D e ~ d ( k  - 1). Define ~,~=[J{~f~d(k): k>0}. Note that a connected sum 
of two complexes in We is in ~a .  In fact, ~fa is exactly the class of simplicial 
complexes obtained from boundary complexes of d-simplices by successively 
applying the operations C#%D and C ~ For d_>4, if C~f;~(k) then rank HI(C ) 

= k  and 7( C)= k (d ~ l - - From the description of links of vertices of C :~oD 

and C ~ it follows that if C ~  e, then lk(v, C) is a stacked (d-2)-sphere for 
every vertex v of C. 

The notion of a missing face (see [33,) will play an important role from 
n o w  on.  

Definition 8.1. Let C be a simplicial complex on the vertex set V. A subset S of V 
is a missing face of C, if S(~C but for every proper subset R of S, REC. A k- 
missing Jace is a missing Jace with k + 1 vertices. 

Theorem8.2. Let C be a (d-1)-pseudomaniJold, d>4. f f  JOt every vertex 
v~C, lk(v, C)eJg a- 1(0) and C has no (d-2)-missing faces, then C e ~  ~. 

Lemma8.3. Let P be a stacked d-polytope. (i) P has no k-missing faces for 
1 < k < d -  1. (ii) f f  P is not a d-simplex then P has a missing ( d -  1)-face. 

Proof Let P and Q be two simplicial d-polytopes such that Q is obtained from 
P by adding a pyramid over a facet T of P. (The boundary complex of (2 is 
obtained from the boundary complex of P by a stellar subdivision of T.) It is 
easy to see that every missing face of P is a missing face of Q and, in addition, 
Q has one new ( d -  1)-missing face T and f o ( P ) - d  new l-missing faces of the 
form {u,v} where u is the new vertex of Q and veT. Lemma 8.3 follows by 
induction from the definition of stacked polytopes. 

Proof of Theorem 8.2. Let veC  and let S be a (d-2)-missing face in lk(v, C). 
(Unless C is a simplex there is a vertex v in C whose degree is more than d 
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and therefore lk(v, C) has a (d-2)-missing face.) Since C has no (d-2)-missing 
faces, S must be a face of C and therefore T = S w  {v} is a (d -D-miss ing  face of 
C. Cut C along 0T and patch with two (d-1)-simplices.  (As was shown by 
Walkup, [63, Lemma 4.2], this operation can always be performed.) The 
resulting complex is a (possibly not connected) triangulated (d - l ) -man i fo ld  C. 
If C is connected then C is obtained from C by forming a handle. If C is not 
connected it has two connected components and C is their connected sum. 
Theorem 8.2 follows by double induction on 7(C) and Jo(C). 

Corollary8.4. Let C be a (d-1)-pseudomanifold, d> 5. If.[or every vertex veC, 
lk(v, C) is a stacked ( d -  2)-sphere, then C e ~  e. 

Proof It is enough to show that C does not have (d-2)-miss ing faces. Indeed, 
if S is a (d-2)-miss ing face of C and v is a vertex of S then S\{v}  is a ( d -3 ) -  
missing face of lk(v, C). This is impossible by Lemma 8.2(i) since lk(v, C) is a 
stacked ( d -  2)-sphere and ( d -  3) > 1. 

Remark8.5. Perles proved (see [4]) that if P is a neighborly 4-polytope then 
every link of a vertex of P is stacked. Thus, the class of triangulated 3- 
manifolds with stacked 2-spheres as the only links of vertices, is much larger 
than ~ 4 .  Having only stacked spheres as links impose a severe topological 
restriction on d-manifolds for d>4 .  Problem Which 3-manifolds admit a 
triangulation with only stacked 2-spheres as links of vertices? (Compare [23].) 

We derive now from Theorem 8.2 a useful characterization of stacked 
spheres. Recall that a cycle M in a graph G is chordless if M is an induced 
subgraph of G. (Thus, M is a subgraph of G with a set of vertices V(M) 
={v l , . . . , v , ,  }, m > 3  and edges {vl,v2} . . . . .  {V;.n_l,Vm},{Vm,Vl} and the only 
edges of G with endpoints in V(M) are edges of M.) A graph is chordal if it 
does not contain a chordless m-cycles for m>4 .  

Theorem 8.5. Let CeCga, d > 3. The .following are equivalent: 

(i) C is a stacked ( d -  1)-sphere, 
(ii) G(C) is chordal and C has no k-missing jaces jor l <k < d - 1 .  

Proof (i)~(ii). Let C be a stacked (d-1)-sphere ,  d>3 .  By Lemma 8.2, C has 
no k-missing faces for 1 < k < d -  1. It is left to show that G(C) is chordal. Let P 
and Q be two simplicial d-polytopes such that Q is obtained from P by adding 
a pyramid over a facet T of P. G(Q) is obtained from G(P) by adding a new 
vertex u and connecting it to all vertices of T. From this description it is clear 
that if G(P) is chordal then so is G(Q). Therefore, graphs of stacked (d -1 ) -  
spheres are chordal. 

(ii) --, (i). The proof will proceed by induction on d. For d---3 we have to 
prove that every triangulated 2-sphere C with a chordal graph, is a stacked 2- 
sphere. Assume to the contrary, that C is a counterexample with a minimal 
number of vertices. If C has a 2-missing face then C is the connected sum of 
two smaller triangulated 2-spheres C 1 and C 2. G(C 0 and G(C2) are chordal 
and by the minimality of C, C 1 and C 2 are stacked and therelore so is C. 
Thus, C does not have a 2-missing face. Let v be a vertex of degree 4 or 5 in 
C. (Such a vertex always exists unless C is the boundary of a 3-simplex.) If v 
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has 4 neighbors they form a 4-cycle (with the edges of lk(v, C)) and this 4-cycle 
must have a diagonal. Since C has no 2-missing faces C is a stacked 2-sphere 
with 5 vertices. If v has 5 neighbors then by the same argument C is a stacked 
2-sphere with 6 vertices. A contradiction. 

Let d>4 ,  and assume that the implication (ii)~(i) holds for every d '<d .  
Let C be a member  of (ga with a chordal graph and no k-missing faces for 
1 < k < d - 1 .  First we show that C is simply-connected. Otherwise, let M be a 
minimal cycle in G(C) which is not null-homotopic in C. M must be chordless 
and if M is a triangle it must be a 2-missing face. Let v be a vertex of C. If S is 
a k-missing face of lk(v, C), l < k < d - 2  then either S itself or Su{v} is a 
missing face of C. This is impossible by the assumption on C. If M is a 
chordless cycle in lk(v, C) then since C has no 2-missing faces, M is chordless 
in C as well. Thus, by the induction hypothesis, lk(v, C) is a stacked (d -2 ) -  
sphere for every vertex v of C. Since C does not have (d-2)-missing faces and 
is simpiy-connected, by Theorem 8.2, C is a stacked (d-1)-sphere.  

Both conditions of Theorem 8.5(ii) are necessary. The graph of every 2- 
neighborly d-polytope is chordal. The d-cross polytope has k-missing faces only 
for k = l .  The implication (ii)~(i) does not hold for arbitrary (d -1 ) -  
pseudomanifolds as shown by the 3-neighborly 3-pseudomanifolds of Altshuler 
([2]). 

9. Direct proof of  Theorem 7.1 

Lemma9.1.  I f  CeCg ~ S is a missing face of C then either d i m S =  1 or d i m S = d  
- - l .  

Proof The lemma says nothing for d=3 .  Let C ~  ~ d>4 .  Let us first show 
that C has no 2-missing faces. Assume to the contrary that T is a 2-missing 
face of C. Let v be a vertex of T and let E=T~{v}.  E is an edge of C, the 
vertices of E are adjacent to v and are therefore vertices of st(v, C). But E itself 
does not belong to lk (v ,C)(E~{v}r  and therefore E does not belong to 
st(v, C). Since st(v, C) is generically d-rigid, E depends on st(v, C) w.r.t, a 
generic d-embedding. However, ECst(v,C) and therefore s t ( v ,C )uE  is not d- 
acyclic. Since st(v, C ) u E c  C, C is not d-acyclic. A contradiction. 

If Tis  a k-missing face of C, 2 < k < d - I  then for every subset S of T o f  size 
k - 2 ,  T~S is a 2-missing face of lk(S, C). By Lemma 7.2, lk(S, C)~Cg~ But 
d - k + 2 > 4  and therefore lk(S,C) does not have a 2-missing face. A con- 
tradiction. 

Lemma 9.2. I f  C~(g ~ then G(C) is chordal. 

Proof Assume to the contrary that C~Cg ~ and M is a chordless m-gon in C, 
m>4 .  Let E={vl ,v2}  be an edge in M. Let U be the set of vertices of M which 
are not in E, and let H be the induced subgraph of M on U. (H is a path.) Let 
W be the set of vertices of C which are adjacent to some vertex of U. Clearly 
v 1, vz~W. Define a simplicial complex D on W by D = U {st(u, C): u~ U}. Since 
M is chordless ECD. By Proposition 6.4, D is generally d-rigid. But the vertices of 
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E belongs to D, therefore D w E is not d-acyclic and since D w E_c C. C is not d- 
acyclic. A contradiction. 

Direct proof of Theorem 7.1 (end). Let C e ~  ~ by Lemmas 9.l and 9.2, C has 
no k-missing faces for l < k < d - 1  and no chordless m-gons for m>4 .  By 
Theorem 8.5, C is a stacked (d- l ) -sphere .  

Remark. Most of the work is needed just for the case d=4 .  If one assumes the 
assertion of Theorem 7.1 for d=4 ,  then the general case follows easily by 
induction, from Lemma 7.2 and Theorem 8.2. 

Corollary 8.4 and Theorem 7.1 imply: 

Theorem 9.3. If  C is a simply-connected triangulated (d-  l )-manijold, d> 5, and 
for every vertex vsC, 7(lk(v, C))=0 then 7(C)=0. 

Second proof of Theorem 9.3 (hint). In order to show that 7 (C)=0  it is enough 
to prove that for every edge Ee C, a generic d-embedding p of C\E has a non- 
trivial infinitesimal flex v. (See Sect. 3). Let E =  {v 1, v2} be an edge of C. Since 
lk(v 1, C) is acyclic, st(v 1, C)\E has a non-trivial infinitesimal flex. Choose such 
a flex v o. We will extend this infinitesimal flex to an infinitesimal flex of C\E. 
Let r = d(vo(VO, Vo(V2)). 

Let {w,u} be an edge in C, and let ~ be an infinitesimal flex of st(w, C)\E. 
Consider the restriction of ~ to Do=st({u, w}, C)\E and extend it to an infini- 
tesimal flex ~ of D 1 =st(u, C)\E. This can always be done (here we use the fact 
that d>5) .  The extension is unique unless v~, v2eD 1, but either v 1 or v 2 are not 
in D o. In this case extend ~ under the condition that d(~(v O, ~(v2)=r. 

Apply this operation to extend v o to stars of all the vertices in C. It can be 
shown that if an infinitesimal flex is defined on st(v, C) using this procedure via 
a path l from v 1 to v, then it depends only on the homotopy class of the path I. 
Therefore, if C is simply-connected one gets a well-defined non-trivial infinites- 
imal flex on C\E. 

Third proof of Theorem 9.3 for boundary complexes of simplicial polytopes. Let 

c~(C)= f2(C)- (d-  l)fl(C) + (d2)f~(C)_ (d + I )  3 (=h3(C)-h2(C), see Sect. 14). It 
is easy to check that 

{~ C)): ve V(C)} = 3 6(C) + (d-  1) y(C). (9.1) 

It is plausible that 6 ( C ) > 0  holds for every simply-connected triangulated 
(d-1)-manifold  C, d_>5. This is known only when d=5 and when d > 5  and C is 
the boundary complex of a d-polytope. Clearly if 6(C)>0 and the left hand 
side of Eq. (9.1) is equal to zero then: 7(C)=6(C)=0. 

For a triangulated 4-manifold C, the Dehn-Sommerville equations assert 
that 6(C)=10(x(C)-2) where x(C) is the Euler characteristic of C. In particu- 
lar, if C is simply-connected then 3 ( C ) = 1 0 b 2 > 0  where bz=rankH2(C)>O is 
the second Betti-number of C. 

The inequality 6(P)>O for a simplicial d-polytope P, d>5 ,  is a special case 
of the "generalized lower bound inequalities" [49, 55] (see Sect. 14). (In fact, 
the "g- theorem" in its full strength implies that if y (P )=0  then 6(P)=0.  This 
implies also, by (9.1), Lemma 7.2 for polytopes.) 
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10. The lower bound conjecture for pseudomanifoids 

The lower bound conjecture .for pseudomaniJblds. (a) If C is a ( d - l ) -  
pseudomanifold with n vertices, then j~,(C)>(Pk(n,d ) for l<_k<_d-1. (b) If 
equality holds for some k, d > k > 1, then C is a stacked sphere. 

The case k = d - 1  of part (a) of this conjecture was proved by Klee [42]. 
The remaining cases are still open. 

Definition 10.I. A (d-  l)-pseudomanifold is normal if every face Seskel,~_ 3C has 
a connected link. 

Note that the class ~d of (d--l)-pseudomanifolds defined in Sect. 6 is the 
class of normal (d- l ) -pseudomani fo lds  whose singular part has codimension 
greater than 2. (If C~Cgd and S is a face of C of size d - 3 ,  then lk(S, C) is a 
triangulated 2-sphere.) 

The class of normal pseudomanifolds is closed under taking links of faces. 
Therefore, the LBT for normal pseudomanifolds reduces by the MPW-re- 
duction to the case k = 1. As in the proof of Theorem 6.1 the generic d-rigidity 
of normal (d-1)-pseudomanifolds  follows from the generic 3-rigidity of normal 
2-pseudomanifolds, which are just triangulated 2-manifolds. Part (a) of the 
LBC for normal pseudomanifolds would thus follow from the following old 
standing conjecture: 

Conjecture G [28, 25]. The graph of every triangulated 2-maniJbld is generically 
3-rigid 2. 

Remark. Connelly gave in [24] an example of a flexible embedding of a 
triangulated 2-sphere, and thus refuted the old conjecture (going back to 
Euler,) that every triangulated 2-manifold embedded in R 3 is rigid. 

Conjecture G would also imply part (b) of the LBC for normal pseudo- 
manifolds as follows" It is enough to show it for normal 3-pseudomanifolds and 
then to proceed as in Sect. 7. Conjecture G implies that a 3-pseudomanifold C 
is generically 4-rigid. Thus if 7 (C)=0  then C must be 4-acyclic, and every link 
of a vertex of C must be 3-acyclic hence a triangulated 2-sphere. 

In order to reduce the LBC for arbitrary pseudomanifolds to the normal 
case, and also to extend Theorem 1.1 to arbitrary pseudomanifolds with 
singular set of codimension greater than two, we need the following normaliza- 
tion process [57, p. 83] (compare [29, p. 151, 17]). 

Let C be a (d-1)-pseudomanifold.  Choose a non-empty face S of C of 
smallest possible dimension k, k < d - 2  with a non-connected link. "Pull apart"  
C at S to get a new complex Ns(C ) as follows: Create a copy F,. of F for each 
component  K i of lk(F, C) so that the link of F~ in the new complex Ns(C) is K i. 
Repeated applications of this operation will terminate with a normal ( d - l ) -  
pseudomanifold N(C). 

Direct computat ion gives: 

(fk(C)--qok(n,d))>(fk(Ns(C))--q)k(n,d)) for every 1 <k<d. (10.1) 

2 Whiteley and Graver have recently proved (independently) that all triangulations of the torus 
are generically 2-rigid. Connelly proved (private communication) that every triangulated 2-man- 
ifold admits a generically 3-rigid subdivision 
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It is likely but unknown that if Ns(C ) is generically d-rigid so is C. 

Remarks 1. Altshuler constructed in [2] 3-pseudomanifolds such that none of 
their 2-dimensional links are spheres. 

2. Note that the lower bound inequalities need not hold for a strongly 
connected (d-1)-dimensional  complex, in which every (d-2)-face  is included 
in at least two facets. A counterexample is two tetrahedra identified along an 
edge. 

11. Manifolds with boundary 

In this section we prove a lower bound, conjectured by Bj6rner [17], for the 
number of k-faces of a triangulated ( d -  1)-manifold with boundary as a func- 
tion of the numbers of interior vertices and boundary vertices. The problem 
was originated in the study of polytope pairs, see [40, 41, 17, 16]. We first need 
a few definitions. 

A d-tree ([34]) is defined inductively as follows: A complete simplicial 
complex on d + l  vertices is a d-tree. If C is a d-tree on the vertex set V, 
uCV(C), and S is any ( d - l ) - f a c e  of C, then the simplicial complex obtained 
from C by adding u to the vertex set V and adding the new facet Sw{u}, is a 
d-tree. A simple d-tree ([63]) is a d-tree in which every ( d -  1)-face is included in 
at most two facets. (I.e., it is a pseudomanifold with boundary.) A simple d-tree 
is actually a triangulated d-ball. In fact, given a stacked d-polytope P, d>3 ,  P 
can be divided uniquely into d-simplices S 1 . . . . .  S m, such that every (d-2)- face  
of any of these simplices is a face of P. The sets of vertices of these simplices 
form the set of facets of a simple d-tree. This gives a 1 - 1  correspondence 
between simple d-trees and stacked d-polytopes, d > 3. 

(dk) ( d + i ) k k - f a c e s  ([34]). A simple A d-tree on n-vertices has 0k(n,d)= n--  k +  

result of Beineke and Pippert [19] and Bj6rner [17], asserts that every strongly 
connected d-dimensional simplicial complex C with n vertices has at least 
Ok(n,d) k-faces. This bound applies, in particular, to (d- l ) -pseudomanifo lds  
with boundary. Beineke and Pippert showed that equality holds only for k- 
trees. (The earliest result of this type was proved by Klee [40].) 

Define a stacked (d-1) -ba l l  to be a triangulated ( d - l ) - b a l l  C which is 
obtained from a simple (d-1) - t ree  by repeated stellar subdivisions of facets. 
Equivalently, C is a stacked ( d - l ) - b a l l  if C is the antistar of a vertex of a 
stacked ( d -  l)-sphere. 

Let C be a stacked (d-1)-bal l  with n vertices, n b of them on the boundary 
and n i in the interior. (nb is always at least d.) Thus, C is obtained from a 
simple (d-1) - t ree  with n b vertices by n i applications of stellar subdivisions of 
facets. Let q~(nl,nb,d ) be the number of k-faces of C. As easily seen this 
number depends only on n i, n b and d, and is given by formula (1.2): 

Theorem l l . l .  Let C be a triangulated (d-l)-maniJbld, d>4,  with non-empty 
boundary. I f  C has n~ vertices in the interior and n b vertices in the boundary then 
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(i) j~,(C)> ~o~(ni, rib,d), jbr every k, 1 <_k <_d- 1. 
(ii) I f  L(C)=q)~(ni,nh, d) Jor some k, l <_k<_d-1 then C is a stacked (d-1)-  

ball. 

Proof Let u be a vertex not in C and D=Cw({u}*~C).  D is a ( d - l ) -  
pseudomanifold (without boundary). 

Claim 11.2. D is generically d-rigid. 

Proof Note that for every vertex reD, different from u, lk(v, C) is a homology 
(d-2)-sphere, and is generically (d-l)-r igid by Theorem 6.1. Choose any tree 
T in G(D) which contains all vertices of D except u. The conditions of Proposi- 
tion 6.4 hold and therefore C is generically d-rigid. 

Proof of Theorem 11.1 (continued). Put n=fo(D ) (=ni+nb+ 1). Recall that for 
k> 1, 7k(D)=J~,(D)--~ok(n,d), (Sect. 5.) Put 70(D)=0. A simple inspection shows 
that 

s l(lk(u,D)). (11.1) 

Proposition 11.3. Let D be a generically d-rigid (d-1)-pseudomanifold. Then jor 
every vertex v of D, 7k(D)> 7k-l(lk( v, D)). / f  equality holds then ),(D)= O. 

Proof Recall that 7i(D) = ~,, {7 (lk(S, D)): SeD, ISI = i}. Proposition 5.1 asserts that 
k - - 1  

?,k(D)= ~ wi(k, d))'i(D). The coefficients wi(k, d) are given by formula (5.6). 
i ~ 0  

We need the following two inequalities: 

:,i (D) __> ~ ~ (lk (v, O)) + yi(lk (v, D)). (11.2) 

w~(k,d)+w~+~(k,d)>w~(k-l ,d-l)  for every l<_i<_k-1 (11.3) 

To prove (11.2) divide the set of ( i -  l)-faces of D into three parts. (a) Those 
faces S which contain the vertex v, (b) Those faces S which do not contain v 
but S u { v } e D  and (c) the remaining (i-l)-faces of D. Note that the sum of 
7(lk(S, C) over faces in the first family is exactly 7~-l(lk(v, C). If S belongs to 
the second family and T = S w  {v} then by Theorem 7.3, 7(lk(S, D))> 7(Ik(T,D). 
But ik(T,D)=lk(S, lk(v,D)), and therefore the sum of lk(S, C) over all faces in 
the second family is at least 7~(lk(v, D)). 

To prove (11.3) use formula (5.6) and note that always ak(d)>ak_~(d-1 ) 

By Proposition 4.1, (11.2) and (11.3), 

k - I  k - - 1  

7k(D) = ~ w~(k, d) 7~(D) >= wo(k, d) ?(lk(v, D)) + ~ w~(k, d)(7 ~ ~(lk(v, D)) + 7i(lk(v, D)) 
i = 0  i = 1  

k - - 2  k - - 2  

~ (w,(k, d) + w,+ ,(k, d)) y'(lk(v, D)) __> ~ w,(k - 1, d - 1) 7~(lk(v, D)) 
i = 0  i = 0  

=Tk l(lk(v, D))" 

This gives the required inequality. Since (11.2) is a strict inequality if 7k(D) 
: ~/k-- l (lk (v, D)) then ? (D) = 0. 
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Back to the proof of Theoremll.1. By Claim 11.2, D is generically d-rigid. 
Formula (11.1) and Proposition 11.3 give part (i) and show that in case of 
equality 7(D)=0. In order to prove part (ii) we need 

Claim 11.4. If 7(D)=0 then D is a stacked ( d -  1)-sphere. 

Proof Let E=lk(u,D). If E is not connected, apply the normalization pro- 
cedure described in Sect. 10 to the vertex u. The proof of Claim 11.2 apply for 
the resulting complex /5 and by formula (10.1), 7(D)>7(/5)>0. A contradiction. 
If E is connected then for d>5 ,  De~ d and by Theorem 7.1, D is a stacked (d 
-1)-sphere. For d=4 ,  lk(u,D) may be any triangulated 2-manifold. However, 
since 7(D)=0, G(D) is 4-acyclic and lk(u,D) must be 3-acyclic. Therefore, 
lk(u,D) is a triangulated 2-sphere, DeCg4 and by Theorem 7.1, D is a stacked 3- 
sphere. 

Proof of Theorem l l . l ( i i )  (end). By Claim 11.4, D is a stacked (d- l ) -sphere ,  
hence C is a stacked ( d -  l)-ball. 

Remark ll.5. Bj6rner conjectured in [-17] that Theorem l l.l(i) holds for every 
(d- l ) -pseudomanifold  with boundary. BjiSrner proved the case d = 3  of this 
conjecture, and showed that the conjecture imply the lower bound inequalities 
for pseudomanifolds without boundary. It can be shown that the assertion of 
Theorem 11.1 for arbitrary pseudomanifolds with boundary would also follow 
from the generic 3-rigidity of all triangulated 2-manifolds (Conjecture G). Our 
proof can be applied to all normal ( d -  1)-pseudomanifolds with boundary with 
singular part of codimension 3 or more. 

12. A lower bound conjecture for polyhedral manifolds 

For a polyhedral complex C, Jzk(C) is the number of 2-faces of C which are k- 
gons. For a polyhedral (d-1)-dimensional complex C define: 

z 
k>3 2 

For a d-polytope P, with boundary complex ~(P), 7(P) stands for 7(~(P)). 

Conjecture 12.1. If  P is a polyhedral (d-1)-mamfold then 7(C)>0. 

Perhaps the ultimate generality for conjecture 12.1 (and a convenient con- 
text to study this conjecture,) is for "graph manifolds" which are defined in 
[11]. (See also [12].) 

As we already mentioned in Sect. 5, Whiteley's theorem implies the truth of 
Conjecture 12.1 for boundary complexes of d-polytopes (Theorem 1.4). Pre- 
viously, it was proved for rational polytopes as a consequence of some deep 
results in algebraic-geometry. In fact, for such a polytope P, ?(P) is the 
dimension of the second primitive intersection homology group ([29]) of the 
toric variety associated with P. (See [46], [58, Ch. 4], [59].) However, as was 
shown by Perles [31, pp. 92-95], there are polytopes which are not com- 
binatorially equivalent to rational polytopes. 
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One difficulty in dealing with Conjecture 12.1 is the fact that the generic d- 
rigidity of d-polytopal frameworks is not a local property as in the simplicial 
case (for d>4).  In the case of a simplicial d-polytope, d__>4, (or a triangulated 
( d -  1)-manifold,) the graph induced on a neighborhood of any vertex is already 
generically d-rigid. This is not the case for d-polytopal frameworks. As an 
example, let P be a pyramid over the octahedron Q, and consider the neigh- 
borhood of any vertex of Q. 

For a d-polytopal framework ~ based on a d-polytope P it is only for the 
(highly non-generic) embeddings which realize P as a convex polytope that it is 
possible to prove "local" infinitesimal rigidity at any vertex [66, p. 456]. This 
in turn, implies the infinitesimal rigidity and hence the generic rigidity of ~.  
We do not know how to find such a pleasant embedding for arbitrary polyhe- 
dral ( d -  1)-manifolds (or even polyhedral ( d -  1)-spheres). 

We mention now two corollaries of Theorem 1.4. A polyhedral complex P 
is k-simplicial if every j-face S of P, j < k  is a simplex. Theorem 1.4 and the 
M PW-reduction imply: 

Theorem l2.2. Let P be a k-simplicial d-polytope with n vertices then 
f~(P)>=~oi(n,d ) Jor 1 <_i<_k. 

Let us check now what does Theorem 1.4 says for simple polytopes. If P is 

a simple polytope with n vertices then f l ( P ) = ~  and ~ k f ~ = f l ( P ) ( d -  1). The 
inequality 7 (P)>0  reduces in this case to: 

, ( . ,  

A posteriori this follows, of course, from Billera, Lee and Stanley's complete 
characterization of f-vectors of simplicial polytopes. 

A d-polytope P is elementary if 7(P)=0. In [38] we study the function 7(P) 
for polytopes and especially the class of elementary polytopes. We prove there 
that quotients and faces of elementary polytopes are elementary and that for 
every face S of an elementary polytope P either S or lk(S,P) is a simplex. We 
prove also that the class of elementary polytopes is self-dual. The starting point 
for the proof is the fairly simple identity: For a 4-polytope P, 7(P)=7(P* ). It 
would be interesting to find a natural isomorphism between the spaces of 
stresses of the polytopal frameworks based on a 4-polytope P and its dual P*. 

13. Topological subgraphs of triangulated manifolds 

In this section we diverge from lower bound theorems. We prove using some 
of our previous results a property of graphs of traingulated manifolds of a 
different nature. 

A graph H is embeddable in a graph G if G contains some subgraph 
homeomorphic to H. Gri inbaum proved ([31, p. 200]) that K~+I, the complete 
graph on d +  1 vertices, is embeddable in the graph of every d-polytope. 
Barnette proved in [11] that Kd+ 1 is embeddable in the graph of every 
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polyhedral (d-1)-manifold.  (These results are immediate in the simplicial case.) 
For a graph G with no vertices of degree 2, TG stands for any graph ho- 
meomorphic  to G. 

Theorem 13.1. Let d > 4  be a fixed integer. Ke+ 2 is embeddable in the graph of 
a triangulated ( d -  1)-manifold C iff C is not a stacked ( d -  1)-sphere. 

Proof It is well-known and easy that if C is isomorphic to a stacked d- 
polytope then Ka+ 2 is not embeddable in G(C). In fact, G(C) does not contain 
Ka+ 2 even as a minor. 

Let K2 denotes a Ke minus an edge. The two vertices of a TK2 (d>4) of 
degree d - 2  are called special. 

Lemma 13.2. Ever), two non-adjacent vertices of a simplicial 3-polytope serve as 
special vertices of a TK~ ; every two non-adjacent vertices oJ a stacked d- 
polytope (d > 3) serve as the special vertices of some TK2+ 2. 

Proof The first part follows from the 3-connectivity of C, the second part can 
easily be checked directly. 

Proof of Theorem l3.1 (end). Let C be a triangulated (d-1)-manifold,  and 
assume that C does not contain a TKa+ 2. We can assume that C has no 
vertices of degree d (otherwise we delete them successively). We apply in- 
duction on d. Let v be a vertex of C and u, w be a pair of non-adjacent vertices 
in lk(v, C). By Lemma 13.2, (and the induction hypothesis if d>4,)  u and w are 
the two special vertices of some TKe+ 1 in lk(v, C). Therefore u and w are not 
adjacent in C nor they are connected in a path that avoids st(v,C). This 
directly implies that C has no 2-missing faces and no chordless m-gons for 
m>4 .  For d > 4  the induction hypothesis implies that C does not contain 
missing k-faces for 2 < k < d - 1  as well. By Theorem 8.5, C is isomorphic to a 
stacked sphere. 

Remarks. (1) For triangulated 2-manifolds the situation is this. K 5 is not 
embeddable in any triangulated 2-sphere (stacked or not) by (the easy part of) 
Kuratowski 's  Theorem. It is plausible but unknown that K 5 is embeddable in 
every triangulated 2-manifold which is not a sphere. This will follow from an 
oldstanding conjecture of Dirac [27] which asserts that K 5 is embeddable in 
every graph with n vertices and more than 3 n - 6  edges. Assuming the the 
truth of Dirac's conjecture it can be shown that Theorem 13.1 holds for 
arbitrary (d- l ) -pseudomanifolds .  (While our proof applies only for pseudo- 
manifolds in ~ . )  

(2) Grt inbaum proved ([,-31, p. 200]) that for every d-polytope P, skeli(Aa) is 
embeddable in skeli(P ). Problem: For which simplicial d-polytopes is 
skeli(A~+l) embeddable in skel/(P)? By van Kampen-Flores  theorem ([31, Ch. 
11]) this may never occur if i >  [-d+ 1 / 2 ] -  1. 

14. Concluding remarks and open problems 

14.1. ),(M) and the topology of M. For a manifold M, (of dimension at least 2,) 
define ?,(M)=min{7(C): C is a triangulation of M}. For every manifold 
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M, which admits some finite triangulation, "/(M) is a non-negative integer, and 
we have proved that 7(M)=0 only if M is a sphere. If M is two dimensional 
7(M)= 3(2-z(M)) ,  where z(M) is the Euler characteristics of M. 

Walkup proved [63] that (i). For a 3-manifold M which is not a sphere, 
7(M)> 10, and 7(M)=10 iffM is S 1 x S 2 or the corresponding non-orientable 
"handle". (He also showed that the only triangulations C of these manifolds 
which satisfy 7(C)=10 are in ~4(1).) (ii) For all other 3-manifolds M, 
7(M)>17 and 7(M)=17 only when M is the three dimensional projective 
space. 

In [39] we show that for every fixed non-negative integers d,c ,d>2,  there 
are only finitely many d-manifolds M for which 7(M)<c. 

We would like to understand how the topology of M affects the invariant 
7(M). Let bi(M ) denotes the i-th (reduced) Betti number of M. (Thus, bi(M ) 
= rank I2Ii(M, 7I).) 

Conjecture 14.1. For a (d-1)-manijold M, d>4,  ? (M)>bl (M)  " 2 1)." 
r 

C~.~f"(k) then 7 ( C ) : b l ( C  ) (d+ 2 1). (Are these the only cases of equal- If 

ity?) Walkup proved ([63]) that for every 4-manifold M, (and even every 
4-pseudomanifolds in ~o5,) 7(M)-->~(2-z(M))  and equality holds iff 

The problem of finding 7(M) for a (d-1)-manifold M resembles the well- 
known problem of finding c~(M) the minimal number of vertices in a tri- 

angulation of M (see [50]). Let i , d  be fixed integers, d>3,  0 < i < / a ~ [ .  It 
1 k x- A 

can be shown quite easily that e(M)__> C(i,d)bi(M)~;-i, where C(i,d) is a positive 
constant depending on i and d (compare [18]). We conjecture that similarly 

1 
(for i>0,) 7(M)>D(i,d)bi(M)7, where D(i,d) is another positive constant de- 
pending on i and d. 

We would like to know the exact values of 7(S 1 x S  ~ x S~), 7(S 2 x S  z) and 
7(IIJP2). Ktihnel's 3-neighborly complex projective plane with 9 vertices ([43, 
44]) shows that ?(112P2)<6. 

14.2. The generalized lower bound conjecture 

Let d be a fixed integer, d > l .  For a vector of non-negative integers f 
= (J~ 1 ,J0,Jl . . . . .  J~- 1),J~- 1 = 1 define h [ f ]  = (h o, h 1 . . . .  , hd) where 

k (d_k+i t hk= ~ (--1) i fk--i-- 
i = 0  i 

if f is the f-vector of a simplicial d-polytope or a (d-1)-dimensional 
complex C, h [ f ]  is called the h-vector of C. h-vectors of simplicial polytopes 
were introduced by McMullen and Walkup [49]. This concept plays a crucial 
part in the combinatorial theory of simplicial polytopes and in several other 
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areas of combinatorics ([48, 54, 55]). (The original notation was gl d) for h i and 
g~d+ 17 for hi+ 1 -hi.) 

A simplicial d-polytope P is k-stacked if P can be triangulated without 
introducing new j-faces for j < d - k - 1 .  A triangulated (d-1)-sphere C is k- 
stacked if it is the boundary of a triangulated d-ball B with the same ( d -  k -  l)- 
skeleton. 

McMullen and Walkup suggested in 1-49] the following far reaching gener- 
alization of the lower bound conjecture. 

The generalized lower bound conjecture. (i) (The generalized lower bound in- 

equalities.) If P is a simplicial d-polytope and 0 < k < ] ~ - ] - i  then hk+ l(P) 

-hk(P)>O. (ii) If h~+ i(P)--hk(P)=O then P is a k-stacked polytope. 
The generalized lower bound inequalities were proved by Stanley [55] as 

part of his proof of the necessity part of the "g-theorem". Part (ii) is still open. 
Note that 7(P)=h2(P)-hl(P ). The Dehn-Sommerville equations (see [48, 

56]) assert that hi=hal_i, O<_i<d. In particular, if d = 2 k + l  then hk+l--hk=O 
for every simplicial d-polytope. 

It is widely believed that the assertions of the GLBC and the "g-theorem" 
are true for arbitrary triangulated spheres. (See [32, 56].) In part (ii), "a k- 
stacked polytope" should be replaced by "a k-stacked sphere ''3. 

For a triangulated (d-1)-manifold C define 

~kiC)=h~(C)- y~ ( -  1) bk_ i_ 1(C). 
i=0 

Schenzel proved ([52], see also [57, pp. 84-85]) that every triangulated (d-1)-  
manifold with boundary C satisfies Cnk(C)>O , for every k>0.  

Conjecture 14.2. Let C be a triangulated (d-1)-manifold (without boundary). 

Then for every k, 0_<k< ~ - 1 ,  [[k+l(C)--fi;k(C)> bk(C ). 
- = = k - 1  

Note that Conjecture 14.1 is a special case of conjecture 14.2. The Dehn- 
Sommerville equations assert that ~'d(C)=0 and fi;i(C)=[[d_i(C), l<=i<d. 

Many of the results of this paper have obvious analogs in the context of the 
generalized lower bound inequalities. Proving them seems hard. Only the third 
proof of Theorem 9.3 and the proof hinted there for Lemma 7.2 extend directly. 

14.3. Flexible weak embeddings. Let C be a pure simplicial complex. An 
embedding of the vertices of C into •a is a weak embedding of C if the images 
of the vertices of every facet of C are affinely independent. If C is the 
boundary complex of a stacked d-polytope then every weak embedding of C 
into N d is rigid. Bricard constructed in 1897 ([20]) a flexible weak embedding 
of the octahedron into ~3. 

The conjectured equality cases for spheres do not imply the conjecture for polytopes. One 

consequence from the GLBC would be that for l < k _ < [ ~ ] - I  every d-polytope whose boundary 

complex is k-stacked (as a sphere) is a k-stacked polytope. We doubt if this is true for k > 
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Conjecture 14.3. Every non-stacked 3-polytope have a .flexible weak embedding. 

14.4. Rigidity of spaces and separations properties. All topo log ica l  spaces men- 
t ioned here admi t  finite t r iangula t ions .  A topolog ica l  space X is d-r igid if every 
t r iangula t ion  of X is generical ly  d-rigid. A s imple  sufficient condi t ion  for d- 
r igidi ty  follows f rom the generic d-r ig idi ty  of s t rongly  connected  d-d imens iona l  
s implicial  complexes.  

Theorem 14.4. Let X be a topological space. I f  J or every Y c X  which separates 
X, dim Y > d -  I then X is d-rigid. 

Conjecturel4.5. Let d>3. Let X be a topological space. I f  for every Y c X  
which separates X,  H a _ z ( Y ) 4 0  then X is d-rigid. 

14.5. Rigidity of tight manifolds. A t r i angu la ted  2-mani fo ld  M enbedded  in R 3 
is tight (see [45, 8]) if Mc~H is connected  for every half  space H of IR 3. (This 
p rope r ty  is known  as Banchoffs  two piece p rope r ty  and  is weaker  then t ight-  
ness in more  general  contexts.) M is strictly tight if it is t ight  and  no two 
ad jacen t  facets of M are in the same plane (in pa r t i cu la r  if the vertices of C are 
in general  posit ion).  

Str ict ly t ight  embeddings  of a t r i angu la ted  2-sphere C are jus t  real izat ions  
of C as the b o u n d a r y  of s implicial  polytopes .  All  these embeddings  are rigid by 
Cauchy ' s  theorem.  Connel ly  proved  in [26] that  all t ight  embeddings  of a 2- 
sphere, i.e., embedd ings  as convex surfaces, are rigid. 

Conjecture 14.6. A tight embedding of a triangulated 2-manijbld in IR 3 is rigid. 

Conjec ture  14.6 implies  that  t r i angu la ted  2-manifolds  which admits  str ict ly 
t ight  embeddings  are generical ly  3-rigid. Yet, it is ha rd  to suggest this a p p r o a c h  
for proving  Conjec tu re  G (Sect. 10) for o r ien tab le  2-manifolds.  It is not  even 
k n o w n  whether  every or ientable  t r i angu la ted  2-manifo ld  can be geometr ica l ly  
e m b e d d e d  in I (  3 (See [-32, 13]). 
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Note added in proof 

The basic relation between the LBT and rigidity is observed independently by M. Gromov in [67, 
Ch. 2.4.10]. Moreover, Gromov presents a purly combinatorial "substitute" for rigidity. Using 
Gromov's "rigidity" concept combined with the results of Sections 7 I1, it is possible to prove 
Theorems 1.1 and 11.1 for arbitrary pseudomanifolds. 


