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Summary. The paper presents two methods for a piecewise Hermite interpolation
of a sufficiently smooth function. The interpolation function is on each elementary
rectangle, into which the given region is divided, determined by all the derivatives
of the function under consideration up to a certain predetermined order. The results
obtained are utilized in the solution of a general quasi-linear equation and in the solu-
tion of a non-linear integral equation.

1. Introduction

In the numerical solution of differential equations we determine as a rule
only the values of the unknown solution in the nodal points of a mesh given in
advance. In many physical or technical problems we are, however, often more
interested in derivatives of this solution, since those have basic physical signif-
icance. It is, of course, possible to numerically compute relatively easily from
the known solution of the given equation also the values of its derivatives, but
in doing so the calculation is loaded with a further error. The finite element method
(see [5, 6, 8, 11, 12]) facilitates the determination of the values of derivatives of
the sought solution together with values of this solution already during the actual
solution of the given differential equation. Certain, in the application of the method
often employed interpolation methods of the unknown solution are listed in (1, 3,
12, 13].

1f we employ the interpolation method of the sought function « (x, y) described
in [1] and if we use in doing so the interpolation polynomials of the 2m —1
degree in each of both variables, we find in each nodal point of the given rectan-
gular mesh m? parameters, i.e. all partial derivatives D*u(x, y), for which
0=, #, =m —1; at the same time we denote » = (i, %), || =2, + 2, %, 2, =0,
D"Zax—fl-”%}f‘ In many problems of a physical as well as technical nature,
however, the knowledge of all those derivatives is not necessary. Thus e.g. in the
study of a planar potential field (magnetic, electric, thermal, ...) described by
a partial differential equation of the second order we are mainly interested in the
first partial derivatives of the sought solution, since they give important physical
magnitudes. The values of the second order mixed derivative which we would
also have to determine when applying the above mentioned method do not,
however, have any physical significance, and therefore their determination
would be useless. Similarly in the theory of elasticity where in the course of
investigating the deformations of a plate a certain partial differential equation
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of the fourth order is obtained, the unknown function #(x, y) gives the deflection
of the plate, its first partial derivatives determine the angles of slope, from the
second derivatives the moments can be calculated and from the latter deforma-
tions and stress components, and finally with the aid of the third derivatives the
shear forces are determined. The remaining derivatives D*u(x, y), 0=1¢;, %, =<3,
|| = 4, essential when applying the above cited method, are of no significance for
practical purposes.

The derivatives D*u(x,y), for which 0=, %, <m —1, |x|=m thus as a
rule lack physical meaning. When processing the problem on a digital computer,
these data would increase out of proportion the quantity of unwanted information,
would reduce uselessly the capacity of the memory and their evaluation would
prolong the computation. Therefore two other methods of interpolating the given
function will be presented in this paper. Both the methods, similar to the method
described in [1], do not contain in comparison with the cited paper the above
mentioned redundant data, have the same order of accuracy in some cases, but
do not guarantee the continuity of all derivatives of the interpolation function.

When estimating the error between the given function and its interpolation
we shall make use of a certain lemma which will first of all be cited without proof
in a similar form as given in [3]. For this purpose let us consider in the N-dimen-
sional space EN with a general point x = (x,, ..., xy) a bounded region £ and let
us choose an arbitrary non-negative integer £. The symbol W;,(k) (£2) denotes the
space of all functions # (x} defined on £2 which have the generalized derivatives
up to the order k inclusive and which together with those derivatives belong to
the space L, (£2), p =1. Let us denote the norm of the space W* (Q)

1/
ubpa={ 3 [IDw@ast

|x| =% Q

. . olx!
where in agreement with the above we denote D* = , =%y, ..., %y),
ox ... B ! N

|2¢| =21+ -+ 42y, %5, ..., %y =0. Beside the given norm let us introduce on the
above mentioned space also the semi-norm

1/p
|“lk,p,n={ 2 le"u(x)lf’dx}
%] =% 2

Lemma 1 (Bramble-Hilbert). Let a bounded region 2 EY with diam 2 =1
fulfil the strong cone condition. Let f(#) be a bounded linear functional defined
on the space W (Q), p =21, ie. let |[f(u)| < Cyllulk p o Let f(a) =0 for every
polynomial « of a lesser degree than k. Then there exists a constant C,>0,
dependent only on the cone condition such that for all #€ W, () it holds

| )| < C,Cofuls,p, 0
The proof of the lemma, as well as the formulation of the strong cone condition
are given in [2].
Our further considerations will be limited only to the case N =2 and therefore
let us note above all that the rectangle

R = <x0) x1> X <y0' y1>r (1)
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which we are going to deal with in both interpolation methods first, satisfies the
strong cone condition. In both cases we shall later on extend our considerations to
a more general region, i.e. an arbitrary polygon £, the sides of which are parallel
with the coordinate axes. In doing so we shall assume that on the polygon £2 there
is defined a partition g, i.e. that the polygon is expressed in the form of a union
of rectangles R, t=1, ..., 1, each two of which are either disjoint or have
one vertex or one side in common. If we denote a,, b, the sides of the rectangle
R, then each partition is characterized by two values

h=maxa,b,), h =min (a,, b,). (2)

A system C of the partitions g will be called reguiar, if there exists a constant
o> 0 such that for all g€C it holds

ahgi;.

2. First-Type Interpolation

It will be assumed in the entire section that there is given a natural number m
and to this will be assigned a natural number

zz{—’ﬁy].

Limiting ourselves at the beginning to the rectangle (1), let us define above all
two basic concepts.

Definition 1. The symbol H{™ (R) will be used to denote the set of all real
polynomials defined on R, in each of both variables of a maximum degree 2m —1,

i.e. polynomials of the form
2m—1

a(x,y) = ; 1_2___0 Oy xiyi: 3)

such that D*a(x,, y) for x = (%, 0) and D*«(%, y,) for x =(0, %) form for all the
u,v=0,1, k<1—1 polynomials of a maximum degree 2m —2k —1 and such
that «;;=0 for 2m —2[m[2] <4, ] <2m —1.

Definition 2. The H{™ (R)-interpolate of a function u(x, y}€C™ 1V (R) will be
called that element w,, (v, y) €H{™ (R), for which it holds

D*u,,(x,, v,) =D*u(x,, y,), |#|=m—1, y,v=0,1. (4)

It should be denoted that for 4m? coefficients of the element u,, 2m(m +1)
conditions in the vertices and 4/(/ —1) conditions on the sides of the rectangle
under consideration are valid and 4 [m/2]2 coefficients are equal to zero, thus a
total of 4m? conditions. It will first of all be shown that those 4m? conditions
guarantee both the existence and the uniqueness of the defined interpolation.

Theorem 1. To each function «(x, y)€eC™ 1 (R) there exists exactly one
H{™ (R)-interpolate.
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Proof. 1t is sufficient to show that from the conditions
D*u,, (%, y,) =0, |x|=m—1, u,v=0,1 (5)

it follows that ., (x, y) =0. It is evident that for # =1 this statement is satisfied.
Let then m = 2. For an arbitrary 0 <k <! —1, x = (&, 0), ¢ =0, 1 let us define the
auxiliary polynomial f(y)=D*u,(x,, y) of one variable. The polynomial has
according to the definition a maximum degree 2m —2%k —1 and there hold for
it 2m —2k conditions f(y,) =8'(y,) = --- =""*Y(y,}) =0, » =0, 1, therefore
B{(y) =0 and thus also D*%,,(x,, v} =0. In a similar way it could be proved that
for x=(0,k%), 0=k<7—1, v=0,1 it holds D*u,(x, ¥,) =0. From the last two
identities it follows that the polynomial #«,,(x, y¥) can be written in the form

U (%, §) = [(% — %) (¥ — %) (v — 0) (¥ —31))* - & (, ), (6)

whereby the degree of the polynomial o) (x, y) is in each of both variables maxi-
mally equal to the number 2m — 27 —1. It will be shown that all the coefficients
of this polynomial are equal to zero. For this purpose let us define the final system
of polynomials {a!¥ (x, ¥)};_o with the aid of the relations

A (x, y) = Uy, (X, y)»

(5, 3) =a D (5, 3) - (57 (v — ) (v — 3ol (v —p)1L, 1=a=L O

The degree of the polynomial «® (x, y) is apparently in each of both variables
maximally 2m —24 —1. It will be shown by mathematical induction that for
all the indices ¢, §, for which ¢, j = 2m —2 [m[2] — 24, its coefficients are equal to
zero, i.e. o) =0. If 1 =0, the statement follows directly from the definition. Let
thus 0 < A <! and the polynomial «'¥ (x, y) will be written in the form

2m—24-—1 L
@ (xy)= X o2y (8)
i, 7=0
By substituting into (7), by rearrangement and respecting the induction assump-
tion we obtain for ¢, j =2m —2[m/2] —24 +2 the equations

A1) __ (4 A A, F3
=y s~ (Yo+3)a¥s i1+ 3o vy ;i — (%o +x) ¥y ;s

+ (%9 + %) (vo +31) 0‘591, i—1— (%0 -+ %) Yo 31 “Sl—)l,f + xoxlas,l}—z
— % %1 (Yo + 1) °t§f}_1 + %o %1 Yo N1 aﬁ'}’ =0

from which we obtain for j =2m —2[m[2] —2A4, if considered that «;; make sense
only for 0=+4,j=2m —24 —1 and that thus they can be considered equal zero
in the other cases, gradually the relations afy,_s;_;;=0, a‘z‘l,z,_m_z,i =0,...,
ol omz—21,; =0, thus in total o =0 for ¢,j = 2m —2[m[2] —24.

If we now apply the proven statement to the last polynomial a® (x, y), we
find the validity of f) =0 for all

i,igzm—z[%] —2["’“]

2 |=0

thus a® (x, ¥) =0 and therefore with regard to (6) also u,,(x, y) =0.
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Let us now proceed to estimate the error between the given function and its
H{™ (R)-interpolate. This estimate is given by the following theorem, the proof
of which is carried out in a similar way as the proof of the analogical theorem
from [3].

Theorem 2. Let us arbitrarily choose a function u(x, y) €W (R), 1<p < oo,
m+ [%} <k<2m and denote by u,(x, y) its H™ (R)-interpolate. Then there

exists a constant Cy>0 independent of the choice of the function # such that
for an arbitrary nonnegative integer n <s, s =min (&, 2m — [ +4-1) it holds

"” - rn”n,ia, RE Cah“"luL,p,R,
where k =max (%, — %y, Y1 — Vo).

Proof. With regard to W® (R) CC*~#P1=1(R) CC™~1(R) the element u,, is
uniquely determined. In order to simplify the considerations, let us introduce
the transformation

r=af+%, y=bn+7,

where a=3§(x —%), b=3(y1—y), % :%(x}j‘ %0), ¥ =%(y1+yo) which will
transform the given rectangle R to the square R ={—1, 1> X{—1, 1) and which
will transform an arbitrary function v(x, y) defined on R to the function 7 (&, )

=v(a€ +%, by + ¥) defined on R. The derivatives of both functions are tied by
formulas

D*5(&,m) =abDo(x, y). )
With the aid of those relations it can easily be verified that between the norms
defined on R and R it holds

"M — Uy "n,p, R é C_l (ab)llph—” "12 —ﬁm“n,p, R (1 0)

where the constant C, >0 is dependent only on the ratio of the sides of the given
rectangle.
In order to estimate the norm on the right hand side of the last inequality,

let us define on the space W) (R) for a fixed v€ W;® (R) the linear functional

2 [JD*(a—d,) - |D*v [P~} dE- dn.

|| =n R

If 4 is a polynomial with a maximum degree s —1, then 4, =# and there-
fore f(#)=0. It will be shown that f(#) is bounded. Let us consider that
D*(4 —4,) €L, (R) D*vel (R) and thus |D*v[P~1elL (R) 1p +1lg=1, |%] <n.
By applying the Holder inequahtles first for 1ntegrals and finally for sums, we
obtain after rearrangement

@) =8 — i, .7 101855

from which with regard to the inequality » < s it further follows that
[F@)| < (ks o, 7+ V], 5, %) - NolR 5% (11)
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It should be noted that the element 4, could with regard to its definition be
written in the form

UM R R Z wy, (&, 1) D" ((—1)%, (1)),

|#|=m—1 p,v=0

where o}, (£, %) are polynomials in each of both variables of a maximum degree
2m —1 and independent of the function #%. Therefore

1

k2= 5 | 3 ol wlD (1 (<10

If we furthermore consider that the Sobolev lemma guarantees the existNence of a

constant C, > 0 dependent only on the square R such that for all (£, u) €R it holds
\D¥a (&, m)| = Colitls 7 |e|=m—1,

we arrive at the inequality

Vs, 5, & < Cs -8, 5, %
where

1
Cy=C,
=Co 3, D ol
is a constant independent of the choice of the element #. By substituting into
(11) we obtain the inequality

[H@)| = +C) - ol &l 5, %

which proves the boundedness of the functional f(#). The assumptions of the
Bramble-Hilbert lemma have thus been satisfied. By the application of the latter
we obtain

IF@)| = Co(t+Co) - Jolh % - s, 5, %

Let us now put specially v =ﬁ-—ﬁm€Wp(s (R), then after rearrangement we
have
& —

[”,P, ( +Ca lﬁ’is,p,ﬁ-

This inequality will now be employed in the rearrangement of (10), thus
46 — vty i, p, g = Cy - (@BYP - B|iH]| . & (12)

and in doing so we have put C; =C, - C, - (1 +C,). With the aid of the formulas (9)
it can easily be verified that between the semi-norms defined on R and R it holds

||, 5, 2 = (@)=Y . bs - |45 5, &-

By substituting this inequality into (12), the statement of the theorem is arrived at.

The attained results will now be applied to the above described polygon £2.
First of all we must, of course, widen the concept of interpolation to the entire
region 0.

Definition 3. Assume that a partition ¢ of the polygon £ is given. Then by
the H{™ (g, )-interpolate of a function u(x, y) eC™~ (£2) there will be understood

23 Numer, Math., Bd. 19
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such a function wu,, ,(x, y) defined on £ which coincides with the H{™(R,)-in-
terpolate of the given function #(x, y) on each elementary rectangle R,, from
which the polygon £ is composed.

Theorem 3. Assume that £ is an arbitrary polygon whose sides are parallel
with the coordinate axes and g is an arbitrary partition of this polygon. Then to
each function (x, y)€C"~1 () there exists exactly one H{™ (g, £2)-interpolate
Uy o (%, ¥) and it holds u,, , (¥, y) €Ct=21"1(Q),

Proof. The existence and uniqueness follow from the fact that u,, , forms a
uniquely determined H{™ (R,)-interpolate on each rectangle R,. It thus remains
to prove the continuity of the derivatives D*u,, , for 0=, #, <I—1. It is
sufficient to show that on each side of an arbitrary elementary rectangle R, the
H{™(R,)-interpolate together with the given derivatives is uniquely determined
merely by the values of the derivatives D*u(x, y), |#|<m —1 in two vertices
lying on the side under consideration. Let us consider e.g. the side x =z, of
the rectangle R, and let us define the auxiliary polynomial f(y) =D*u,, ,(%,, ¥)
%==(%;,0), 0=2x, </—1. This polynomial has according to the definition a
degree maximally 2m — 2%, —1 and at the same time is given in two vertices
lying on the side under consideration by 2m —2%; values 8(y), 8'(v), ...,
Bm—~1(y); it is therefore uniquely determined by those values. It will be proved
by differentiation that also the derivatives %) (y) =D*u(x,, y), 0 <1, <I—1
are uniquely determined by the above mentioned values. In a similar way the
continuity could be shown also on the other sides of the rectangle R,.

It follows from the proved theorem that #,, ,€W,"™ (L) for every integer
0=n <1. If we furthermore consider that for all veW(”) (9) it holds

Il o =210k sz [0l pa=2ol0s %

and if we limit ourselves to a regular partition system, we can formulate the fol-
lowing theorem.

Theorem 4. Assume that (2 is the above described polygon and C a regular
system of partitions. Let us choose arbitrarily o€ C and (x, y) e W® (),
1<p<<oo, m+ {%] <k=<2m. Let us denote with the symbol u, ,(¥, y) the

H{™ (g, Q)-interpolate of the function #(x, 7). Then for an arbitrary integer
1 =n =/ there exists a constant C, > 0, independent of the choice of the function
# as well the partition ¢ such that the estimate

[#m,e — %l 5,0 = Ca» B |th]5, 5,0

holds, % being given by the relation (2), s =min (%, 2m— I +1).

3. Second-Type Interpolation

In certain cases it is possible to use another, more advantageous method of
interpolation, in which the interpolation polynomials have in contrast to the
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method described above generally a larger number of zero coefficients. On the
other hand, however, this method does not guarantee the continuity of any of
the derivatives of the interpolation function.

Let us again choose arbitrarily a natural number #, limit ourselves to the
rectangle (1) and let us define, in a similar way as above, the basic concepts.

Definition 4. By the symbol H{™ (R) there will be understood the set of all
polynomials (3) defined on R, for which «,; =0, if [i/2] +[j/2] =m.

Definition 5. By the H{™ (R)-interpolate of a function u (x, y)€eC™V (R) there
will be understood that element u,, (x, y) €H{™ (R), for which (4) is valid.

The coefficients of the element #,, are determined by 2 (m -t-1) conditions
in the vertices of the rectangle under consideration, 2m(m — 1) coefficients are
equal to zero. It will first of all be shown that the element #,, is uniquely deter-
mined by the given conditions.

Theorem 5. For each function (%, y)eC"~Y(R) there exists exactly one
H{" (R)-interpolate.

Proof. Analogically as in Theorem 1 it is sufficient to show that the identity
#,, (%, y) = 0 follows from (5). Since for m =1 the statement is apparently satisfied,
it can be assumed that = > 2. It will be shown that for all values of 4, for which

0=i<i= [m—';i] ,
it can be written
Uy, (%, ¥) = [(% — %) (¥ — %) (¥ —30) (y —y0)1* - P (x, ), (13)

where a? (x, y) is 2 polynomial in each of both variables maximally of the degree
2m —2A—1 which (for A<l) in the vertices of the rectangle R satisfies the
conditions D*a® (x,, ,) =0, |%|<m —24—1, u,»=0, 1, and for whose coeffi-
cients /¥ it holds ol =0, if [#/2]+ [§/2] =m —2A. The proof will be carried out
by mathematical induction. For A =0 the statement is apparently satisfied, since
we are putting a9 (%, y) =u,, (¥, ¥). Let us therefore choose 0 <1 <!. In accord-
ance with the induction assumption the polynomial «!*~1 (x, ) has in each of both
variables non-zero coefficients maximally at the power 2m —424-+3, since
ai V=0 for [¢j2]4[j/2)J=m —24+2. The auxiliary polynomial f(y)=
o=V (x,, y) has therefore 2m —424+4 coefficients and in accordance with the
induction assumption it must satisfy 2m —4A4--4 conditions B(y,) =8 (3,
= ... =241 (y) =0, » =0, 1. Therefore #(y) =0 and thus also "~ (x,, ¥)
=0. In a similar way it can be shown that «*~V(x, y,) =0 for »==0, 1, and
therefore we can write

e (2, ) =(x —20) (x — %) (y — o) (¥ — 1) - o® (%, ¥), (14)

where a® (x, y) has in each of both variables the maximum degree 2m —24 —1.
From the given relation the validity of (13) follows immediately. By similar

23*
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considerations as were employed in the proof of Theorem 1 it can be shown that
ol =0 for [i[2] +[j[2]=m —22.

It remains to verify the conditions in the vertices of the rectangle R for
A =1. With regard to (14) it can be written

D, = 3 % () ()

‘D [(x — %) (x —m) (¥ —y0) (¥ — )] - D 2aP (x, y),

where w = (w,, w,). Respecting the induction assumption we obtain after a short
rearrangement for all #x, [x|<m —21+1 the equations

sy 29 {(— 1) (% — %) (y1 — o) - Dba1a=1) g4 (% 30)
- (—1)” (xl - xo) (xZ - 1) D(%l—I, 2 a’u’) (x/u yv)
- (__,1)v (yl ——yO) (MI - 1)D(n1—2, ) ‘x(l) (x,u' yv)
+ (”1 - 1) (%2—1) ) D(n‘—& =2 a(l) (xw yv)} =0.

(15)

If we now take into consideration only those derivatives which make sense and
the others will be taken as equal to zero, we obtain through a successive application
of the Eq. (15) the relations D*a¥ (%, ¥,) =0 for all |x|<m —24 —1, u,» =0, 1.

It follows from the course of the proof that the relation (13) also makes sense
for A =1, thus (6) holds, where o) =0 for all the 1’s, {’s, for which

£ ffmest-m-af),

2
i.e. for all 7,/ =0 and thus #,,(x, y) =0.

Theorem 6. Let us arbitrarily choose a function #(x, y) EW;,,(") (R), 1<p<oo,

m -+ l—:;] <k=<2m and denote by u,,(¥, y) its H{™ (R)-interpolate. Then there

exists a constant C;>>0 independent of the choice of the function «(x,y) such
that for an arbitrarily chosen 0 <# <#% it holds

"u —um”n,p,R = C5 * hkwn' |ulk11’»R’

where % =max (%, — %o, ¥, — o)
The proof of this theorem is fully identical with the proof of Theorem 2 and

will therefore not be carried out. Let us now proceed to extend our considerations
to the above described polygon £.

Definition 6. Assume that some partition ¢ of the polygon £ is given. Then
the H{" (o, Q)-interpolate of a function u(x, y)€C"—1 (Q) will be called such a
function #,, ,(x, y) defined on £ which on each above mentioned elementary
rectangle R, coincides with the H{" (R,)-interpolate of the given function u(x, y).

Theorem 7. Let £2, o be the denotations of Theorem 3. Then to each function
u(x, y) EC"~V(Q) there exists exactly one H{" (o, Q)-interpolate u,, ,(¥, ¥) and
it holds u,, , (%, y) C® ().
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The proof of the last theorem is identical with the proof of Theorem 3 for
I=1. As only the continuity of the H{™(p, 0)-interpolate is guaranteed
Uy o (%, ) €W, () holds only for # =0, 1 and therefore the theorem about the
estimate can be formulated only in the weaker formulation.

Theorem 8. Let 2, C, p, #(x, ¥), A, k be the denotations of Theorem 4. Let us
denote the H{™ (g, Q)-interpolate of the function w(x,y) with the symbol
#,, ,(%, ¥). Then there exists a constant C4>0 independent of the choice of the
function u(x, ¥) and the partition g such that for # =0, 1 it holds

"“m,e‘“““n,pﬂ—ca HFn |“|kl>,

4. Quasi-Linear Differential Equations

The first-type interpolation can be utilized for solving quasi-linear partial
differential equations of an arbitrary order 2#, n =1, whereas the second-type
interpolation only in the case # =1. In the solution of equations of the second
order both methods of interpolation can be utilized. If the approximate solution
of such an equation is not required to have continuous partial derivatives, then it
is more advantageous to use the second method, since the interpolation function
forms in comparison with the first method on each elementary rectangle a poly-
nomial with generally more zero coefficients, i.e. a simpler polynomial. The number
of zero coefficients will increase from 4 [m/2]? in the first method to 2m (m —1)
in the second method of interpolation. The effect will occur only at # =3, since
at m=1, 2 both interpolation coincide.

The results obtained in Section 2 will be applied to the solution of a general
quasi-linear equation in the generalized divergence form which is studied e.g. in
[4, 6, 7]. Let us have an open bounded set 2 with a sufficiently smooth boundary
in the space E¥ and let us consider the equation

2 (—1)#.DrA, (%, u, ..., D*u) =0, (16)

lul=n

where # = 1. The solution of this equation will be sought on a space E, for which
WM (Q)CECW (Q). It will be assumed that the coefficients of the equation
satisfy the following condition:
1) If ueW (Q), then 4,(x, %,...,D*u)€L(2), 1/p +1/g =1, for all [u|<n.
To the Eq. (16) there will be assigned for an arbitrary u, v€ W™ (£2) the gener-
alized Dirichlet form

a(w,v)y= 2 [A, (x4, ..., D") D*v-dx. (17)

lulsn 0

By applying the Holder inequality to both the integrals and the sums it will be
found that

1/q
st o ={ 3 140 D0 e

|=n Q
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ie. that this form is with respect to the variable v a bounded linear functional.
For each element #€FE thus there exists an element F (#) €E* such that for all
v€E it holds

(v, F (u)) =a(u, v),

where (-,-) denotes the pairing between the spaces E and E*. The element u*¢€E,
which for all v€E satisfies the identity a(#*, v) =0 and which is therefore the
solution of the equation F (u*) =@, will be called the weak solution of the Eq. (16).
The Dirichlet form (17) will be required to satisfy the following two requirements:

2) For arbitrary elements «, v€E it holds
(o —vl,p,0) Sa(w, u—v) —a(v, u —v) B (ju — v}y p0),

where a(2), B () are arbitrary non-negative functions of the non-negative variable
of such a type that the functions

%(R) =0f1a(m) #1.dt, B(R) :oflﬁ(Rt) 14t

are continuous, increasing and it holds

—— . &(R)
p(0)=0 and Rl}gl,o—f—_oo

3) For arbitrary elements u, %, 4, there exists the Gateaux derivative
ay(hy, hy) = lin‘l) la(u +shy, hy) —a(u, hy)]/s, it is continuous according to the
§—>

variable # on an arbitrary hyperplane passing through the point # and it can be
written aj, (hy, hy) = ay, (A, ).

Under the given assumptions it can be shown in a similar way as in 8] that
the operator F is on the space E potential with the potential

f(u) :()fla(tu, u)dt (18)

and satisfies the assumptions of the statement in the cited paper so that the
following lemma can be formulated.

Lemma 2. Assume that in the space EV there is given a bounded open set Q
with a sufficiently smooth boundary. Then the Eq. (16), whose coefficients
satisfy the condition 1) and the corresponding Dirichlet form (17) satisfies the
conditions 2) and 3), has on an arbitrary space E, I/f/;(”) (2) CECWM(Q), exactly
one weak solution #*€E. If we replace this solution on an arbitrary closed (or
weakly closed) convex set MCE by the approximate solution #€M, which on
the set M minimizes the functional (18), then there holds with an arbitrary weM
for the error of the solution the estimate

[ —u* |, 0 =y (|l —* |, 5,0),

where v (#) is a certain continuous, increasing, non-negative function of the non-
negative argument, independent of the choice of the set M, for which y (0) =0.
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Let us now limit ourselves to a plane polygon 2, whose sides are parallel with
the coordinate axes; let us arbitrarily choose m=2n—1,9€C and put
M =E~H{™ (g, Q), where H™ (g, ) is the set of all functions defined on £ which
on each elementary rectangle R,, from which £ is composed, form an element of

H (R). TE w* WM (D), 1 <p<oo, m+ {%] <k <2m then as the element %

from the previous lemma the element u}, ,€ H ™ (0, Q) which forms the H{™ (o, Q)-
interpolate of the element w* can be taken. If u}, ,€E, then u}, ,€ M and for
the error of the solution the estimate

|# —w*lh, o =807

is valid, where s=min(k,2m—1+1) and 8(f) =y (C,|u*|;, o-1); thus the
function 4(f) is non-negative, increasing, continuous, independent of the choice
of the partition p€C and the set M and it holds that §(0) =0.

In practice the case o (f) = (apt)?, B{t) = (B¢?)? often occurs. Then the error
of the solution is of the same order as the error of the chosen interpolation, i.e.

|~ pa =82 Culwt], g0 W

5. Non-Linear Integral Equations

The application of the second-type interpolation will be illustrated on the
solution of a non-linear integral equation which is solved in [ 7, 9]. In the examina-
tion of this equation the results from [6] will be utilized.

Let us assume that in the space EV there is given a set £2 of a finite measure
and let us deal with the Hammerstein equation

u(x) saf K(x,9)-g(y, u(y)dy (19)

which can be written in the equivalent operator form

Fuy=u—A Gu) =0, {20)
where
4 v=ng(x, y)-v(y)-dy (21)
is the linear operator and
G () =g (%, u()) (22)

is the non-linear Nemycki operator.

The solution of Eq. (19} or (20) respectively, will be sought on the space
E =L, (£). The scalar product defined on this space will be denoted for simplicity
(,-), the norm corresponding to the latter |-|. For the solution u*€E of the
equation under consideration apparently it holds (u, F(u*))=0 for all u€E.
In the space E let us choose an arbitrary finite-dimensional subspace M. The
element %€M which satisfies the relation (u, F (%)) =0 for all €M will be called
the approximate solution of the Eq. (20), thus also (19).
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In our further considerations it will be required that the functions K (x, ¥) and
g (%, u(x)) satisfy the following assumptions:

4) K(x, y) is such a function that the operator (21) defined on E is bounded
and self-adjoint.

5) g(x, %) is a real function defined for all x€Q, #€(—o0, ), continuous
according to % with almost all x€£2 and measurable on 2 for every #€(—oo, co).

6) For arbitrary u,, #,, v€E it holds
| (g (x, ) —g (% ), o] SBlo] - Juy —ud, B~ 4] <1

Under the above mentioned assumptions the operator F(x) defined on F
satisfies the assumptions of the statement from [6], i.e. it is finitely continuous,
strongly monotone and Lipschitz continuous. In order to facilitate the verifica-
tion of this fact, let us note first of all that the expression

(F (1) — F (), v) = (4 — g, v) — (AG (1) — AG (u), )

can with regard to the self-adjointion of the operator 4 and the definition of the
operator G be written in the form

(F (1) —F (uy), v) = (thy —uy, v) — (g (%, #y) —g(x, uy), 4 'U)- (23)
By applying condition 6) to this identity we obtain the inequality
|(F () —F (ug), v)[ = (1B - Ao - oy — e,

from which the finite continiuty of the operator F (), i.e. that from {u,};>,C M,
u,~>u€M there follows (F (u,), v)—(F (u), v) for each v€E, follows on one hand
and by putting v =F (u;) —F (u,) also the Lipschitz continuity of this operator,
i.e. the validity of the inequality

|F () —F () [ = (14 - |A]) - 2 — e

for all #,, u,€E, on the other hand. The strong monotony of the operator F (u)
is guaranteed by the inequality

l (F(ul) —F(uy), u, "’“2)‘ 2)’““1 —“2"2

which follows from (23) and the condition 6) and is valid for arbitrary «,, u,€E,
the constant y > 0 being given by the relation

y=1-4-14| (24)

All the assumptions of the statement from [6] have been satisfied and therefore
it is permissible to formulate the following lemma.

Lemma 3. Assume that on the space EV there is given a set £ with a finite
measure. Assume further that K(x, y) satisfies the condition 4) and g(x, #(x))
satisfies the conditions 5) and 6). Then Eq. (20) or (19) respectively, has on the
space E = L, (2) exactly one solution #*. If we replace this solution on an arbitrary
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finite-dimensional subspace M CE by a uniquely determined approximate solu-
tion #€M, i.e. with the element # €M that satisfies for all %€M the relation

(@, u) = (G (@), Au), (25)
then the following estimate holds:

ly

where # €M is an arbitrary element and y is given by the relation (24).

7 —w)< o (4D - Ju—w

Assume now that on the above described plane polygon {2 there is given a
partition p€C and choose arbitrarily m =1. Let us take as the subspace M the
set M = H{ (p, £2), i.e. the set of all functions defined on £2 which on every elemen-
tary rectangle R, that forms the polygon £ form an element from H{™ (R,). If
u* W™ (), then as the element # from the Lemma 3 the H{™ (g, £2)-interpolate
uy, ,€M of the element * will be taken. For the error of the solution of the Eq. (20)

or (19) respectively, thus with regard to the Theorem 8 the following estimate
holds:
it —ur

= (414D - Co |0*]am 5,0 12

1f we denote by #u,, u,, ..., #, the base of the space M, an arbitrary element

k2
#€M can be written in the form u = ), ¢, - u,, where ¢, ¢,, ..., ¢, are suitable real
i—1

numbers. The coefficients €,,Cy, ..., T, of the approximate solution # will be
determined by solving the system of equations

n n
PIRACTRTS :(g(x, >y uk), Aui>, i=1,...,n
i=1 k=1

which is a consequence of (25). This generally non-linear system has, as follows
from the Lemma 3, exactly one solution.

In conclusion the author should like to express his gratitude to Prof. M.
Zlamal for his valuable comments.
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