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Summary. The paper presents two methods for a piecewise Hermite interpolation 
of a sufficiently smooth function. The interpolation function is on each elementary 
rectangle, into which the given region is divided, determined by all the derivatives 
of the function under consideration up to a certain predetermined order. The results 
obtained are utilized in the solution of a general quasi-linear equation and in the solu- 
tion of a non-linear integral equation. 

1. Introduction 

In the numerical solution of differential equations we determine as a rule 
only the values of the unknown solution in the nodal points of a mesh given in 
advance. In many physical or technical problems we are, however, often more 
interested in derivatives of this solution, since those have basic physical signif- 
icance. I t  is, of course, possible to numerically compute relatively easily from 
the known solution of the given equation also the values of its derivatives, but 
in doing so the calculation is loaded with a further error. The finite element method 
(see [5, 6, 8, 1 I, 12]) facilitates the determination of the values of derivatives of 
the sought solution together with values of this solution already during the actual 
solution of the given differential equation. Certain, in the application of the method 
often employed interpolation methods of the unknown solution are listed in [t, 3, 
12, 13]. 

If we employ the interpolation method of the sought function u (x, y) described 
in [!] and if we use in doing so the interpolation polynomials of the 2 m - - I  
degree in each of both variables, we find in each nodal point of the given rectan- 
gular mesh m 2 parameters, i.e. all partial derivatives D*u(x,y), for which 
0 <~ nl ,  n 2 ~ m -- t ; at the same time we denote n : (nl ,  n2) , [~l : ~1 -~- ~2, Zl, ~2 ~ 0, 

0t~t 
D X :  In many problems of a physical as well as technical nature, x*~ �9 0y~, �9 
however, the knowledge of all those derivatives is not necessary. Thus e.g. in the 
study of a planar potential field (magnetic, electric, thermal . . . .  ) described by 
a partial differential equation of the second order we are mainly interested in the 
first partial derivatives of the sought solution, since they give important physical 
magnitudes. The values of the second order mixed derivative which we would 
also have to determine when applying the above mentioned method do not, 
however, have any physical significance, and therefore their determination 
would be useless. Similarly in the theory of elasticity where in the course of 
investigating the deformations of a plate a certain partial differential equation 
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of the fourth order is obtained, the unknown function u (x,  y )  gives the deflection 
of the plate, its first partial derivatives determine the angles of slope, from the 
second derivatives the moments can be calculated and from the latter deforma- 
tions and stress components, and finally with the aid of the third derivatives the 
shear forces are determined. The remaining derivatives D * u ( x ,  y ) ,  0 <----~1, as <= 3, 
In] ~ 4, essential when applying the above cited method, are of no significance for 
practical purposes. 

The derivatives D ~ u ( x , y ) ,  for which 0 ~ n l ,  n 2 ~ m - - l ,  [n[-->m thus as a 
rule lack physical meaning. When processing the problem on a digital computer, 
these data would increase out of proportion the quantity of unwanted information, 
would reduce uselessly the capacity of the memory and their evaluation would 
prolong the computation. Therefore two other methods of interpolating the given 
function will be presented in this paper. Both the methods, similar to the method 
described in [t 1, do not contain in comparison with the cited paper the above 
mentioned redundant data, have the same order of accuracy in some cases, but 
do not guarantee the continuity of all derivatives of the interpolation function. 

When estimating the error between the given function and its interpolation 
we shall make use of a certain lemma which will first of all be cited without proof 
in a similar form as given in [3]. For this purpose let us consider in the N-dimen- 
sional space E N with a general point x = (x  1 . . . . .  XN) a bounded region ~2 and let 
us choose an arbitrary non-negative integer k. The symbol Wp I*l (Q) denotes the 
space of all functions u (x) defined on ~2 which have the generalized derivatives 
up to the order k inclusive and which together with those derivatives belong to 
the space Lp (/2), p ~ t. Let us denote the norm of the space Wp C~l (Q) 

P ~l/P 

01xl 
where in agreement with the above we denote D * = ~Xl' . . .  ax*ff '  ~ = (~1 . . . . .  aN),  

In[ = n x +  "" +aN, nl . . . . .  aN -->_0. Beside the given norm let us introduce on the 
above mentioned space also the semi-norm 

Lemma 1 (Bramble-Hilbert). Let a bounded region Q ( E  N with diam ~ = 1 
fulfil the strong cone condition. Let /(u) be a bounded linear functional defined 
on the space WpI~I(D), p>--l, i.e. let [/(u)]<--CxllUllk, p,~. Let / ( ~ ) = 0  for every 
polynomial ~ of a lesser degree than k. Then there exists a constant C~> O, 
dependent only on the cone condition such that for all u E Wp Ikl (/2) it holds 

II(u) 
The proof of the lemma, as well as the formulation of the strong cone condition 

are given in [21. 
Our further considerations will be limited only to the case N = 2 and therefore 

let us note above all that  the rectangle 

R = (Xo, x l )  X (Yo, Yl) ,  O) 
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which we are  going to  deal  wi th  in bo th  in te rpo la t ion  methods  first,  satisfies the  
s t rong cone condit ion.  In  bo th  cases we shall  l a te r  on ex tend  our  considera t ions  to 
a more  general  region, i.e. an a r b i t r a r y  polygon ~ ,  the  sides of which are paral le l  
wi th  the  coordina te  axes, In  doing so we shall  assume tha t  on the  polygon ~ there  
is def ined a partition ~, i.e. t ha t  the  polygon is expressed in the  form of a union 
of rectangles  R~, z : 1  . . . . .  z0, each two of which are e i ther  d is jo in t  or have 
one ver tex  or one side in common.  If  we denote  a., b. the  sides of the  rec tangle  
R., then  each pa r t i t i on  is charac te r ized  b y  two values  

h = m a x  (a., b.), h : min  (a., b.). (2) 

A sys tem C of the  par t i t ions  ~ will be cal led regular, if there  exists  a cons tan t  
a > 0 such t h a t  for all p E C i t  holds  

2. Fi rs t -Type Interpolation 

I t  will be assumed in the  ent i re  sect ion t ha t  there  is given a na tu ra l  number  m 
and to this  will  be assigned a na tu r a l  number  

L imi t ing  ourselves at  the  beginning to  the  rec tangle  (t),  let  us define above  all 
two basic  concepts.  

Definit ion 1. The  symbol  HI  ''~ (R) will be used to  denote  the  set of all real  
po lynomia ls  def ined on R, in each of both  var iables  of a m a x i m u m  degree 2m - -  t ,  
i.e. po lynomia ls  of the  form 

2m--1  

o~(x, y) = E o~i x~Y ~, (3) 
i,i=O 

such t h a t  D~(x~,y) for u=(k, 0) and  D~(x,y,)  for n = ( 0 ,  k) form for all the  
At, v : 0, t ,  k :< l - -  t po lynomia ls  of a m a x i m u m  degree 2 m - -  2 k - -  t and  such 
t ha t  a i i = 0  for 2m--2[m]2] ~ i , i ~ 2 m - - t .  

Defini t ion 2. The  HI  '~ (R)-interpolate of a funct ion u(x, y)EC C~-l) (R) will be 
called t h a t  e lement  urn(x, y)EH[ 'n~ (R), for which i t  holds  

t .  (4) 

I t  should be deno ted  t h a t  for 4rn z coefficients of the e lement  u,,, 2m(m +t) 
condi t ions  in the  ver t ices  and  4l(l--t) condi t ions  on the sides of the  rec tangle  
under  considera t ion  are va l id  and  4 [rn/2] ~ coefficients are equal  to  zero, thus  a 
to ta l  of 4rn z condi t ions.  I t  will f i rs t  of all be shown tha t  those 4rn 2 condi t ions  
guaran tee  bo th  the  exis tence and  the  uniqueness of the  def ined in te rpola t ion .  

Theorem 1. To each funct ion u(x, y)ECI"-XI(R) there  exis ts  e xa c t l y  one 
HI  ml (R)- in terpola te .  
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Proof. I t  is sufficient to show tha t  f rom the conditions 

D"u,~(x~,,y,) = 0 ,  [ ~ l ~ m - - t ,  # , v = 0 ,  t (5) 

it follows tha t  um (x, y) ~ 0. I t  is evident  tha t  for m = t this s t a tement  is satisfied. 
Let  then m --> 2. For  an a rb i t ra ry  0 --< k ~ l --  t ,  ~ = (k, 0), # = 0, t let us define the 
auxi l iary polynomial  f l (y )=D~u,~(x , ,  y) of one variable.  The polynomial  has 
according to the definition a m a x i m u m  degree 2 m - - 2 k - - t  and  there hold for 
it 2 m - - 2 k  conditions f l (y , )=f l ' (y , )  . . . . .  fl(m-k-1)(y,) = 0 ,  v = O ,  t ;  therefore 
fl(y) =--0 and thus also D~u,,(x~,, y) =--0. In  a similar way it could be proved  tha t  
for n----(0, k), O ~ k < - - l - - t ,  v = 0 ,  1 it holds D*u,~(x,y,)=--O. From the last  two 
identities it follows tha t  the polynomial  um (x, y) can be wri t ten in the form 

u,~(x, y )  = [ (*  - -  %) ( x  - -  x l ) ( y  - - Y o ) ( Y  - - Y l ) ]  l" ~l*l (x, y), (6) 

whereby the degree of the polynomial  mr0 (x, y) is in each of both  variables maxi-  
mal ly  equal  to the number  2 m -  2 l -  1. I t  will be shown tha t  all the coefficients 
of this polynomial  are equal  to zero. For  this purpose let us define the  final sys tem 
of polynomials  {a(a) (x, Y)}~=o with the aid of the relations 

~lol (x, y) = u,~ (x, y), 
(7) 

~la)(x, y) =~(~-ll(x,  y) �9 [(x --x0)(x - -x l )  (y --Yo)(Y --Yl)] -1, I --<2 --<l. 

The degree of the polynomial  ~(al (x, y) is apparen t ly  in each of bo th  var iables  
max ima l ly  2 m - - 2 2 - - t .  I t  will be shown by  ma themat i ca l  induction t ha t  for 
all the indices i,/ ' ,  for which i , / '  ~ 2 m - - 2  [m/2] - -22 ,  its coefficients are equal  to 
zero, i.e. c~!~ ) = 0. If  2 = 0, the s t a tement  follows directly from the definition. Let  
thus  0 < 2 ~ l and the polynomial  ,c Ia/(x, y) will be wri t ten in the form 

2m--2~ . - -1  
~(a) (x, y) = E ot!~ ~ xi y (  (8) 

i, j =0  

B y  subst i tut ing into (7), by  rear rangement  and respecting the induction assump-  
t ion we obtain for i,/" ~ 2 m - - 2  [m/2] - - 2 2  + 2  the equations 

ac(~-1) = ~(a) ̂  . _ / . ,  • ~ ~((a} • ,, ~- x ~ ~(~) ,~ - -  , - = , ~ - s  ~ y o - - . r x /  i-2, i- l;.roYl~ i--(Xo~ 1J~i-l,i-s 

+ (x o + xt) (Yo +Yl)  ~!~,, i - ,  --  (Xo + x,)Yo Y, m!~,,i + xo x,~}-_2 
(a) , (a) 

- -  Xo x ,  (Yo + Yl) ~,, ~'-. + xo x ,  Yo Yl ~ j  = 0 

f rom which we obtain  for i >= 2 m - -  2 [m/2] - -  2 J.. if considered t ha t  0c~ i make  sense 
only for 0 < = i , / " < 2 m - - 2 ~ - - 1  and  tha t  thus they  can be considered equal  zero 
in the other  cases, gradual ly  the  relations a(za=)_,a_~,i=0, a(2a~_2,_,,i=0 . . . . .  
0t(/~_2[r~/2]_2a,/=0, thus in to ta l  cr ~4),; = 0  for i, i = > 2 m - - 2  [m/2] - -22 .  

I f  we now app ly  the proven s ta tement  to the last polynomial  ,r (x, y), we 
find the val idi ty  of ~!*] = 0 for all 

i, j > - - 2 m - - 2  [ - ~ 1 -  2 [ - - m ~ ]  - 0 ,  

thus ~r (x, y) =_ 0 and therefore with regard to (6) also u,~ (x, y) ~ O. 
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Let  us now proceed to estimate the error between the given function and its 
H~ ~) (R)-interpolate. This estimate is given by  the following theorem, the proof 
of which is carried out in a similar way as the proof of the analogical theorem 
from [3]" 

Theorem 2. Let us arbitrari ly choose a function u (x, y) �9 Wp C~) (R), t < p < c~, 

m+]~l<_k<<_2m and denote by  u~(x,y)its H~)(R)-interpolate. Then there 

exists a constant  C~ > 0 independent  of the choice of the function u such tha t  
for an arbi t rary  nonnegative integer n --<s, s ---- min (k, 2m - -  l + t )  it holds 

I I ~ -  u,,ll,,,p,_~ ~ c,h'-"l~l~,,p,~, 
where h = max  (x 1 --  x 0, Yl --Y0). 

Proo/. With  regard to l/Vp Ik) (R) ( C Ik-[~/pj-1) (R) ( C Ira-l) (R) the element u** is 
uniquely determined. In order to simplify the considerations, let us introduce 
the t ransformation 

x=a~+~, y----b~ + y ,  

1 + where a=�89 b=~(yl--yo), ~ = { ( x l + x 0 ) ,  Y----~(Yx Y0) which will 

t ransform the given rectangle R to the square R = ( - - i ,  1 ) • ( - - i ,  1 ) and which 
will t ransform an arbi t rary  function v (x, y) defined on R to the function ~ (~, ~/) 

-----v (aS + s  b~/+ y) defined on R. The derivatives of both functions are tied by  
formulas 

O~ ~ (~, 7) = a~' b~' h~ v (x, y). (9) 

Wi th  the aid of those relations it can easily be verified tha t  between the norms 

defined on R a n d / ~  it holds 

II~ - ~ I1,,,~,, ~ ~ c1 (a b)'-"P h - "  II,~ - -  ~ I1,,,,,,-~, 0o )  

where the constant  C t > 0 is dependent only on the ratio of the sides of the given 
rectangle. 

In  order to estimate the norm on the r ight hand  side of the last inequality,  

let us define on the space Vdp I'l (R) for a fixed v E Wp c*l (R) the linear functional 

/(~) = ~ f f O ~ ( a - ~ . ) .  IO~vl p-1. aS. dr. 

If  ~ is a polynomial  with a max imum degree s -  t,  then ~ ,  = ~  and there- 
fore 1 ( ~ ) = 0 .  I t  will be shown tha t  [(~) is bounded.  Let  us consider tha t  

h*(~-ur~) ELp(R), D*vELp(R) and thus ID~vJP-XELq(R), lip + tlq----~, 1~1 < n .  
By  applying the HSlder inequalities, first for integrals and finally for sums, we 
obtain after rearrangement  

p--1 
I/Ca) I = < Ila - ~,.ll.,,,, ~ �9 IIv II.,p, ~, 

from which with regard to the inequali ty n ~ s it fur ther  follows tha t  

It (~) I ~ (11,~ I1~,,,, ~ + II ~,,,, II,, ,,, .~). ll*., I1~,~.~ �9 01)  
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I t  should be noted that  the element ~ could with regard to its definition be 
written in the form 

1 

l u l < m - 1  tt, v = o  

where o ~  (~, 2/) are polynomials in each of both variables of a maximum degree 
2 m -  i and independent of the function ~. Therefore 

1 

II~,,l[,.,..~-<- - Z Z [Io$,,Ikp,~.lo"~((-l) ", (-t) ' )1.  
l~l< m--i t~, v = 0  

If  we furthermore consider that  the Sobolev lemma guarantees the existence of a 

constant C 2 > 0 dependent only on the square R such that  for all (~, #) ER it holds 

we arrive at the inequality 

[[~,,, Its, ,, ~ <-- G-II~  IIs, p, ~, 
where 

1 

]x[ < m - - 1  if, v = 0  

is a constant independent of the choice of the element ~. By substituting into 
(t t) we obtain the inequality 

l! (~)1 < (~ + c~). II v I1',,~; ~-II,~ I I,, ,, 
which proves the boundedness of the functional ] (~). The assumptions of the 
Bramble-Hilbert  lemma have thus been satisfied. By the application of the latter 
we obtain 

Let us now put specially v =~--~,~EI/Vp(~)(R), then after rearrangement we 
have 

I1~-~,~ll,,, p, ~ < c~O § c~) �9 I~l,,,,n. 
This inequality will now be employed in the rearrangement of (t0), thus 

I1" -",~11,,,,, ~ < c~. (ab) 11#. h-" l~ l , , , ,  ~ 02) 

and in doing so we have put  Ca = C1- C2" (t + C3). With the aid of the formulas (9) 

it can easily be verified that  between the semi-norms defined on R and R it holds 

By substituting this inequality into (12), the statement of the theorem is arrived at. 

The attained results will now be applied to the above described polygon Q. 
First of all we must,  of course, widen the concept of interpolation to the entire 
region $2. 

Definition 3. Assume that  a partition ~ of the polygon Q is given. Then by  
the H~ ") (~, ~2)-interpolate of a function u (x, y) EC ('~-~) (/2) there will be understood 

23 Numer. Math., Bd. t9  
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such a function u,~,o (x, y) defined o n / 2  which coincides with the HI "1 (R,)-in- 
terpolate of the given function u(x, y) on each elementary rectangle R,, from 
which the polygon/2 is composed. 

Theorem 3. Assume t h a t / 2  is an arbitrary polygon whose sides are parallel 
with the coordinate axes and Q is an arbitrary partition of this polygon. Then to 
each function u(x, y)EC ('~-1) (J2) there exists exactly one H(x 'n) (q,/2)-interpolate 
um, Q (x, y) and it holds u,~,e (x, y) EC C~-1,/--1) (~r 

Proo]. The existence and uniqueness follow from the fact that u,,,o forms a 
uniquely determined HI ml (RT)-interpolate on each rectangle RT. I t  thus remains 
to prove the continuity of the derivatives D*u,~,Q for 0 ~ u l ,  n , = < l - - t .  It  is 
sufficient to show that on each side of an arbitrary elementary rectangle RT the 
H~ 'n) (R,)-interpolate together with the given derivatives is uniquely determined 
merely by  the values of the derivatives D*u(x, y), Igl<m-I in two vertices 
lying on the side under consideration. Let us consider e.g. the side x-----x 0 of 
the rectangle R, and let us define the auxiliary polynomial fl (y) =D~u,~,e (%, y), 
s 1, 0), 0 ~ 1 ~ l - - t .  This polynomial has according to the definition a 
degree maximally 2 m - - 2 n 1 - - I  and at the same time is given in two vertices 
lying on the side under consideration by 2 m - - 2 u l  values fl(y), fl'(y) . . . . .  
fllm-*,-ll (y) ; it is therefore uniquely determined by those values. I t  will be proved 
by differentiation that also the derivatives fll~,}(y)=D*u(Xo, y), 0 ~nz ~ l - - 1  
are uniquely determined by the above mentioned values. In a similar way the 
continuity could be shown also on the other sides of the rectangle R,. 

I t  follows from the proved theorem that  u,,,eEl/Vp(*l(/2 ) for every integer 
0--< n--< l. If we furthermore consider that for all v E Wp I~l (Q) it holds 

Ilvllb, --Ellvll.*,,, ., 
4r "# 

and if we limit ourselves to a regular partition system, we can formulate the fol- 
lowing theorem. 

Theorem 4. Assume t h a t / 2  is the above described polygon and C a regular 
system of partitions. Let us choose arbitrarily Q E C and u(x, y)EWp (kl (~2), 
,  enote wit   ym oS 

L / ~  J 

H~I 'hI (0, Q)-interpolate of the function u(x, y). Then for an arbitrary integer 
t ~ n --< l there exists a constant C 4 > 0, independent of the choice of the function 
u as well the partition ~ such that  the estimate 

= c , .  

holds, h being given by the relation (2), s = min (k, 2m--  l + t ) .  

3. Second-Type Interpolation 

In certain cases it is possible to use another, more advantageous method of 
interpolation, in which the interpolation polynomials have in contrast to the 
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method described above generally a larger number of zero coefficients. On the 
other hand, however, this method does not guarantee the continuity of any of 
the derivatives of the interpolation function. 

Let us again choose arbitrarily a natural number m, limit ourselves to the 
rectangle (1) and let us define, in a similar way as above, the basic concepts. 

Definition 4. By the symbol H~ ~) (R) there will be understood the set of all 
polynomials (3) defined on R, for which e i i = 0 ,  if [i/2] +[7"/2] =>m. 

Definition 5. By the H(~ m) ( R)-interpolate of a function u ( x, y)EC ('n-l) ( R) there 
will be understood that  element u,, (x, y) EH~ ~1 (R), for which (4) is valid. 

The coefficients of the element u~ are determined by 2m(m + t) conditions 
in the vertices of the rectangle under consideration, 2 m ( m -  1) coefficients are 
equal to zero. I t  will first of all be shown that  the element u,~ is uniquely deter- 
mined by the given conditions. 

Theorem S. For each function u(x, y)EC('~-~)(R) there exists exactly one 
H(2 "~) (R)-interpolate. 

Pro@ Analogically as in Theorem t it is sufficient to show that  the identity 
u,~ (x, y) ~ 0 follows from (5). Since for m = t the statement is apparently satisfied, 
it can be assumed that  m >__ 2. I t  will be shown that  for all values of X, for which 

it can be written 

o<-~t-<l= [-~!],  

u,~ (x, y) = [(x --  Xo) (x --  x~) (3, --Yo) (Y --Yl)] ;t" ~x('~) (x, y), (13) 

where ~z I~) (x, y) is a polynomial in each of both variables maximally of the degree 
2 m - - 2 2 - - I  which (for ~ < l )  in the vertices of the rectangle R satisfies the 
conditions D~cd~)(x.,y~)=0, I ~ [ ~ _ m - - 2 ; t - - l ,  # , v = 0 ,  t, and for whose coeffi- 
cients ~!~)it holds ~1  = 0 ,  if [i/2] + [i/23 > m -  2~. The proof will be carried out 
by mathematical  induction. For 2 = 0 the statement is apparently satisfied, since 
we are putting ~(0) (x, y) = um (x, y). Let us therefore choose 0 < 2 ~ l. In accord- 
ance with the induction assumption the polynomial ~(x-~) (x, y) has in each of both 
variables non-zero coefficients maximally at the power 2 m - - 4 ~ + 3 ,  since 
~ - - ~ ) = 0  for [i/2]+Fl"/2~>=m--2~+2. The auxiliary polynomial /5 (y)=  

| 
et~-l)(x,, y) has therefore 2 m - - 4 ~ + 4  coefficients and in accordance with the 
induction assumption it must  satisfy 2 m - - 4 1 + 4  conditions fl(y,)=fl'(y,) 
. . . . .  fl(,~-z~+l) (y,) = 0, v = 0, 1. Therefore/5 (y) ~ 0 and thus also ~1~-1) (x~, y) 
----0. In a similar way it can be shown that  cd x-~) (x, y , ) = 0  for v = 0, 1, and 
therefore we can write 

u(~-ll (x, y) = (x - -  Xo) (x - -  xl) (y --Yo) (Y --Yl)" ~r y), (t4) 

where x(~)(x, y) has in each of both variables the maximum degree 2 m -  2 ~ -  t. 
From the given relation the validity of (t3) follows immediately. By similar 

23* 
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considerations as were employed in the proof of Theorem I it can be shown tha t  
o~ (~-) ----- 0 for [il2] + [/'/2] > m --  2 2. 

I t  remains to verify the conditions in the vertices of the rectangle R for 
; t ~ l .  Wi th  regard to (14) it can be written 

D'qz I~-11 ( x, y) = ,o~o ~' ~x ~ 

�9 D ~ E(x - Xo) (x - xll ( y  - y o )  ( y  - y l ) ]  �9 D ' - ~  ~ (x, Yl, 

where co = (0) 1, ~o2). Respecting the induction assumption we obtain after a short 
rearrangement  for all ~, I~l < m - 2)l + 1 the equations 

~1~2{(--1)/~+v (Xl - -  X0) (Yl --Y0) " D(g ' - I '  ~,-1) cx(g)(x,~, y,) 

- -  ( - - l )  • ( x  I - -  x0) (U~ - -  1) D (~'-1' u , -2)  ~(~)(x w y , )  
(15)  

--  (--1)" (Yl --Yo)(ul  - - l )  D(*'-*' **-1)~(z)(x~, y,) 

+ (~1 - -  t ) ( ~ , - -  t) �9 D (''-*' *'-*)cr (~) (x, .  y.)} -----0. 

If  we now take into consideration only those derivatives which make sense and 
the others will be taken as equal to zero, we obtain through a successive application 
of the Eq. (t 5) the relations D%r I*/(x,, y~) = 0 for all [ul ~ m --  2 2 - -  !, #, v = 0, 1. 

I t  follows from the course of the proof tha t  the relation (13) also makes sense 
for 2 -----l, thus (6) holds, where cr = O for all the i 's, ]% for which 

i.e. for all i , / '  ~ 0 and thus u,~ (x, y) ~ 0. 

Theorem 6. Let us arbitrari ly choose a function u (x, y) eWp TM (R), l < p < 0% 

m + [ ~ ] ~ k < - - 2 m a n d  denote by u,,(x, y) its H~m'(R)-interpolate. Then there 

exists a constant  C 5 > 0 independent  of the choice of the function u (x, y) such 
tha t  for an arbitrarily chosen 0 --< n <-- k it holds 

�9 

where h = max (x 1 - -  x 0, Yl --Y0). 

The proof of this theorem is fully identical with the proof of Theorem 2 and 
will therefore not  be carried out. Let  us now proceed to extend our considerations 
to the above described polygon f2. 

Definition 6. Assume tha t  some part i t ion 0 of the polygon Q is given. Then 
the H{~ ") (0, ~2)-interpolate of a function u (x, y) EC I~-1) (~2) will be called such a 
function u,,,Q(x, y) defined on $2 which on each above ment ioned elementary 
rectangle R~ coincides with the H~ ~) (R~)-interpolate of the given function u (x, y). 

Theorem 7. Let  Q, ~ be the denotat ions of Theorem 3. Then to each function 
u(x, y ) e C  I '-~) (/2) there exists exact ly one H~ '~) (~,/2)-interpolate u,~,~ (x, y) and 
it holds u,~,o (x, y) eC I~ ([2). 
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The proof of the last theorem is identical with the proof of Theorem 3 for 
l = t .  As only the continuity of the H~"l(~,D)-interpolate is guaranteed 
u,~,e(x, y) EVVpC') (D) holds only for n = 0 ,  I and therefore the theorem about the 
estimate can be formulated only in the weaker formulation. 

Theorem 8. Let Q, C, ~, u (x, y), h, k be the denotations of Theorem 4. Let us 
denote the H~I(~,  Q)-interpolate of the function u(x,  y) with the symbol 
urn, Q (x, y). Then there exists a constant C 6 > 0 independent of the choice of the 
function u (x, y) and the partition ~ such that  for n ----0, I it holds 

s �9 

4. Quasi-Linear Differential Equations 

The first-type interpolation can be utilized for solving quasi-linear partial 
differential equations of an arbitrary order 2n, n ~ 1 ,  whereas the second-type 
interpolation only in the case n = I. In the solution of equations of the second 
order both methods of interpolation can be utilized. If the approximate solution 
of such an equation is not required to have continuous partial derivatives, then it 
is more advantageous to use the second method, since the interpolation function 
forms in comparison with the first method on each elementary rectangle a poly- 
nomial with generally more zero coefficients, i.e. a simpler polynomial. The number 
of zero coefficients will increase from 4 Cm/2] 2 in the first method to 2 m ( m - - 1 )  
in the second method of interpolation. The effect will occur only at m ~ 3, since 
at m = t, 2 both interpolation coincide. 

The results obtained in Section 2 will be applied to the solution of a general 
quasi-linear equation in the generalized divergence form which is studied e.g. in 
[4, 6, 7]. Let us have an open bounded set D with a sufficiently smooth boundary 
in the space E N and let us consider the equation 

~. ( - - t )  I~1 �9 D'~A~(x, u . . . . .  D~u) = 0 ,  (16) 

where n ~ t. The solution of this equation will be sought on a space E, for which 

~VpI-I (/2)( E (W0("I (~2). I t  will be assumed that  the coefficients of the equation 
satisfy the following condition: 

1) If uEWp t~ (E2), then Az(x ,  u . . . . .  D"u) ELq(Q), lip + l /q --~1, for all 1/~[ _ n .  

To the Eq. (t6) there will be assigned for an arbitrary u, vEWo(nl (O) the gener- 
alized Dirichlet form 

a(u, v) = X fA~,(x, u . . . . .  O"u) .  OVv �9 dx. (17) 

By applying the H61der inequality to both the integrals and the sums it will be 
found that  

la(u,v)l< .~ f lA.(x,u ..... D"u)lq.dx "llvll.,,,~, 
[ _ n  
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i.e. that  this form is with respect to the variable v a bounded linear functional. 
For each element u E E  thus there exists an element F(u)EE* such that  for all 
v E E it holds 

(v, F (~))  = a (~, v), 

where (., .) denotes the pairing between the spaces E and E*. The element u* EE, 
which for all vEE satisfies the identity a(u*, v ) = 0  and which is therefore the 
solution of the equation F (u*) = O, will be called the weak solution of the Eq. (16). 
The Dirichlet form (17) will be required to satisfy the following two requirements: 

2) For arbi trary elements u, v EE it holds 

~( l l~ -~  kp,  o) <a (~ ,  ~ - ~ ) - - a ( ~ ,  ~ --v) <fi(l[u -- vll-,p,~), 

where a (t), fl (t) are arbi trary non-negative functions of the non-negative variable 
of such a type that  the functions 

1 

~(R) = f ~(Rt)  . t -a. dt, 
o 

are continuous, increasing and it holds 

/5 (0) = 0 and 

3) For arbi trary elements u, h 1, h 2 

1 

fl (R) ---- f f l(Rt) . t - ld t  
0 

lim ~(R) 
R - + o o  R -  = o o .  

there exists the Gateaux derivative 
a'~(hl, h2) ~- lim [a(u + sh 1, h~) - -a(u,  h2)]/s, it is continuous according to the 

$--*'0 

variable u on an arbitrary hyperplane passing through the point u and it can be 
written a'~ (h 1, h2) = a', (h v hi). 

Under the given assumptions it can be shown in a similar way as in [8] that  
the operator F is on the space E potential with the potential 

1 

/ (u) = fa (t u, ~) at (t s) 
0 

and satisfies the assumptions of the statement in the cited paper so that  the 
following lemma can be formulated. 

Lemma 2. Assume that  in the space E N there is given a bounded open set Q 
with a sufficiently smooth boundary. Then the Eq. (16), whose coefficients 
satisfy the condition t) and the corresponding Dirichlet form (t7) satisfies the 

conditions 2) and 3), has on an arbitrary space E, l~p(") (Q) ( E C Wp(") (Q), exactly 
one weak solution u*EE. If we replace this solution on an arbi trary closed (or 
weakly closed) convex set M ( E  by the approximate solution ~EM, which on 
the set M minimizes the functional (t8), then there holds with an arbitrary u EM 
for the error of the solution the estimate 

I[ ~ - u *  k p, ~ < 7 (l[" - u*  tl., p, ~), 

where y (t) is a certain continuous, increasing, non-negative function of the non- 
negative argument,  independent of the choice of the set M, for which y (0) = O. 
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Let us now limit ourselves to a plane polygon f2, whose sides are parallel with 
the coordinate axes; let us arbitrarily choose m>=2n--l, oEC and put 
M = E n HI  r~l (Q, Q), where HI  ~) (~, .(2) is the set of all functions defined on Q which 
on each elementary rectangle R,, from which Q is composed, form an element of 

H~m)(R~). If u*EWp(k)(Q),l<p<oo, m+[21~=k<=2mthen as the element u 

from the previous lemma the element u,~,"* L" I h ) / , 0  EH1 (0, ~Q) which forms the H~ ~1 (0, f2)- 
interpolate of the element u* can be taken. If u~,~eE, then u*QEM and for 
the error of the solution the estimate 

I1,  - u *  [I.. _<__ (h , -" )  

is valid, where s :min(k ,  2 m - - l + l )  and 6(t)=y(C4[u*[s,p,~.t); thus the 
function ~ (t) is non-negative, increasing, continuous, independent of the choice 
of the partition 0EC and the set M and it holds that  8(0) = 0 .  

In practice the case 0r often occurs. Then the error 
of the solution is of the same order as the error of the chosen interpolation, i.e. 

- -  O~ 0 

5. Non-Linear Integral Equations 

The application of the second-type interpolation will be illustrated on the 
solution of a non-linear integral equation which is solved in [7, 93. In the examina- 
tion of this equation the results from [6J will be utilized. 

Let us assume that  in the space E x there is given a set Q of a finite measure 
and let us deal with the Hammerstein equation 

u(x) -~fK(x, y) . g(y, u(y))dy 09) 
D 

which can be written in the equivalent operator form 

where 

is the linear operator and 

F(u) ~ u  --A G(u) =0,  

A v = f K ( x , y ) ,  v(y). dy 
D 

(20) 

(2t) 

G (u) = g  (x, u(x)) (22) 

is the non-linear Nemycki operator. 

The solution of Eq. (t9) or (20) respectively, will be sought on the space 
E = L~. (f2). The scalar product defined on this space will be denoted for simplicity 
(.,.), the norm corresponding to the lat ter  [['[l- For the solution u*~E of the 
equation under consideration apparently it holds (u, F (u*) ) =O for all uEg. 
In  the space E let us choose an arbi trary finite-dimensional subspace M. The 
element a EM which satisfies the relation (u, F (~)) = 0 for all u EM will be called 
the approximate solution of the Eq. (20), thus also (19). 
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In our further considerations it will be required that the functions K (x, y) and 
g (x, u (x)) satisfy the following assumptions: 

4) K(x, y) is such a function that  the operator (21) defined on E is bounded 
and self-adjoint. 

5) g(x, u) is a real function defined for all x~/2, ue(--oo, oo), continuous 
according to u with almost all xe /2  and measurable on/2 for every ue(--oo, oo). 

6) For arbitrary Ul, us, veE it holds 

I (g (x, ul) - g (2, us),  v I --< 8 It v It II ul  - usil, 8 .  II A II < 1. 

Under the above mentioned assumptions the operator F(u) defined on E 
satisfies the assumptions of the statement from [6], i.e. it is finitely continuous, 
strongly monotone and Lipschitz continuous. In order to facilitate the verifica- 
tion of this fact, let us note first of all that  the expression 

(F (ux) - - F  (us), v) = (u~ -- us, v) -- (A G (ux) -- A G (u2), v) 

can with regard to the self-adjointion of the operator A and the definition of the 
operator G be written in the form 

(F (u~) --F (us), v) =(ul--u s, v) --(g(x, ul) --g(x, us), Av). (23) 

By applying condition 6) to this identity we obtain the inequality 

] (F(ut) --F(us),  v)] ~ (1 + 8 "  ]l AII) VII" II-~ --"sll, 

from which the finite continiuty of the operator F (u), i.e. that  from {u~}~~176 M, 
u , ~ u r  there follows (F (u~), v )~  (F (u), v) for each v ~E, follows on one hand 
and by putting v = F  (ut) - - F  (us) also the Lipschitz continuity of this operator, 
i.e. the validity of the inequality 

IIF (ul) - - F  (us)II-<- (1 + 8 "  [I A II)" Ilux - us II 

for all ul, uscE, on the other hand. The strong monotony of the operator F(u) 
is guaranteed by the inequality 

I (F  (.1) - - F  (~), .~ - "s)l > r ll"~ - us it s 

which follows from (23) and the condition 6) and is valid for arbitrary ul, u~ CE, 
the constant )~ > 0 being given by the relation 

r = t - 8 "  II / fl- (24) 

All the assumptions of the statement from [6] have been satisfied and therefore 
it is permissible to formulate the following lemma. 

Lemma 3. Assume that  on the space E ~ there is given a set Q with a finite 
measure. Assume further that  K(x, y) satisfies the condition 4) and g(x, u(x)) 
satisfies the conditions 5) and 6). Then Eq. (20) or (t9) respectively, has on the 
space E = L 0 (/2) exactly one solution u*. If we replace this solution on an arbitrary 
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f in i te-dimensional  subspace M < E b y  a uniquely  de te rmined  app rox ima te  solu- 
t ion ~EM,  i.e. wi th  the  e lement  5 E M  tha t  satisfies for all u E M  the  re la t ion 

(~, u / = (G (ut, A u) ,  (2~) 

then  the  following es t imate  holds:  

' ( a+f l .  IIAIL)' Ilu-u*ll, II -u*ll-<_ 

where u EM is an a r b i t r a r y  e lement  and  ~ is given b y  the relat ion (24). 

Assume now tha t  on the  above  descr ibed plane polygon Q there is given a 
pa r t i t ion  Q EC and  choose a rb i t r a r i ly  m >= 1. Let  us t ake  as the  subspace  M the  
set M --2 H i  m) (~, Q), i.e. the  set of all funct ions defined on,(2 which on every  elemen- 
t a r y  rectangle  R,  t ha t  forms the polygon Q form an e lement  from H~ ~) (R,). If  
u* (W2 (~) (/2), then as the  e lement  u from the  L e m m a  3 the H~ ~) (e, Q)- in te rpola te  
u*, q EM of the e lement  u* will be taken.  Fo r  the  error  of the  solut ion of the Eq. (20) 
or (t9) respect ively,  thus  wi th  regard  to the  Theorem 8 the following es t imate  
holds :  

t h2 m. 

If  we denote  by  u a, u~ . . . .  , u,, the  base of the  space M, an a r b i t r a r y  e lement  

u EM can be wr i t ten  in the  form u ---- ~. c i �9 u,, where c~, c v . . . ,  c ,  are sui table  real 
i = 1  

numbers .  The coefficients c 1, c ~ , . . . ,  ~,, of the  app rox ima te  solut ion ~ will be 
de te rmined  b y  solving the sys tem of equat ions  

which is a consequence of (25). This genera l ly  non- l inear  sys tem has, as follows 
from the L e m m a  3, exac t ly  one solution. 

In  conclusion the au thor  should l ike to express his g ra t i t ude  to Prof.  M. 
Zl~mal for his va luable  comments .  
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