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Summary. In a previous paper computable error bounds and dominant error 
terms are derived for the approximation of simple eigenvalues of non- 
symmetric integral equations. In this note an alternative analysis is presented 
leading to equivalent dominant error terms with error bounds which are 
quicker to calculate than those derived previously. 
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1. Introduction 

In earlier papers the author discussed the numerical solution of the integral 
equation eigenvalue problem using the Nystr~m method. The equation consid- 
ered is 

b 
2x(s) =5 k(s, t) x(t) d t (1.1) 

a 

or, in operator notation, 

2 x = K x  (1.2) 

and the matrix equation derived by the Nystr6m method is 

v <"~ u = K, u. (1.3) 

See [2] and [3] for details. Briefly, equation (1.2) is shown to be equivalent to 

x = [K .  + B.( ;0]  x (1.4) 

where B,(2) is given by (5)-(7) of [3]. B,(2) is regarded as a perturbation of K, 
and the solutions of (1.4) and (1.3) are compared using perturbation theory, 
modified to deal with the nonlinear A-term in B,(2). In [3] computable error 
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bounds ((25) and (27)) and dominant error terms ((30) and (33)) were derived for 
the approximation of simple eigenvalues and eigenvectors. The bounds and 
dominant  error estimates were numerically very good but were expensive to 
calculate because of the need to know all the eigenvalues and left and right 
eigenvectors of K, in (1.3). The purpose of this note is to present an alternative 
theory which gives rise to simpler expressions for the error bounds and estimates 
which are easier to calculate than those in [3]. 

The approach of this note is as follows. Assume that v (") and u, solutions of 
(1.2) have been calculated, and that v (") is simple. For large enough n, v~")~ 2 and 
u ~ x  (assuming a suitable normalization of u and x). We are interested in 
estimating the quantitites ]2-v(")[ and ]lx-ul{ for a given n without the 
calculation of any other eigenvalues or eigenvectors of (1.2). In w we derive 
theoretical results and illustrate them in w with reference to the trapezoidal rule 
method. In w we comment  on the time taken to calculate the bounds and 
estimates. 

2. Theoretical Error Bounds 

Assume that v and u satisfy (1.3) with v a simple eigenvalue. (For convenience 
we shall drop the superscript on v (") in this section.) Normalise u by putting 

llull~--1 (2.1) 

and, for convenience only, assume that the largest component  is the first and is 
real i.e. 

u r = [ 1 ,  ~,r_ 1]. (2.2) 

(Note that since k(s, t) is not necessarily symmetric we must allow for complex 
eigenvalues and eigenvectors.) Since v and u are approximations to 2 and x we 
write 

2 = v + #  (2.3) 

and 

:~ = u + z (2.4) 

where 

z r = [0, tt r_ 1]. (2.5) 

Our  aim is to bound and estimate/~ and rl,_ 1. Equation (1.4) becomes 

[K,, + B,,(2)] (u + z) = (v + #)(u + z) 

. .  ,uu - [K. - vI . ]  z = B . ( v  +,u)(u + z)- /~z.  (2.6) 
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Assume that K, is partitioned in the form 

T 

K~ (2.7) 
I- c , _ l l A , _ i  J 

and, using (2.5) and (2.7), (2.6) becomes 

1 0 

where 

[ -I . . . .  --dY--2 . . . .  ] (2.9) T.= - ) -  T 
~._l I v l . _ i - A . _  1 J" 

Equation (2.8) is a system of n nonlinear equations for the n unknowns/~ and 
%- i- The solvability of (2.8) depends on the nonsingularity of T. and it is easy to 
prove that "if v is a simple eigenvalue of K. then T. is nonsingular". 

Equation (2.8) can be written 

~, = e (~,) + H (~,) ? + M (~,) ? (2.10) 

where 

yr = [/~,t/~_ 1] e(~,) =T~- t B.(v + #)u 

n(?) ~ =T.- 1B,(v +/~)z M(?) ~,= -/~T,- 1 z. (2.11) 

The Lemma in w of [3] will now be used to bound the solution of (2.10). 
The constants Co, C~, Ho, HI, M1 needed by the lemma are 

C o = ][e(0)[I = lIT,- z B,(v)uf[, (2.12) 

C 1 <max l iT. - x  r.K(v+#-Q.)-2Q.p.uH, (2.13) 

no  = IIH(0)II = lIT,- 1B,(v)ll, (2.14) 

H t <max lIT. -~ r.g(v+ll-Q.)-2Q.p.ll (2.15) 
[,u[eD 

and 

M1 < ItT,-Xll. (2.16) 

A direct application of the lemma gives the following bounds. 

Theorem. Let v be a simple eigenvalue of K, with corresponding eigenvector u. 
Define Co, C1, Ho, H i and M 1 as in (2.12) to (2.16) respectively, and let w(g)= 

(1 - l / 1 - 2 g ) / g .  
If 

1 - C 1 - H o > 0  ( 2 . 1 7 )  
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and 

g -  

then 

2(Hx + M O C  o 1 
< - -  

( 1 -  C 1 - H o )  2 2 

C o 
I ) ~ - v l <  w(g) 

= 1 - C 1 - H  o 
and 

Co 
I l x - u l l  < w(g). 

= I - C 1 - H  0 

Now if we assume that 
implies that 

Co=O(llB.(v)ufl), 

and (2.19) and (2.20) give 
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(2.18) 

(2.19) 

(2.20) 

]]T,-lll <T,  independent  of n, as n ~ o o  then (2.12) 

IR-vl=O(ltB,(v)uH), t lx-uH =O(llB,(v)uD. (2.21) 

The assumption that  lIT,- I It < T is equivalent to the assumption that v tends 
to a simple eigenvalue of  K. Thus the fact that liT,,- 1H is large only when v is 
close to another  eigenvalue of  K, implies that [lx-ull is not per turbed signifi- 
cantly by multiple eigenvalues well separated from v. This result was not 
obvious from the approach of  [3]. 

The bounds (2.19) and (2.20) can be sharpened in a straightforward manner  
as follows. F rom (2.10) we have 

r - c (0) = c (?) - c (0) + H (r) ? + M (r) r 

. .  II~,-c(0)l[ _-<61 ll~'ll + H 0  [l?][ +H111~112 + M 1  I1~1I 2 

= N ( ? )  say. (2.22) 

Write c(0) as 

c(O) T = [c ,  (0), c . _ ,  (0) T] (2.23) 

and so, using (2.3)-(2.5), (2.11) and (2.22), 

[~-vl=l,ul<lc~(O)l+l,-cl(O)l<tcx(O)l+ II~-c(0)ll = Iq(0) l  + N(~). (2.24) 

Similarly 

It x -  u II = II ft._ 1 tl _-< I[ c ,_  ~ (0)II + g (r). (2.25) 

The numerical  performance of  these bounds is given in Table  2 below. 
Equat ion (2.22) does of course provide "dominan t  error  terms" directly. 

Since N(~,) = O (It B,(v) u I12) we obtain immediately 

2- (v  + c~ (O))-_O( [In,,(v)ul[ 2) (2.26) 
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and 

x T - ( u  T + [0, e ,_ x (0)r]) = O( It B & ) u  II 2). (2.27) 

Thus q ( 0 )  and c , _ l (0  ) provide us with correct ion terms to improve our 
estimates v and u. (See Table  3 below.) 

Equat ions (2.26) and (33) of  [3] give different expressions for the correction 
of v but  it is s traightforward to show their equivalence. 

3. The Trapezoidal Rule Method 

In this section we look at the numerical  performance of the bounds (2.24) (2.25) 
and the expressions for the dominant  error  terms given by (2.26) and (2.27) when 
we use the trapezoidal  rule method.  The details of the techniques used are given 
in [3]. Briefly, if k(s, t)e C 2 [a, b] x [a, b] then 

I}B,(v) u II ~ = O (h 2) (3.1) 

providing t21> IIQ.11~- Also, providing (2.17) and (2 t8)  are satisfied, Co, C1, H0, 
H i and g are O(h 2) (see Table 1 below). Hence (2.19) and (2.20) imply 

12- v~")f=O(h2), I{x-ult~=O(h z) (3.2) 

(see Table 2). Similarly, (2.26) and (2.27) imply 

12 - ( r  c i (0))l = O (h 4) 

II x T - u T - [0, e, _ 1 (0) T] I1 ~o - O (h') (3.3) 

(see Table 3). 

Example. The integral equat ion (1.1) with k(s, t) given by 

k(s,t)@o + (Ss3-,t(5t3- 2) 
with a=O, b =  1 has solutions 

2~ =0.2 xl(s)=s 3. 

The trapezoidal  rule was used to provide numerical  solutions. Table 1 shows 
the behaviour  of the quantit ies Co, C, ,  H o, H l, M, ,  and g for the example. 

Table 1 

n Co Cl Ho HI MI g 

5 0.106 E-1 0.126E-1 0.118 0.148E 2 5.29 
9 0.281E-I 0.435E-2 0.331E-1 0,405E 1 8.29 

t7 0.722E-2 0.I21E-2 0.875 E-2 0.109E t 9.51 
33 0.I82E-2 0.310E-3 0.224E-2 0.280 9.88 
65 0.455E-3 0.781 E-4 0.565E-3 0.709E-1 9.97 

0.567E 1 
0.750 
0.156 
0,371E-1 
0.916E-2 
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The quantities Co, C1, Ho, H 1 and g all show O(h 2) convergence and M 1 
(= [iTs- 111 ~) tends to a constant value. This is in agreement with the theoretical 
results (2.12)-(2.16) with (3.1). 

The performance of the bounds (2.24) and (2.25) is shown in Table 2. 

Table 2 

n I~- v~")l bound (2.24) IIx-all~ bound (2.25) 

5 0.109 g>�89 0.183E-1 g>�89 
9 0.285E-1 g>�89 0.690E-2 g>�89 

17 0.725E-2 0.797E-2 0.199E-2 0.266E-2 
33 0.1820E-2 0.1858E-2 0.515E-3 0.549E-3 
65 0.4556E-3 0.4578E-3 0.1301E-3 0.1321E-3 

Note the O(h 2) convergence of 12-v(")[ and [tx-ul[ in agreement with (3.2) 
and the sharpness of the bounds with increasing n. These results are slightly 
better than those in Table6 of [3]. (Note that the example in this paper is 
different from that in [3] by a factor of 10). 

To calculate the dominant error term we approximate B.(v)u by 

G.(v) u= [r.K p.-  K. + ! r.K Q.p.] u. (3.4) 

This approximation is discussed in w of [3]. 
An alternative method of approximating the dominant error term is pro- 

vided by the following approach. Define 6 by 

~=r.Kq.u-vu (3.5) 

where q , u = ~  wjk(s, tj)uj, the Nystr6m extension. It is not difficult to show 
j=1 

that, for the trapezoidal rule, [l~-B,(v)ull=O(h 4) provided k(s,t) is smooth 
enough and so, recalling (2.11), 

[lc(0) - T.- 1 ~ [t = O(h4). (3.6) 

Table 3 

n [~-(vt"~+cx(0))l Ratio t[x:r-ur-l-0, e,_l(0)r]ll~ Ratio I2-(v(")+(T,-l~)01 Ratio 

5 0.294E-2 0.669E-2 0.201E-1 
7.4 6.7 19.1 

9 0.399E-3 0.985E-3 0.106E-2 
12.3 11.9 19.2 

17 0.325E-4 0.830E-4 0.553E-4 
14.8 14.8 19.3 

33 0.219E-5 0.562E-5 0.287E-5 
15.6 15.7 18.4 

65 0.140E-6 0.359E-6 0.156E-6 
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Such an approach is close to the method of "deferred correction" of Fox and 
Goodwin [1]. From Table 3 we see that the estimates given by (3.3) are superior 
to those given by (3.6) for small n but there is little to choose between them for 
large n. However, the second estimate is cheaper to calculate (see Table 4 below). 
The columns headed "Rat io"  give the ratio of successive values of the entries in 
the previous column. 

Clearly all errors behave as O(h4). The results for the dominant error term 
for the eigenvalue, q(0),  are identical with those given in Table 3 of [3]. The 
results for the corrections to the eigenvectors are better than those given in [3] 
but the rate of convergence is almost identical. 

4. Practical Considerations 

The time taken to calculate the bounds and estimates is, of course, important.  
As a comparison we quote the time taken to solve the eigenvalue problem (1.2) 
using a standard method. We make the following definitions. 

T 1 = t ime  to calculate all the eigenvalues and eigenvectors of K, using reduction 
to upper Hessenberg form and then the QR algorithm (Wilkinson and 
Reinsch [4], pp. 339-358, pp. 372-395). 

T 2 = time to calculate the matrices r,K p , - K ,  and r.KQ, p, and their norms. 
T3=t ime taken to calculate the bounds (2.24) (2.25) for one eigenvalue and 

eigenvector. 
Tg=t ime to calculate G.(v)u from (3.4). 
T 5 = t ime  to calculate 6 using (3.6). 
T 6 =t ime  to solve T, -1G,(v)  u or  T, -1 ~. 

Table 4 

n T, T 2 T 3 T 4 T 5 T 6 

5 0.06 0.03 0.04 0.0l 0.004 0.01 
9 0.43 0.12 0.12 0.03 0.007 0.03 

17 2.70 0.69 0.53 0.10 0.014 0.70 
33 15.19 4.34 3.36 0.38 0.026 1.04 
65 104.45 31.21 23.84 1.49 0.051 7.32 

(The times are given in seconds on the ICL System 4-70 at University College, 
Cardiff, Wales.) 

Note that if bounds were required for p eigenvalues and eigenvectors then 
the total time would be T a + p T 3. A major  disadvantage is the need to calculate 
T~ 1 for the quantities H0, H 1 and M 1 (see (2.14)-(2.16)). This requires O(n 3) 
multiplications and takes over 90 % of the time T 3 for large n. Even so the times 
given above compare favourably with those in Table 7 of [3]. 

Often we shall be content with estimates of the dominant error terms instead 
of bounds (2.24) (2.25). We noted the numerical performance of two such 
estimates in Table 3 and we give the times to calculate them in Table 4. 
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