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I. Introduction 

Suppose one holds two sticks in the form of a cross in one hand, and places a 
rubber band in tension around the four ends. When it is released, it comes to 
rest in the shape of a convex quadrilateral in a plane. It always returns to the 
same shape, no matter how it is distorted, as long as the ends do not slip, and 
the rubber band does not break. This is a very simple example of a "rigid" 
framework of the type we discuss here. 

Energy explains why a framework, such as the one above is rigid. The 
rubber band deforms in such a way as to minimize the total energy in the 
framework. Only in the final deformed shape will the framework have a 
minimum energy. 

This idea of introducing energy functions is very useful. It can be used to 
prove a key lemma that was used by Cauchy [5] in 1813 to show that "convex 
polyhedral surfaces" are rigid. It can explain why some, and perhaps all, of R. 
Buckminster Fuller's tensegrity structures [10] stay up. When applied to spider 
webs it shows why they can only take on certain geometric shapes. It also can 
be used to prove Conjecture 6 of Branko Gri inbaum and G.C. Shephard in 
their "Lectures on lost mathematics"  [12]. This conjecture says that if a 
framework, in the shape of a convex polygon, with rods (sticks) on the 
boundary and cables inside, is rigid in the plane, so is the framework obtained 
by reversing the roles of rods and cables. 

It is interesting to compare some of these results with the "opening a rm"  
theorem of Axel Schur [18] (See Chern [6] also), which is a very close smooth 
analogue to Cauchy's lemma. Schur's theorem says that if a convex planar 
smooth arc (the arm) is opened, that is, it is moved to another position with 
the same length, but with corresponding points having smaller curvature, then 
the two ends are moved apart. 

Another amusing application is to show that a regular pentagon in 4-space, 
(a pentagon with all 5 sides equal and all 5 angles between the sides equal) has 
its angles bounded between 36 ~ and 108 ~ a comment  of O. Bottema in [4]. 

* Partially supported by NSF Grant number MCS-7902521 
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Fig. 1 

A great debt is owed to Walter Whiteley for a series of conjectures and 
questions that were very illuminating [23]. In particular, the statements of 
Theorem 2 and Theorem 3 here, and much of the general plan of how to prove 
Grt inbaum's  Conjecture 6 (Corollary 2 here), were part of his conjectures. 

The notation here is copied from Asimow and Roth [1] and Gluck [11]. G 
represents an abstract finite graph, where each edge is designated as either a 
rod, cable, or strut. A realization of G, also called a framework, will be an 
assignment of a point Pi in IR" for the i-th vertex of G. 

We designate these points by P=(Pl . . . . .  p~) as one vector in (IR")~'=IR "v, 
where v is the number of  vertices of G, and IR" is euclidean n-space. We denote 
this realization by G(p), regarded as a collection of points and edges in IR". A 
continuous motion or flex of G(p) is a continuous path p(t) in IR "v, p(0)=p,  
0 <  t < 1, such that rods have a fixed length, cables do not increase in length, 
and struts do not decrease in length. The edges of G (rods, cables, struts) are 
often called members. Note  the members  of G(p(t)) are allowed to cross each 
other and pass through, even at t=0 .  If p(t) is the restriction of a rigid motion 
of IR", then we say the flex is trivial. If G(p) has only trivial flexes we say G(p) 
is rigid. 

Suppose q in P,"~ is another position for the vertices of G. If the rods, 
cables, and struts of G(q) are the same length, not longer, not shorter re- 
spectively than the corresponding rods, cables, and struts of G(p), then we say 
G(q) is another embedding of G(p). Note this is not necessarily a symmetric 
relation. A congruence of G(p) is the restriction of a rigid global motion of IR" 
to the vertices of  G(p) (allowing reflections). If  every other embedding G(q) of 
G(p) is congruent to G(p), we say G(p) is uniquely embedded. Note that if G(p) 
is uniquely embedded, G (p) is certainly rigid. 

As in Gluck [11] and  Asimow and Roth [1], and even for cabled, strutted 
structures, we define a m a p  f :  I R " ~ N  e, the rigidity map, by 

f (Pl , . . . ,  Pv)=( .... IPi--Pjl2, . .  .) 

where {i,j} represents an  edge of G, and e is the total number of edges (of all 
types) of G. A stress for G(p) is an assignment of scalars coij=coj~ for each edge 
of G such that for all i 

o)~ j (p i  - p~) = 0 ,  
J 

where the sum is taken over all vertices j adjacent to i. (We also say G(p) is in 
equilibrium with respect to o) at p~.) 
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Often we regard all the oJ~j's as one single vector  co=(  ... .  coij,-..) in IRe. A 
proper stress for G(p) is a stress co such that  co,j>0 if {i,j} is a cable, and 
c % < 0 ,  if {i,j} is a strut  (no condi t ion for rods). This definition differs slightly 
from that  given in Roth  and Whiteley [16], who define a proper  stress as 
above with the extra condi t ion that  it be non-zero on all the cables and struts. 
We wish to allow some of these stresses to be zero. 

In Section II we assume that some given f ramework  G(p) is rigid, and we 
investigate its properties.  For  later purposes the main  object  is to show that  
such a rigid G(p) has a non-zero stress on some cable or strut, assuming G(p) 
has a cable or strut, Theo rem 3. The  idea is first to show that  the general 
requirement  of rigidity implies that  the members  can be slackened slightly, and 
the f ramework  will not move  far f rom its original posit ion, Theorem 1. This 
allows room to define an energy function with a m i n i m u m  near  the original 
position. Since the gradient  must  be zero at this min imum,  we are guaranteed 
a proper  stress, non-zero on each cable or strut, T h e o r e m  2. A limiting argu- 
ment  yields Theo rem 3. 

Section I I I  concentra tes  on more  special f rameworks  and quadrat ic  energy 
functions. 

After getting acquainted with how quadrat ic  energy functions work with 
f rameworks  inspired f rom spiderwebs, we look  at convex polygons.  In  part icu-  
lar we show how to define a "na tu ra l "  quadra t ic  energy form in terms of a 
given stress. We  investigate when this form is positive semidefinite of  the 
appropr ia te  nullity. When  the convex polygon has cables on the bounda ry  and 
struts inside, and when it has a p roper  stress, then it turns out the f ramework 
has a positive semi-definite energy form of  the right nullity, and so the 
f ramework  is uniquely embedded,  Theorem 5. Gr t inbaum' s  Conjecture  6 is an 
immedia te  corollary. 

In Section IV we discuss how the above results relate to Cauchy 's  lemma,  
Schur's theorem, and van  der Waerden ' s  theorem. 

In a sequel to this paper  we hope  to explain the relat ion of these ideas to 
ideas from engineering and more  general energy functions. 

II. Implications of Rigidity 

We investigate some general propert ies  of  a rigid f ramework.  It turns out  a 
great deal can be said. 

Suppose one builds a par t icular  f ramework.  In practice it is never possible 
to get the lengths absolutely accurate,  and in any case there is always a little 
"play" .  If  the f ramework  is infinitesimally rigid, see Gluck  [11] or Asimow 
and Roth  [1] for a definition, there is no quest ion that  this will not be serious 
and the ul t imate distort ion will be very small. The following theorem says that  
this is true also if the f r amework  is only assumed to be rigid as defined in the 
introduction.  I f  G(p) is rigid, one consequence is that, if G(q) is ano ther  
realization, where the rods are the same length, cables not longer, and struts 
not shorter, then the set of  such q's are outside an open set UpclR "v containing 
all the realizations congruent  to G(p). In o ther  words G(p) is uniquely embed-  
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ded, if we restrict to those realizations sufficiently close to realizations cong- 
ruent  to G(p). See Connel ly  [7]. Let us call Up a rigidity neighborhood of p for 
O(p). 

Theorem 1. Let G(p) be rigid in IR", and Up a rigidity neighborhood of p Jbr G(p). 
Let e > 0  be given. Then there is a 6 > 0  such that when q~Up and the following 
conditions hold 

Iqi-qjlZ<lpi-pjl2+• for {i,j} a cable, 

(,) [pi-p~lZ-6<lqi-qjI2 <lpi-pjI2 +6 for {i,j} a rod, 

Ip l -p j lZ-6<lq l -q j l  2 for {i,j} a strut, 

there is a rigid congruence of IR h, T, such that 

[( Tq 1, ..., Tq,,) - pl < e. 

Proof Withou t  loss of  generali ty we assume that  some vertex of G(p) (and 
G(q)) is held fixed throughout .  The  set of  qelR "~ where G(q) is congruent  to 
G(p) is now compact .  

Let E c l R  e be the set defined by those (. . . ,  eij ,  . . . ) 6 I R  e such that  

eij ~ IPi-- pj[2 if {i,j} is a cable of G, 

eli = ]Pi - PjI2 if {i, j} is a rod of G, and 

elj>=lpl-pjI 2 if {i,j} is a strut  of G. 

Let  V,~ be the open ne ighborhood  of E in IR e defined by eij replacing I q i - - q j l  2 
in (,), for any  3 > 0 .  Let f :  Up~IR e be the restriction of  the rigidity map, 
defined in the introduction,  to a rigidity ne ighborhood  defined above. So Up is 
a ne ighborhood  of f - l ( E )  in 1R "~, restricting a t tent ion to only those points 
with the first vertex, say, fixed. 

Let  e > 0 be given. 
Suppose we cannot  find a 6 > 0  as in the conclusion. Then for each 6 > 0  

there is a point  q(6)~Up-U~ such that f(q(6))eV~, where U~ is the e-neigh- 
bo rhood  o f f - l ( E )  in Up. We m a y  assume cl Up, the closure of Up in 1R "~, is 
compact ,  s i n c e f - l ( E )  is compact ,  since G(p)is rigid, a n d f  I(E) is the set of 
qeIR "v such that  G(q) is congruent  to G(p) with the first vertex fixed. Also by 
the local compac tness  of R "v we may  assume G(p) is uniquely embedded  when 
restricted to cl Up. So there is a sequence of positive 6~, i =  1, 2, .. . ,  converging 
to 0, such tha t  q(6~)eb~-U~, for all i. By taking a subsequence if necessary we 
m a y  assume that q(6~) converges to qe(cl U p ) - U  s. But f(q((~i)) converges to a 
point  in E. Sof(q)~E.  So qe f - l (E) ,  a contradict ion.  Thus there is a 6 so that 
U~ ~ f-l(V~). In  other  words if q is within e o f f - 1  (E), some congruence of G(q) 
is within e of  G(p), as in the conclusion. This  completes  T h e o r e m  1. 

Suppose one has a rigid f ramework  and  one pulls (or pushes) two of the 
vertices together  (or apart). It seems "clear" ,  if our  model  is to represent  
physical  reality, that  the f ramework  will deform slightly and resist this force. 
The  next theorem (suggested by W. Whiteley) says that this is precisely what 
happens.  The  cable or  strut can be thought  of as supplying the force. 
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T h e o r e m  2. Let G(p) be a rigid.hamework in IR". Let  e > 0  be given. Then there is 
a qalR "~ such that ]P-ql <c and G(q) has a proper stress that is non-zero on all 
the cables and struts. 

Proof  Let /5>0 be the ,5 of  Theorem 1 so that its conclusion holds for the ~: 
above. 

Let %;:  I--*IR l be smooth (C 2 at least) (energy) functions defined for each 
edge, where I is an appropriate  interval as indicated by the graphs of %s 
below: 

I 
! 

' i 

! i 
i i I 
I 

IP, PJ ~+8 2 . ' 2 ' 2 ~ p, pj ]p , -p j [ -6  ]p,-pi ] Ip:p i {  +a 
cable rod 

Fig. 2 

2 . 2 

Jp,-p, I-6 Ip,-piJ 
strut 

In each case cou-+ ~ at the asymptotes,  and cables and struts are m o n o t o n e  
with non-zero derivatives, co u for a rod has only the one min imum with 
derivative 0. 

Let N be a ne ighborhood of  p in lR"" contained in a rigidity ne ighborhood 
and such that  (,) holds for qaN.  Thus the conclusion of Theorem 1 holds as 
well. For  any q a N  define an energy 

(**) E (q) = �89 52 toij ((qi - qi)2), 
13 

where the sum is taken over all edges of G. As with Theorem 1 we may assume 
cl N is compact  by fixing one vertex of G. We may extend the definition of  E 
to include the boundary  of  N by making E =  oo on the boundary.  On the 
extended reals (to include co) E is continuous,  because if  (qi--qj) 2 is not in the 
domain of  its o) u it must be at one of  the asymptotes,  and all nearby defined 
points will be large. Thus E must have a minimum point F/aN. By changing F/ 
by a rigid congruence of IR" by Theorem 1 we may assume [F/-PI<a,  and the 
gradient of E must be 0. Comput ing  n coordinates at a time as usual, we get 
for this gradient 

0 = ( . . . .  52 co;j((F/i-  F / / ) ( F / i -  F/J) . . . .  ), 
J 

where the sum in the i-th slot is taken over the edges adjacent to the i-th 
vertex. The proper  stress is given by coij=oYq((F/i-F/j)2). By the construct ion of 
the energy functions it is proper  and non-zero on each cable and strut. This 
finishes Theorem I. 

L e m m a  1. Let  G be an abstract framework. Then the ,set {pelR"':[G(p) has a non- 
zero proper stress} is closed in IR "~'. 
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Proof. Let pelR "v be a limit point  of  the set S defined in the conclusion. Let 
p(i)~S be a sequence of  points in IR"~ converging to p. Let co(i)MR e be the non- 

co(i) 
zero stress associated to G(p(i)). By replacing co(i) with ~ if necessary we 

may assume that [co(i)[=l. That  is co(i) is in the unit sphere in IR e . (The 
equilibrium equations for a stress still hold when all the stresses are multiplied 
by a constant.) Since the unit sphere is compact,  by taking a subsequence if 
necessary we may  assume that o~(i) converges to a non-zero proper  co. (Note 
the inequalities defining a proper  stress are not strict.) The function which 
assigns to every peIR"~, coeR e the (equilibrium) vector 

( '" ,  ~ cojk(Pj-- Pk), ...) 
j k  

is continuous,  and since it is 0 for p(i), co(i), and they converge to p, co, it is 0 
for p, co. Thus G(p) is in equilibrium with respect to co, which means o) is a 
non-zero proper  stress for G(p). This ends the lemma. 

Theorem 3. Let G(p) be a rigid framework with a cable or strut. Then G(p) has a 
non-zero proper stress. 

Proof. By Theorem 2 for every e > 0  there is a q such that  [ p - q [ < ~  and G(q) 
has a proper  stress, non-zero  on the cable or  strut. By Lemma l, G(p) then has 
a non-zero proper  stress. 

Remark 1. Although Theorem 2 guarantees that the stress will be non-zero on 
all the cables and struts of  the nearby framework, when the limit process is 
applied in Lemma 1 this may  no longer be the case. Consider the following 
example where the preferred cable has no stress in the limit posit ion:  

o o 
rod 

o . . . . . . . .  o 

cable 

Fig. 3 

n-zero stress on 
s 

"'"".): ............ 

Remark 2. In many  cases Theorem 3 can be proved by other methods.  For  
instance when G(p) is infinitesually rigid (with a cable or strut), then the non- 
zero proper  stress can be found using the results of Ro th  and Whiteley [16]. 
In fact the conclusion of  Theorem 2 holds, but  for q=p. In other  words G(p) 
"resolves" the stresses in the cables and struts without  deforming. However,  I 
do  not see how to obtain  Theorem 3 in case G(p) is not  infinitessimally rigid 
by these techniques. 
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III. Quadratic Energy Functions 

We have already seen how energy functions were used to find the stresses for 
Theorem 2. We now use a stress to create an energy function. It turns out that  
in many cases the energy has minima that are simple enough to describe 
completely. This is then used to show the framework is rigid, since the non- 
rigid motions  that preserve the min imum energy are not permissible flexes for 
the framework. 

In order to get acquainted with this technique we consider a particularly 
simple case first. Suppose G(p) is a f ramework where a subset of  the vertices, B, 
is held fixed, while the other vertices are allowed to move freely. One  might 
have some rigid framework behind the scenes which includes the vertices of B. 
All the (other) edges of G are cables, and each vertex of  G not  in B is 
connected to B by a sequence of cables. By using an appropria te  energy 
function the following is easy. 

Theorem 4. Let co be a stress for G(p) with each coij>0, where we only require 
equilibrium at the vertices of G not in B. Then (assuming the vertices of B are 
held fixed) G(p) is rigid. 

Proof Define the energy of  G(q), 

E(q) = 1 ~  coij(qi- q j)2, 
i , j  

where the sum is taken over only the cables of  G, and q~IR"". E is a quadrat ic  
function, where the vertices of  B that enter in the formula are taken as 
constants. Note  also VE(q), the gradient of  E at q, is an affine linear function 
ofq .  

V E(q) = (  .... ~ coi~(q,- q j),...). 
J 

We claim that E has a unique min imum at p. If  q is any point  other than p, 
then E ( ( 1 - t ) p + t q )  is a quadrat ic  polynomial  in t that  approaches infinity as t 
approaches infinity, and whose derivative at t = 0  is 

VE(p). (q -p)=0.  

VE(p)=O by the equilibrium condit ion for ~o. If some vertex of  G(p) (not in B) 
is different from the corresponding vertex of G(q) it will travel to oc in ( 1 -  t) 
p+tq as t ~  +oo.  Since every vertex is connected to a vertex o r B  by a series of  
cables some cable must  get arbitrarily large for large t. Since all the o) i j>0 this 
means that E must  also get large. Thus p is the unique min imum for E. 

Now it is clear G(p) is rigid. If G(q) is any other realization and Iqi-qj]< 
]Pi-Pi[ for every cable {i,j}, then E(q)<=E(p). Since p is the unique min imum 
P = q, as was desired. 

Remark 3. Theorem 4 can be viewed as explaining the rigidity of spider webs. 
Their thin threads are at tached to some rigid object, and then they are 
stretched until there is a proper  stress. 
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In fact if such a framework is rigid, we can regard the vertices of  B being 
held rigid by some infinitesimally rigid rod framework G l(p) with the mini- 
mum number of rods. Then the cables and vertices of the spider web are 
attached to Gl(p) to get G2(P) containing Gl(p). Gl(p) cannot have a proper 
stress by itself, see Gluck [11] or Asimow and Roth [1] for instance. Thus 
some of the cables of Gz(p) connected to B have a proper non-zero stress by 
Theorem3.  If just these cables and vertices are added to G~(p), T h e o r e m 4  
applies to show that this subframework of Gz(p) is rigid. If this is not all of 
Gz(p) , include the new vertices into B and repeat the above argument. Even- 
tually all of  the vertices of  Gz(p) will be included. Thus all frameworks of the 
form where Theorem 4 may apply (without a positive stress perhaps), if they 
are rigid, are rigid because of several applications of Theorem 4. This is also 
related to the higher order rigidity of rod frameworks discussed in Connelly 
[7]. 

6.- 

-/~/// fixed 
Fig. 5 
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For example the rod or cable framework of  Fig. 5 is rigid by two applications 
of Theorem 4, and as a rod framework would seem to be " thi rd  order"  rigid. 

We consider yet another  type of  energy function. Let coelR ~ be a proper  
stress for G(p). Then for qEIR "" 

g(q) = �89 2 coij(qi - q j)2 
El 

will be called the energy form associated to the stress co, for G(p). Note  that 
unlike before, where some of  the vertices are considered as constants, now E(q) 
is a homogeneous  quadrat ic  form in nv variables. The following are some 
properties '  

A. VE(p)=O 
B. VE(q) is a linear function of q. 
C. E ( p ) = 0  
D. The 0 set of  VE, the critical points of E, are invariant under affine 

linear transformations. 
I.e., if T: IR"~IR" is affine linear and we define T(p)=(Tpl  . . . .  , Tp~.), then 

E (r(p)) = 0 and VE (r(p)) = O. 

A. is just the statement that co is a stress for G(p). 
B. follows since E(q) is a quadrat ic  form. 
For  C. suppose E(p)+O. Then E(tp)=tZE(p), t real, and E(tp) is not  

d 
constant. But d~tE(tp)=VE(tp).p=O, by B. So E(tp) is constant,  a contradic-  

tion. So E(p)=0 .  
For  D. consider an affine linear function T: IR"~IR' ,  where T x = L x + b ,  

where L is linear, and b is a constant  vector. Then 

V E  ( T p )  = ( . . . .  Y~ co~j(Tp~ - r p ? , . . . )  

=(  .... ~ coii(LPi- Lpj), ...) 
J 

=(... ,  LIF~ coi~(Pi- P?t .... ) 
J 

=0.  

Thus co is a stress for Tp=(Tpl  . . . .  , Tp~) as well as p. Note  by C. E(Tp)=O as 
well. 

In order to discuss E more  efficiently, we shall condense things a little bit. 
Although E(q) is a quadrat ic  form in nv variables, the matrix corresponding to 
E has a certain redundancy.  Note that 

coij(Pi - pj)2 = coij p~ + coi~ p~ _ 2c% p~. p~. 

Define a symmetric  matrix ~ where the i, j- th entry is -coi~ if i=l=j, and ~co~k 
k 

=~COkj if i=j, where co~=co.;~. We will call ~ the stress matrix associated to 
k 

the stress co=(  .... coij . . . .  )eIRe. If we were to regard the p~'s as formal symbols, 
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then �89 would be the matr ix  of E. This is not be confused with the (2 matr ix  
in Bolker  and Roth  [3]. 

Precisely, however,  if Q is the quadrat ic  form associated to Q, so Q(x) 
= x '  (2x, (x' is x t ranspose) for x~IR ~, then 

v t i m e s  

E(q )=  Q(/9.-~k), where ~ , = ( ~ ) ,  i = 1  . . . .  ,n, 
k=t 

and e i is the s tandard  i-th basis vector  (with i-th coordinate  1, the rest 0) in IR". 
So the matrix of  E is just  "n  copies"  of f2. Note  E is positive semi-definite if 
and only if f2 is. f2 is never definite and has nullity at least 1, since (1, .. . ,  1) is 
always in the null space of  f2. The  row and co lumn sums must  be 0 by the 
definit ion of g2. 

Example 1. Consider  the following f ramework  G(p), where/gt, /92,/93,/94 are the 
vertices of  a square in the plane. The  outside edges are cables, and the two 
diagonals  are struts. A stress of  1 on the cables and - 1  on the struts is a 
p roper  stress for G(/9). 

] P+~ ................................................. . P3 

Pl 1 lp2 

cable strut 

Fig. 6 

The stress matr ix  for this stress is (, - 1  

Q- -  1 

- 1  

1 i) - -  - - 1  

1 - 1  

- 1  1 - 

1 - 1  

Note  (J is positive semi-definite with nullity 3. Recall that  to show a matr ix  is 
semi-definite it is sufficient to find v - n  variables and show that  the k •  
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submatrices for k < v - n ,  obtained by using the first (or last) k of the n - v  
variables, have positive determinants, where n is the nullity. Here since the 
diagonal entries are positive, we have f2 semi-definite. The importance of this 
will appear later. 

Example 2. This is a generalization of the previous example where the four 
vertices of G(p) are more generally situated. Since we can change the position 
of p by an affine linear map and not change the stress co, we can assume that 
three of the four points are in a special position. Accordingly we assume Pl 
=(0,  0), P2 =(1,  0), P3 =(a, b), p4=(0, 1). In order for G(p) to represent a convex 
polygon we assume also a + b > 1. (See Fig. 7.) 

P4 P3 
. . . . . . . . . . . .  . . .  . . .  . . . . . . . . - !  

Fig. 7 

Since the stress is only determined up to a scaling factor we assume ~o~3= 
- 1 .  The equilibrium equations then give the following stress matrix. 

Pl 

Pz 

P3 

P4 

Pl P2 P3 P4 
/ a + b - 1  - a  1 - b  

a 2 - a  ab 
- - a  

a + b - 1  a + b - 1  a + b -  
- a  1 - b  1 - (2 .  

1 

a+b-lab a+b-l_b a + b - 1  l b  2 

~ b 
I 

\ a + b - 1  a + b - 1  a + b -  

Note the two diagonal stresses, co13, (/)24, are always negative, the side 
stresses are always positive, and (2 is positive semidefinite of nullity 3. 

Example 3. Let the vertices of G(p) be the corners of a unit cube in IR 3 with 
cables along the edges and struts along the 4 main body diagonals. 
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Then if the cable stresses are l, the strut stresses are - 1 .  So the stress 
matrix is 

Pl 

P2 

P3 

Pc 

P5 

P6 

P7 

Pl P2 P3 P4 P5 P6 P7 P8 

/ 2 - 1  0 - 1  - 1  0 1 0 

1 2 - 1  0 0 - 1  0 1 

0 0 - 1  2 - 1  1 0 - 1  

- 1  0 - 1  2 0 1 0 - 1  

:i 
- 1  0 1 0 2 - 1  0 

0 - 1  0 1 - 1  2 - 1  

1 0 - 1  0 0 - 1  2 

0 1 0 - 1  - 1  0 - 1  P8 

=Q.  

It turns out this matrix has nullity 4 and is positive semi-definite also. 
The stress matrix is only distantly related to a 3v x 3v matrix used by 

structural engineers called a stiffness matrix. (See Martin [15] or Langhaar  
[13] for instance.) Our stress matrix (or rather its energy matrix) assumes that 
all the members are perfectly elastic springs with rest position at 0 length. The 
positive stresses would correspond to "spring constants", but the negative 
stresses would be as if the rest position of that member  were at oo. One virtue 
of our approach is that the forces are a linear function of the position, whereas 
in the engineering set-up a quadratic approximation is used instead of the 
" t rue"  energy to obtain the forces as a linear function of the displacements 
from the rest position. This will be discussed more fully in the sequel. 

The significance of the nullity of the stress matrix is explained in the 
following lemma. 
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Lemma 2. Suppose G(p) in iR" has a stress co, and the aJJi'ne span of  p 1 . . . . .  p~ in 
1R" is k dimensional. Then the nullity of  (2 is > k +  1. Conversely given Q and 
n>(nulli ty o f  (2)+1, there is q=(q l ,  ...,q,,) elR"~' such that the dimension off the 
q[line span of  ql . . . .  , % is (nullity of  f2)+ 1. Furthermore, we can choose q so that 
Pi is the orthogonal projection of  q i onto the affine span gfP l ,  .-., P,,. 

Proof  Without  loss of  generality we assume p~=0, and by renumbering if 
necessary, that  p~ . . . .  , Pk are linearly independent,  where k is the dimension of 
the affine span of Pl , . . . ,Pk.  By property D above we assume also that pi=e~, 
i =  1 . . . .  , k, where e~ is the i-th s tandard basis vector for IR". So the vectors 

***) (Pl �9 el . . . .  , p~,. e l )dR ~', i= 1 . . . . .  k, 

are in the null space of  g2 again by D (projection onto  the line through e i is 
affine), and they are clearly linearly independent  in IR". Since the last coor- 
dinate is 0, (1 . . . .  ,1) together with the above vectors are also independent.  
Since we have found k +1 independent  vectors in the null space of  Q, we have 
shown that the nullity of  (2 is > k + 1. 

For  the rest we suppose n >(null i ty  of f2)+ 1 and p i e R  k. Let /=nu l l i ty  of  f2. 
Find F_/j=(ql / . . . .  ,q,,i)eR ~', j = l  . . . .  , l - k - 1  such that the vectors of  (***), 
(1, 1, . . . ,  1), and 01 . . . . .  gh-k ~ span the null space of f2. Then qi= 
(Pi'el . . . . .  Pi'ek, qil, qi2 . . . . .  qi, t_k_l)r +1, for i = l  . . . . .  v, provide points q =  
(ql . . . . .  q,,)elR Iz+l)'' such that G(q) has the same stress e) as G(p). Note  G(q) 
projects or thogonal ly  onto  G(p). ( % = 0  still.) 

The basic idea used here is that if Pl . . . . .  p,, are regarded as column vectors 
and are put together to form a matrix, then the rows of  this matrix are 
elements of  the null space of  Q, assuming that G(p) has the stress co. This 
finishes the lemma. 

Note  that this lemma gives us a geometric method of  investigating the null 
space of f2. Namely  if we can find the highest dimensional space in which G 
has a realization with stress co, then the nullity of ~ is just one more  than the 
dimension of  this realization. 

More  precisely, L e m m a  2 provides a correspondence from null spaces of 
stress matrices ~ to realizations of a graph G with maximum affine span, 
modulo  affine linear maps. 

The following is a very simple result that will be useful later. 

Lemma 3. Let A (t), 0 <= t <= 1, be a v by v symmetric matrix, where the entries are 
continuous functions o f  t, and the null space of  A(t) is constant for  all t. I r A  (1) is 
positive semi-definite, then so is A(O). 

Proof  Restricting A(t) to a complement  of  the null space, it is positive semi- 
definite at A(I)  and so for all t. Thus A(0) is positive semi-definite. 

We now turn our  at tent ion to convex polygons in the plane. Let (Pl, .--, P,,) 
=p,  where pielR 2, and each p~ is on the boundary  of  a convex polygon,  
cyclicly ordered and distinct. If every Pi can be separated from the others by a 
straight line, we say p is strictly convex. 
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not s t r ic t ly  convex str ict ly convex 

Fig. 9 

As in Connelly [7] we define the not ion of  a Cauchy polygon. This is a 
f ramework G(p) in the plane, where the vertices Pl . . . . .  Pv, in order, form a 
strictly convex polygon in the plane, the edges {i, i + 1 }, i = 1, 2, ..., v are cables, 
and {i, i + 2}, i = 1 . . . .  , v -  2 are struts (indices modulo  v). 

,,-�9 �9 

Pv 1 
P2.. ..'"' 

�9 ".. ,.. 

"'... 

P~ Pv 
Fig. 10 

It is known  by Whiteley and Roth  [16] that such a f ramework has a non- 
zero proper  stress co. We simply extend their p roof  to show that [2 is positive 
semi-definite of  nullity 3. 

L e m m a  4. Any Cauchy polygon G(p) has a proper stress with a positive semi- 
definite stress matrix of nullity 3. 

Proof We proceed by induct ion on v, the number  of  vertices of G. We start at 
v =4 .  Example 2 is a Cauchy po lygon  and by proper ty  D, all Cauchy  polygons 
with v = 4  satisfy the statement of  this lemma. So we assume that all Cauchy 
polygons  with v or fewer vertices have a positive semi-definite stress matrix of 
nullity 3. We wish to show the same statement for v + 1. 

Let G(p)=G(pl , . . . ,pv+l  ) be a given Cauchy polygon with v + l  vertices. 
Let G'(pl, . . . ,Pv-t,P~+l) be the Cauchy polygon associated to the same ver- 
tices with Pv deleted. Let G"(pv_ 2, P~-I, Pv, Pv+~) be the Cauchy polygon 
associated to the " las t"  four vertices of  G starting at v - 2 .  Let ~2' and ~2" be 
the positive semi-definite stress matrices of  nullity 3 associated to 
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G'(P~,...,Pv_I,Pv) and G"(p,,_2, Pv-t, Pv, Pv+l) respectively. Let (~' be the 
graph obta ined  by adding a single vertex {v} and no edges to G'. Let t}' be the 
v +  1 by v +  1 symmetr ic  matr ix  associated to G'(ff), where /~=(Pl . . . .  , P, ,-t ,  /~v, 
P~.+t) and /~ is arbitrary.  We insist that  t~'(/~) have the " s a m e "  stress as 
G'(Pl,.. . ,  Pv 1, P,,+t) so that  ~ '  is simply obta ined  by adding a row and 
column of zeros to t2'. 

Similarly define t]" as the v +  1 by v +  1 symmetr ic  matr ix  obta ined  by 

~'~ , ( 'O v + l , v 2 adding v - 3  rows and columns of zeros to t2'*. Note  that  for +'' " >0 ,  
and for ~ ' ,  to'v,+ 1,~-2 <0.  (Recall that  the off-diagonal matr ix  entries are minus 
these stresses.) 

F r o m  the p roof  of L e m m a 2  it is clear that  the null space of ~Q' can be 
naturally identified with the set of  affine images of  (pl, . . . ,  p~_,,/Y~,, p~+ 0, with 
the v-th vertex /Y~ chosen arbitrarily.  On the other  hand, the null space of t}" 
can be identified with the affine images of  (/Y~, ... ,  /~'-3, Pt,-2, Pv- i ,  Pt,, Pv+ 1), 
with the first v - 3  vertices chosen arbitrarily. It is clear that  the intersection of 
these two sets is the set of  affine images of p=(p~, ..., p~+ 1). 

The key point  is that  

t o ' ; + l , ~ _ 2 t 2  ' - d , , + m , ,  , 2 ~ " = Q  

is a stress matr ix  for G(p). (See Fig. 11). 

Pv-2 Pv-2 

Pl ............. Pv+I ~P'v+1 pv 
G' G" 

Pv-2 

. . . . . . . . . . . . . .  Pv 

G 

Fig. 11 

Call to the stress for the stress matr ix  (2. By the scaling toy+ 1,v--2 = 0 '  Except  
for the stress to~+ t,v ,, all the other  stresses of to are the sum of stresses of the 
same sign. However ,  

to~,= u , ,  = - d~,+ 1,~,_ 2 d , ; _  1.,, > 0 

too, , ,+ ~ = - d u +  , , ~ - 2  to' , ; , , ;+, > 0 .  

If co .. . . .  2-->__0 also, since the final po lygon  G(p) is convex at Pv, G(p) could not  
be in equil ibrium at Pv. (See L e m m a  6.2 of  Roth  and Whiteley [16].) Thus 
to ..... 2<0.  Thus t2 is a stress matr ix  (coming from a proper stress) for G(p), a 
Cauchy polygon.  
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Since each of ~ '  and ~" is positive semi-definite, so is f2. Thus the null 
space of ~ is the intersection of  the null spaces of g)' and f2", which is 
identified with the set of  affine images of  p, by the argument  above. Thus 
has nullity 3. This finishes the lemma. 

M a n y  special cases of  polygonal  frameworks can be shown to have such 
stress matrices. However,  a large class can be dealt with once one knows that 
for a given p there is some matrix fL with possibly more  entries non-zero than 
desired, that  has the correct nullity and definiteness. 

Theorem 5. Let G(p) be a Ji'amework in the plane, where p is a convex polygon 
with cables on the boundary, struts inside. Suppose G(p) has a proper non-zero 
stress co. Then the stress matrix (2 for co has nullity 3 and is positive semi-definite. 

Proof We show first that the nullity of Q is exactly 3. By L e m m a  2 the nullity 
is at least 3, and if the nullity is greater than 3, then there is a G(~) in IR 3, with 
co as a stress also, that projects or thogonal ly  onto  G(p) in IR 2, and the affine 
span of G(p) is 3 dimensional. Let  H be the convex hull of the vertices of  G(p) 
in IR 3. Each natural face or facet of H, the 2 dimensional  intersection of H 
with a support  plane, projects in a one-to-one fashion into IR z. Consider just 
the top faces of  H, the facets seen from + oc. These project to give a decom- 
posit ion of  the convex polygon in IR 2 as a convex cell complex. Since H is 3 
dimensional  there will be some edge e, in the interior of the polygon,  which is 
the projection of  a top edge ~ of  H, a one-dimensional  facet of H. e separates 
the polygon and it is easy to see that some strut of G(p) must cross e in order 
for there to be a proper  equilibrium stress co. This is because if there were no 
such strut it would be possible to increase e slightly, keeping all the cables of 
fixed length and increasing any other possible strut length. This will change 
(decrease) the energy in such a way that even the first derivative is <0 .  But 
this is not  possible at a critical point, i.e., when G(p) is in equilibrium. Thus 
some strut of  G(p) must cross e in its interior. 

Fig. 12 

Let e' be a strut of  G(p) which crosses e. Let 7' be the corresponding strut 
in G(p). Note  that neither endpoint  of  7' is one of  the endpoints  of  5. e 
separates the vertices of  G into two sets V~ and V 2, where the endpoints  of  e 
correspond to V 1 c~ V 2. Regard G(p) as "h inged"  along ~ and consider the 
mot ion  of  G(p) that simply flattens out this hinge, moving  V~ and V 2 each as a 
rigid set. Note  that this increases the length of  P' and every other such crossing 
strut, even so that their first derivatives are >0.  So the first derivative of  the 
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energy of G at ~ is negative, and as before this is impossible if G(p) is in 
equil ibrium with stress co. (Note  that  the effect of  these mot ions  is to flatten 
out the G(p) f ramework into the plane each t ime decreasing the energy.) Thus 
the nullity of  f2 is precisely 3 by L e m m a  2. 

To  show that  ~2 is positive semi-definite we proceed as follows. Let #2(1) be 
the stress matr ix  for a Cauchy polygon with vertices p. Consider  the stress 
matrix fa(t) = (1 - t) ~2 + t f2(1), 0 _< t <_ 1. By the above each ~2 has nullity 3 since 
it is a stress matrix with a propel" stress (allowing any internal edge to have a 
negative, strut stress). By L e m m a  4, Q(1) is positive semidefinite. By the above 
argument ,  ~2(t) has nullity 3 for all 0 _ < t < l .  By L e m m a  3, f~(0)=(2 is also 
positive semi-definite. This completes  Theorem 5. 

The following was conjectured by Walter  Whiteley. 

Corollary 1. Let G(p) be as in Theorem 5, with a proper, non-zero stress. Then 
G(p) is uniquely embedded in ]R",.lbr n> 2. Thus G(p) is rigid in IR". 

Proof Let G(p') be any other  realization of  G(p), with cables not longer, struts 
not shorter. By Theo rem 5 defining the energy form for the stress ~o for G(p), 
we know E(p')>E(p)=O. If  the inequality is strict then some strut must  have 
decreased in length or some cable increased. Thus  E(p')=E(p)=O. Since E is 
semi-definite (because ~-2 is) p' is in equil ibrium with respect to co as well. 

We claim there is an affine linear function T: R 2 ~ R  2 such that  Tp=p'. We 
can certainly arrange that  Tp~=pl for 3 non-col inear  p~ of p, and if this is the 
case, all the other  Tpi=pl as well. Otherwise we could take some coordinate  of 
Tpi-pl  and add it to Pi in the e 3 direction to get an equil ibrium ~ not lying in 
a plane, contradict ing L e m m a  2. Thus Tpi=p'~ for all i =  1 . . . .  , v. 

Now we must  show 7" is a rigid mot ion  of IR". We can clearly assume 
n=2 .  Let Pl,  " " ,  Pv be the vertices of  G(p) written in clockwise cyclic order, and 
we may  assume G(p) is strictly convex;  each pi is at a corner. Recall f rom 
linear a lgebra that  T(S~)--T(O) is an ellipse centered at the origin, where 
S ~= {x~lR21 Ixl = 1}. Those  points where the ellipse is outside S 1 cor respond  to 
directions where T is expanding,  I T ( x ) -  T(0)] > txl; similarly those points  of the 
ellipse inside S ~ come from points where T is contract ing,  I T ( x ) - T ( 0 ) t  < Ixl. 

Fig. 13 

T(SI)-T(O) 

Thus there are 4 intervals, symmetr ic  abou t  0, where T is expanding  and 
contract ing alternately, or 2 of  the same type with 2 points  separa t ing them, or 
just one region, or no regions of  either type (no expanding or contract ing,  a 
rigid motion).  
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Consider the lines from 0 through Pi-I-P~ and Pi-P~+I. Since they cor- 
respond to cable directions ITPl- Tpi+ ~1 <= IPi-Pi+ 11, i= 1 . . . . .  v, these lines must 
be inside or on the boundary of the contracting regions. Since G(p) is in 
equilibrium for each p~, there must be some strut p~-pj, j : t : i -1 ,  i+1,  and the 
line through 0 and p~-p~ must be between the lines through P~-I-P~ and 
p~+~-pi in a clockwise sense. 

P]-Pi.~ 
" Pr-I-Pi 

Fig. 14 

Thus the clockwise interval from P i - 1 - P i  to P~+I-Pi  must contain a vector 
that is non-contracting. 

Thus none of these clockwise intervals can be contained in one of the 
contracting intervals, But as we proceed around the convex polygon each time 
adding one of the clockwise intervals onto the next we eventually cover the 
whole circle exactly once. (This is a version of the tangent map.) But after 2 
steps we cannot continue jumping from one contracting interval to the other 
without overlapping. Then there can be no contracting or expanding intervals, 
and Tis rigid motion as desired. Thus G(p) is uniquely embedded. 

Remark4. Even without Theorem 5, Corollary 1 applies to any polygonal 
framework once it is known that it has a proper stress with a positive semi- 
definite stress matrix f2 of nullity 3. In particular Corollary 1 applies directly to 
Cauchy polygons using Lemma 4, without the need to use Theorem 5. In the 
next section we show how the result that Cauchy polygons are uniquely 
embedded can be used to prove a key lemma in Cauchy's original paper  [5], 
his Theorem II. Cauchy's original proof was found to be inadequate, and there 
have been several replacement proofs and comments  since then. 

Corollary 2 (Griinbaum's conjecture). Let G(p) be a framework coming from a 
convex polygon, but with rods on the boundary and cables on the inside. Let G be 
the graph with cables replacing rods from G and struts replacing cables from G. 
I f  G(p) is rigid in IR 2, then G(p) is uniquely embedded in IR",for any n > 2. 
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Proof By Theorem 3, (~(p) must have a proper non-zero stress co. It is clear 
that coi~<0 on the boundary cables. Then - co  is a proper non-zero stress for 
G(p). By Corollary 1 G(p) is uniquely embedded in lR". 

Remark 5. In [12] Gri inbaum and Shephard remark that the converse is false. 

An analogue of Theorem 5 should hold in dimension 3. The above proof 
does not seem to extend, but a few examples indicate that the stress matrix 
"coming from" convex polyhedra in IR 3 are semi-definite of nullity 4 as would 
be desired. For instance the framework of Example 3 is of this type. It is also 
easy to check that 3 cable (line) directions and 4 strut directions cannot be 
separated by an ellipse in the projective plane of such directions. Thus the 
argument of Corollary 1 works, and the framework is uniquely embedded in 
IR" for n>3.  It is interesting to observe that Branko Gri inbaum has an 
example of a 3-dimensional polyhedron with cables on the boundary, struts 
inside, with a proper non-zero stress, with the cables forming a 3-connected 
graph, but which is not rigid in 1R 3. The flex, however, extends to an affine 
motion of 1113 , so there is still hope for the analogue of Theorem 5 and a 
rigidity theorem, if there are enough cables and struts to stop such non-rigid 
affine motions. This would give some version of Whiteley's conjectures for 
dimension 3, see Whiteley [23]. 

IV. The Relation to Related Results 

As mentioned in Remark 4, Lemma 4 and Corollary 1 alone can be used to 
show the Cauchy polygons are uniquely embedded. This in turn can be used to 
show the following lemma of Cauchy [5], his Theorem II. 

Lemma 5. I f  in a convex planar or spherical polygon ABCDEFG, all the sides 
AB, BC, CD, ..., FG, with the exception of only AG, are assumed invariant, one 
may increase or decrease simultaneously the angles B, C, D, E, F included 
between these same sides; the variable side AG increases in the first case, and 
decreases in the second. 

A 

[3, 

C~ 

D 
Fig. 15 

E 
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We have taken liberties and removed G from the list of angles allowed to 
increase or decrease. 

Apparently it was pointed out by Steinitz [20], more than a hundred years 
after Cauchy, that Cauchy's proof has some gaps. The crux of the problem was 
that, in the induction that Cauchy described, the polygon, between the original 
one and the one with varied angles, may not be convex; the induction process 
inadvertantly breaks down. (See Griinbaum and Shephard [12] for further 
comments on the corrections to Cauchy's paper.) 

Of course Cauchy's proof works quite well if the varied polygon is "close" 
to the original. This naturally is enough to get a weaker result about the 
rigidity of convex polyhedra, but later it is clear Cauchy had in mind that any 
two "isometric" convex polyhedra were congruent. 

Steinitz published a "correct"  proof of Cauchy's lemma [20], but it was 
reasonably detailed and complicated. Stoker [21] much later gave another 
proof much in the spirit of Cauchy's very natural idea, but of course Cauchy's 
"pitfall" is somewhat of an annoyance. Lyusternik [14] gives a proof some- 
what like Steinitz's. Even more recently |.J. Schoenberg and S.K. Zaremba 
[17] describe an elegant "simple" proof that involves the "trick" of choosing a 
reference point appropriately in the middle of the arc AG. 

It is especially interesting to compare Cauchy's lemma with a theorem of 
Axel Schur [18]. See especially Chern [6] pages 35-39. Schur's theorem is an 
almost exact analogue of Cauchy's lemma in the smooth case; in fact since it is 
stated in the piecewise-smooth case, also, at least in the plane, it is a generali- 
zation of Cauchy's lemma. Schur assumes that the original arc AG is smooth 
(or piecewise-smooth), the varied arc has the same length (each segment has 
the same length), and that the curvature of corresponding points on the varied 
arc decreases (and the angle between tangents to the curve at the corners 
decreases). Then the length AG decreases. 

It is especially intriguing that the proof of this in Chern [6] involves 
choosing an internal reference point and estimating a certain integral. Schoen- 
berg and Zoremba's [17] proof is almost exactly the same as Chern's. 

With this background in mind we propose fearlessly yet another, essentially 
a fourth, proof of Cauchy's lemma. 

Proof  of  l_emma 5. Since the original polygon and the varied one are both 
convex, it is no loss in generality to assume that the angles B, C, ..., F 
increase; then we show that AG increases. The advantage of looking at just 
this case (at least in the plane) is that the varied polygon does not have to be 
convex, or for that matter even stay in the plane. It can pop out to 3-space or 
n-space if it likes. 

First we do the case when the original polygon is planar. Regard the sides 
AB, BC . . . .  , FG, and AG as cables, since they do not increase in length. Since 
the angles B , . . . , F  now increase, and their sides stay the same length, the 
lengths AC,  BD . . . . .  EG also increase, so we regard these as struts. Notice this 
is what we called a Cauchy polygon. Thus if AG decreases, we have another 
embedding of the original Cauchy polygon, which is impossible. Thus AG must 
increase, and can only stay the same if all the other angles and sides stay the 
same. 
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For the spherical case consider the cone over the spherical polygon from 
the center of the sphere. Since the polygon is assumed to be spherically convex, 
it lies in a hemisphere, and there is a flat plane that separates the center of the 
sphere and the spherical polygon. This plane intersects the cone in a planar 
polygon. If one side and the angles of the spherical polygon are increased, then 
the planar polygon corresponds to another polygon with corresponding side 
and angles increased. However, the varied planar polygon may not be planar; 
but this does not matter, since our Cauchy polygon is allowed to vary into 3- 
space. Thus AG must increase as before. 

Another application of the polygons of Theorem 5 being uniquely embed- 
ded is to a comment  of 0. Bottema, [4] about a theorem of van der Waerden 
[22]. Van der Waerden's theorem says that if a pentagon with equal sides and 
equal angles between the sides is embedded in 3-space, then it is planar. There 
have been subsequently several proof of this, see S. Smakal [19], and we do 
not intend to add to them. Bottema makes the comment, however, that if such 
a polygon embeds in any euclidean space (which might as well be 4-space), and 
0 is the angle between the sides, then 36~ ~ In fact he shows that if 0 
is in this range, the polygon embeds in 4-space, and is planar if and only if one 
of the equalities hold. 

That 0 is bounded between 36 ~ and 108 ~ follows immediately from the fact 
that Cauchy polygons are uniquely embedded, even allowing them to pop up 
to 4-space. The lower bound follows from comparing the given space pentagon 
with a planar regular pentagon whose diagonals are the same lengths as (and 
correspond to) the sides of the space pentagon. The upper bound follows from 
comparing the given space pentagon with a planar regular pentagon whose 
diagonals are the same length as (and correspond tot the diagonals of the 
space pentagon. Clearly there are many generalizations along these lines. 

In [16] Roth and Whiteley remark that there is a convex polygonal 
framework G(p), with rods on the boundary and cables inside such that for a 
nearby realization G(p'), G(p') is infinitesinally rigid, but G(p) is flexible. This 
provided an answer to a question of Grt inbaum and Shephard in [12], 
page 2.13. 

Using Theorem 2 and Corollary 1 we can also provide several such exam- 
ples. For instance any of the following frameworks from Gri inbaum and 
Shephard [12] or Roth and Whiteley [16] provide such a G(p). The vertices all 
form a regular hexagon. 

Fig. 16 
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Each  of  these  G(p) have  the fo l lowing p roper t i e s :  
(1) If all the m e m b e r s  of  G are rep laced  by  rods  to get C,, t hen  (~(p) is 

in f in i t es ina l ly  rigid. 
(2) G(p) has  a p rope r  n o n - z e r o  stress: Let the g raph  G' be  o b t a i n e d  by 

c h a n g i n g  all rods of  G to cables  a n d  all cables  of  G to rods. T h e n  by 
C o r o l l a r y  1, G'(p) is rigid. 

(3) G(p) is flexible. (This  is s ta ted  for the  g raphs  of Fig. 3 in  G r i i n b a u m  a n d  
S h e p h a r d  [12].)  

F o r  any  g raph  G(p) sat isfying (1), (2), (3) there  is a p' close to p such that  
G(p') is in f in i t e s ina l ly  rigid. This  is because  by T h e o r e m  2, s ince G'(p) is rigid 
(by (2)), there  is a p'  close to p such  that  G'(p') has  a p rope r  stress co tha t  is 
n o n - z e r o  o n  all members .  

T h e n  - c o  is a p r o p e r  stress for G(p'). Also by  (1), if p'  is close e n o u g h  to p, 
(~(p') is in f in i t e s ina l ly  r igid (see G l u c k  [11]  or A s i m o w  a n d  Ro th  [1]). By the 
m a i n  t h e o r e m  of  Ro th  a n d  Whi t e l ey  [16]  this impl ies  G(p') is in f in i t es ina l ly  
rigid. 
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