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Summary. In this paper we formulate and prove the basic principles of a procedure 
for computing a bound on the error in the numerical solution of a system of linear 
differential equations. The bound on the error at each integration step is expressed 
in terms of an ellipsoid whose size and orientation is determined by the computations. 
To illustrate the procedure, Bessel's equation (of order zero) is integrated over the 
interval 2 < x ~ 3 at steps of length O. t and bounds on the error are given for each step. 

In an internal report [t ], we have shown a method for computing error bounds 
to the solution of a system of ordinary linear differential equations. In this report 
we developed a geometrical visualization of the process. In problems of this kind 
the motivation of the individual steps is quite helpful; however, in order to get 
an overview of the procedure, it may be worth-while to extract the mathematical 
essence and to describe the procedure in terms of a number of lemmas and 
theorems. This is done in this paper. 

Generally speaking, the procedure can be described as the computation of a 
Liapunov function for the problem. The emphasis in the present approach is 
different, however, from that usually encountered in Liapunov theory. If one is 
interested in the stability of a system and has a problem which is rather stable, 
then the set described by the Liapunov function may be much larger than the 
actual solution. However, in a procedure to give error bounds, such a characteriza- 
tion may be far too pessimistic. Thus we are interested in determining Liapunov 
functions which stay close to the actual solutions. 

We use ellipsoids for the description of the error bounds. Other characteriza- 
tions, for instance, paraUelpipeds with axes not restricted to being parallel to the 
coordinate axes can serve as well. Ellipsoids were chosen for their analytic 
convenience. In restricting error bounding figures to a certain type, one must find 
a compromise between flexibility and narrowness of the bound. There are examples 
for which the bounds given by a bounding procedure carried out in terms of one 
of the usual norms or even pseudo norms are unrealistically wide. The present 
procedure if carried out in its best possible manner will give bounds which exceed 
the actual error by a finite factor, which depends upon the number of equations 
of the system. Thus the present approach is not only better than one which uses 
a fixed norm, but is good in that no major improvements can be made. 
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After working on the method for some time it was called to our at tent ion tha t  
Professor William Kahan  of the Universi ty of Toronto had made an announce- 
ment  1 concerning such a method.  We feel tha t  the presentation given here is 
sufficiently different to be of interest. 

We begin with five lemmas. These are basic steps in the derivation of Theorem !.  
Then  we state Theorem t and sketch a proof. Lastly,  we indicate how Theorem t is 
used in the problem of comput ing error bounds and give two more lemmas which 
are useful in determining the matr ix  R (x) in Theorem 1. A computer  program 
which carries out  the procedure described here is given in [2] and [3]. 

All quantit ies are real. If u and v are n-dimensional vectors with components  
u i and v i relative to some orthogonal basis, then (u, v)  denotes the inner product  
of the vetors u and v and 

i 

Lemma 1. Let  V denote a symmetric,  positive definite matr ix  and let r be a 
given vector. For  any real number  u > 0 and vector  y different from the null 
vector the inequali ty 

a 2 

2 l ( r '  Vy)I<=a-+(Y' VY)  + (y ,  Vy)  (r, P y ) '  (1) 

holds. 

Proo[. Set 

+ =l<r, Vy>l/<y, vy>. 

The desired conclusion follows from 

(a k y  -- (1/a) y, ~" (a k y  -- [1 In] y) ) > 0 

after a little algebraic manipulat ion and replacing k by its value. 

Lemma 2. Let R denote a symmetr ic  nonnegative matrix.  Set 

E ={"l<", R . ) < I }  
and 

E = {r I r = R u for some u in/~}. 

Then for an arbi t rary  but  fixed vector y 

(2) 

(3) 

max (r, y )  = (y ,  Ry}~. (4) 
rEE 

This result follows from the Cauchy-Schwarz inequality. 

Lemma 3. Let  }7 denote a symmetr ic  positive definite matr ix  and let V denote 

the inverse of l~. If  a vector  y satisfies the condition (y ,  Vy)-----<q0*, q o > 0 ,  then 

I See the abstracts for contributed papers to the Symposium on Numerical Solution 
of Nonlinear Differential Equations, May 11-14, t966, sponsored by the Mathematics 
Research Center, US Army and SIAM, Iowa City, Iowa. 
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the k-th component Yk of the vector y satisfies the condition 

[ykl < qoVVkk. (5) 
Here Vkk denotes the diagonal element in the k-th row and column of V. 

Pro@ Let e k be the unit vector in the direction of the k-th coordinate axis. 
We have 

Yk = <Y, e~) = (y ,  VVek)  

= <~y, 1%> 
and 

I<fZy, vek>[< @y, VVy)�89 Vek}�89 

Lemma 4. Let the matr ix  A (x) be continuous and the matrix R (x) be sym- 
metric, nonnegative and continuous for x i =< x =< x r Let the real function a = (x) 
be continuous and different from zero. Let V o denote a symmetric and positive 
definite matrix. Then the matrix V (x) which satisfies the conditions 

- -V '  (x) + a (x) V (x) + V (x)A t (x) +a-*(x) V (x) + (a'(x)/qo)R(x) = 0 ,  

V(x~) = V  o (6) 

is symmetric and positive definite throughout the interval [xi, xl]. 

Proo/. Since V(x) is symmetric there is an orthogonal transformation S(x)  
such that  

n (x) = S (x) V (x) S t (x), 

where D (x) is a diagonal matrix. Using the expression for V' (x) as given by Eq. (6) 
and the fact that  S S  t = S i S  = I  one obtains 

D' = S ' S t  D + DS(S t )  ' + D S A t  S * + S A St D +a-~D + (a2/q~)S R S  t. 

I t  follows that  the i-th diagonal element dir of D satisfies an equation of the form 

d~ =p (x)d. + (S RS')ii. 
Since R is positive, S R S t is positive and therefore (S R St)ii  > O. I t  follows that  
dii > 0 and V (x) is positive definite. 

Corollary. If  V (x) is a symmetric matr ix  such that  V (xi) is positive definite 
and the matrix 

- -V ' (x )  + A  (x) V(x) + V(x)A* (x) +a-*(x) V(x) + (a2(x)/q~)R(x) (7) 

is nonpositive for x i <= x < x I then V (x) is positive definite. 

Lemma 5. Let y (x) denote a vector and 1~ (x) a symmetric,  positive definite 

matrix. Suppose both y (x) and V (x) are continuously differentiable for x i <= x <= x 1. 
If 

d 
d ,  <y(x), ~' (x )y(x) )  <=O, x,<=x<=x I (8) 

<y(x), V(x)y(x)> <= <y(xi), V(x3y(x3> (9) 
then 

for xi ~ x ~ x r 
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Proo/. 

<y(x), V(x)y (x ) )  = <y(x 3, V ( x 3 y ( x 3 )  
x 

+ f J [  <y(t), V(t)y(t))dt .  
X~ 

Theorem 1. (i) Let V o be a symmetric, positive definite matrix. 

(ii) Let R(x) denote a symmetric nonnegative matrix which depends contin- 
uously on x for x i < x < x r Let 

s ={u(x) lu(x  ) is continuous and (u(x), R(x)u(x)> <t} .  

Let u (x) he a member of/~ and set 

r (x) = R (x) u (x) .  (10) 

(iii) Let the vector y (x) satisfy the conditions 

y' (x) = A (x) y (x) + r (x), x i < x < x! 

<Y(Xi), Vo_ly (x3> <qo~ ' (1t) 

(iv) Let a 2 (x) he continuous and also a 2 (x) > O. 

(v) Let the matrix V (x) satisfy the conditions 

a~ (x) R - - V ' ( x ) + A ( x ) V ( x ) + V ( x ) A * ( x ) + a - 2 ( x ) V ( x ) +  q~ (x)<O, (12) 

v (x~) = Vo. 

Then y (x) satisfies the inequality 

<y(x), Vq(x)y(x)><q~o, x i<=x<x  # (13) 

and the components y~ (x) of y (x) satisfy 

ly~(x)l<=qoVVk~(x), x , < ~ < x  1. (14) 

In this theorem we specify a family of x dependent vectors y (x) on an interval 
Ix o xt]. Then we assert that  any y (x) of this family satisfies the inequality (13) if 
the matrix V(x) satisfies the conditions (12). Geometrically, the matrices V(x) 
determine ellipsoids and those vector functions y (x) which initially lie within or 
on the ellipsoid determined by V o and which satisfy the differential equation (t 1) lie 
within or at most on the ellipsoids determined by the matrices V (x). 

Pro@ Let V (x) satisfy conditions (12). Then V (x) is symmetric and positive 

definite by Lemma 4 and the corollary. Set V ( x ) =  V -1 (x) and suppose there is 
a y (x) which satisfies conditions (11) but that 

<y (x), V(x)y(x)>>q~, xi<=x<=x r (15) 

(There is no loss of generality by assuming the inequality (t 5) holds throughout 
the interval [x i, xt], for the argument which follows is valid for any subinterval 
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over which the inequality (t 5) holds.) We have 

d dx (y(x), ~Z(x)y(x)) -~-(y(x), [V'(x) + V(x)A (x) +At(x)V(x)]y(x))  

+2( r (x ) ,  ~z(x)y(x)) 

~ ( y ( x ) ,  [V ' (x )+V(x)A(x)§  (16) 

+a-*(x) (y(x), V(x)y (x)) 
c*' (x) 

+ (y(x), P(x)y(x)) (r(x), V(x)y(x)) '  

by Lemma 1. By Lemma 2 

max (r (x), V (x)y (x)} ~ (y  (x), V (x) R (x) V (x)y (x) }�89 (17) 
* (,0 

Using our assumption (15) and the result (t7) to modify the last term of (16) we 
obtain 

d 
dx (y(x), V(x)y(x)) 

_-< (y (.), [r (.) + ~(./A (.) +A'  (x/P(*/+,'-~ (x) ~(x) (18) 

+ -q~o-a'(x)V(x)R(x)V(x)]y(x)) 

Next, using the facts that V(x)~Z(x)=I and V (x) ~Z' (x) =- -  V' (x) V (x), we 
obtain 

d 
dx (y(x),  ~Z(x)y(x)} 

(V (x) y (x), [ -- V (x) + A (x) V (x) + V (x) A* (x) + a -2 (x) V (x) (i 9) 

a' (x) 
+ --q~o R(x)]~'(x)y(x)) 

~ 0  

by hypothesis, condition (12), of this theorem. It  follows from Lemma 5 that  

(y  (x), V (x) y (x)) <--- qg. That is, the assumption (15) is untenable. 

Next we show how Theorem t is used in determining error bounds. There are 
many quantities, in particular r (x), R (x), V o, go, and a s (x) appearing in the state- 
ment of Theorem 1. We will indicate the role of these quantities and how they are 
determined. 

We consider two cases. In the first case we suppose that  the matrix operator A 
may be treated without error. In particular this is the case if A is a constant 
matrix or has entries which are polynomials in the independent variable x. 
Suppose that  w (x) is determined by the conditions. 

~'(x)=A(x)w(x)+/(x) ~_x<=~, (2o) 
(o0 = Wo. 
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In  general, a numerical solution of (20) is a known function z (x) which satisfies 

z ' (x)=A(x)z(x)+g(x) ,  x i ~ x ~ x t ,  
(2t) 

z (x3  =z~ 

on a set of subintervals [xi, xt] of [~, fl]. These subintervals [x o xt] collectively 
cover [0r 8]. The Eq. (2t) determines g(x). 

The error y (x) is the difference, 

y (x) = w (x) --  z (x), (22) 

between the vector functions w (x) and z(x). In  this paper we assume, for con- 
venience, tha t  the eror due to round-off is negligible relative to the t runcat ion 
error. Then we prescribe a method for comput ing a bound on the error resulting 
from truncat ion and propagation of initial error. 

The equation for the error on a subinterval Cxi, xt] is 

y '  (x) = A (x) y (x) + r (x), x i =< x --<_ x/, 

y ( x3  = w (xi) - z  (x,).  (23) 

We call r (x) the residual but  it is called the deviation also. Here 

r(~) =1(~) -g(x) 
(24) 

= / (x) + A (~) z (x) - z' (x) 
for x~ ~ x ~ x# 

Lemma 6. Let v be a given vector  and set 

R -~vv ?. (25) 
Set 

and 

E -~ {r [r = R u for some u in E}. 
Then v is in E. 

The (degenerate) ellipsoid E is determined, as indicated in the s ta tement  of 
Lemma 6, by  the matr ix  R. I t  is clear tha t  the ellipsoid E is contained in every 
ellipsoid which contains the vector  v. Set R(x)~r(x)r  t(x) and take u(x)= 
r(x)/(r(x), r(x)). Then (u(x), R(x)u(x)) = t and r(x) ----R(x)u(x). 

For any  integration step other than  the first, we m a y  take for V 0, V (x), as 
determined from the previous integration step, evaluated at the final point of 
the preceding subinterval.  For  the first integration step, lacking a bet ter  choice, 
one m a y  take for V 0 the ident i ty  matrix.  

For  all steps, except possibly the first, there is some initial error, namely, the 
error generated over the preceding step and tile propagated error from previous 
steps. If  we allow tha t  there is some small error at  the start  and we take for V o the 
ident i ty  matr ix  then qo denotes the radius of the n-sphere which bounds the 
initial error. In  [3] we describe a modification which permits V o to be zero. 

Lastly,  we need the positive real function a*(x). This quant i ty  a2(x) in- 
fluences the size and shape of the bounding ellipsoids determined by  V (x). The 
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quan t i ty  a was introduced in Lemma t.  I t  is clear tha t  for an appropriate  value 
of a the inequali ty (t) becomes equality. The same holds for the inequali ty (t6). 
Thus if the real function a S (x) could be appropriately determined, the boundaries 
of the error figure and the bounding ellipsoid have points in common. On the other  
hand  forcing the bounding ellipsoid to be tangent  to the error figure at  some ill 
chosen point  could result in an undesirable elongation of the bounding ellipsoid 
in some direction. 

Let  Tr  R denote the trace of the matr ix  R, tha t  is, Tr  R denotes the sum of 
the diagonal elements of R. An approximat ion to the quan t i ty  

q0 [Tr V (x)/Tr R (x)]~ (26) 

is a convenient  and usually a sat isfactory choice for a S (x). 

In  E31 we give a procedure for determining the quanti t ies discussed above and 
a computer  program for calculating the error for this first case. Before discussing 
the second case we need to give one more lemma. 

Let R 1 and R~ be two symmetr ic  nonnegat ive matrices. Set 

E x = { u [  (u, RlU ) =< t}, (27) 

E 1 ={y]y  = R~u, for u in J~l}, (28) 
and similarly, 

E2 ----{vl<v, R2v) <---- t}, (29) 

E2 ={z[z=R~v, for v in/~2}. (30) 

E 1 and E 2 are ellipsoids, possibly degenerate. We say tha t  the ellipsoid E 1 is 
determined by  the matr ix  R 1. 

Set 

S = E  1 + E  2 = { s i s  = y  + z ,  for y in E 1 and z in E2}. (31) 

S is called the vector  sum of E~ and E 2. 

Lemma 7. Let  R 1 and R 2 be symmetr ic  nonnegat ive matrices. For  any  real 
number  a > 0 let the mat r ix  R be given by  the equat ion 

R = R~ + a R1 + R 2 + (t/a) R2. (32) 

Then the ellipsoid E determined by  the matr ix  R contains the vector sum of the 
ellipsoids determined b y  R 1 and R 2. 

The result expressed in Lemma 7 was given to us by  Professor William Kahan.  
A derivation and discussion of Lemma 7 is given in [41 and also [5]. 

In  this second case we suppose tha t  w (x) is determined by  the conditions 

w' (x) = B (x) w (x) + / (x),  ~_--__ x __< ~, 
(33) 

w (~) = w0. 

Suppose also tha t  the numerical  solution obtained satisfies conditions (2t) and 
r (x) is given by  (24) just  as in the  first case. Tha t  is, A (x) is some approximat ion 



A Basic Theorem in the Computation of Ellipsoidal Error Bounds 225 

to the matrix B (x) and r (x) as we define it is a partial residual in this second 
case. Then the equation for the error may be written as 

y '  (x) = A (x) y (x) + r (x) + [B (x) - -  A (x)] z (x) + [B (x) --  A (x)] y (x). 

y(xi) =w(x~)  --z(xi). (34) 

As in the first case set Rl(x)~-r(x)rt(x). Let R2(x ) and R3(x ) denote sym- 
metric, nonnegative matrices that determine ellipsoids which contain the vectors 
[B(x)--A(x)]z(x) and [B(x)--A(x)Dy(x) respectively. Let R(x) denote a 
symmetric nonnegative matrix obtained from R 1 (x), R 2 (x) and Rs (x) by repeated 
application of Lemma 7. Then a matrix V(x) which satisfies 

- v'  (x) + A  (x) V(x) + V(x)A* (~) + (1I~~ V(x) + (~(~)lqg)R (~) ~ 0 

V (x,) =Vo, 

where V 0 and a S (x) are obtained ill tile same fashion as in case t, determines an 
ellipsoid which contains the error y (x) given by (34). 

A discussion of the relation between the bound obtained by this procedure 
and the actual error is given in [l ]. 

The inequalities occurring in the above equations, for example, in the formulae 
for the residual and the matrix inequality for V, must be satisfied throughout 
the interval of integration. With the usual integration methods (Runge-Kutta or 
predictor-corrector methods) it is difficult to establish that these inequalities are 
satisfied. We found it practical to express all quantities in terms truncated power 
series and to bound the remainders. Accordingly, we assume that the matrix A 
is given in the individual intervals by a polynomial and that an estimate for the 
matrix B -  A is available in a corresponding form. This information should be 
regarded as input data. 

A program for the case where B ~ A has been shown and explained in detail 
in Ref. [2]. In order to illustrate the application of the above results for the 
case A ~ B we consider the integration of Bessel's equation of order zero over 
the interval 2 ~ x --< 3. Write the equation as 

, , ,w~ ( x ) /  - ' , ,w~ ' 

Let H denote the step size and set x i = 2 + i H ,  i~-O, t . . . . .  Suppose that the 
approximate solution z(x) and the matrix V(x) have been determined for 
2--< x ~ x i. We discuss the next step in the integration process. 

In this example the matrix A is the same as B in Eq. (35), except the entry 
-- l /x  is replaced by the first three terms of the development of --l /x about 

X .~-  X i .  

The components of z(x) are taken as polynomials of the third degree in 
h = x -  x i. Equating the coefficients of like powers of h in the two expressions 
z' (x) and A (x)z(x) fixes the coefficients for the polynomial components of z(x). 
The remaining terms, that  is, A(x)z(x)--z '(x)  constitute the residual r(x), 
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Eq. (24). The components  of r (x) are polynomials in h also. Then 

R 1 (x) = r (x) r t (x). (36) 

The term [ B ( x ) - - A ( x ) ] z ( x )  in Eq. (34) is a vector whose magni tude does 
not exceed h3]z6(x)I/x~, where z 6(x) is the second component  of z(x). Hence, the 
matr ix  for an ellipsoidal bound for this vector is given by  

Similarly, 

R6(x) =h6(~ [z6(x~]2/x~). (37) 

0 

is the matr ix  for an ellipsoidal bound for the term [ B ( x ) - - A  (x)ly(x).  Here 
V~, (x) is the indicated diagonal element of the matr ix  V (x). The quan t i ty  V,6 (x) 
is not  known at this point, however. Hence we use a known value V26 (xi) as an 
initial est imate and revise later in an obvious way. 

The various contributions to the residual as characterized by  R 1, R 2, and R3 
are now combined using Lemma 7. We found the value a : [Tr R 3 (xi) / Tr R 6 (x~)]~ 
a computa t ional ly  convenient  choice for the quan t i ty  a occurring in Lemma 7. 
Reasons for this choice are discussed in [t ]. Thus  R 6 and R 8 are combined to give 

a matr ix  R. The mat r ices /~  and R 1 are combined in exact ly the same way  to give 
the mat r ix  R of Theorem t. The matr ix  R is of the form 

R(x)  =he(R~j(x) )  

with the elements Rij  polynomials in h and Ri j  = R j i .  

Now set 
V(x) = (V,j (x)) + c X h ' ,  

where the V~j(x) are polynomials in h of the second degree and  V~j(x)=Vj~(x). 
The coefficients for these polynomials are determined in the same way  as the 
coefficients for the components  of z (x). The constant  c is to be determined so tha t  
the inequali ty (12) holds. The details for comput ing  a c are given in [2] and also 

in [3]. 
The quanti t ies a* (x) and qo 2 are needed to complete the description of (12). 

Invoking  again the trace criterion, we obtain 

a* ( x) = qo h- 3 [Tr V (xi)/Tr R (x~)]J. 

For  the numerical  example which we are presenting here, we took z 1 (2) : 0.22389 
and z 6 (2) ----- 0.57622. Then assuming we know that  

[(J0(2) -z1(2)) 6 + (J1 (2) -z2  (2))6] t ~ 5 • 10 -3, 

we take q0 = 5 • 10-*. 

Proceeding as outl ined above with step size H = 0.1 we obtained the following 
numerical results: 
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x 2.0 00 x 2.0 00 
Jo 2,238907791 - o l  Jx 5.767248077 - 0 1  
z I 2.2389 - 0 1  - z  2 5.7672 - 0 1  

Bound  5. -- 06 Bound 5. -- 06 
Jo--Z1 7.791 --07 Jl+z2 4.8077 - 0 6  

A 1 4.2209 --06 A 2 1.923 --07 

2.t O0 2.1 O0 
t.666069803 - -0 t  5.682921357 --01 
t.666070675 --01 5.682861762 --01 
7.343883432 --06 7.184714598 --06 

--8.72 --08 5.9595 --06 
7.256683432 --06 t .2252t4598 --06 

2.2 00 2.2 00 
t . t03622669 --01 5.559630498 --01 
t.103634596 - -0 t  5.559561t55 - -0 t  
9.556004353 --06 9.194212488 --06 

-- i . t  927 --06 6.9343 00 -- 06 
8.363304353 --06 2.259912488 --06 

2.3 00 2.3 00 
5.553978445 --02 5.398725326 --01 
5.554229865 --02 5.398648228 --01 
t.167270713 --05 1.107555t73 --05 

--2.51420 --06 7.7098 --06 
9.15850713 --o6 3.36575173 --06 

2.4 OO 2.4 O0 
2.50768330 --03 5.201852681 - -o l  
2.511708385 --03 5.201770019 - -o i  
1.368924663 --05 1.283445827 --05 

--4.0250 85 --06 8.2662 --06 
9.6641 6163 --06 4.5682 5827 --06 

2.5 00 2.5 00 
--4.8383 7764 --O2 4.970941024 --01 
--4.837808051 --02 4.97O855160 --01 

1.559077492 --05 1.446628283 --05 
-- 5.69589 --06 8.5864 --06 

9.89488492 --06 5,87988283 --06 

2.6 00 2,6 00 
--9.68049544 --02 4.7081 82665 - -o l  
--9.679745953 --02 4.708096101 --01 

t .758t39t47  --o5 1.620415755 --o5 
-- 7.4948 7 --o6 8.6564 --o6 

t .008652t47 --05 7.54775755 - -o6 

2.7 oo 2.7 oo 
--1.424493700 --01 4.416013791 --01 
-- t .424399823 --01 4.415929135 --01 

1.964078509 --05 1.8025 55795 --05 
--9.3877 --06 8.4656 --06 

1.025308509 --05 9.55995795 --06 

2.8 00 2.8 00 
--1.85o36o333 - -0 t  4.097092468 --01 
--1.850246946 --01 4.097012398 --01 

2.174650315 --05 t.990692022 --05 
-- 1.1338 7 --05 8.0070 --06 

t .0407803t5 --05 t . t89992022 --05 

|6 Numer. Math., Bd. t9 
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x 2.9 00 x 2.9 00 
J0  - -2 .243115457 --01 ./1 3.754274818 - - o l  

- -2 .242982348 --01 --z~ 3.754202042 --01 
B o u n d  2.387404161 - -05  B o u n d  2. t823 67289 - -05  
Jo-Zl - 1 . 3 3 1 0 9  - 0 5  J l + ~  7.2776 - 0 6  

d 1 1.056314t61 - 0 5  A S 1.454607289 - 0 5  

3.o oo 3.o oo 
- 2 . 6 0 0 5 1 9 5 4 9  - 0 1  3.390589585 - 0 1  
- 2 . 6 0 0 3 6 6 8 8 4  - 0 1  3.390526805 - o l  

2.599721503 - 0 5  2.375051295 - 0 5  
- t . 5 2 6 6 5  - 0 5  6.2780 - 0 6  

t . 07307 t503  - 0 5  1.747251295 - 0 5  

The values forJ0(x ) andJx(x  ) were obtained from [7]. The quan t i ty  A 1 is defined by  

A 1 : Bound --  [J0 - zl[ 
and similarly for A 2. 

The values for the matr ix  V (x) are 

X UI11 Vll 2 V12II 

2.0 t 0 t 
2.1 2.157304954 O0 - -5 .000000000- -03  2.064804954 O0 
2.2 3.652688768 O0 - -2 .353540908- -02  3.381341731 O0 
2.3 5.450083671 O0 - -6 .393127746- -02  4.906713849 O0 
2.4 7.495818942 O0 - - t . 3 4 4 8 3 t 6 6 t - - 0 t  6.588932764 O0 
2.5 9.722890508 00 - -2 .426766734- -01  8.370933562 00 
2.6 t .236421304 Ol - - 3 . 944798706 - -0 t  t .050298888 O1 
2.7 1.543041756 Ol - -5 .949407713- -01  t .299682958 Ol 
2.8 1.89164t598 Ol - -8 .488117775- -01  t . 58514 t89101  
2.9 2.279879452 01 - -1 .160242212 00 t .905090794 01 
3.0 2.703420758 0t - -1 .532428184 00 2.256347462 Ot 

We present the pert inent  information from the above tames pictorially in 
Fig. t below. The line segments emanat ing  f rom the origin are the error vectors. 
The components  of these vectors are the rows 

J0 - zx and - J 1  - zv 

The error boxes are determined f rom the values in the row labeled Bound.  The 
two ellipses were obtained from the vui,s corresponding to x----2.5 and x = 3 . 0 ,  
respectively. 

Fig. t shows tha t  one indeed obtains bounds for the error and tha t  these 
bounds are not  too wide. 

The comparison between the bound  and the actual  error is not  quite fair. 
Ult imately,  the  residual r (x) will always be characterized by  describing a certain 
neighborhood of the origin to which it is confined. We chose a characterization 
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Fig. 1. The smooth closed curves are ellipses. The flatness is an optical illusion 

given by  ellipsoids R (x). There exists, as a consequence of this characterization,  
a smallest convex set K(x), the to ta l i ty  of solutions y(x)  of (11) of Theorem t ,  
which is the best characterization of the error once the characterization of the 
residual is given. A good method of error bounding  is one for which the bounding  
figure, in our case an ellipsoid, is no t  much larger than  the set K (x). The error 
itself, by  fortui tous cancellations, might  be qui te  small. 
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