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Invariants of Knot Cobordism 

J. LEVINE* (Waltham, Mass.) 

1. In I-2] certain abelian groups, G+ and G_,  are introduced in order 
to study the cobordism groups C~, of  knotted n-spheres in (n + 2)-space, 
for odd n. It is shown that C2~_1,~,G ~ for e = ( - 1 ) "  and n>3 ,  C 3 is iso- 
morphic to a subgroup of G§ of index 2 and C~ has G_ as a quotient 
group. In this work we shall construct a complete collection of numerical 
invariants on G~. As a consequence, for example, it will be shown that 
every element of G~ has order 1, 2, 4 or ~ ,  and there are elements of all 
these orders. In fact, G~ is a sum of an infinite number  of cyclic groups of 
each of these orders. 

We will rely heavily on techniques and results of Milnor 1,4]. 

2. We recall the definition of G~. Let A be a square integral matrix 

satisfying: determinant (A + ~ A r) = + 1 

where e = _  1; such matrices will be referred to as e-matrices. The Alexander 
polynomial  of A, Aa(t), is defined to be determinant (t A + A  r) - note 
this differs from 1,2]. We will say A is null-cobordant if A is congruent 
to a matrix of the form: (o 
where B, C and D are square matrices and 0 is the zero matrix. Two 
e-matrices A1, A 2 are cobordant if the block sum A I @ ( - A 2 )  is null- 
cobordant.  Then cobordism is an equivalence relation and block sum 
induces the structure of an abelian group on the set G, of cobordism 
classes (see I-2]). 

3. Consider now square matrices A, with entries in a f ie ld  F satisfying: 

(A - Ar)(A + A r) is non-singular. 

We will refer to such matrices as admissible. 

Defining cobordism as in w 2, it follows similarly that cobordism is an 
equivalence relation among admissible matrices (see I-2, Lemma 1] - 
the same argument  works for matrices over a field) and the set G r of 
cobordism classes becomes an abelian group under block sum. 
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There are obvious homomorphisms G ~ G  Q, since A + e A  r uni- 
modular implies A - e A  r has odd determinant. These are, in fact, mono- 
morphisms, since, by the argument of [2, Lemma 8], an integral matrix 
A is null-cobordant over the integers if and only if it is null-cobordant 
over the rationals. Thus, it will suffice to construct a complete set of 
invariants on G Q. 

We define, for any admissible matrix A, the Alexander polynomial 
Aa(t)=det( tA+Ar).  Note that AA(1 ) AA(-- 1)4:0. 

4. We will deal with several related notions of (algebraic) cobordism. 
From now on F will be a field of characteristic zero and ( ,  > a non- 
degenerate quadratic form on a finite-dimensional vector space V over F. 
We will add quadratic forms by orthogonal sum _1_ (see [5]). We will say 
( , )  is null-cobordant if V contains a totally isotropic subspace of half 
the dimension of V. Two quadratic forms ( , )  and ( ,  >' are cobordant if 
( , )  _1_ ( - ( , ) ' )  is null-cobordant. This is an equivalence relation. 

Precisely the same definitions can be made for Hermitian forms over 
a field with a non-trivial involution. 

5. Returning to ( , )  a quadratic form, determinant ( , )  is a well- 
defined element in p/(p)2, where P is the multiplicative group of non- 
zero elements in F (see I-5]). Since determinant is multiplicative and a 
null-cobordant form of rank 2r has determinant ( -  1) r, it follows that 
d ( ( ,  ) ) = ( -  1)r det ( , )  is a cobordism invariant for ( , )  of rank 2r. 

If F is the real numbers, then the signature a ( ( ,  )) is defined and is 
well known to be a complete invariant of the cobordism class of ( , ) .  

If F is a local field (see 1-5]), the Hasse symbol S ( ( ,  ) )=  + 1 is well- 
defined. To convert this to a cobordism invariant we define 

r(r + 3) 

# ( ( , ) ) = ( - 1 , - 1 )  2 ( d e t ( , ) , - 1 ) ' S ( ( , ) )  

where ( , )  is the Hilbert symbol for F and ( , )  has rank 2r. Using the 
additivity formula (see 1-5]): 

S ( ( ,  > _k ( ,  > ' ) = S ( ( ,  >) S ( ( ,  ) ')(det ( , ) ,  det ( , ) ' )  

and properties of the Hilbert symbol, it is a straightforward exercise to 
show tha t / t  is a cobordism invariant. Note that ( , )  is null-cobordant 
if and only if it is a sum of "hyperbolic planes" (see [5]). It follows from 
the classification of quadratic forms over local fields I-5] that d and p are 
complete invariants of cobordism class. 

6. Let F be a field, ( ,  > a non-degenerate quadratic form on a finite- 
dimensional vector space V over F, and T an isometry of K We shall 
refer to the pair ( ( ,  >, T) as an isometric structure. We can add isometric 
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structures by orthogonal sum of the forms and direct sum of the iso- 
metrics. 

An isometric structure ( ( , ) ,  T) is null-cobordant if V contains a 
totally isotropic subspace, invariant under T, of half the dimension of V. 
Two isometric structures ( ( , ) ,  T) and ( ( , ) ,  T') are cobordant if 
( ( , ) ,  T)_[_ ( -  ( , ) ' ,  T') is null-cobordant. This is readily checked to be 
an equivalence relation; cobordism classes form an abelian group. 

7. Let ( ( , ) ,  T) be an isometric structure; let AT(t ) be the charac- 
teristic polynomial of T. 

Lemma. (a) I f  d=rank( , )=degreeAT,( t  ), then, for some a~F, 
A~-(t)=atdAT(t-1). I f  A~-(1)40 then a = l ;  if AT(1)Ar(-1)~=O, then d 
is even. 

(b) I f  ( ( , ) ,  T) is null-cobordant, then A T(t)=c t e O(t)O(t-1), where 
d= 2e, O(t) is a polynomial of degree e and c6F. 

(c) I f  AT(l) AT(-- 1)40,  then d e t ( ,  ) =AT(1 ) A T ( -  1)~/+/(F) 2. 

Proof. Let S, Q be matrix representatives of T and ( , )  respectively - 
then S T Q S = Q. Now 

A ~ (t) = det (t - S) = det (t - S T) = det (t - Q S-  1 Q-  ~) 

= d e t  (t - S - 1 ) =  d e t ( -  t S - l ( t - 1  _ S))  

=td det ( -  S -1) AT(t-l). 

This proves the first statement of (a). Substituting t =  1, we have A~(1)= 
aAr(1); if AT(l )40,  then a = l .  If we now substitute t = - l ,  we have 
A T ( -  1)=(--  1)a AT( - 1); if AT(-- 1)+0, then d is even. This proves (a). 

To  prove (c), we first observe that, by a straightforward computation, 
Q (1 + S)(1 - S ) - ~  is a skew-symmetric matrix. It follows that 

det (Q (1 +S)(1 - s )  -1) = (det ( , ) ) A T ( -  1)/AT (1) 

is square, which implies (c). 

We now prove (b). Suppose ( ( , ) ,  T) is null-cobordant. Let v~ . . . . .  v,; 
w I . . . . .  w, be a "symplectic" basis of V i.e. (V/, vi)=(wi,  w~)=O and 
(v i, wj)=61j, such that the subspace spanned by v~,..., v, is invariant 
under T. Then T is represented by a matrix of the form 

where A,B, C are square matrices. If A=(ai~), then aij=(Tv~,wj)= 
1 1 T (v i, T -  1 wj), which is the (j, /)-entry of B -  . Thus B-  = A and (b) follows 

easily. 
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8. Let G F be the group of cobordism classes of isometric structures 
(<, >, T) satisfying At(1 ) A t ( -  1)+0. Recall G F from w 3. 

Theorem. G ~ ~ Gv. 

We first need: 

Lemma.  Any admissible matrix with entries in any field F is cobordant 
to a non-singular admissible matrix. 

Proof We will show that a singular matrix A is cobordant  to a 
smaller matrix. By elementary row operations on A, we may assume the 
first row is zero - the corresponding column operations can then be 
performed and the first row is still zero. By further elementary row 
operations, not involving the first row, we may assume that the first 
column is zero, except perhaps in the second row. The corresponding 
column operations will not change the first row or column. 

So we find A is congruent to a matrix of the form 

; o 

N 

where, if A is an (n + 2) • (n + 2) matrix, then M, N and B are, respectively, 
1 • n, n x 1 and n x n matrices and a, b are scalars. If  A is admissible, it 
is easy to see that a + 0 and B is admissible. 

Claim. A is cobordant  to B. 

By forming the block sum with - B ,  it suffices to show that A is null- 
cobordant  if B is null-cobordant. Suppose P B P  r has all zeroes in its 
upper left quadrant.  Define 

(i ~ ~ i)010 
It is straightforward to check that QA Qr has all zeroes in its upper left 
quadrant. 

9. Let A be a non-singular admissible matrix. Define two new matrices 
B = - A - 1 A  ~ and Q = A + A  r. It  is readily verified that B r Q B = Q  and 
the congruence class of A determines the congruence class of  Q and the 
similarity class of B. It  follows that (Q, B) are matrix representatives of  a 
8* 
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well-defined isometric structure (< , ) ,  T). Moreover ifA is null-cobordant, 
so is ( ( ,  >, T). Notice that 

A A (t) = C A r (t) where c ~ f 

since t A + A r = A ( t + A - 1 A r ) = A ( t - B ) .  Thus A admissible means 
At( l)  At( - 1)4=0 and ( ( ,  >, T) defines an element ofG v. The correspond- 
ence A ~ (Q, B) is additive and invertible since we may solve for A by the 
formula: 

A - - Q ( 1 - B )  -1. 
We also find: 

A - A r = Q ( 1 - B ) - I ( I + B ) .  

Thus if Ar(1)Ar(--1)4=0, A is admissible. This establishes the desired 
isomorphism. 

10. We have reformulated our problem into an investigation of G F, 
and especially GQ. 

Let (<, >, T) be an isometric structure over F. Let A = F I-t, t -  1] be 
the ring of Laurent polynomials over F. We will consider the vector space 
on which <, > and T are defined as a A-module, defining the action of t 
by T. If 2(t) is an irreducible factor of Ar(t ), we denote by V~ the 2(0- 
primary component of V: 

V~=Ker 2(t~ v, for N large. 

Then V is the direct sum of the {Vx}. 

Lemma. Let 2(0, #(t) be irreducible factors of At(t). Then Vx is ortho- 
gonal to V, if 2(t) and p(t -1) are relatively prime. 

See [4, Lemma 3.1] for a proof. 

11. It follows from Lemma 7(a), that 2(0 is an irreducible factor of 
Ar(t ) if and only if).(t -1) is. We will say 2(0 is non-symmetric or symmetric 
as 2(0 is, or is not, relatively prime to 2(t-1). Then, it follows from 
Lemma 10, that V splits into the orthogonal sum of two types of sub- 
module: 

(i) V~, where 2(0 is symmetric, and 
(ii) V~ ~ V x, where ~ (t) is non-symmetric and ~.(t) is defined to be 2(t- 1). 

The restriction of (<, >, T) to each of these summands gives an 
isometric structure, and it follows from Lemma 11 that those of type (ii) 
are null-cobordant. Furthermore ( ( ,  >, T) is null-cobordant if and only 
if its restriction to each V a is null-cobordant, since the restrictions of ( ,  > 
are non-degenerate and any submodule of V is a direct sum of sub- 
modules of the { Vx}. 
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We may rephrase these observations as: 

Lemma.  For every irreducible symmetric polynomial 2(0, let G a be the 
subgroup of G v determined by ( ( , ) ,  T) for which Ar(t ) is a power of 2(0 - 
note 2( t )# : t+  1 or t -  1. Then G v is the direct sum of the {Gx}. 

12. We now prove: 

Lemma.  Let ( ( , ) ,  T) be an isometric structure with characteristic 
polynomial 2(t) e, where 2(t) is symmetric and irreducible, e>0 .  Then 
( ( , ) ,  T) is cobordant to an isometric structure with minimal polynomial 
2(0 - or null-cobordant. 

Proof Suppose the minimal polynomial  of T is 2 (t) a, where a > 1. We 
show that ( ( , ) ,  T) is cobordant  to an isometric structure with minimal 
polynomial ,~,(t) b, for some b<a. An iteration of this process will prove 
the lemma. 

Let W=2(T) "-1 V~:O. Now W is totally isotropic since (2(T)  "-1 v, 
,~ (T)a-1 w) = (v, u ,~ (T) 2a- 2 w) = 0, where u is a unit in A, since 2 a -  2 __> a 
if a > 1. Let W • be the orthogonal  complement  of W in V; then W • is a 
submodule and W c  W x. The quotient module W• inherits an iso- 
metric structure ( ( , ) ' ,  T') from ( ( , ) ,  T) and the minimal polynomial 
of T '  is ,~ (t) b, where b < a. Now the lemma follows from: 

13. Lemma.  Let ( ( , ) ,  T) be an isometric structure on V and W a 
totally isotropic subspace of V, invariant under T If  ( ( , ) ' ,  T') is the iso- 
metric structure on W• inherited from ( ( , ) ,  T), then ( ( , ) ,  T) and 
( ( , ) ' ,  T') are cobordant. 

Proof Consider the subspace V o of VG (W• consisting of all pairs 
(v, w), where ve W • and w is the coset of v in W• It  is readily checked 
that V 0 is a totally isotropic invariant subspace, with respect to the 
isometric structure ( ( , ) ,  T ) A _ ( - ( ,  ) ' ,  T'), of half the dimension of 
v~(w• 

14. We may immediately deal with a special case: 

Proposition. Suppose ( ( , ) ,  T) has characteristic polynomial 2(t) e, 
where 2(0 has degree two. Then ( ( , ) ,  T) is null-cobordant if and only if 
( , )  is null-cobordant. 

Proof. Write 2 (t) = t 2 + a t + 1; by Lemma 12, we may assume 2 (t) is the 
minimal polynomial of T (if 2(t) were reducible, we could assume the 
minimal polynomial  were of degree one !). Now, 

0 = ( 2 ( T )  v, Tv) = ( T 2 v, Tv)  + a ( Tv, Tv) + (v, Tv) 

=2(Tv,  v )+a(v ,  v) 



104 J. Levine :  

for any ve V. Thus 
- - a  

<Tv, v> = ~ -  <v, v>. 

Since 2(0 has degree two, it follows that any isotropic vector generates 
a totally isotropic submodule of V. It follows, from Lemma 13, that 
( ( ,  >, T) is cobordant to a "  smaller" isometric structure if<,  ) is isotropic. 
The proposition follows easily from this. 

15. Suppose ( ( ,  >, T) is an isometric structure and T has minimal 
polynomial 2' (t), an irreducible symmetric polynomial. I f 2'(1) 2'( - 1 ) # 0, 
then 2'(t) = t 2d 2'(t- l) _ where 2d = degree 2'(0 - by Lemma 7(a). Now 
define 2 (t) = t - a 2'(t); then 2 (t) = 2 (t- a). 

Let E be the quotient field A/(2(_t)). Then E admits an involution ~ ~ 
induced by t ~ t -1 ; we also write f ( t ) = f ( t - 1 ) ,  for any f ( t ) eA .  Let E o be 
the fixed field of ~ ~ ~. If 2 o (x) is the irreducible polynomial defined by 
2 o (t + t -  1) = 2 (t), then E o is isomorphic to the quotient field F [x]/(2 o (x)). 

Milnor, in [4], associates to ( ( , ) ,  T) a Hermitian form [ ,  ] defined 
on V regarded as an E-module, satisfying: 

(~, f l )=Tracee/v[~,f l]  for o~,fl~V. 

Then ( ( , ) ,  T) is null-cobordant if and only if [ ,  ] is null-cobordant. If 
V 0 is a totally isotropic (under ( , ) )  submodule of V, then V 0 is also 
totally isotropic under [ , ] .  For if [e, fl]4=0, e, f le  V o, and we set 4=  
[~, f l ]- l ,  then [4 ~, fl] = ~ [~, fit.] = 1 and (4 ~, fl) =TraceE/F 1 +0  (F has 
characteristic zero). But ~ a and fl are both in V o and so (~ e, fl) =0. 

Jacobson, in [1], defines a quadratic form {, } on V, regarded as an 
Eo-module (where E o = F It + t -  ']/(2 (t))), by: 

1 {~, fl} = ~ ([ , fl] + [fl, el) = Trace~m ~ [a, ft-]. 

Notice that (~,fl)=TraceEo/e{a, fl}. Now the action T of t is an 
isometry of V with respect to {, } and the minimal polynomial (over Eo) 
of Tis  t Z - x t + l ,  where x = t + t - 1 6 E o  . By Proposition 14, ({, }, T) is 
null-cobordant if and only if {, } is null-cobordant. But it is easy to see 
that ({, }, T) is null-cobordant if and only if [ ,  ] is null-cobordant, since 
we can solve for [ ,  ] by: 

( t - t - 1 ) [ a ,  f l]=2({ta,  f l } - t - l { a ,  fl}) (2(1)2(-1)4:0).  

16. We now apply a result proved by Milnor in [4] to obtain: 

Proposition. I f  F is a local field or the real numbers and ( ( , ) ,  T) an 
isometric structure over F with characteristic polynomial 2(t) e, 2(0 irre- 
ducible symmetric, then ( ( , ) ,  T) is nuU-cobordant if and only if ( , )  is 
null-cobordant and e is even. 
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Proof The necessity that e be even follows from Lemma 7 (b). 

We may assume, by Lemma 12, that the minimal polynomial of T is 
2(t). If 2(t)= t_+ 1, the proposition is obvious. Otherwise we may assume 
2( t )=2( t  -1) - seew 15. 

In this case, Milnor proves that two isometric structures with iso- 
morphic quadratic forms and the same irreducible minimal polynomial 
are isomorphic. The Proposition will now follow from the assertion that 
any E-module V of even dimension admits a quadratic form form ( , )  
such that ( ( , ) ,  T) is null-cobordant, where T is defined by the action 
of t and is an isometry. Equivalently, we may construct a null-cobordant 
Hermitian E-form on V e.g. if {~l, ---, c~,;/~1 . . . . .  ft,} is an E-basis, define 

17. If ( ( , ) ,  T) is an isometric structure over F and K is an extension 
field over F, then there is an obvious extension o f ( ( ,  ), T) to an isometric 
structure over K. 

Proposition. An isometric structure over a global .field F is null- 
cobordant if and only if the extension over every completion of F is null- 
cobordant. 

Proof It suffices to consider an isometric structure ( ( , ) ,  T) with 
minimal polynomial 2(t) irreducible and symmetric. If 2(t)=t_+ 1, then 
the Proposition follows from the corresponding fact about quadratic 
forms (see [51). 

If 2(t)= 2 ( r l ) ,  we may consider the associated quadratic form {, } 
(see w 15) over the field E o. Now {, } is null-cobordant if and only if the 
extension of {, } over every completion of E 0 is null-cobordant, since E 0 
is, again, a global field. The completions of E o are constructed as follows: 
let K be any completion of F and )~o (x) = 2 l(x) 22 (x) ... 2 n (x) the decompo- 
sition of 2o(X) into irreducible factors over K;  then each K [x]/(2~(x)) is 
a completion of E 0 (see [5, p. 34]). Let &(t)=2~(t+t-~); then 2(t)= 
/q(t) ... #, (t) and gi(t) is either irreducible or of the form 0 (t) 0 (t-1), where 
O(t) is non-symmetric. The irreducible {&(t)} are all the irreducible 
symmetric factors of 2(t) over K. It is easy to see that if we extend 
( ( , ) ,  T) over K and then restrict to the/~(t) - primary component, the 
associated quadratic form is exactly the extension of {, } to K [x]/(2i(x) ). 
By w 11, the extension of ( ( , ) ,  T) over K is nutl-cobordant if and only 
if all these extensions of {, } are null-cobordant. The Proposition now 
follows immediately. 

18. We now define a collection of cobordism invariants of an iso- 
metric structure ( ( , ) ,  T) over a global field F. 

(a) Let 2(t) be a symmetric irreducible factor of At(t) and define 
e~((, ), T ) =  exponent of 2(t) in At(t), mod 2. 
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(b) Let K be a real completion of F and 2(0 a symmetric irreducible 
factor of A r (t) over K. Then define tr~ ( ( , ) ,  T)=  signature of the restric- 
tion of ( , ) ,  extended over K, to the 2(t)-primary component. 

(c) Let K be a non-archimedean completion of F (and, therefore, a 
local field) and 2(0 a symmetric irreducible factor of AT(t ) over K. Then 
d e f i n e / ~ ( ( ,  ), T ) = #  (restriction of ( , ) ,  extended over K, to the 2(t)- 
primary component). 

Proposition. {ea, af,/af} are cobordism invariants. 

Proof For {ez}, this follows from Lemma 7(b). For {el} and {~tf}, 
this follows from the cobordism invariance of a and p. 

19. It is clear that the {ez} and {aa} define homomorphisms: ez: G v ~ Z 2 
and a f :  G r ~ Z, but the {#3} are not additive. In fact they satisfy: 

Lemma. /~r (~ + fl) = #3 (~) ~t~ (fl) (( -- 1 )d 2 (1) 2 ( -- 1), -- 1)~ ~) ~ ~p) where 
degree 2( t )=2d  and ea=eo,  where O(t) is the symmetric irreducible poly- 
nomial over F which has 2(t) as an irreducible factor over K. 

Proof First observe the general formula: 

/~ (<, > Z ( ,  >') =/z ( ( ,  >) # ( ( ,  >')( - 1, - 1)"' (A, - 1)" (A', - 1)" (A, A'), (.) 

where r a n k ( ,  >=2r ,  r a n k ( ,  > '=2r ' ,  A = d e t ( , > ,  A ' = d e t ( ,  >'. This 
follows from the definition of/z and the additivity formula for S (w 5). 

I f ( ( ,  >, T) and ( ( ,  >', T') are isometric structures over F representing 
ct and fl, K is a non-archimedean extension o f f  and ( ,  >0, ( ,  >o are the 
2(t)-primary restrictions of ( , ) ,  ( ,  >' extended to K, then 

(a) e~(a)= rank(,2d >o , e~(fl)= rank(,2d >o (rood2). 

(b) d e t ( , ) 0 = ( 2 ( 1 ) 2 ( - 1 ) )  ~t'), d e t ( , ) o = ( 2 ( 1 ) 2 ( - l ) )  ~tp) - see 
Lemrna 7 (c). 

The lemma follows by substituting from (a) and (b) into formula (*). 
Notice that #~ (2 ct)= ( ( -  1)d2 (1)2 ( -  1), -- 1) ~t~, which is independent 

of/~r (0r 

20. If F = Q  and K = R ,  the only archimedean completion of Q, then 
the symmetric irreducible factors 2(0 of At(t), over R, correspond to the 
roots of At (t) of the form e ~~ The invariant Cz coincides with the invariant 
a o defined in [3]. It also may be verified that the invariants {a~} are 
equivalent to the invariant a A (using the isomorphism GQ,~ G ~ defined 
in [2]. 

21. T h e o r e m .  r K {ez, aa,/za } form a complete set of cobordism invariants 
for isometric structures over a global field F, i .e.,/f 0t, fl~GF, then ~= fl if 
and on ly / f  e~ (~) = e~ (fl), a~ r (ct) = tr~ (fl),/~r (ct) =/~r (fl) for all 2 (t) for which 
these invariants are defined. 
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Proof  We first point out that the invariants vanish on a - f l  if they 
are equal on a and ft. This follows from the additivity of {s~, aa r} and a 
straightforward exercise using Lemma 19, for {p~}. Thus, it suffices to 
show that a - -0  if and only if all the invariants are zero on ~. 

By Proposition 17, we consider ~ on completions of F. On complex 
completions, every isometric structure is null-cobordant since irreducible 
polynomials have degree one and all quadratic forms are null-cobordant; 
now apply Lemma 12. On any completion, by Lemma 11, we need only 
look at the primary components. By Proposition 16, the {a~ r} are a 
complete system of invariants over the real completions. Similarly, the 
{/z~}, together with the invariant d (see w 5) on the 2(t)-primary compo- 
nent, are a complete system of invariants over the non-archimedean 
completions. But the determinant of ( , ) ,  on the 2(t)-primary compo- 
nent, is (2(1) 2 ( -  1)) ~t'), by Lemma 7(c). Since we are assuming e~(ct)= 0, 
it follows that d = ( -  1) r, where 2 r = K-dimension of 2 (t)-primary compo- 
nent=(degree 2(t)).(exponent of 2(0 in At(t)). Since 2(0 has even 
degree and exponent of 2(t)= ez(a ) (mod 2), r is even. Thus d =  0. 

22. We now make a few general observations, based on Theorem 21, 
about the group G r for F a global field. 

Proposition. Suppose o~ e G v . Then 

(a) ~ has f ini te  order if  and only if every azr(~)=0. 
(b) I f  ot has f inite order, then 4~ = O; therefore every element of  G v has 

order 1, 2, 4 or ~ .  

(c) ~ has order 4 if  and only if  all a~r(00=0, but, for  some ~.(t) over a 
non-archimedean completion K,  ea(~):i:0 and ( ( -1)d2(1)2(  - 1), -1 )# :0 .  

Proof  Notice that ea(2~)=0, for any ~, and #~(2~t)=0 if e~(0t)=0 (see 
Lemma 19). Thus #~(40t)=0. If a~(~)=0, then all the invariants vanish 
on 4~; if tr~r(at)~ 0, then tr~(k~t)#:O, for any integer k. This proves (a) and 
(b). Finally (c) follows from (a), (b) and Lemma 19, since the stated 
conditions would imply/~r (20t) ~ 0. 

23. Suppose c~e GQ is represented by an isometric structure ( ( , ) ,  T) 
where AT(t)=A1(t) el ... At(t) eK and each 2~(t) has degree 2. In this case 
many of the criteria of Proposition 22 simplify: 

Corollary. (a) I f  .~i(1)2i(- 1)<0, for all i, then ct has f inite order. 

(b) I f  2~ (1) 2 i ( - 1) > 0 and e i is odd, for some i, then ~ has infinite order. 

(c) I f  ct has f inite order, then ~ has order 4 if and only if, for some i, and 
prime p, the following properties hold: 

(i) p = 3 mod 4. 
(ii) ei is odd. 

(iii) 21(1) 2 i ( -  l )=p"-  q, where a is odd and q is relatively prime to p. 
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Proof Write 2i (t) = t 2 + a i t + 1 ; the discriminant is a 2 -  4 = 
- hi(1 ) h i ( -  1). Thus  hi(t ) is reducible over R if and only if h~(1) h i ( -  1)< 0 
(recall hi(1 ) h i ( -1)4= 0); but  then h i(t) = t Oi(t ) Oi(t-l), where Oi(t ) is un- 
symmetr ic ;  and so aa, (c 0 = 0. N o w  (a) follows from Proposi t ion 22 (a). 

I f h i (1) 2~ ( - 1) > 0, then the h~ (0-component  has dimension 2 e~ and the 
restriction of ( , )  has positive determinant  by L emma  7(c). But, in 
general, any real quadrat ic  form with rank r and signature s satisfies: 

determinant  = ( - 1)~r- ~) 

an easily verified formula.  Thus, if e/is odd, the signature crx, (e) 4= 0, which 
proves (b). 

T o  prove (c), we apply Proposi t ion  22 (c). Since ( - 2 i (1) 2i ( - 1), - 1) 
4=0, - 1 must  not  be square in K. I f K  is the p-adic numbers,  this means 
(i) (see [5, p. 159] and [1, p. 82]) - notice that  p cannot  be 2. Now condi- 
t ion (iii) implies that  the discriminant of  2i(t ) is not  square in K, and, 
therefore, 2i(t) is irreducible. It remains to observe that e i = e~, (~)mod 2 
and ( - 2  i (1) 2 i ( -  1), - 1)4= 0 exactly when condit ions (i) and (iii) hold (see 
[-5, p. 166]). 

24. As a consequence of  Proposi t ions  22 and 23 we prove:  

Theorem. G~ is the direct sum of cyclic groups of orders 2, 4 and ~ ,  
and there are an infinite number of summands of each of these orders. 

Proof It follows from Proposi t ion 22 that  every non-zero element of  
G~ has order  2, 4 or m. In fact the invariants {a{} induce a homomorph i sm  
of  G, into a free abelian group and, by Proposi t ion 22(a), the kernel is 
precisely the tors ion subgroup of  G~. This implies that G~ is the direct sum 
of its tors ion subgroup T and a free abelian group.  By Proposi t ion 22 (b) 
and I-6, p. 173] T is a direct sum of  cyclic groups. 

It was proved in 1-2] that G~ has infinite rank. To  complete  the p roo f  
it will suffice to construct  elements {c~/,/~} of G,, i = 1, 2 . . . .  , satisfying 

(i) ai is no t  the multiple of  any o ther  element of G,, 

(ii) ~ 2 / ~  = 0 if and only if each 2 i is even, 

(iii) ~ 2/fl~--- 0 if and only if each hi is divisible by 4. 

Recall  (e.g., from [2]) the result that  a polynomial  A (t) can be realized 
as AA(t ) for some e-matrix A (see w 2) if and only if: 

(1) A(t)=t2,A(t-x) ,  for some p, 

(2) A ( -  1) is square, 

(3) A (e) = ( -  e)". 

This is Proposi t ion  1 and 2 o f  [ 2 ]  - note  the difference in the definitions 
of  A a (t). 
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Set 
d i ( t ) = e  a i t 2 - - ( 1  + 2 a l ) t + e a  i 

where 
1 i ai=~(9 - 1). 

It may be checked directly that A~(t) satisfies (1)-(3) above and so there 
exists cqe G~ with d~(t)= A a (t) for a representative A of ~.  Now one may 
check, from Proposition 23(a), (c) that ct~ has order 2. Moreover, ~ 
satisfies (i), since otherwise A~(t) would have to be decomposable. To 
prove (it), we observe that, for a representative e-matrix o f ~  2~ cq, one has 

(t) = H 4,  (t) 
i 

Since the {A~(t)} are distinct irreducible symmetric polynomials, it 
follows from Lemma 7 (b), that ~ 2 i ai = 0 if and only if each 2 i is even. 

To produce the desired {fli} we proceed in a similar fashion. Set: 

where 

A,(t)=F~(t)F~+~(t) for i > 0  

F~(t)= a i t2 +~(1 -2a l )  t + a  i 

a i___ l (1  - -  3 2 / + 1 ) .  

Then Ai(t  ) satisfies (1)-(3) and so admits a corresponding element fl~. 
It follows from Proposition 23(a), (c)that fig has order 4. To prove (iii), we 
first observe, as we did in proving (it), that ~ 2 i fli = 0 implies 

1-I I-l + 

has the form prescribed in Lemma 7(b). Therefore, since the {F~(t)} are 
distinct irreducible symmetric polynomials, each 2i+ ~.~_ x is even; this 
readily implies each 2~ is even. 

Now set 2~=2/h and consider ~p~fl~=fl. If f l=0,  it follows by the 
same argument that each p~ is even and, therefore, 2~ is divisible by four. 
On the other hand i f f l+0 ,  then fl has order 2, since 2 f l = ~  2~ fli. 

Now the polynomial associated with fl is 

H = H 
i i 

Since F~(1)F~(-1)=-32~+1, it follows from Proposition 23 (c) that 
#~ +/~-1 must be even, and, therefore, each/~i is even. 

25. Theorem 24 also applies to C, for n odd>  1 (see [2]). If n=2 ,  we 
must, in addition recall that C 3 is isomorphic to the inverse image, under 
a homomorphism G+ --, Z, of the elements of 2Z. This implies that the 
torsion subgroup of C 3 is isomorphic to the torsion subgroup of G+, 
and the result follows. 
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W e  canno t  use T h e o r e m  24 to say much  abou t  C I except  tha t  it has  
infinite rank.  I t  is k n o w n  tha t  C I con ta ins  e lements  of  o rde r  2 e.g. the 
figure e ight  kno t  is amphiche i ra l ,  bu t  is no t  a slice knot .  I do  no t  know 
whether  C 1 conta ins  any e lement  of  o rde r  4;  the  kno t  77 of  the Alexande r -  
Briggs k n o t  table  is the first c and ida t e  (it gives an e lement  of  G_ of  
o rde r  4). 

Inc iden ta l ly  the  k n o t  8a is the  first kno t  de t e rmin ing  the zero 
e lement  of  G_ ,  bu t  which I have no t  been able  to show is a slice knot .  
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