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Summary.  Here we analyse the boundary element Galerkin method for two- 
dimensional nonlinear boundary value problems governed by the Laplacian 
in an interior (or exterior) domain and by highly nonlinear boundary condi- 
tions. The underlying boundary integral operator here can be decomposed 
into the sum of a monotoneous Hammerstein operator and a compact map- 
ping. We show stability and convergence by using Leray-Schauder fixed-point 
arguments due to Petryshyn and Ne~as. 

Using properties of the linearised equations, we can also prove quasiopti- 
mal convergence of the spline Galerkin approximations. 

Subject Classifications: AMS(MOS): 65N30; CR: G 1.8. 

I. Introduction 

During the last decade boundary element methods have become a well estab- 
lished computational method solving boundary value problems in applications. 
Based on corresponding fundamental solutions, a large class of both exterior 
and interior elliptic boundary value problems can be reduced to equivalent 
integral equations on the boundary of the given domain. Equations of this 
kind arise in various applications such as boundary value problems in acoustics, 
elasticity, electromagnetics as well as in fluid dynamics [17, 20, 30, 35, 40] 
and references given there in) and their boundary element approximations are 
used in many corresponding engineering computations. 

Up to now the analysis of boundary element methods is mainly restricted 
to linear problems. In particular, the two-dimensional Galerkin and collocation 
methods are studied rather extensively and the asymptotic error analysis of 
these methods now is quite well established [5, 6, 18, 19, 31, 36-38, 40]. 

In various applications, however, the problems involve nonlinearities. Among 
these is the steady-state heat transfer, which was studied already by Carleman 

* This work was carried out while the first author was visiting the University of Stuttgart 
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[12] and where the boundary conditions are highly nonlinear. Also some electro- 
magnetic problems contain nonlinearities in the boundary conditions, for 
instance problems, where the electrical conductivity of the boundary is variable 
[10, 22]. Further applications arise in heat radiation and heat transfer [9, i0]. 

Motivated by the above applications we consider here the potential problem 

Au=O, in ~ (1) 

~U 
nO - = - g ( x ' u ) + f  on F, (2) 

where F denotes a smooth simply closed curve in the plane, f and g are given 
real valued functions on F. Here A stands for the two-dimensional Laplacian. 
By the Green representation formula we formulate a nonlinear integral equation 
on the boundary of the domain fL as was already done by Lichtenstein E23]. 
This integral equation is of Hammerstein type with a compact perturbation. 
Under relatively general assumptions on the nonlinearity g(x, u) we prove the 
equivalence of these two formulations. Further, more restrictive assumptions 
on g will imply strong monotonicity and for this case we discuss existence 
and uniqueness of the solution. 

The purpose of this paper is to analyse the Galerkin method for solving 
the nonlinear integral equation in question. We shall also discuss the rate of 
convergence of the approximate solutions. 

For guaranteeing the existence and boundedness of the Galerkin solution 
we apply the techniques of Necas [29] and Petryshyn [33, 34] (see also [16] 
and [41]). From the boundedness of the Gakerkin solutions and the uniqueness 
of the continuous solution together with the mapping properties of the integral 
operator we finally obtain the convergence of the BEM-Galerkin scheme. 

In the last chapter we consider the rate of convergence of the Galerkin 
boundary element method. Here we use essentially the linearization technique 
that also was fruitful in the analysis of the finite element method for quasilinear 
elliptic equations [15, 21, 27, 39]. Our analysis is also close to some work 
of Amann, who used the linearization technique for obtaining the rate of conver- 
gence of a special projection scheme for a Hammerstein integral equation [2, 3]. 
The linearization defines a completely continuous family of integral equations. 
Then the results by Anselone [4] yield the optimal order of convergence for 
the BEM-Galerkin solutions in the H~(F)-norm. 

2. The Boundary Integral Formulation 

Here we investigate the nonlinear boundary value problem 

Au=0, in 

0u 
0n G(u) - f  on F. 

(3) 

(4) 
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We assume that F is a smooth Jordan curve in the plane. Given are the function 
feH-~(F) and G: H~(F)--* H-~(F), in general, is some nonlinear mapping. Here 
H"(F) for o~R denote the usual Sobolev-Slobodetski-spaces on the closed 
boundary curve F (see [1]). 

First we reformulate this problem as a nonlinear integral equation. To this 
end we use the well-known representation formula for harmonic functions 

r loglx-yl - - log  rx-yr d s , , 0 n ,  (5) 

for xef2. The classical jump relations of the potential theory (see e.g. [13]) 
imply the relation 

O 1~ Ou 1 u(x)--I ~rU(Y)~ny l~ ~ny og]x-y[ds, (6) 

on the boundary F. 
Introducing the notations 

and 

O Ku(x)~f l--~ ~r u(Y)~ny l~ 

def 
SO(x) = -- ~" O(Y)log Ix--y[ dsy 

F 

the Eq. (6) can be written as 

(I-K)u=S(~n). (7) 

Clearly, if ueH I ((2) is the solution of (3) and (4), then the Cauchy-data 

satisfies the integral Eq. (7). Then the boundary condition - ~  = G ( u ) - f  yields 
u ~  

u--Ku+S(G(u))=Sf. (8) 

Conversely, if (u It) solves (8), then the solution of the boundary value problem 
can be given by the representation formula (5) and will satisfy 

0 u  
- - - = G ( u ) - f  On 

due to (8). 
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For studying the solvability of the nonlinear integral Eq. (8) we collect some 
basic assumptions to be made here. Since the operator S may have eigensolutions 
[18] we assume a scaling with diam(~2)<l. Then the integral operator S: 
H~(F)--, Hs+I(F) is an isomorphism for every seR  and 

(SO]~)>c llOll2_~ (9) 

for all ~l, e H - i ( O )  with some positive constant c>0 ,  [18]. By (-1-) we denote 
the L 2 (F) scalar product. 

The double layer potential operator on F has a smooth kernel defining 
a compact integral operator K: H~(F)~ H~(F) for all s eR. Hence I - K :  HS(F) 
--, H~(F) is a classical Fredholm-operator with index zero. 

Our second basic assumption is that the function g: F x R ~ R is a Caratheo- 
dory-function i.e. g(., u) is measurable for all ueR  and g(x,-) is continuous 

0 
for almost all xeF .  Further we assume that Ou g(x, u) is Borel-measurable sat- 
isfying 

O<l<=~--~g(x,u)<=L<oo, ueR. (10) 

Condition (10) implies that the Nemytski operator G(.): L2(F)-~LZ(F), defined 
by G(u)(x)=g(x, u(x)), is Lipschitz continuous and strongly monotonous, e.g. 

( G(u)-a(v)[  u -  v) ~ c l lu-  vll ~ (11) 

for all u, vELZ(F) [32]. 
The mapping properties of the integral operator defined by (8) are collected 

in the following theorem. 

Theorem 1. For all se [0, 1] the operator u ~ - K u + SG(u) is Lipschitz continuous 
from H~(F) into H s+ 1 (F). 

For the solvability of the Eq. (8) we conclude from assumptions (9) and 
(lo): 

Theorem 2. For every f EH-~(F) there exists a unique u~H ~ such that 

u - -Ku+SG(u)=S f .  (12) 

Remark. With the theory of monotone operators we can generalize our results. 
We can prove the existence of the solution when the boundary condition in 
(4) is replaced by 

~ue u f - ~ n  fl( )' 

where fl: H�89 is a maximally monotone, coercive, set-valued map- 
ping (for the definition of monotone mappings see e.g. [8, 11, 24, 25, 32] and 
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[41]). In this case the boundary value problem is equivalent to the boundary 
integral inclusion problem: Find ueH -~ (F) such that 

Sf e(l--K)u+ S(fl(u)), 

where feH -~. As in the following proof of Theorem 2 it suffices to consider 
the inclusion problem 

feS '(l-K)u+fl(u). 

Here the linear operator S-~(I-K): Hk(F)--* H-�89 is continuous and mono- 
tone. Since fl is maximally monotone and coercive we get by [8: Chapter II, 
Corol. 1.3] that the range of S-I(I-K)+ fl is H-~(F), which proves our state- 
ment. Further, if fl is strictly monotone, we obtain the uniqueness of the solution. 

Proof of Theorem 2. Since S: H-�89 --~ H~(F) is an isomorphism it is sufficient 
to consider the unique solvability of equation 

def 
D (u) = S-1 (I - K) + G (u) = f (13) 

We shall prove that the operator D : H �89 (F) ~ H -  21 (F) is continuous and strongly 
monotonous. Then the statement follows from the well-known theorem by 
Browder and Minty on monotone operators [1 t, 24, 26]. 

The continuity is clear from the mapping properties of S, K and G. Hence 
it remains to prove strong monotonicity of D. 

The function 0 ~ H -  ~ (F) defined by 

def 1 
4,= s-  ( t -  K)u, 

for uEH~(F), is the normal derivative of the harmonic function 

q~(x)=~ ~r U(Y) l og[x -y ldsy -~  ~r O(y) loglx-y]dsy. (14) 

Then Green's theorem yields 

(S_l(l_K)u[u)=! Oq) T d  u ds  = ~ (V~o) 2 dx .  

Hence, the linearity implies that for all u, vEH~(F) 

(S-'(I--K)(u--v)Iu--v)= ~ (VF) 2 dx, (15) 

where F denotes the harmonic function corresponding to the Cauchy-data u - v  
andS  ~(I--K)(u-v). 

On the other hand by (11) we have 

(G(u)--G(v)]u--v)~l]lu--vH 2. (16) 
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It remains to prove that 

Ilu -vllo _-> c II F II L2(~)- (17) 

Then with (15) we will get the proposed inequality 

(O(u)-O(v) lu--v)>c IIFIt~,~)> c' Ilu-- vll~ 

by the trace theorem [1]. 
To prove (17) we note that there exists x~H-~(F)  such that S z = u - v  on 

F [18-1. Hence for all x~f2 we have 

1 
Z(Y) log I x -  y[ ds r = F(x). (18) 

2 7~ ? 

1 
The simple layer potential Z ~ - 2~ ~ )~(y) log I x - y [  dsy defines a continuous 

1 

mapping from H~(F) into H~+~(f2) for all s e R  [13, 18]. Hence for s = 0  we find 

IIFIIL2ta) <=c IIXIIn-~(r) <=c ' ]]u-vHH ,(r} <C ' Nu-vllo, 

i.e. inequality (17), which completes the proof. 
Later on we need also the regularity properties of the solution of (8). 

Theorem 3. For all S f  eH~(F), �89 < s< 2, the unique solution of the Eq. (8) belongs 
to the space H~(F). 

In the proof of Theorem 3 we shall need the following lemma. 

Lemma 1. For every ueHt(F), 0 < t < l ,  we have G(u)EH'(F) and the mapping 
u --* G(u) is bounded. 

Proof The case t = 0  has already been proved. For t =  1, u is an absolutely 
continuous function. By assumption (10) the function g(r), reR,  is Lipschitz- 
continuous on every finite interval. Hence the composite function is also abso- 
lutely continuous [28; pp. 272]. 

It remains to prove the cases 0<  t < 1. Due to the definition of the Sobolev 
spaces Ht(F) it is sufficient to prove the finiteness of the double integral 

S ~ [G(u)(x)-G(u)(y)t2 
r r Ix--Y11+2' dsrdsx. (19) 

The Lipschitz-condition implies that (19) is bounded by 

I~(u)(x)- ~tu)(y)[2 

which completes the proof of Lemma 1. 

Proof of Theorem 3. Let S f  eHS(F), �89 < s < 3, be given. By Theorem 1 there exists 
a unique solution ueH ~ of (8). Because of Lemma 1, Sf-SG(u)~HS(F),  and 
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therefore ( I - - K ) u e H S ( F ) .  This implies together with the Fredholm-property of 
the operator I - K  that ueHS(F),  � 8 9  If ~ < s < 2 ,  then S f - S G ( u ) s H S ( F ) .  
With the previous argumentations we get: u~HS(F). 

3. The Boundary Element Method 

Here we consider the numerical approximation scheme for finding an approxi- 
mate solution to (8). To this end we select a sequence of mesh points S =  {till 
= 0  . . . .  , N} on F satisfying ti+N=t~ and denote by S~(~) the boundary element 
space transplanted from the space of 1-periodic, ( d -  1)-times continuously differ- 
entiable splines of degree d onto F. Further we assume that the family of parti- 
tions is quasiuniform, e.g. (maxhi/minh~)~[?,  ? 1] for all partitions with some 
positive constant 7 > 0, where hi = I t~ + 1 - t~[. With these assumptions the approxi- 
mation spaces have the following approximation property [5, 7, 14] : 

Approximation Property. For every u~HS(F), s <= d + 1, there exists ~p ~ Sdh(~) such 
that 

Ilu-4,11,  < c h  s - '  Ilulls, (20) 

where t <= s, t < r < d + �89 and r is arbitrary. 

Besides the approximation property the quasiuniformity provides the inverse 
assumption [5, 7, 14]: 

Inverse Assumption. For all t )eS~(Z) there holds the estimate 

II~Pll~<ch ' - s  LIq'l], (21) 

where t <  s < d  +�89 

Then the standard Galerkin method for Eq. (8) reads as to f ind  UheS~(Y.) 
such that 

(Uh -- K Un + SG (Uh)[ ~) = (Sf J ~9) (22) 

for  all ~,~S~(~). 
Clearly, the Eqs. (22) are equivalent to N nonlinear equations for the N 

coefficients of the trial function Un spanned by a suitable basis of the boundary 
element space S~(~) of dimension N. 

In what follows we analyse the existence of Galerkin solutions for a family 
of deminishing meshwidth h = max [ tl + 1 - til. 

The following mapping property is crucial for our analysis. A mapping A: 
X ~ X*, where X is a reflexive Banach space, is called of  type (S), if it satisfies 
the condition: 

Condition 1. I f  the sequence {u,} has the properties 

Un---~ U 

Au.--~-g 

(A u. l u.) ~ (g I u), 

then there exists a subsequence {u,~} converging to u in X .  
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This or analogous concepts have played an important  role in nonlinear 
functional analysis [29, 33, 34, 41]. It is an easy task to prove that a mapping 
of type (S) is pseudomonotone.  

Lemma 2. The nonlinear integral operator u-~ u - K  u + SG (u) in L 2 (F) is of type 
(S). 

Proof. Let us suppose that {u.} has the required properties: 

u.-~u in L2(F) 

Au, -~g  in L2(F) 

(Au,[u,)--*(glu). 

(23) 

Since every weakly convergent sequence is bounded and G is continuous and 
bounded in L2(F), the sequence {G(u,)} is also bounded in U(F) and has a 
weakly convergent subsequence. Let us denote by v the weak limit of {G(u,~}. 
S is a compact  linear operator  from L2(F) into La(F), thus SG(u, j )~ Sv in L2(F). 
Since K: L 2 (F)--, L 2 (F) is also compact  we have K u,~ ~ K u in L 2 (F). 

Now we show that 

lim (u.j-Ku.~ + SG(u.j)-u+ K u -  Sv[u.j-u)=O. 
j~oo  

(24) 

From the assumptions made on the sequence we have 

(Au,j lu, j--u)=(Au,~lu,)--(Au.j]u)~,O (25) 

as j ~ oo. Combining this with the property 

( u - K u +  Sv]u. - u ) ~ O ,  

for j ~ oe, we get (24). 
Since SG(u. j )~ Sv and Ku,j  ~ Ku  we finally get 

!im ( u , j -  u Lu,j - u) = O, 
j ~ o o  

which completes the proof. 

Lemma 3. Let f eH-~(F)  be given. Then there exists R ( J ) > 0  such that the equa- 
tions 

def 
Atu= u + t ( -  K u + SG(u) -  S f )=O (26) 

do not admit any solution for any t ~ [0, 1 ] whenever ]I u Il o > R (f). 

Proof. If ueLZ(F) is a solution of the equation 

u + t ( - K u +  SG(u) -S f )=O,  
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then by the assumption, feH-~(F),  and the mapping properties of S and G 
we have u--tKu=tSf--tSG(u)eH~(F). This implies as in the proof of Theo- 
rem 3 that ueH~(F). 

As in the previous chapter we consider the equation 

def 
Dtu= ( l - t ) S - l u + t [ S - ~ ( l - K ) u + G ( u ) ]  = t S - ~ .  (27) 

From the properties of S l and D: H~(F)--, H -�89 (F) (see Chapter 2) it follows 
that D t is strongly monotone, coercive, continuous and bounded from H~(F) 

H-4(F) .  Hence there exists a constant R ( f ) > 0  such that 

Dtu+tf  

for all ueH~(F) with Ilull~ >_-R(f). 
Thus, if u~LZ(F) and Ilullo>R(.f), then u cannot be a solution of (26). The 

statement is proved. 
From the mapping properties of At defined by (26) and Lemma 2 we obtain 

an analogous statement to that of Lemma 3. 

Lemma 4. Let us denote Uh={qS~S~(Z)] H~bHo<R(f)}. Then there exists ho>0  
such that for all 0<h__<h o and t e l0 ,  1] and for some i~{1 . . . . .  N(h)} 

def 
ai(qS, t)= (A,4[p,)#:O (28) 

holds for all ~OUh, where {#klk= 1 . . . . .  N(h)} forms the basis of S~(Z). 

Proof. Let us assume that the statement were false. Then we are able to construct 
sequence {tj}, tje [0, 1] and {4)jl~j~S~h,(F.)} (j --, oo) having the following proper- 
ties: 

I P qSjll o = R ( f )  (29) 

(At,492[pi)=O, i= 1 ..... N(hj). (30) 

Since 1-0, 1] is compact we have a subsequence {t2} converging to some 
t0e[0, 1]. Hence by the definition of A~ we get for all ueL2(F), IlUllo=R(f), 

IIA~ u--A,oullo~ltj--tolf(R(f))~O, (31) 

as j --, 0. 
From the bounded sequence {~b2} we can select a weakly converging subse- 

quence with the weak limit u~LE(F). 
According to (30) there holds for all )s 

(A,~ C j IX) = 0. (32) 

Now for an arbitrary w~L2(F) the Schwarz inequality yields 

[(Zt, r ~ jl w -  Phlw)l ~ IIZ,j ~jilo llW-- Phj Wtlo, (33) 
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where Phi: LZ(F)--*S~s(~) is the orthogonal projection. The boundedness of the 
sequence {qSj} and the operators Ats yields 

I(Z,~Oj}w)l<CIIw-Ph wllo . (34) 

By the approximation properties of the approximation spaces S~(~) we finally 
obtain from (34) that 

(Atj ~bjlw)--, 0, j--+ oo. 

Combining this with (30) we get 

(A,o qSsl w)--,0, j--* ~ .  (35) 

Finally with (30) and (31) 

(A,o r qSj) = (Ato qSs-- At, ~bs] qSj) 

<=C(R(f)) ]to-tsl ~ 0  

as j --~ oo. 
Thus we have constructed a sequence {r such that 

A,o ~ s ~ O  

(Ato q~j] 4's) ~ 0. 

As in Lemma 2 one can prove that Ato is of type (S). Hence we can select 
a subsequence {4's} converging strongly to u~LZ(F), and Llullo--R(f). Because 
Ato is continuous we have Ator On the other hand AtoOj-~'O. By the 
uniqueness of the weak limit we must have Atou=0. This is a contradiction 
to the statement of Lemma 3. 

Now we are able to prove the main theorem of this chapter. 

Theorem 4. Let f~H-~(F).  Then there exists ho>0  such that for all 0<h__<ho 
the Galerkin equations 

(Uh-- KUh-t- SG(Uh)] ~)=(S f l 3), (36) 

for all ~eSdh(3), have a solution uhESah(S). Furthermore the sequence of Galerkin 
solutions converges strongly to the unique solution ueH�89 of (8). 

Proof Let us consider the mapping Fh: [0, 1] x Shd(S)~ S~(3) defined by 

def N(h) 
Fh(qS, t)= 4)-- ~ ai((o, t)#,. (37) 

Due to the definition of ai(-, -), this function is continuous and bounded. Further- 
more by Lemma 4 Fh(~, t )+(b for all t~[0, 1] and fb~OUh. Fh(', ") is a homotopy. 
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Hence the Leray-Schauder fixed-point-index is constant with respect to te [0, 1]. 
The function Fh(', 0) is an odd function 

Fh(-- 4', 0 ) =  -- F.(4', 0) 

for all 4)eC?Uh. Then the fixed-point-index of Fh(', 0), i.e. i(Fh(', 0), Uh)+-O [41; 
Theorem 15.2]. This in turn implies that i(Fh(', t), Uh)=t=O. By the Kronecker 
existence principle, Fh(', 1) has a fixed-point Uhe Uh, JlUhll0 < R(f) .  This fixed-point 
satisfies the equation 

N(h) 

Z ai(uh, 1)~i=0. 
i = 1  

Because {/~i} is the basis of Sh~(Z) be must have 

ai(ua, 1)=(ua--Kuh+SG(uh)[l~i)=O, i= 1 . . . . .  N(h). 

In other words, u h solves the Galerkin equations. 
To prove the convergence we proceed as in [41] and [34]. The uniform 

boundedness of the Galerkin solutions allows to select a weakly convergent 
subsequence {uhj} with the weak limit v from every bounded subsequence. By 
the orthogonality of the Galerkin solutions and the Schwarz inequality we obtain 
for all weLZ(F) 

(A Uh~ -- Sf l  w) = (A Uhj -- S f]  w-- Phj w) 

< IIAuhj-Sf l lo IjW--Ph~Wllo 

< C(R (f))Ib w -  Ph~ wll 0 (38) 

For the last inequality we have used the boundedness of A. The approximation 
properties of the splines imply that the right hand side in (38) converges to 
zero. This means that AUhj~-Sf  in L2(F). From (36) we get 

(A Uh~ l Uhj) = (SflUhj) ~ (Sfl  v). 

Now by Lemma 2 we find Uh--*V in LZ(F), and A v = S f  Since f e H - ~ ( F ) , v  
must be the unique solution of (8) and v e H+(F). 

The above arguments are valid for every subsequence. Hence, the complete 
sequence of Galerkin solutions uh converges to u in LZ(F) as h--, 0. 

4. The Rate of Convergence 

In this section we consider the asymptotic error analysis of the Galerkin proce- 
dure. We apply linearization techniques which have been fruitful in the corre- 
sponding analysis of finite element methods for nonlinear problems [15, 21, 
27, 39]. 

Here we need first differentiability properties of the mapping 

u - ~ u - K u +  SG(u) 
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in the Sobolev spaces ueHS(F), 0_<s_< 1. The properties of the nonlinearity G 
guarantee that this mapping is differentiable. Namely for every uEHS(F), 
s t [0 ,  1], there holds 

SG(u + t v ) -  SG(u) 
lim S(G'(u)v) = 0 .  (39) 
t ~ O  t 

The differentiability of the linear part is trivial. Further, for every ucH~(F), 
the linear operator 

in HS(F) is uniformly bounded by (10). Thus the following theorem is valid. 

Theorem 5. The mapping A: H~(F)~HS(F) is differentiable at every ueHS(F), 
O_<sG 1, and 

def 
A' (u) v = v-- K v + S (G' (u) v) (40) 

for all veilS(F). Moreover 

IIA'(u)lls;s<=c 

uniformly for all u. 

Before we state the main theorem of this chapter we need an additional 
restriction by assuming that S~(~)c H ~ (F). In other words we require here d > 1, 
i.e. the spline spaces are at least piecewise linear. Note that this restriction 
was not required in the previous section. 

The Galerkin equations can be written as 

(A(Uh)-A(u)lO)=O, OeSah(S) (41) 

The Galerkin solution, which exists for all sufficiently small h > 0, also satisfies 
the linearized equations 

(A'(~h)(U--UhtO)=O, OES~(~), (42) 

where ~h=0u+(1  --O)u with 0el0 ,  1[. 
Equations (42) can be written equivalently as 

[ I  - fh K + Ph $ 6 '  (~h)] Uh = ~ A' (~h) U. (43) 

Hence it suffices to consider the properties of the operator defined by the left 
hand side in (43). 

Lemma 5. The operator A'00: H~(F)~ H~(F) is an isomorphism and there exist 
constants c', c" > 0 such that 

and 

Jbr all zeH~(F). 

II A'(Z)Ir ~; 21 < c' (44) 

II A' 0 0 -  l i} ~; ~ < c" (45) 

Proof The first statement was already proved in Theorem 5. 
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For  proving the uniform boundedness of the inverse operator we proceed 
as in Chapter 2. Consider the linear operator  BOO: H~(F)-+H-~(F) defined 
by 

B(Z)v=S-~(I-K)v+G'(z)v .  

According to the assumptions (9) and (10) we can show as in the proof  of 
Theorem 2 that B(Z) is continuous and coercive 

(B():)v I v)> C Ilvll 2, 

where C > 0  is independent of )~. Since S: H-~(F)--+ HI(F) is an isomorphism, 
the composite operator  A'OO=SBO0: H~(F)-+H~(F) is also isomorphic. The 
uniform boundedness of the inverse follows from the coerciveness of B()0 with 
the uniform constant c. 

Lemma 6. The operator I -  PhK + PhSG'(~h): H~(F)--+ H~(F) is an isomorphism 
satisfying 

II [ I  - Ph K + Ph S 6 '  ( ~ h ) ]  - Ill I;  21 =< c ( 4 6 )  

with c > 0 independent of h and ~h- 

Proof. Let us denote 

,4' (~h) ' : I  -- Ph K + Ph SG' (~h). 

Because of assumption S~(F,)cH~(F) made at the beginning of this section, 
A'((h) maps H i (F) into itself. Since the partition is quasiuniform, the orthogonal  
projections Ph: H~(F) --+ H-~(F) are uniformly bounded for all h > 0  [7, 18]. The 
continuity then follows from the mapping properties of K and S. 

To prove the existence of the inverse operator  and the uniform estimate 
(45) it is sufficient to show that 

lim II A' (~h)-- A'(~h)II ~; ~ = 0 (47) 
h~O 

uniformly for all ~h- The statement follows then from Theorem (3.1) in [4]. 
For  showing (47) we observe that the difference can be estimated as 

IlA'(~h)-- A'(~h)ll~;a < II(I-eh)Klb~;~+ II(l-Ph)Sa'(~h)ll-~..~. 

K maps H*~(F) continuously into HS(F) for every seR, in particular for s =  1. 
On the other hand, I -  Ph: H1 (F)--+ H i (F) is bounded by 

IlI--Phlhl;~ <ch ~. 
Therefore 

II(I-- Ph)KIl-~:~ <c III-Phll ,;*~ <chl. 

For the second term note that for all veH~(F) we have G'(~h)VeL2(F) and 
S(G'(~h)V)eH ~(F) due to the mapping properties of S. Now just by the same 
argument  as above we get 

I t ( l -  Ph)SG'(~h)II ~: ~ ~ ch ~ 
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and the constant is independent of ~h due to (10). Hence, (47) is valid, which 
completes the proof. 

Now Lemma 5 yields immediately the desired convergence result by standard 
arguments. 

Theorem 6. Let f ~H--~(F) and u~H~(F) be the solution of (8). Then the Galerkin 
solution exists uniquely for all 0 < h < h o and it furnishes the quasioptimality esti- 
mate 

Ilu-uhll~<c inf Ilu-~,ll~. (48) 

Further, for f ~ H s- i (F), �89 <= s ~= 2, we get by the approximation properties 

Ilu- u,,ll~ <= c h s- ' Hulls, (49) 

where t<=s and t <d+�89 

Proof The uniqueness and the quasioptimality estimate (48) are direct conse- 
quences of Lemma 5. The asymptotic error estimate (49) follows from the regu- 
larity of the solution (Theorem 3) and from the approximation and inverse prop- 
erties of the spline spaces. 

5. A Numerical Example 

Here we present some numerical results to illustrate the theoretical error analysis. 
We consider the potential problems 

Au=O, in f2 (50) 

0u 
- - - = u + s i n ( u ) - f  on F, (5t) 

0n 
or 

Ou 
- ] u l u  3 - f  on F, (52) 

0n 

where the domain is (2 = {xcRZ [q x l <0.4}. Clearly, the first nonlinearity satisfies 
our assumption (10) in Chapter 2, whereas the second is unbounded. Hence, 
for any feH~(F),  the nonlinear boundary integral Eq. (12), 

( I  - K)u + S(u + sin u) = S f (53) 

admits a unique solution ueH~(F) as well as 

( I -  K)u+ S()~(u)luLu3)=Sf (54) 

where Z(u) denotes an even C~ cut-off function which is nonnegative and identi- 
cal 1 on a sufficiently large symmetric interval. In the Galerkin approximation 
we have used piecewise constants as trial functions. The discrete nonlinear system 
of Eqs. (36) is then solved by Newton's iteration. 

In our computational examples we choose 

S f  (x) - 1 - n + 0.8 n log (0.4) (1 + sin (1)). (55) 
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Example 1 

Example 2 

N Iterations L 2 error Order 

10 3 4.5.10- 3 
1.4 

20 7 1.7.10- 3 
1.9 

40 5 4.5. I0 4 

10 3 1.9.10 - 3 
2.0 

20 7 4.8. I0 4 
2.0 

40 19 1.2- 10 4 

The corresponding exact solution is then for both examples u ~ 1. 
In the above two tables we list the number of grid points, of iterations, 

the L 2 e r r o r s  and approximate orders of convergence which are in excellent 
agreement with (49) for s = 2  and t=0 .  
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