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Summary. The index of a family of a family of Dirac operators is a K-Theory 
element in the parameter space. Sullivan's Z/k-manifolds are used to detect 
this index completely. For the first Chern class this gives a topological inter- 
pretation of Witten's global anomaly. The relationship with the geometry 
of the index bundle is considered. 

Witten's "global anomaly" formula in physics [W] has prompted some recent 
work related to the Atiyah-Singer Index Theorem 1. The anomaly measures 
the nontriviality of the determinant line bundle ~ of a family of Dirac operators 
[AS2], which is given topologically by the first Chern class. Over the reals 
there is a local formula for the Chern class of 5 ~ in terms of characteristic 
classes. The global anomaly captures the integral information in ca (~e) beyond 
the real information. Sullivan's Z/k-manifolds provide the appropriate topologi- 
cal tool to detect this information. The purpose of this paper is to explain 
this observation, which is encoded in (2.4). Geometrically, there is a more pro- 
found interpretation of the anomaly in terms of the geometry of ~e - the determi- 
nant bundle carries a natural connection, and the anomaly is its curvature 
and holonomy. That point of view has been developed elsewhere2; our goal 
here is to elucidate the connection between the geometry and the topology. 

In w i we discuss the direct image map in K-theory for Z/k-manifolds. Recall 
that for closed Spin c manifolds the direct image (to a point) can be expressed 
by a cohomological formula involving characteristic classes. For Z/k-manifolds 
this is not possible due to the presence of denominators in this cohomology 
expression. Rather, there is an analytic interpretation of the direct image involv- 
ing the r/-invariant of Atiyah-Patodi-Singer lAPS]. Our proof that this analytic 
expression computes the direct image only covers special cases (where a certain 

The author is partially supported by an NSF Postdoctoral Research Fellowship 
i Lest the reader shake with unfounded trepidation, we immediately reassure him that ignorance 
of Physics may enhance, rather than hinder, his understanding of this paper 
2 Other geometric ramifications of Witten's global anomaly been pursued by Cheeger [C1], [C2] 
ar,~ Singer [S] 
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bordism element vanishes). The formula in general follows from an index theo- 
rem for Z/k-manifolds, which is joint work with Richard Melrose [FM]. 

The multiplicative axiom for the direct image provides the link between 
the index bundle of a Dirac family and these Z/k periods of K-theory elements. 
Our application in w is to the determinant line bundle ~ i.e., to Witten's 
formula. Topologically, this detects the integral first Chern class cl (LP) complete- 
ly. Geometrically, Witten's formula computes the holonomy of the canonical 
connection on .~o and we recover this holonomy theorem for torsion loops 
from the curvature formula via our topological considerations. 

We make some brief remarks about the higher Chern classes in Chern classes 
in w 3. The direct images considered here do not directly calculate Chern classes. 
Rather, they completely determine a K-Theory class. On the analytic side this 
suggests a possible generalization of Witten's global anomaly formula to higher 
dimensional manifolds 3. We indicate the statement. 

This paper is dedicated to Iz Singer. As my advisor he taught me nearly 
all I know about mathematics. Through his lectures, writings, and private con- 
versations he has been the primary influence on my work. The discussion here, 
in which various index theorems conspire to explain global anomalies, is a 
tribute to that influence. 

Acknowledgements. The author thanks Gunnar Carlsson, Mike Freedman, and Ron Stern for directing 
him to Sullivan's work. He is grateful to John Morgan, Graeme Segal, and Dennis Sullivan for 
helpful topological counselling. 

1. Direct images 

To begin we review the direct image map in K-theory for closed manifolds. 
Let Q be a closed even dimensional smooth manifold, and suppose the tangent 
bundle of Q is endowed with a Spin c structure. The Spin c structure provides 
an orientation in K-theory. Thus there is a direct image map 

(1.1) rq~ K ( Q ) ~ Z .  

Let i: Q ~ S  2N be an embedding of Q in an even dimensional sphere. Choose 
a tubular neighborhood v ~ S  zN of Q in $2. N Then the K-orientation yields a 
Thorn isomorphism K(Q)~-K(v), where K(v) denotes K-theory with compact 
supports. Composition with extension by zero gives a map i~: K ( Q ) ~  K(S2N) �9 
Bott periodicity implies K ( S  2 N ) = Z ~ T Z ;  the first Z is the augmentation while 
the second Z is/~(S2N). The direct image n.,r is i t followed by projection onto 
g(S 2t~) =Z.  (Compare [AS(I), w 1].) 

Suppose now that nx: Q __, M is fibration of manifolds with typical fiber 
an even dimensional closed manifold X. Assume that this family of manifolds 
(or rather the vertical tangent bundle T(Q/M)) has a Spin ~ structure. Then the 
preceding construction can be carried out fiberwise to give a direct image 

(1.2) n,.a: K(Q) ~ K(M). 

3 We understand that Singer has also announced such a generalization. Cheeger mentions the laigl~er 
dimensional case in [C2] 

Added in proof: Recently, Bismut and Cheeger [BC] proved related formulas 
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(Compare [AS(IV)].) If M is also an even dimensional closed Spin c manifold, 
then Q inherits a Spin c structure, and the multiplicative property of the Thorn 
isomorphism implies that the diagram 

K(Q) 
I \  

(1.3) ~.x ~1"~ 
K ~M) "~,Z 

commutes. Briefly, 

(1A) rc F = lz~o 7z x. 

This is essentially the multiplicative axiom for the index [AS(I), w 4]. 
There is a cohomological formula for the direct image (1.1); it is derived 

by a standard computation comparing the Thorn isomorphisms in K-theory 
and cohomology (e.g. [AS(III), w i]). Let Q be a closed even dimensional Spin c 
manifold and cosHZ(Q) the first Chern class of the Spin c structure defined by 
the homomorphism Spine(n)~ U(1). Then for a~K(Q) we have 

(1.5) lr~(a) = A(Q) e '~ ch (a) [Q], 

where the right hand side is interpreted in rational cohomology. In the special 
case of a Riemann surface 27 endowed with a Spin structure (09 = 0), the K-theory 
direct image coincides with the direct image in ordinary cohomology: 

(1.6) ~ (a) = c l (a) E27]- 

The direct image construction for K-oriented closed manifolds computes 
periods of a K-theory class. Sullivan IS1], [$2], [MS] introduced Z/k-mani- 

folds to compute Z/k periods. 

(I.7) Definition. A (closed) Z/k-manifold consists of 

(1) a compact manifold Q with boundary;  
(2) a closed manifold P; k 
(3) a decomposition OQ = LI (OQ)i of the boundary of Q into k disjoint mani- 

i=1 
folds, and diffeomorphisms 0i: P - ,  (OQ)i. 

O P  

( aQ)~ (ao)2 

Fig. 1 
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The identification space Q, formed by attaching Q to P via 0~, is more 
properly called the ;E/k-manifold. Of course, Q is singular at the identification 
points. If Q and P are compatibly oriented, then Q carries a fundamental class 
[Q] ~ H .  (Q; Z/k). Similarly, compatible K-orientations determine a fundamental 
class in K-theory, which we proceed to describe in terms of the smooth manifolds 
Q and P. 

First, we describe the K-theory of the collapsed space Q. By general principles 
there is an exact sequence associated to P ~ Q: 

K(Q, P)--- - -*  K(Q) , K(P) 

(1.8) 

K-1  (p) ~ K - 1  (~) ~ K - '  (G P). 

We can identify the pair (Q, P) with (Q, 0Q), so that K(Q, P) is the K-group 
(with compact supports) of the interior of Q. While (1.8) gives some feel for 
K (Q), a more explicit description can be given directly in terms of vector bundles. 
Define 

Vect (Q) = { (E, F, ~i): E ~ Q, F ~ P are complex vector bundles, 

0~: F ~ , El(0o, is an isomorphism lifting 0i}. 

This is an abelian semigroup, and the corresponding K-group is K(Q). 
A Spin c structure on Q consists of Spin c structures on Q and P compatible 

with 0 i. Now suppose that Q is even dimensional. Then the Spin r structures 
determine a direct image map 

(1.9) zt.,0: K(O ) ~ Z / k  

(cf. [$2,w Let (D2N, S 2N-1) be the 2N-ball with 7Z/k acting on S z~-I via 
the embedding 7F/kcU(1)~U(1)x U(N-1)cU(N) .  The quotient of 
(D2, N S 2N- 1) by that action is the Moore space Mk - its only reduced homology 
is 7~/k in dimension 2N. For N sufficiently large there is an embedding 
i: (Q, dQ)~(D2N, S 2N-1) respecting the Z/k action on the boundary. Represent 
an element aeK(Q) as a difference of elements in Vect(Q). Choose a tubular 
neighborhood v of Q in D 2N so that Vls . . . .  consists of k disjoint diffeomorpbic 
pieces. The Clifford multiplication determined by the Spin ~ structure on the 
normal bundle defines an explicit Thorn class lABS], and allows us to define 
a semigroup homomorphism Vect (Q)--, Vect (v-). That the induced map on K- 
theory is an isomorphism follows from (1.8), the ordinary Thorn isomorphisms, 
and the 5-1emma. Extension by zero is a map K(~)~ K(M~). Denote the image 
of a~K(Q) under this process by ix(a)~K(Mk). Finally, K(MR)=Z(~Z/k, and 
the direct image n.,0(ti) is the projection of ii(ci) onto Z/k. 

Since this direct image is defined by the Thorn isomorphism, it enjoys a 
multiplicative property. A fibering rex: Q--, M with X closed is, of course, a 
pair of compatible fiberings nx: Q __, M and nx: p ~ N. If compatible Spin ~ str~c- 
tures are given along the fibers, then 

(1.10) nx: K(Q) ~ K(M) 
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is defined. If, in addition, a Spin ~ structure is given on M, we have 

(1.11) rr~ = rc~o rr., x. 

At this point the precise analogy with closed manifolds breaks down; there 
is no cohomological formula for the direct image. Essentially this is because 
Z/k-manifolds detect integral information in the K-theory class, whereas (1.5) 
is an expression in rational cohomology - it involves denominators. Instead 
we use more precise geometric data and analytic invariants. Thus let (Q, P) 
be a Z/k-manifold as in (1.7), and suppose that Q and P carry Riemannian 
metrics. We assume that the metric on Q is a product near the boundary, and 
that it restricts on each (OQ)i to the given metric on P (using the identification 
03. Denote the curvature of Q by f2 (Q). We also give a geometric realization 
of a K-theory class on Q by Hermitian vector bundles E--} Q and F ~  P with 
unitary connections and identifications 0i which preserve the metric and connec- 
tion. The metric and connection on E are a product near the boundary. Let 
f2 ~) be the curvature of E. The pair of bundles (E, F, Oi) represents an element 
[s 

Fig. 2 

Suppose that (Q, P) carries a Spin c structure. There is an associated character- 
istic line bundle, the first Chern class of the Spin* structure, and we assume 
that it is endowed with a metric and compatible connection. Let ~oef22(Q) denote 
its curvature. Now from the induced data on P we construct a self-adjoint 
Dirac operator acting on spinor fields. Atiyah-Patodi-Singer [APS] define a 
spectral invariant Ce of this operator 4. 

(1.12) Theorem. The direct image is given by the analytic expression 

n~([E])=k d ~(f2(Q))e~/2ch(Q(E))-~ e (mod 1). 

r l q l  
, oro we view proof we  ive  ore only ~ 

the case where a certain torsion bordism element vanishes. Since the relevant 
bordism group has torsion (due to torsion in OS.PinC), our proof does not apply 
iv, general. A different proof for the general case will be given in [FM], where 
we develop an index theorem for Z/k-manifolds. Both proofs use the Atiyah- 
Patodi-Singer index theorem for manifolds with boundary [APS(I)]. 

It is �89 where q is the t/-invariant and h is the dimension of the kernel 
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Proof for special cases: The bundle F ~  P represents an element of order k 
in the bordism group os, Pi=~(Gr) of some complex Grassmannian Gr. We only 
prove the proposition when this element vanishes. Suppose, therefore, that F--, P 
bounds a bundle G ~ R for some Spin c manifold R. Extend the differential geo- 
metric data to R, keeping a product structure near the boundary. Pasting k 
copies of R onto Q we obtain a closed Spin ~ manifold Q - k R  and a bundle 
E--kG.  Then (1.5) together with Chern-Weil Theory yield 

(1.13) 7r~ - kR ([E - k G]) = S ~1 (f2~e)) e'~/2 ch ((2 re)) - k S 2 (f2 tin) e ~ ch (I2t~)). 
Q R 

The index theorem for manifolds with boundary implies that the integral over 
R is congruent (mod 1) to the ~-invariant of the boundary P. After dividing 
by k the left hand side of (1.13) reduced (rood 1) is rc~([E]), and the proposition 
follows. 
Remark. This proof applies to all stably almost complex Z/k-manifolds since 
O,v, hence also QV,(Gr), is torsion free. Stably almost complex manifolds suffice 
if we use the ;g/k-manifolds as probes to measure a K-Theory class. However, 
our application in the next section requires the more general Spin c manifolds. 

Although the K-theory direct image for Z/k-manifolds has no cohomological 
interpretation in general, in two dimensions we have the following analog of 
(1.6). 

(1.14) Proposition. Let (~, S) be a Z/k-manifold with Z a Riemann surface and 
S a circle. Fix a spin structure on Z and let S have the induced spin structure 5 
Then for gt~I((X-) 

~ ( a )  = Cl (a) [s  

where cl(~i)eH2(Z) is the integral first Chern class of  gt, and [~]eH2(7,;Z/k) 
is the fundamental class. 

Proof Write S = OR (R a 2-disk). Represent ~i by a virtual bundle which restricts 
to a Z/k  invariant trivial bundle in a collar of the boundary. This determines 
a trivial bundle in a collar of OR. Extend to a trivial bundle over R, thus 
defining u e K ( Z - k R ) .  Now (1.6) shows that 

rc~- k, (u) = cl (u) [Z - kR], 

since the Spin c structure comes from a Spin structure. Divide by k and reduce 
(rood 1): 

1 x kR 1 
~ (~)---k ~ , -  (u)--~ c I ( U) [Z - k R] - c ~ ( ~ ) [Z]  (mod 1). 

2. G l o b a l  a n o m a l i e s  

From a topological standpoint the anomaly is the topological equivalence class 
of the determinant line bundle of a family of Dirac operators. Atiyah and Singer 

5 It is the nontrivial double cover of the frame bundle 
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[AS2] discovered this link and computed the determinant bundle over the reals, 
that is, its real first Chern class. The physicists call this the local anomaly, 
as the result can be expressed in terms of a local differential form on the parame- 
ter space. Witten [W] introduced global anomalies expressed in terms of (non- 
local) q-invariants. Here we explain that Witten's invariant detects the integral 
first Chern class of the determinant bundle, or, more precisely, the integral 
information beyond the real information. We emphasize that global anomalies 
measure much more precise geometry of the determinant line bundle; this view- 
point is explored in [BFI],  [BF2], I-F]. On the other hand the topological 
interpretation suffices when the first homology group of the parameter space 
is torsion, as is the case Witten's original paper. 

X 
Let Z , Y be a fibering of manifolds with a Spin c structure along the fibers. 

Also, suppose E ~ Z is a vector bundle. This data does not really specify a 
family of Dirac operators along the fibers; for that we need metrics and connec- 
tions. However, the family of symbols is well-defined, and the topology of the 
index bundle is independent of the particular metrics and connections. Fix a 
realization of these symbols by a family of Dirac operators Dy. Then the index 
bundle is [kerDy]--[cokerDy]. While in general neither the kernels nor the 
cokernels piece together to a vector bundle over Y (the rank may jump), their 
difference makes sense in the K-Theory of Y. The Atiyah-Singer Index Theorem 
for Families [AS(IV)] states that in K-Theory this index equals the direct image 
~x([E]). 

The determinant line of a single Dirac operator D is (det ker D)* | (det cok- 
erD). Over the parameter space Y of a family of Dirac operators these lines 
patch together to form a line bundle L~' ~ Y, the determinant line bundle. Topo- 
logically, this corresponds to the map BU ~ P = ,  i.e., the determinant is minus 
the first Chern class of the index. (The minus sign comes because our definition 
of the determinant involves the dual of the kernel rather than the dual of the 
cokernel.) The Atiyah-Singer formula implies c 1 (s = _ c i ( ltx ([E])). 

The real part of the first Chern class is detected by mapping closed Riemann 
surfaces Z to Y. Such a map induces a fibering Q x ,  Z. As noted in (1.6) the 
direct image map on a Riemann surface is n~(u)= cl(u)IS] if the Spin c structure 
comes from a Spin structure; this follows easily from (1.5). Therefore, the multi- 
plicative axiom for the index (1.4) implies 

(2.1) c,  ( ~ )  [E]  = - ~f  ~ ( [ E ] ) =  - ~,~([E]). 

Here we still denote the pulled back bundle by E. The cohomology formula 
11.5) yields 

!2.2) c,  ( ~ )  [E]  = - ~ (Q)  e ~ ch ( [ e ] )  [Q]. 

The right hand side can be expressed as an integral of a differential form over 
Q via Chern-Weil Theory if appropriate metrics and connections are specified. 
This is the local expression which was derived by Atiyah and Singer. These 
Z periods of cl(~e) (over all choices of Z and of maps) determine the real 
part of this cohomology class. 
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The rest of the information in ct (L/') is determined by evaluating the Chern 
class on Z/k cycles. (This follows from the universal coefficient theorem in coho- 
mology. That compatible Z periods and Z/k periods actually determine a coho- 
mology class is proved in [MS, w We discuss this further in w 3.) Now all 
homology classes in two dimensions are realized by Riemann surfaces, and 
so it suffices to consider Z ~  Y over all Z/k-surfaces s and all maps. Such 
a map induces a fibering (~ x ~ Z, and E pulls back to a bundle E ~ 2;. Proposi- 
tion (1.14) states that the direct image on Z evaluates the first Chern class, 
and so the multiplicative axiom (1.11) implies 

(2.3) c, (&a) [E] = - ~z.~ rex ([E]) = - rc~ ([E]). 

The right hand side can be reexpressed analytically via Proposition 1.12:6 

(2.4) Cl (s [Z] = {e-- 1 S ~(f2~Q)) e'~ ch(12~E)) (mod 1). 
/ %  

(2 

This is Witten's global anomaly formula. 
We emphasize that our account here is topological. In particular, we neces- 

sarily consider only torsion loops S l ~  Y, while in general Hi(Y) contains ele- 
ments of infinite order. From a geometric point of view Witten's formula mea- 
sures the holonomy of a canonical connection on the determinant line bundle, 
The holonomy around nontorsion loops (say for a fiat connection) is not cap- 
tured by the first Chern class; it depends not only on the topology of the 
bundle, but also on the specific connection chosen. We now recall briefly this 
geometric interpretation of the anomaly and show how our considerations fit 
in with the holonomy theorem of [BF2]. 

As a preliminary, we reexpress the direct image on Riemann surfaces in 
terms of curvature. Suppose S is a closed Riemann surface and ~ ~ S a Hermi- 
tian line bundle with unitary connection. Let O (-~) denote its curvature. Then 
Chern-Weil Theory implies 

i f2(.~) (2.5) c l ( ~ )  [Z] =-~n ~ " 

Similarly, if (Z, S) is a Z/k-surface (as in Proposition 1.14), and ~ ~ Z a Hernai- 
tian line bundle with unitary connection, then 

l i ~ f 2 , ~ e )  i (2.6) c ~ ( ~ ) [ Z ] -  �9 2-r~ + ~ -  lnhol(S) (rood 1). 

Here hol(S)~U(1)is the holonomy of the connection around S. Formula (2.6) 
is a special case of Proposition 1.12, after we observe that the ~-invariant on 
a circle is the logarithm of the holonomy (up to a factor). There is a simr '~er, 
more direct proof based on the fact that the torsionfree space ~poo classifies 
line bundles with connection. 

6 Our  proof in w 1 suffices when X is a stably almost  complex manifold. However, we waJ~ ~ to 
consider the more  general case where X is Spin c, which is why we require a different proof 
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In the geometric situation we start  with a smooth family of manifolds Z x ~ y, 
a metric and Spin ~ structure along the fibers, a projection TZ ~ T(Z/Y), and 
a Hermitian vector bundle E ~ Z with unitary connection. Let e9 be the curvature 
of a connection on the characteristic line bundle of the Spin ~ structure, and 
denote the curvature of E by f2 rE). The given data yields a connection of T(Z/Y), 
and naturally we use the symbol f2 tz/r) for its curvature. Now the determinant 
line bundle s Y is smooth, carries a metric (constructed by Quillen), and 
the main result of [BF1] states that  Lf also carries a compatible connection 
whose curvature is the 2-form 

(2.7) ~2('v) = [2 ~zi ~ ft. (~(z/r)) cO,/2 ch (~(e))J(z). 
X 

Loosely stated, the index theorem for families, at least for c~, holds at the 
level of differential forms. The proof  of (2.7) uses Quillen's transgression formula 
for superconnections [Q]  and Bismut's proof  of the index theorem for families 
[B]. 

Taking (2.7) as a given, we derive the formula for the holonomy of ~e around 
loops S ~  Y which are torsion in H~(Y). Any loop induces a fibering P x ,S 
by pullback. Introduce an arbitrary metric gtS) on the circle, and fix the bounding 
spin structure on S. 7 This determines a metric and Spin r structure on P, and 
so a self-adjoint Dirac operator. Now introduce a factor e which scales gtS) 
to g(S)/e2. 

(2.8) Theorem [BF2, Theorem 3.18]. We have 

hol (S) = l ime - 2 ~t i~:. 
e~O 

Here ~ is the ~-invariant of the Dirac operator for the scaled metric. 

Physicists term e ~ 0 the adiabatic limit. 

Proof for torsion loops. Since we assume that S ~ Y is torsion, we can find 
an integer k, a Z/k-manifold (S, S), and a map  Z ~ Y which extends the given 
loop S ~ Y. Let Q x ,  z~ be the induced family. Extend the metric gtS) to a metric 
glZ) which is a product  near  the boundary,  and fix a spin structure on 2;. The 
•/k-manifold Q =  (Q, p) then inherits a Spin ~ structure and family of metrics 
parametrized by e. Equations (2.4), (2.6), and (2.7) combine to give 

-- ~ ~ 3. (/2 (Q/M)) e '~ ch (O (~)) + ~ In hol (S) 
s X 

-- ~ A (~Q)) e ~/2 ch (/2 (~)) + 4. (mod 1). 
Q 

~--,-----._.____ 

This is the spin structure which enters in Proposition 1,14. In [BF2] we use the nonbounding 
sp:n structure, and correspondingly the holonomy formula there differs from (2.8) by a factor of 
(- ir"ar176 That factor can be derived by appealing to the flat index theorem of [APS(III)] 
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But a straightforward calculation in Riemannian geometry (cf. [BF2, w 
implies 

lim ~ (~Q)) = .~ (Q~Q/M)) ~ (f2~)) 
~ 0  

Hence 

lim ~, = ~ In hol (S) (mod 1), 
e ~ O  7~ 

as desired. 

3. Higher dimensions 

The first Chern class is magical from many points of view. Topologically, the 
classifying space BU splits as a product K(TZ, 2)x BSU; the first Chern class 
ca is the projection BU ~K(;E, 2). The determinant line bundle of a K-Theory 
element isolates ca. By contrast, it is impossible to split off K(Z, 2j), j>2 ,  so 
there is no natural way to isolate the higher cj. A multiple of c a does split 
off, though. Over Q we have 

BU,,~K(Q, 2) x K(~,  4) x K(Q, 6) x .... 

the equivalence being induced by the Chern character. From another point 
of view, on a closed Riemann surface 2; the direct image zc~(u) = Cl (u) [2;] depends 
only on the K-Theory class u. However, for higher dimensional M the direct 
image 7z~(u) also involves the topology of M (cf. equation (1.5)) beyond the 
orientation class in homology. The same remarks apply to Z/k-manifolds 
and M (cf. (1.12) and (1.14)). 

Consequently, when we use higher dimensional manifolds to probe a K- 
Theory class u~K(Y)  - perhaps the index of a family of Dirac operators - 
then we cannot expect to compute ca(u ), j > 2, directly from direct images. On 
the other hand, the arguments of w 2 demonstrate that direct images determine 
the first Chern class ca (u). The proper generalization is 

(3.1) Proposition. The (compatible) 7Z and Z/k  periods over all Spin c manifolds 
M--* Y and ffl--* Y completely determine a K-Theory class u~K(Y). 

The same theorem holds in cohomology: a cohomology class is specified by 
its Z and 7Z/k periods [MS,w Proposition 3.1 is essentially contained in 

()SP ine ( y "  [S2,w We also need the fact that ,~, , . , Z / k ) ~ K , ( Y ; Z / k )  is surjective; 
this follows from the theorem of Conner-Floyd relating bordism and K-Theory 
[CF]. Our interest is in the easy half of (3.1): If the Z and 7l/k periods of 
a given K-theory class ueK(Y)  vanish, then u=0.  The converse, which stateS 
that compatible Z and Z/k  periods define an element of K-theory, is more 
subtle. 

These topological discussions have analytic analogs, due to recent develop" 
ments in the geometry of the index bundle. Quillen [Q] introduced superconneC" 
tions as the differential geometric manifestations of a K - T h e o r y  class (i ~st 
as ordinary connections are the geometric realizations of an equivalence claSS 
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of vector bundles). Bismut [B] constructed a superconnection to represent the 
index bundle u ~ K ( Y )  of a family of Dirac operators parametrized by y.8 He 
then proves that this representation renders the index theorem for families true 
on the level of differential forms: Up to a normalization the curvature f2 t") 
of his superconnection satisfies 

(3.2) ch (g2 ~')) = S i] (f2 (Q/M)) e '~ ch (f2~e)). 
X 

The representation of u is by an infinite dimensional bundle. All of the intricacy 
lies in this infinite dimensionality. 

The analytic magic of the first Chern class is that (2.7) and (3.2) are compati- 
ble. In other words, the topological splitting B U  ~ K ( Z ,  2) is realized analytically 
by associating to Bismut's superconnection representation of u an (ordinary) 
connection on the determinant line bundle ~e. Its curvature is then the 2-form 
part of (3.2). The secondary invariant corresponding to curvature is holonomy, 
and the formula for the holonomy is Theorem 2.8. 

Our considerations in this section suggest that this holonomy formula should 
have an analog in higher dimensions. That  higher dimensional formula should 
pertain to K-Theory, not cohomology, and should agree with the holonomy 
formula over a circle. As this formula will involve secondary invariants in K- 
Theory (i.e., ~-invariants), hence differential geometric data, the index bundle 
will be represented by Bismut's superconnection. Therefore, rewrite (2.8) as 

(3.3) l~,~>tp)_~<s~ 
e-*O 

On the left we have the adiabatic limit of ~-invariants on P, and on the right 
we have r of the Dirac operator on the circle coupled to the connection 
on LP. For  a general fibration P x >N over an odd dimensional Spin < manifold 
N, we conjecture 

(3.4) lim ~e~ = ~N). 
e ~ O  

Now the right hand side is the ~-invariant of the Dirac operator on N coupled 
to Bismut's superconnection. Furthermore, just as the topological expression 
for the direct image involves the topology of N, this expression will depend 
on the metric structure of N. An appropriate generalization of the index theorem 
for manifolds with boundary will provide a proof of (3.4) in torsion situations, 
along the lines of our arguments in w 2; the general proof will involve analysis 
modeled after either [BF2] or [ADS], [C1]. 
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