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Summary. Let F: ~ " + ~  C be a polynomial. The problem of determining 
the homology groups Hq(F-l(c)), c~(E, in terms of the critical points of 
F is considered. In the "best case" it is shown, for a certain generic class 
of polynomials (tame polynomials), that for all c ~ ,  F-~(c) has the homo- 
topy type of a bouquet o f / z - p  c n-spheres. Here /~ is the sum of all the 
Milnor numbers of F at critical points of F and /l c is the corresponding 
sum for critical points lying on F -  ~(c). A "second best" case is also discussed 
and the homology groups Hq(F-l(c)) are calculated for generic c~C. This 
case gives an example in which the critical points "at infinity" of F must 
be considered in order to determine the homology groups H~(F- ~ (c)). 

w 1. Introduction 

Let F: C" + 1 _..1.1~ be a polynomial function. According to the articles of Mal- 
grange I-M] and Pham [-Phi the knowledge of the variation of the topology 
of the family of hypersurfaces {F- 1(c), celia) is useful indetermining the asymp- 
totics of oscillatory integrals of the form: 

I(t)= ~ eite(X)G(x)dx (dx=dxl...dx,,). 
R n  

In this paper we consider the more basic problem of determining the homology 
groups H~(F-1 (c)), c~C, in particular we consider the following question: 

(1.1) To what extent is the topology of F-~(c), c~E determined by the local 
Miluor fibrations at the critical points of F. 

Recall that if P is an isolated critical point of F, then the Milnor Fibration 
Theorem (cf. [Mill) asserts there is a small ball B in ~,+1, centered at P, 
Such that for all sufficiently small discs A*, punctured at b=F(P), the map 
F: B oF-a (A*)~ A* is a locally trivial fibration. Moreover, the local Milnor 
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fibres F -  ~ (c)c~ B, c~A* have the homotopy type of a bouquet of #p n-spheres, 
where #e is the local Milnor number of F. 

Let us sketch the relationship between the local Milnor fibres and the homol- 
ogy groups Hq(F-~(c)). If F: ~ " + ~ - - , ~  is an arbitrary polynomial then there 
is a finite set F ~ C such that F: C ~ + 1 _ F -  ~ (F) ~ ~ - -  F is a locally trivial fibra- 
tion ([V], Cor. 5.1, p. 312 or [Ph] Appendix A1). The smallest such set F we 
call the set of atypical values, denoted by c~r; the elements of C - ~ r  are called 
typical values (in [Phi c~F is called the bifurcation set). To each b i ~ v  = {bl . . . .  , bs} 
and q = 0, 1, ... there may be associated (not canonically) a corresponding "van- 
ishing homology group"  Vq i _ / ~ ( F - 1  (c)), for any typical value c e II~-~F ([Br 1] 
Prop. 1), and: 

s 

(1.2) /4q(F- ~ (c)) = ( ~  Vq ~ q=0 ,  i . . . . .  
i = 1  

Suppose that F has an isolated critical point at p e ~ , + l  and b, B, A* are 
as above. If c' e A* then by trivializing F: ~"  § 1 _ F -  1 (F) ~ ~ -  F along a path 
from c' to c in ~ - - F  we obtain a homeomorphism h: F - l ( c  ') ~ F - l ( c ) ,  and 
thus a map: 

(1.3) h .  : Ha(F -1 (c') c~ B) --* Hq(F -~ (c)). 

It will be shown that we may choose the paths above so that direct sum of 
the g roups / tq (F-~  (c ') n B) taken over the isolated critical points of F is a direct 
summand of Ha(F-~(c)). The isolated critical points of F are finite in number, 

l 
say they are P1, --., Pt. Let /7 = ~ #v,, where #v, is the Milnor number of F 

i = 1  

at Pi- The relationship the local Milnor fibres and F -  ~ (c) may then be stated: 

Theorem 1.1. Let F: (E "+1 ~ be a polynomial, ot F its set of atypical values, 
let /7 be the sum of all the Milnor numbers of F at isolated critical points of 
F. Then for all ce(E-o~ F 

(1.4) n ,  (F - ~ (c)) ,~ Z ' @ A 

where A is some finitely generated abelian group. 

If F has only isolated critical points, it will be shown that the subgroup 
Z a is "concentra ted"  at the critical points of F and that the subgroup A is 
"concentrated at infinity". 

The atypical values b e a r  may arise for one or both of the following reasons: 

(1.5) F has critical points on F -  1 (b), 

(1.6) F has "critical points at infinity" associated to F- l (b ) .  

We refer the reader to [Ph], Appendix A 1, for a description of critical points 
at infinity. The most well-behaved polynomials will be those where no atypical 
values arise as in (1.6) above. Our main theorem, Theorem 1.2 below, applies 
to a class of these polynomials which we call " tame polynomials". Let /: be 
a polynomial with only isolated critical points and ceC ,  let P~, ..., P, be the 
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critical points of F lying on F -  1 (c) and set 

~u~=/s ~" ge,(F), g = g ( F ) =  ~ /s  
i = I c~C 

These latter two integers are called the fibre Milnor number of F at c and 
the total Milnor number of F, respectively (fi(F)= #(F) in this case, the distinction 
will be apparent later). We have: 

Theorem 1.2. Let F: ~,+x __)(~ be a tame polynomial and let #, pc, c ~  be the 
total and fibre Milnor numbers of F respectively. Then for any c ~ ,  F-l(c)  
has the homotopy type of a bouquet of I~- #c spheres of dimension n. 

Kouchnirenko, in an addendum to his article, I-K], on Milnor numbers, 
states a slightly weaker result, without proof. His result is formulated for "conve- 
nient" polynomials which are non-degenerate with respect to their Newton 
boundaries. In w 3 we show that Theorem 1.2 implies the result in [K] and 
give an example (Example 3.3) of a polynomial to which Theorem 1.2 applies 
but [K] does not. 

We shall also consider a class of polynomials for which there are critical 
points at infinity and for which all of the homology groups Hq(F-l(c)), q>O, 
ceC-~p  may be determined in terms of Milnor numbers of associated po lyno-  
mials (Thm. 5.3, w 5). In particular, we give an example where the group A in 
(1.3) is not trivial. This class of polynomials includes all polynomials of two 
variables, and polynomials of three variables having only isolated critical points 
and whose homogeneous term of highest degree is square-free. 

The organization of the paper is as follows: In w 2 we recall some results 
on multiplicities and Milnor numbers. In w 3 we introduce tame polynomials. 
In 34 we prove Theorem 1.2, our main result. In w we prove Theorem 1.1 
and discuss the class of polynomials referred to immediately above. In w 6 we 
prove two technical propositions used in previous sections but whose proofs 
were deferred so as not to interrupt the exposition. Some of the results in w 
w and w 6 are undoubtedly known to specialists in some form, but since no 
proofs were found in the literature we have given complete proofs here. The 
major new contributions are in w on tame polynomials, where we have 
shown that there is an easy characterization of a vast array of polynomials 
whose "fibre homology groups" are under good control. 

This article presents the main results of the author's doctoral dissertation 
[Br 1] as well as supplying some deferred details of a previous article [Br2]. 

Acknowledgements. I wish to thank the referee J. Lipman and B. Lichtin for pointing out the relevant 
literature for parts of this paper, pointing out some errors, and, especially the referee, suggestions 
for improving the exposition of an earlier version of this paper. 

w 2, Multiplicities and Milnor numbers 

We recall the definition of multiplicities and Milnor numbers (see Appendix B 
of [Mill, or [Or]). Let g: U--* ~ "  be a holomorphic map defined on an open 
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subset of C m, g=(g l  . . . . .  g,,). Let P ~ U  be an isolated zero of g, and B a small 
closed ball, centered at P, such that P is the only zero of g in B. Let ~p(g) 
be the topological degree of the map aB ~ S 2"-- 1, y ___> g(Y)/Hg(Y)]]. According 
to Milnor (I-Mill, Appendix B) it is a finite positive integer. We say that g 
has a zero o f  multiplicity uP(g) at P. If g(P)+0 we set pc(g)=0; and if P is 
a non-isolated zero of g, we set #~,(g) = ~ .  With this definition we always have, 
according to Palamadov [Pa] (see also [Or], Thm. 5.11): 

(2.1) UP (g) = dime Ce/(g i , . . . ,  g,,), 

where (gp is any of the local rings of i) rational functions on (~m defined at 
P, ii) germs of holomorphic functions defined at P, or iii) formal power series 
expansions at P. Now let g: ~ "  --) (U" be a polynomial map, the total multiplicity 
o f  the zeros o f  g in C m is 

I~ (g) = ~, i~ e(g); # (g) = oo 
p ~ g -  1 (0) 

if and only if g -  1 (0) has components of positive dimension. Equation (2.1) implies 
that #(g)= dirnclE[X1 . . . . .  Xm]/(gl  . . . .  , gin)" We also define the reduced total mul- 
tiplicity fi(g) by f i (g)=~#p(g)  where the sum is taken over the isolated zeros 

P of g. 
If F: U ~ C is a holomorphic function, define the complex gradient of F 

by OF(x)= (x) . . . . .  ~X,~ (x) . The Milnor number of F at P, ~p(F), is defined 

to be the multiplicity Up(0F). If U=II2 '~, and F is a polynomial, then the total 
Milnor  number I~(F), and the reduced total Milnor  number ~(F) are defined by 
#(F) = ~(aF) and fi(F) =/i(OF). From Appendix B of [Mil] ,  #e(F) = 1 if and only 

2 F 
if P is a non-degenerate critical point of F, i.e., (~XiOXj)O ~F (P) is a non-singulard 

matrix. We recall several properties of multiplicities, whose proofs may be foun 
in [Mil] ,  Appendix B. 

Proposition 2.1. Let  V~_IE m be an open set and g: V ~ I E  m a holomorphic map. 
Let  U ~ V be an open subset with compact closure in V, whose boundary OU 
is a smooth compact manifold, and such that g(x)~:O, xe~gU. Then 

i) g has f in i te ly  many zeros P1 . . . .  , P~ in U and 

],lp1 ( g )  "~- . . , -]- ~lps  ( g  ) = d 

where d is the topological degree of  the map 

dU -~ S 2m- ~, y --> g(y)/l[g(g)ll. 

ii) Let  V, U be as above and G: V x I ~ r "~ a continuous map such that g,: 
V ~  IE m, g,(x)= G(x, t) is holomorphie for  all t and such that g t (x)~O,  t e l ,  x6?U. 
Let  P1, . . . ,  P= be the zeros o f  go in U, and Q~ . . . .  , Q, the zeros o f  gl in U. 
Then: 

(2.2) /~P, (go) + . . .  + #P=(go) = / ~ ,  (g~) + . - .  + #o,(g~). 
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Remark. Suppose: g, h: V ~  •" are holomorphic 

[]g(x)-h(x)l] < LIg(x){[, xeOU, 

then we may take gt(x)= ( 1 -  t) g(x)+ t h(x) in ii) above. If U = B, a ball centered 
at P, g has no zeros in B - { P }  and P1 . . . . .  P~ are the zeros of h in B--{P} 
then (2.2) becomes 

(2.3) PP (g) =/~e (h) + ~ Pc, (h). 
i = 1  

For F: ~ " ~  and w=(wl  . . . . .  Wm)e~ m set 

Fw(X~ . . . .  , Xm) = F(X1 . . . . .  X,,)--(w~ X~ +. . .  + wmXm); 

observe that d(FW)=OF-w. The following proposition follows from [Mi l l ,  
Appendix B. 

Proposition 2.2. Let P be an isolated critical point of F: C" ~ tE and let B be 
a small closed ball, centered at P, such that P is the only critical point of F 
in B. Then there is a small open ball B', centered at 0 and a proper closed analytic 
subset Z of B' such that for all w e B ' - Z ,  F w has exactly kte non-degenerate 
critical points in B. 

Semi-continuity of multiplicities. In all that follows, a (locally closed) variety 
shall be a subset of pro= pm(iE) of the form V -  W where V, W are Zariski-closed 
subsets of pm. The dimension of a variety is taken to be the maximum of the 
dimensions of its irreducible components. 

Proposition 2.3. Let gt" ~_m....~m, t e T  be a family of polynomial self-maps of 
~m, whose coefficients depend rationally on t in the algebraic variety T, and let 
P ~ " .  Then: 

i) #P(gt) is an upper semi-continuous function of t for the Zariski topology 
on T, i.e. the sets 

Tn= {teT: Itp(gt)>n}, n=0,  1 . . . .  , oo 

are Zariski closed subsets of T, and 

ii) f~(gt) is lower semi-continuous for the Zariski topology, i.e. the sets 

T ,={ ter : f i (g t )<n} ,  n=0,  1,2 . . . .  

are Zariski closed subsets of T. I f  p ( g t ) < ~  for all teT, then #(gt)=fi(gt) is 
lower semicontinuous. 

Proof. The idea of the main part of the proof (n < ~ )  is to show that Tn, T" 
are closed in the ordinary topology and then to use induction on dim(T) and 
the theory of branched coverings to show that T~, T" are also Zariski closed. 

Let q: (Em • T ~ t E "  x T be the map (x, t) ~ (gt(x), t). The set 

S = {(x, t): #x (gt) = ~ } = {(x, t): dimx gt -1 (0) ~ 1 } 

equals the set 

{(x, t): dim(x,o q -  ~ (q (x, t)) > 1) n {(x, t): g,(x) = 0} 
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and {P} x T ~~ =({e} x T)c~ S. The set {(x, t): dim(z,0 q- ' (q(x ,  t))> 1} is a Zariski 
closed set by Chevalley's theorem ([G], p. 189) so that T ~ must also be closed. 
The set T" is a Zariski closed subset of T if and only if T " -  T ~ is a Zariski 
closed subset of T--Too, so by replacing T by T - T o o  we may assume T ~ 
is empty. 

Now we show that T, and T" are both closed in the ordinary topology. 
Let t o~T  ~ and let B be an open ball centered at P such that gto has no zero 
in B - { P } .  We may pick te  T" sufficiently close to to so that 

(2.4) llg,o(X)-gt(x)lf < IIgto(X)[f, x ~ B  

and by (2.3) we conclude Itv(gto ) >=l~v(gt)> n. Thus toe T ", and T"=  T". To show 
T, is closed, again pick to6T, and let P1 . . . . .  P~ be the isolated zeros of gt0. 
Let B~ be a small ball centered at P~ such that g,o(X):~0 x~OB, set B =  U B~. 

i 

Again (2.4) holds with this new B and for all t6T~ sufficiently close to t. By 
(ii) of Proposition 2.1 and the remark following the proposition we conclude 

that fi(g,o) < fi(gt) < n. 
Next we argue that the sets T~, T" are Zariski closed by induction on dim(T). 

The case dim T =  0 is trivial so we may assume dim T > 0. We may also assume 
that T is irreducible since T~, T" are closed iff their intersections with every 
irreducible component  of T is closed. It suffices to find a proper  closed subset 
T' of T such that/lv(gt) (or fi(gt)) is constant on T -  T', say 

(2.5) #v(gt)=d, t ~ T - T '  (fi(gt)=d, t~T- -T ' )  

for some d>0 .  Assume that this holds. The set T - - T '  is dense in T, in the 
ordinary topology, because Tis irreducible. Then by (2.5) and the semi-continuity 
of /ap(gt) and fi(gt) in the ordinary topology we have #v(g,)<d, t~T, (ft(g,) 
>=d, tE T). Thus: 

T"=T,  n<=d; T"=(T ' )  ", n>d  
and 

T, = (T'),, n<d;  T,= T, n>=d. 

By induction these are all Zariski closed in T. 
We now produce the required T' in the two different eases. 

Case 1. /av(gt). If g , ( P ) # 0  for some t then set T'={t~Tlg t (P)=O}.  Otherwise 
let G = {(x, t) lg,(x) = 0}. The set S = {(x, t)~ G I dimx g;-1 (0)_>_ 1 }, as previously not- 
ed, is closed in G and by hypothesis does not meet {P} x T. Let G'=G--S 
and q: G' --* T the map (x, t) -o t. By construction q has finite fibres and is surjec- 
tive since {P} x T_~ G'. There is a proper  closed subvariety T"___ T such that 
the components of G'- -q - I (T" )  are pairwise disjoint and have dimension equal 
to dim T. We may enlarge T" to Zariski closed set T' such that q: G' - q-  1 (T,) 
-* T -  T' is an r-sheeted covering space. (This follows from Example 3.7, p. 91 
of [H],  Thin. 7, p. 117 of [Sh] and the Lemma on p. 320 of [Sh].) Since T 
is irreducible then T - T '  is connected, therefore it suffices to show that #1.tgt) 
is locally constant on T - T ' .  Let t o e T - T ' ,  then q-~(t0)=gs c 'C 
= {P, PI . . . . .  P,_ ~} for some P, .... P,_ ~. Let B~ be a small ball centered at ~, 
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B0 centered at P, such that the B~'s are pairwise disjoint and gto(X)40, x~Bi 
-{P~}. Let B be the union of the B~'s. Since q: G ' - q - 1  ( T ' ) ~ T - T '  is a finitely 
sheeted covering space and since G ' - q -  1 (T') is closed in ~ "  x ( T -  T') it follows 
that q - l ( t ) ~ B  • {t} for all t ~ T - T '  sufficiently close to to. Furthermore, for 
each Bi and for t sufficiently close to to, (2.3) will hold with B replaced by 
Bi, and then by (2.2) each Bi x {t} must contain at least one of the points of 
q-1(0. But q -1 (0  has exactly r points, so each B i x {t} contains exactly one 
point and B o x {t} n q-  1 (t) = {(P, t)}. Again by (2.3) i~v(g,o ) = #p(g,), as required. 

Case2. fi(gt). Let G, G' and q: G ' ~ T  be as defined above. If q(G')4:T then 
~(gt) = 0 for t ~ T - q  (G'), and by a density and semi-continuity argument/~ (gt)= 0 
for all te T. Otherwise we argue as in Case 1 except that we use (2.2) instead 
of (2.3). All is now proven. 

Remark. The upper semi-continuity #p(gf) also follows directly from the semi- 
continuity of the Hilbert-Samuel function, which in turn follows from the semi- 
continuity theorem on the dimension of the fibres of a coherent sheaf, applied 
to an appropriate sheaf of relative jets. A proof  of the semi-continuity theorem 
of the Hilbert-Samuel function is given in the thesis of Lejeune and Teissier 
[L-T], though this is somewhat inaccessible. 

Calculation of Milnor numbers. Bezout's theorem may be used to calculate the 
total Milnor number in certain cases. (Kouchnirenko shows how Newton poly- 
hedra may be used to compute Milnor numbers in I-K], see w 3.) For  F: C "  --+ C, 

/ t~ F ~ OF 
let d~=deg/ be the highest degree of a monomial occuring in - -  Let G~ 

OF \OX~] ~tz OX~" 
=X~ ~ - - ( X 1 / X o ,  , X,, /Xo) be the homogenization of ~ -  with respect to 

OXi "'" OXi 
X0. Suppose P is an isolated, common, projective zero of the G~ lying in the 
open subvariety of IP" = P "  (C) defined by Xj 4= 0. Let P 
=(Yo:Yl:...Yj-~: l:yj+l:. . .:y, ,) ,  in homogeneous coordinates, let P 
=(Yo . . . .  , yj_ ~, yj+l ,  . . . ,  ym). The point P is an isolated zero of the map g: ~m 
-~ C m, defined by: 

(X~ . . . . .  Xm) ~ (61 (X1, ..., X j, 1, Xj+ 1 . . . . .  X m ) ,  

. . . .  G m ( X  1 . . . . .  X j ,  1, Xj+ x . . . . .  Xm)); 

define #p(G~, ...,  G,,)=/~p(g). The integer #,(GI  . . . . .  Gm) is independent o f j  and 
if the common zeros of the G~ are finite in number, say, Pa . . . . .  P~, then by 
Bezout's Theorem: 

(2.6} ~ #p,(G1, ..., Gm)=dl .d2....  "din. 
i=1 

Also, if P is any common zero of the G~ in the set defined by Xo4=O then 
P i~ a critical point of F and i~t,(F)=l~p(OF)=/tp(G1 . . . . .  G,,). Let R 1 . . . . .  R~ 
be those P~ which lie in the set determined by X0~=0, and Q1, .--, Q, be those 
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P~ lying on the set determined by X o = 0, and define 

#~176 ~ #o,(G~, ..., G,~). 
i= l  

We think of the Q~ as "critical points at infinity" and call them extraneous 
critical points. We have from (2.6): 

#(F) = dl-d2" ...- dm - #on (F). 

In general the Gi will have non-isolated zeros but we can still obtain a 
formula as above. For  l < i < m  let K i be a homogeneous polynomial in 
Xo, ..., Xm of degree di such that the Ki have only finitely many common zeros. 
Let G ~ = ( 1 - t ) G i - t K i .  For  all but finitely many tElU, the G~ i=  1 . . . . .  m have 
only finitely many common zeros. Let /~1 . . . .  ,/~, be the isolated zeros of OF, 
let B be a disjoint union of closed balls centered at the Ri, such that B does 
not meet any non-isolated critical point of F; B determines a compact set •" 
which we also denote by B. By a semi-continuity argument ~ #p(G~ . . . . .  G~) 

P~B 

(where the sum is over the common zeros of the G~ in B) is the same for all 
small non-zero t, and equals fi(F). Define #on(F) to be the integer 
~, #e(G~, ..., G~) where t . 0  is small and the sum is over common zeros not 

PeB 

in B. If the Gi themselves have only isolated zeros then both this and the previous 
definition of #on (F) give the same value for/~oo (F). Again by Bezout's Theorem 
we have: 

Proposition 2.4. Let F: ~'~ ~ 112 be a polynomial and let di = deg (OF/t~Xi) and #~ (F) 
be as defined above. Then: 

fi(F) = d~.d2. . . . .d , , -#oo (F). 

Example 2.1. Let F (X, Y,, Z ) = X P +  Y~ + Z ' -  t X YZ, p, q, r > 3 and 1 + - 1 + - I < 1  
p q r 

(Tpq~ singularity). Then F has no extraneous critical points and # (F)=(p-1 ) (q  
--1)(r--I) .  For  t4=0 the fibre Milnor numbers are quite interesting. Let 
s = p q r - ( q r + p r + p q ) ,  l=lcm(p,  q, r), h=sl /pqr .  The critical values of F are 
0 and R 0, 0 an h'th root of unity; R is a non-zero complex number, depending 
only on t, p, q, r. The only critical point of F on F -1  (0) is 0. It is well-known 
that # o ( F ) = p + q + r -  1 so: 

# ~  

There are pqr/l  non-degenerate critical points on each F - I ( R  0), so 

#R~ = p q r/l. 

w Tame polynomials 

In this section we define the class of polynomials to which Theorem 1.2 of 
the introduction applies. 
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Definition 3.1. A polynomial F: ~ m ~  is called a " t ame"  polynomial if there 
is a compact neighborhood U of the critical points of F such that IlOF(x)ll 
is bounded away from 0 on ~ ' -  U. 

Remarks. 1) The word " t ame"  is used to describe these polynomials because 
the integral curves of the vector-field OF(x)/I[OF(x)]I 2 have a tame or moderate 
behaviour. This fact will be used in the proof of Theorem 1.2. 

2) A tame polynomial has a finite number of critical points, since the critical 
point set is a compact, affine algebraic variety. 

3) It turns out that none of the atypical values of a tame polynomial arise 
from critical points at infinity and therefore the theory for the asymptotics 
of oscillatory integrals outlined in I-M] and [Ph] applies to tame polynomials. 

Tame polynomials may be characterized in terms of Milnor numbers. 

Proposition 3.1. A polynomial is tame if and only if # ( F ) < ~  and /~(FW)=/~(F) 
for all sufficiently small w~ffYL 

Proof Let us rephrase the definition above in terms of proper maps. Let us 
say that the map p: X ~ Y is proper above y if there is a neighborhood U 
of y such that p : p - l ( U ) ~ U  is proper. Thus F is tame if and only if OF: 
C ' ~  r  is proper above zero. Suppose that/~(F TM) = # (F)<  oo for all sufficiently 
small w. Surround the points of 0F- l (0 )  by small pairwise disjoint balls, let 
B denote the union of these balls. 

For small w we have IfOFW(x)--OF(x)II=ITwII<IIOF(x)II, x~OB. Since 
I~(OFW)=#(F~)=I~(F) for all sufficiently small w we see by Proposition 2.1 that 
OF-1 (w)___ B for small w and hence 0F is proper above 0. If F is tame, then 
since 0F is proper above 0 we have OF-I(w)~ B ~ for all sufficiently small w 
and hence/~(F TM) =#(F)  by Proposition 2.1. All is now proven. 

Example 3.1. Let F(X, Y, Z ) = X P +  Y q + Z r - t X Y Z ,  p, q and r as in Example 2.1. 
For each w e ~  3, F w has no extraneous critical points so/~(FW)=(p - 1)(q--1)(r 
-1), by Proposition 2.4 and hence is a tame polynomial. 

Example3.2. Let F ( X , Y ) = X 2 y - X ,  x t=( t , t+l /2 t )  then IIx, l l~oo and 
]IOF(x~)I] ~ 0  as t ~ 0 .  Thus F is not tame even though F has no critical points. 
If w = (a, b) then 

~u(FW) = oo a = - l ,  b=O 

#(FW) = 0 a=l= - 1, b=O 

/ t (F~)=2 b =1=0. 

Consequently/~(F) = 0, but there are small w for which #(F TM) = 2. 

T~,me polynomials are generic. Let V,,.a be the vector space of polynomials in 
m variables and degree less than or equal to d. By a variety of polynomials 
we mean a subvariety of some V,,.a. If T is a variety of polynomials and t~T  
we denote by Ft the polynomial corresponding to t and identify Ft with t so 
that the notation Ft~ T makes sense. 
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Proposition 3.2. a) Let T be a variety of polynomials. Then the subset of T, consist- 
ing of tame polynomials, is a constructible subset of T. 

b) Each Vm,a contains a dense, constructible subset of tame polynomials. 

Proof. To prove b), assuming a), it suffices to show that there is an open set 
of tame polynomials in Vm,d. For  t~ V,,,a let F~ a the homogeneous piece of F, 
of degree d. The set of polynomials Ft for which F, a has an isolated singularity 
at 0 is V~,a-{teVr,,a:#(FJ)=oo}, a non-empty open set. If  d > l ,  then f o r t  
in this open subset and all well2", Ft w has no extraneous critical points at infinity, 
and/~(FtW)=(d - 1)". Thus all polynomials in this open dense set are tame. The 
case d = 1 is trivial. 

To prove a) we use induction on dim T; our main tools for the induction 
step are the semi-continuity of Milnor numbers, Proposit ion 2.3, and "Bertini- 
Sard"-like theorems of Verdier [V]. To state the latter let p: M ~ T be a map 
of varieties with p(M) dense in T and let 5 e be a Whitney stratification of 
M. Then Corollaire (5.1) of [V] states that  there is an open subset U___ T such 
that p: p-l(U)--.  U is locally trivial with respect to the stratification, i.e., for 
any two nearby points t l, t2 ~ U, there is a homeomorphism h : p - l ( t l ) ~  p-  t(t2) 
such that  h maps  S c~ p - t  (tl) homeomorphical ly  into S n p - l ( t z )  for every Se5  ~. 
If  T is irreducible, U is irreducible, hence connected and the above holds for 
all tl, t2~U. 

Let T '  denote the subset of tame polynomials in the set T. Our induction 
hypothesis is: 

(H.) If  Tis  a constructible subset of Vm,a with dim T__< n, then T ~ is constructible. 

For  dim T = 0, the result is trivial. Now let T be a constructible set of dimension 
n + 1 and assume (H,) holds. Since T is a union of locally closed irreducible 
varieties of dimension not exeeding n + 1, it suffices to prove (H,+ 1) for irreduc- 
ible, locally closed varieties of dimension n + 1. Further,  we need only find an 
open set U___ T such that U *= U or U ' = 0  since T * would equal U w ( T - U )  ~ 
or ( T -  U) ~ both of which are constructible. 

We may further assume that/~(F0 < ~ for all t e  T. Let 

G =  {(t, w)e T x II~r~ : OFt(w) = 0}, 

p: G -'* T the  projection (t, w) ~ t and 

G 1 = {(t, w) e G I dimt,, w) P -  1 (p (t, w) > 1}. 

The set G 1 is closed and p(Gx) is the set { teT:  #(F~)=~}.  If p(G1) is deiise 
in T then there is an open dense U~_p(GO, and U~=0 by Proposit ion 3.1. We 
may  then replace T by an open subset, which we still call T, on which #(F,)< ~ .  

Next we show that  we may assume that for each te  T,/l(F,W)< ~ for Iwl <e, 
0 < e ,  e depending on t. Let G2={(t,  w):#(F~W)=~}, by the above argument 
G2 is a constructible subset of T x IIY" disjoint from T x {0}. Give T x ~"~ a 
Whitney stratification 5 r such that G2 and T • {0} are unions of strata. In 
the above description of Verdict 's result let M = T x ~ "  and p: T x ~ ' ~  T the 
map  (t, w ) ~  t. Let U, t l ,  t2, h be as above. Since U x {0} lies in T x {0~, a 
union of strata, U x{O}r~p-~(t)={(t,O)}, and since G2 is a union of strata, 
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then the homeomorphism h maps (t~, 0) to (t2, 0) and maps {tl} x (l~m("~G2 to 
{t2} x ~E" n G 2. Thus (t, 0) is an accumulation point of {t} x tEm n G2, either for 
all teU or for no t in U. In the former case U*=0. Thus, by replacing T 
by U, we may assume that for each te  T, #(F~ TM) < oo for l w[ < e, 0 < e, e depending 
on t. 

Next consider fi(F, w) on T x ~ym. Since the sets (T x CEm).= {(t, w):/7(FlW)=<n} 
are Zariski-closed subsets and T x r U (T x cE'~),, then T x ~ ' = ( T  x ~")N 

n 

for all large N, by the Baire Category Theorem. Let this N be chosen as small 
as possible so that G3 = ( T  x ~E'~)~r ~ is a proper closed subset of T x ~E'. Again, 
using a stratification argument, there is an open subset U~_ T such that for 
tl, t2eU there is a homeomorphism h: {t~} x r  {t2} • ~m, taking (t~, 0) to 
(rE, 0) and {ta} x II]" c~ G 3 onto {t2} x ~ "  n G 3 . Since G3 is a closed proper subset 
of T x ~ "  we have (t, 0)eGa either for all teU or for no teU. In the former 
case for each t e U # (Ft) =/7 (F,) < 17 (Ft w) = # (Ft w) for infinitely many w arbitrarily 
close to 0. From Proposition 3.1 it follows that U~=O. In the latter case we 
argue similarily that /l(Ft)--/l(Fe w) for Iwl<e, e > 0  depending on t and hence 
U'= U. All is now proven. 

Kouchnirenko's results. Next we compare the notion of tameness to the non- 
degeneracy conditions of Kouchnirenko, first recalling some of his definitions. 
For a polynomial F of m variables, write F = ~ a , X  ~ where ~=(~1 . . . .  , ~ , , )eZ ' ,  

X'=X~.. .X~,  ~. Let supp(F)= {~: a, 4= 0}; the Newton polyhedron of F (at infin- 
ity), i~ (F), is the convex hull in R"  of {0}usupp(F).  The Newton boundary 
of F (at infinity), iP(F), is the union of the closed faces of/~_ (F) which do not 
contain 0. A polynomial F is called convenient if a monomial of the form X~', 
~t~>0 occurs in F with a non-zero coefficient for every i. For  a subset A of 
P_ (/7) and a polynomial G = ~ b, X ~, set Ga = ~ b, X~; Fr(e) is called the Newto- 

areal 

nian principal part of F (at infinity). A polynomial is non-degenerate with respect 

to its Newton boundary if X~ .... X,~ all have no common zero 
A' A 

in (II;-0) m for every closed face A of the Newton boundary/~(F). A polynomial 
is non-degenerate if and only if the Newtonian principal part  is non-degenerate. 
Far 0<  q__< m let Vq denote the sum of the (standard) q-dimensional volumes 
of the q-dimensional faces of/~(F) that contain 0, (Vm=vol F(F)). The Newton 
number of F, F(F), is defined by 

~(F)= m! V , , - ( m -  1)! Vm_ 1 -~-...-~-(-- 1) m. 

The following proposition is Theorem 1.5, [K],  rephrased slightly. 

Proposition 3.3. Let F be a convenient polynomial. I f  I~(F) < 0o then 

i) /~(V)__< 9(F). 
(r" F is non-degenerate with respect to its Newton boundary then #(F)< oo and 

ii) #(F)--  ~(F). 

iii) In the variety of polynomials with a given Newton boundary the non- 
degenerate polynomials form an open, dense subvariety. 
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From this proposition we can prove: 

Proposition 3.4. I f  F is a convenient polynomial, non-degenerate with respect to 
its Newton boundary, then it is tame. 

Proof Suppose that F is convenient and non-degenerate, then p(F)< ~ .  Let 
{FW: w ~ " }  be the family bf linear perturbations of F. Since F is convenient 
the set U={we~E": i~(F)=/~(FW)} is open and dense in 117" and for a possibly 
smaller subset V ~_ U, F w will be convenient and non-degenerate, by iii) above. 
Since F TM has the same Newton polyhedron for all we V, and 0~ V then by ii) 

/~(F) = 9(F) = 9F TM) = #(F~). 

Thus, #(FW) =#(F)  for all small w and F is tame. All is now proven. 

Example 3.3. Let F(X,  Y ) = X 2 + 2 X y 2 +  y 4 +  y 2 = ( X +  y2)+ y2. If w=(a, b) 
and a ~e - 1, then by direct calculation F w has one non-degenerate critical point 
and/~(FW)= 1, so F is tame. However ~(F)=3 >#(F), so F must be degenerate, 
as may be directly verified. 

The above proposition and example show that Theorem 2 generalizes the 
result of Kouchnirenko and, that for the purposes of Theorem 1.2, tameness 
is a more natural condition than the non-degeneracy conditions. 

w 4. Proof of Theorem 1.2 

First we recall a result of Durfee on semialgebraic neighbourhoods (cf. [Du]). 

Proposition 4.1. Let M ~_ ~-~" be a semi-algebraic set and ~: M -~ ~ a proper semi- 
algebraic map, such that ~ (x) >-_ 0 for x ~ M. Then for all sufficiently small 6, ~- l (O) 
is a deformation retract of ~- 1 ([0, 6]). 

An ~ as above is called a semi-algebraic rug function, and ct-l([0, 6]), for 
small 6 as above, a semi-algebraic neighbourhood. In [-Du] Durfee only claims 
that the inclusion ~-~ [0] __%_ ct-~ [0, 6] is a homotopy equivalence though it is 
clear that we actually get a deformation retract. We will use Proposition 4.1 
in the form of the following Corollary. 

Corollary 4.2. Suppose f: ~E" ~ ~" is a polynomial map, B~ and B~ balls centred 
at Xo and Yo =f(xo)  respectively. Then: 

i) Given B,, then for all sufficiently small 6, B~n f - l ( y o )  is a deformation 
retract of B e n f -  1 (Bo). 

ii) Given e sufficiently small there is a 6' such that for all 6<6', B~c~ f-l(B~) 
is contractible. 

Proof i) Apply Proposition 4.1 to the function a(x)= Ilf(x)-Yo[I 2 defined on 
B e �9 

ii) By the Conic Structure Lemma f -  ~ (Yo)n B e is a cone for all small e. 
Now apply i). See [Mil], [B-V] for the Conic Structure Lemma. 

Next we prove a lemma. For U~_~ (or c~II~) we denote F-I(U) ,  F -~ic) 
by F v, F~ respectively. 
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Lemma 4.3. Let F be a tame polynomial, c e ~  and A a closed disc about c such 
that F has no critical points in Fa - F~. Then F~ is a deformation retract of F~. 

Proof The retracting deformation of FA onto F~ may he constructed as a succes- 
sion of three deformations. The first of these retracts F~ into Fo where D is 
a sufficiently smaller disc. The second and third deformations are pictured in 
Fig. 1. Now the details. 

Let ( x , y ) = X l Y l + . . . + X , + l y , + l ,  x , y ~  "+1, 9=(371 . . . .  ,3~,) (bar denotes 
conjugation), r(x)= (x, X)= 11 x II 2. The level set r -  t(e2) is just the sphere of radius 
e. For xeF~ n St the formulae: 

dF~(v)=(t~F(x), v), drx(v)=2Re(2, v) 

imply that the map F: S,--*C is full rank at x if and only if OF(x) and ~ are 
linearly independent over ~,  and similarly r IF,--* ~ is full rank at x if and 
only if OF(x) and 2 are linearly independent over ~. Since Fc is an affine algebraic 
variety rJF ~ has only finitely many critical values [Mi l l  Corollary 2.8. (for a 
more general function Sard's Theorem could be used). Therefore, we may choose 
a large ball B containing all the critical points of F and such that F: OB~tE 
is full rank at every point of F~n0B (see Fig. 1). Thus OF(x) and ~ are linearly 
independent over ~ in a neighborhood of St n F~. It follows that sufficiently 
small open discs D centered at c the map f:  aB n F D ~ D will be full rank on 
its domain and F will have no critical points in F D - B .  

The set F o - B  ~ (B ~ of B) is a manifold with boundary OB n Fo. 
We construct a vector field on F o - B  ~ satisfying: 

(4 l) i) dFx(~(x))=(OF(x), ~(x))= 1. 

ii) z~(x) is tangent to OBC~FD for xec~BnFo, z e ~ ,  i.e., Re(E, z~(x))=0, 

iii) I]~(x)]l is bounded. 
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The vector field r OF(x)/ll 8F(x)lt 2 is defined on F o - B  and trivially satisfies 
i) there. Since F is tame, IlOF(x)ll is bounded away from zero on F o - B  and 
so iii) holds for ~ as well. In a compact neighbourhood U of OBnFD, t?F(x) 
and 2 are linearly independent over (12 so we can find a smooth ~2(x), defined 
on U, satisfying (SF(x), Cz(x))=l,  (2, ~2(x))=0. Thus r satisfies i)-iii) on U. 
If q5 is a smooth function equal to 1 on F D n 8B and with support in U then 

~(x)=r162 x e F D - B  ~ 

satisfies i)-iii) above. For  zet~ let ~b,(z, x) be the integral curve of zr passing 
through x at t=0 ,  and let h:(F~-B~ ~ be the map h(x,z)= 
c~l(z-c, x). By i) we have F(t~t(2, x))=F(x)+tz, so F(h(x, z))=z, if defined. By 
ii) the trajectories cannot pass through aB and so h maps (SBnF~)x D onto 
8BnFo, again if h is defined. By iii) the integral curves c~t(z-c,x ) 0_<t<l 
are defined as long as they remain within F o -  B ~ But, as above, this is guaran- 
teed by i) and ii); thus h is well-defined and continuous. It follows that the 
map F: Fo--B ~ ~ D  is a trivial fibration, via the trivializing homeomorphism 
h. 

If we take ~ to be the vector field ~ defined above and forget about the 
ball B and 4.1.ii) then we may prove, in similar fashion, the following: For 
D~ _ D  2, closed discs, F: Foo-F,, ~ D~ is locally trivial if F has no critical 
points in Foo-Fo,. 

Pick D as above and let A ' _  A be a slightly larger open disc and D '_D 
a slightly smaller closed disc, so that F: Fn, = F D, ~ A ' - D '  is locally trivial. By 
the covering homotopy theorem we may construct a retracting deformation 
of F~ into FD to arrive at the first picture in Fig. I. Now let B' be another 
closed ball centred at the origin larger than B. Using the trivialization homeo- 
morphism h we may construct a homotopy g: F o x I ~ Fo such that 

and 

g(t,x)=x, x e F o n B  

g: F o n ( B ' - B  ~ x I ~_Fon(B'-B ~ 

g(x, I) e F~-- (B') ~ x~Fo-(B')  ~ 

This brings us to the second picture in Fig. 1. 
The subset B ' n  F~ is a deformation retract of B ' n  Fo for all small D. Once 

this is proven, we may extend to a retracting deformation ((FonB')ut~) 
x [0, 1] ~ F~ by letting the homotopy be stationary on F~--B'. This achieves 

the third stage of the homotopy in Fig. 1. To show that there is a retracting 
deformation of B'c~ F o to B ' n  F~ we may use results on Prill's good neighbour" 
hoods [Pr] or appeal to Durfee's results above. 

Proof of Theorem 1.2. We shall use a Morse theory argument to show that 
ff;,+a can be built up from F~, up to homotopy,  by adjoining #_/~c cells of 
dimension n + 1. From the long exact homotopy sequence of the pair (ll;" + 1, t~.), 
we obtain as a consequence: 

rcq (F~) = 0, q < n, 

~ . ( F 3  = Z , - ,  ~ . 
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If n > 1, then by Whitehead's Theorem Fc has the homotopy type of a bouquet 
of p - #  c n-spheres (cf. [Mi l l ,  p. 58). If n = 1 is is well-known that Fc is homotopy 
equivalent to a bouquet of circles. From the long exact homology sequence 
of (~,+1, Fc) we obtain HI(F~, Z ) = Z  u-u~ hence the number of circles in the 
bouquet is p - # c .  

To construct the desired Morse function we first modify F in neighborhood 
of its critical points. Let P1 . . . . .  P~ be the critical points of F which do not 
lie on F c. Let B i_  B~ be balls centered at P~, such that B' i is larger than Bi, 
all the B'i are pairwise disjoint and no B'i meets F~. Let u~ be a smooth function 
with support in BI and identically equal to 1 on By Let a 1 . . . . .  a s be vectors 
in ~,+1, to be chosen later, and let Li(X ) be the function Li (X)=a]X1  +.. .  

i + a, +, X.  + 1- We define G by: 

G (x) = F (x)-- (ul (x) L 1 (x) + . . .  + U s(X) Ls (x)), 

and set g (x) = ] G ( x ) -  c 12. Observe that G (x) = F(x) away from U B;; by picking 
i 

the a~ sufficiently small the difference ]G(x) -F(x) [  can be made uniformly small 
on ~"+ 1. With the a i so chosen F - I ( A ) =  G-I(A), for all sufficiently small discs 
A, centered at the origin. 

Let tE "+1 be given its standard metric and let grad g denote the gradient 
vector field of g with respect to this metric. 

grad g =(V(x ) -c )  d-if(x), xeC,+ 1 __ U B'i' 
i 

grad g = (G (x) - c)(~G (x)) 

=(G(x)--c)(Off(x)--di), on Bi, 

the latter since G is holomorphic on Bi. If ]/grad g ( x ) - g r a d  f(x)l] is sufficiently 
small on ~"+ 1, then the only critical points of g other than those on Fc must 
lie in U B~ and coincide with critical points of G. According to Proposition 2.2 

i 

the a ~ may be chosen so that G has/~-/~c =#e~ + . . .  +ktv~ non-degenerate critical 
points in U B~. The Hessian quadratic form, H(v, v), associated to G at such 

i 
a critical point, P, is easily determined: 

H (v, v) = 2 Re (v t J (P) v) 

where v t is the transpose of the 1 x ( n + l )  column vector v ~  "+1 and J(P) 
t~ZG p \  

is the matrix {G(P)-c)  ~ ( ) ) .  Since G ( P ) . c  and P is a non-degenerate 
! 

critical point of G, J(P) is non-singular, and thus P is a non-degenerate critical 
point ofg. Since H(iv, iv)= - H ( v ,  v) the Morse index o fg  at P is n +  1, one-half 
the real dimension of ~" + 1. 

Now consider g as a Morse function on 112 "§ By Lemma 4.3 g- l (0)=F~ 
is a deformation retract of M . =  {x~C"+l:g(x)<a}  for all sufficiently small a. 
If g were a proper map, then we could use standard Morse theory arguments 
to show ~ .§  can be built up from M,  by adding # - / f  (n+l)-cells. Since 
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F~ is a deformation retract of M, ,  then ~E "+~ may be obtained, up to homotopy, 
by a d d i n g / z - #  ~ (n + 1)-cells to F~ itself. 

Even though g is not a proper map, we may show that the standard Morse 
theory arguments still apply because of the following considerations: 

(4.2) i) For  0 < a < b ,  M , , b = { X e ~ " + l : a < g ( x ) < b }  is a complete subset of 
112 "+ t with respect to the standard Hermitian metric on C "+ ~ 

ii) grad g(x) is bounded away from 0 off a compact neighborhood of the 
critical points of g in M,,b. 

In w of Milnor's book on Morse theory [Mi2], (4.2)i), ii) may be used to 
establish the completeness of the vector field grad g(x)/Hgrad g(x)[[ 2, and vector 
fields obtained from it by modification, in the set M,,b. Therefore, all the theo- 
rems of standard Morse theory occurring in w of [Mi2], remain valid under 
the weaker hypotheses (4.2), and the Morse theory arguments above are valid. 

w 5. Topology of general polynomial hypersurfaces 

In this section we prove Theorem 1.1 of the Introduction. Also for a class of 
polynomials more general than tame polynomials we completely determine the 
homology of the generic level set. For this class of polynomials the abelian 
group A of Theorem 1.1 will be non-zero in general. 

Proof of Theorem 1.1. Let ~V= {bl . . . . .  bs} denote the atypical values of F. Let 
A~ be a small, closed disc centered at b~ such that the discs are pairwise disjoint 
and let a~A~-{b,}.  For the vanishing homology groups described in the intro- 
duction we have the isomorphism [Br 1] : 

~i=H~+I(F~,,Fo,). 

The latter group does not depend, up to isomorphism, on Ai or a~ if A~ is 
sufficiently small. 

The isomorphism (1.2) becomes: 

s 

(5.1) /tq (F~) ~- (~Hq+ 1 (Fn,, F~,). 
i = l  

If fib, is the sum of the local Milnor numbers at isolated critical points on 
Fb, , then 17 = fib1 + . . .  +/~b,. We can prove the desired conclusion,/q.(F~) ~-Z~@ A, 
by proving: 

(5.2) Hn + 1 (FA,, F,,) "-~ z~b 'o  A,, 
\ 

where Ai is some abelian group. We prove (5.2) using a Mayer-Vietoris argument. 
Set A =At, b=b~, a=ai and let P1, ---, P~ be the isolated critical points of F, 
lying on F-l(b). We may choose small, pairwise disjoint balls Bi, centered at 
P~, and shrink A if necessary, so that over a slightly larger open disc A'~ d, 
F:OBic~F-I(A')-~A ' is a proper submersion. Let B = U B  i, R~=F~c~B, T~ 

i 
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=F,~-Ra, S.~=aBnFa=Rdc~ T,, and let Ro=RanF,, ,  So=S,jnFo, T~= TanF~. 
By the hypothesis on F: Sd --* A and Ehresmann's Fibration Theorem, F: Sa ~ A 
is locally trivial, so Sa is a deformation retract of Sa. The pairs (Ra, So), (Sd, S~), 
(Ta, T~) satisfy (R~, Ra)w(T,,, T~)=(Fa, Fo) and (Ra, Ro)n(T4, T~)=(Sa, S~). Thus 
we get a Mayer-Vietoris sequence: 

... ~ nq(s  a, So) ~ nq(R.,, Ra)(~ nq( T~, T~) ~ nq(F~, Fa)~ n , _  ~ (S,~, Sq) ~ .. . .  

Since So is a deformation retract of S~ then the end groups above are trivial 
and the middle arrow is an isomorphism. Since the B, are pairwise disjoint 

l 

nq(R~, Ro) ~- (~H~(FanB  i, FonBi). Now, for A, Bi small enough F,~nBi is con- 
i = i  

tractible by ii) of Corollary 4.2. Thus: 

l 

H~(R~, Ro) ~-- ( ~  fI~_ , (Fo c~ B,). 
i=1 

Since F o n B i is a Milnor fibre with the homotopy type of a bouquet of PP, 
n-spheres: 

H .  (F. n B i) = Z ~P, �9 

Taking Ai = Hn + 1 (Ta, Ta) the proof of the theorem is complete. 

Remarks. 1) Recall the homomorphism, (1.2), h,:Hn(FanB)-oHn(F~) obtained 
by trivializing F: ~n+ l - -F - ' ( av ) - -*~- -aF  along a path in ~ - - a e  from a to 
c. If we choose a set of non-intersecting paths from a,  . . . .  , as to c and if Bid 
are pairwise disjoint balls about the critical points P~ . . . . .  Pj . . . . .  P,, lying on 
Fb. then the sum of subgroups: 

h,  (Bn (F~, n Bid)) 
i,j 

is an internal direct summand of/4~(Fc) isomorphic to Z a. This follows from 
the above proof and the discussion in [Br 1]. 

2) If F has only isolated critical points then Hq(F~) can be split into two 
parts, one localized at the critical points of F and the other localized at infinity. 
Let b ~ r ,  let B~ . . . . .  B~, B =  U Bi be as above and U be the complement in 

~"+' of a large ball centered at the origin. If dB and dU are transverse to 
Fb then for small A, F: F a -  (B u U) ~ A is locally trivial and applying the Mayer- 
Vietoris argument above (twice) we get: 

Hq+ , (F~, Fo)~- Hq+ I (F~c~ B, Fon B)@ H~+ I (F4n U, F~c~ U). 

By picking the B~ arbitrarily small and A small as well we can "localize" the 
first summand into arbitrarily small neighbourhoods of the critical points of 
F lying on Fb. By picking U to be the complement of arbitrarily large balls 
we can "localize" the second summand at infinity. Do this for each atypical 
value and use (5.1) to split ~(F~) as claimed. 
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Compactification. In order to calculate the subgroup of/~,(F~) "localized at 
infinity" it is useful to introduce the following compactification of F: tE ~ § 1 ~ IE. 
For  convenience, temporarily set m = n + 1. Let e: IE" ~ ~'% be the embedding 

X=(X 1 . . . . .  Xm)-"+(Xl : ...: X~: 1)=(X: 1), 

E: IE'--.  ~ x ~E the map x ~(e(x) ,  F(x)), M the Zariski closure of E ( ~ ' )  in 
x tE and p: M ~ C  the map (y, z ) ~ z .  We have a commutative diagram: 

E 

~E ,rE 

The map p : M ~ I E  is proper; we will call P: M ~ I E  a compactification of 
F: I E ' ~  IE. Write F ( X ) =  Fa(X)+. . .  + F ~ (X) where F j is homogeneous of degree 
j, X = (X 1 . . . . .  X ' ) ,  and define: 

G(X, Z, 0 = Fd(X) + ZFd-  1 (X) +. . .  + ZdF ~ (X) -- t Z  d. 

The set M is given by: M--{((x:  z), t)~n a" x 112: G (x, z, t )= 0}. Thus Mc = p-'(c) 
equals the set {(x: z): G(x, z, c)=0}, i.e., Mc=E(Fc)w(A x {c}), where A__F m is 
the axis of M, defined by: 

A = {(x: z): z = G(x, z, t) = 0} = {(x: z): F a (x) = z = 0}. 

According to Verdier IV], Cor. 5.1, the map p: M -o IE is a locally trivial fibration 
except over finitely many points; we extend the terminology of near-fiberings 
and typical and atypical values to this situation, denoting the set of atypical 
values by ~p. Denote p-1 (U) by My,  U ~IE. The near-fiberings p: M-~  ~E and 
F: IE m ~ tE are conveniently related by: 

Proposition 5.1. Let F: C"  ~ ff~ be a polynomial map and p: M--* IE the associated 
compactification and let A be a disc centered at b e ~  such that A - { b }  does 
not meet ct F or %, and let a e A - { b } .  Then: 

(5.3) nq (F a, Fa) ~- n 2 " - q (Ma, M,). 

We defer the proof of  this until Sect. 6. 

The compactification M need not be a smooth variety; by the Jacobian 
criterion its singular locus is given by 

aG aG aG aG 

~X,  "'" ~X"  ~Z at 

since G is a square free polynomial of the m + 2  variables X1 . . . . .  Xm, Z, t. We 
may equivalently write these equations as: 

~F d ~F d 
- -  = F  d - 1  - Z = 0 .  (5.4) dX~ . . . .  aX"  
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Thus the singular locus has the form Z x C where 2;_ A is defined by (5.4). 
Furthermore, the critical points of p: M - ( 2 ;  • (E) ~ (E are of the form (e(P), F(P)) 
where P is a critical point of F. We now restrict our attention to those polyno- 
mials having only isolated critical points and such that 2; is a finite set. The 
set Z will be finite if and only if the subvariety S of (Era defined by 

~F ~ OF a 
- - - F  a - 1  ~---0 

O X  1 "'" - -  ~ X  m 

satisfies dim S =< 1. If F is a non-constant polynomial of two variables dim S ~ 1 
is automatic. If F is a polynomial in three variables dim S__> 2 iff there is an 
irreducible non-zero factor of F n- ~ whose square divides F d. In particular, if 
F a is square-free, then Z is finite. 

Let ~e2;. Pick a j so that ~ belongs to the open set in IP" defined by 
X i:t: 0. Define the polynomial of m variables, Ht, by: 

Ht(Y, . . . . .  Ym- ~ ,Z)=G(Y,  . . . . .  Yj_,, 1, Yj+x . . . .  , Y",Z , t )  

(H, will not denote H - l ( t )  though F~ will still denote F-l(c)). The point # 
determines a point (xl . . . .  , x j -1 ,  1, xj+l . . . . .  x" ,  O)e(E"+ 1; let 

W = ( X  1 . . . .  , X j _  I , X j +  1 . . . .  , X " ,  0 ) .  

By construction Ht(w)=0 for all te(E. Moreover for each te(E: 

(5.5) i) w is an isolated, critical point of H~, 

ii) there is a ball B centered at w such that H~ has no critical points on 
Hgi(O)u(B--{w}) for seA, A some disc centered at t. 

To see this we argue as follows. Let te(E be fixed, and note that 
F (X1 . . . .  , X " ) -  t = G (X1 . . . . .  X" ,  1, t) and 

Ht(Y, . . . . .  Ym, Z)=G(Y1, " ' ' ,  Y j - 1 ,  1, Y~ . . . . .  Y"_~,Z,t) .  

Thus the hypersurfaces in (E", defined by F(X)=t ,  and Ht(Y, Z ) = 0  may be 
considered as subsets of ~ "  both of whose closures is the projective hypersurface 
G(X, Z, t )=0.  The polynomial F(X) - - t  is a square-free polynomial in the vari- 
ables X~ . . . . .  X" .  Otherwise the intersection of the critical point set of F with 
F-t(t)  would have dimension m - 1 ,  and F has only isolated critical points. 
Thus G(X, Z, t) is a square-free polynomial in the variables Xt  . . . .  , X" ,  Z, and 
hence H,(Y, Z) is a square-free polynomial in the variables YI . . . . .  Y,,- 1, Z. This 
implies that the critical points of Ht lying on H~ ~ (0) are precisely the singular 
points of H~ 1 (0). These singular points form a subset of the singular points 
of G(X, Z, t )=0,  and these latter consist of all # e Z ,  in addition to the critical 
points of F lying on F -  ~ (t). Therefore, the critical points of Ht which lie on 
H/~(0) consist of those we(E" for which # e Z  lies in the subset of F "  defined 
by Xj4:0, in addition to the points corresponding to those critical points of 
F lying on F-~(t)  and in the set defined by Xj:k0. This clearly implies i) and 
ii) above. 

By Proposition 2.3 for each ~ e Z there is an Nw_>- 1 such that Nw _-</t,~ (Ht)< 
With equality for all but finitely many te(E. Set 
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It m 2~ - / t ,~  (Ht) - Nw, 

2'= E2' , 

2 =  ~ 2 ' .  
t e l E  

We may now state the main theorem of this section. 

Theorem 5.2. Let  F: IE "+1 ~ IE be a polynomial with only isolated critical points 
and such that the Eq. (5.4) with m = n + 1 have only f in i te ly  many solutions in 
p . +  a. Le t  2, 2 c be as defined above and I~ the total Mi lnor  number o f  F. Then 
i f  the level set F~ is smooth and 2 c = O, we have: 

/~q (F~) = 0 q # n. 

Proof. Let beG,  A a disc centered at b such that ( A - { b } ) c ~ v = O  and let acA 
--{0}. We shall show below: 

H.+ I ( F z , F , ) = Z  "b+ ab, 
(5.6) 

Hq(Fa,Fa)=O, q # n +  l. 

Assuming (5.6), if b = c  is a typical value then, F:  F a ~ A  is locally trivial and 
we conclude t h a t / :  = 2 ~ = 0. Since F has only isolated critical points, Fc is smooth 
if and only if aF has no zeros on Fc, if and only if #~=0. Therefore, a typical 
level set F~ is smooth and satisfies 2~=0. On the other hand, if Fc is smooth 
and 2 ~= 0, it does not follow (by a simple argument at least) that c is a typical 
value. Thus, the typical values could conceivably form a proper subset of the 
values for which we want to prove the theorem. Therefore, we shall prove the 
theorem in two steps: 

Step 1 : Prove the theorem for c a typical value. 

Step 2: Use Step 1 to prove the theorem for any smooth F~ with 2c= 0. 

Step 1. Let c be a typical value. Let b, A, a be as above and let p: M - ~ E  be 
the compactification defined earlier. By the formulae (5.1) it suffices to prove 
(5.6). In turn, by (5.3) of Proposition 5.1, the formulae (5.6) follow from (shrinking 
A if necessary and setting m = n + I): 

H" + 1 ( M  a, Mo) ~- Z ub + ~ 
(5.7) 

Hq(Ma,  M,,),,,O, q : # n +  1. 

Let k~2; and X~, H t be as previously defined. The subset W of F "+1 defii~ed 
by Xj ~ 0 is an open neighbourhood of k which may be identified with IE"*~; 
Ht is a polynomial defined on W, let w~lE "+~ be the point associated to ~'. 
Let B w - W  be a closed ball centered at w; under the identifications above, 
M~ n (B~ x tE) is identified with (n~  ~ (0) c~ B~) x {a}. Let U = M n ( ~ nw x ~), 
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it is an closed neighborhood of Z x IE in M. If we choose Bw sufficiently small 
then Hb 1 (0) will meet 8B~, transversely; doing this for all ~ X  we ensure that 
Ma meets 8U transversely for all aelE near b. Next, surround the critical points 
of F that lie on Fb by small pairwise disjoint closed bails; call the union B. 
Choose B so that F: 8B ~ F,~ ~ A is full rank for small A. The set B may be 
identified with a subset of M via the embedding E: rE" § 1 __. M. For  small open 
A, T~ = M a - ( B  ~  U ~ is a manifold with boundary (M,~ n 8B)u(Ma n 8U) and 
p: T~ ~ A is a proper submersion, hence locally trivial. By a Mayer-Vietoris 
argument, we may excise (Ta, T 4 n Ma) from (Ma, Md) to obtain: 

Hq(M d, Ma)"~ Hq(M 4n B, Ma~ B)@ Hq(M an  U, Man  U). 

Now (M~ n B, M a n  B) ~ (F a n B, Fan B), so by previous calculation and the Uni- 
versal Coefficient Theorem H"+ I (M j ~ B ,  M a n B ) = Z  ~'b, Hq(M ac~B, ManB)  
~-0, q4:n+ 1. Thus to prove (5.7), it suffices to show 

H"+ I ( M d c~ U, Ma ~ U)~-Z ~, 
(5.8) 

Hq(M,tnU,  Ma~U)~-O, q4=O. 

This calculation is deferred to Sect. 6. 

Step 2. F~ is smooth, 2e=0. Let A be a small open disc surrounding c, as con- 
structed in Step 1. It suffices to prove that Hq(Fe)"~Hq(Fr) for some 7eA--{c}, 
since these 7 are all typical values. Pick such a 7- Let A ~ be the axis of 
M defined above, set A e = A  x {c} so that F~=Me-A~. By the triangulation 
theorem [Lo]  for compact algebraic varieties (Me, Ae) is a compact polyhedral 
pair and M c - A e = F  ~ is an orientable 2n-dimensional manifold. Thus, we have 
a duality isomorphism 

nq (F~)- n : " -  q(Mr Ae). 

Since F~ is also smooth then Hq(Fr)~-H2"-~(Mr,Ar), so we need only show 
Hq(Mc, Ae) "~ H q (Me, A~,) q >_-- 0. Consider the homeomorphism of exact sequences: 

H q - '  (M~) ~ H ~ -~ (Ac) ~ H q (Me, Ae) ~ H q (M,) --* H ~ (A~) 

1 1 J T 1 
H ' -  ' (M ~) ---* H q- ' (Aa) ---~ H ' (M ~, A a) -* Hq(M,O ---~ H~(A a). 

According to Proposition 4.1, above, Me is a deformation retract of M,j and 
clearly Ae= A x {c} is a deformation retract of Aa = A x A. Therefore, in the 
above diagram the four outside vertical arrows are isomorphisms and, hence, 
so is the middle arrow by the Five Lemma. Now again consider the same 
diugram except that c is replaced by 7. The second and fifth vertical arrows 
are still isomorphisms for the same reasons. Since 2e=#~=0 then, by (5.7) of 
Step 1, H~(Ma, M r ) = 0  for all q and the first and fourth arrows are also 
isc'morphisms. Thus Hq (F~) _ H 2n-q(M,t, A,j) ~- Hq(Fr). All is now proven. 

Remark. If F~ is smooth but 2 * 4:0 we still get a map r :  H~(Fc)--, Hq(F~) via: 

~: H~(F~) --~ n2"-q(M,,  Ae)~--- H2"-q(Ma,  A~) ---~ H2"-~(M~, At) S-~ H~ (Fr). 
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Using the Five Lemma we see that fl is an isomorphism for q + n - 1 ,  n and 
injective for q = n. A bit of diagram chasing yields: 

2 c = r k ( n  n_, (F~)) + r k (Hn (Fr)/Hn (F~)). 

Example5.1. Let F(X,  Y, Z ) = X Y Z - - X - - Y .  There are three solutions to the Eq. 
(5.4) only one of which yields a jump in the Milnor number;  we have: 20=2, 
2c= 0, c ~e 0, 2 = 2. Since F has no critical points we have for c =~ 0: 

H2(Fc) = Z  2 

/qq(F~) = 0 q=g2. 

By considering the Morse function r(X, Y ,Z)=IXI2+IyIE+IZI  2 on X Y Z =  
X + Y we determine: 

n2(Fo) =Z 

/z/q(fo) = 0 q ,  1,2. 

Here, at an atypical value we have a jump in the Betti numbers for other 
than the middle dimension; this phenomenon did not occur for tame polyno- 
mials. 

w 6. Proofs of remaining propositions 

Proof of Proposition 5.1. We shall use a Lefschetz-type duality. I f  K c _ L ~ T  
are compact  polyhedra such that T - K  is an orientable n-manifold then: 

(6.1) Hq(T-K, T--L)~-Hn-q(L, K), 

Dold ([D], Proposition 7.14). In particular, the above will hold if K, L, are 
compact semi-algebraic sets, according to the triangulation theorem on semi- 
algebraic sets. 

Let V be the union of the shaded disc and blackened line shown in Fig. 2. 
Let U=A~ be the singly-hatched open region in Fig. 2. Let aeA be the 
point given in the hypotheses and let fie U. Then 

Hq (F,I, F~) ~- H~ (Fa, FI~) ~- H a (Fa, Fv) ~- Hq (Fdo, Fo). 

The first two isomorphisms follow from the local triviality of {F: F~ - F b -* A -- h}, 
the Covering Homotopy Theorem and the fact that U may be contracted to 
fl within A - {b}. The third isomorphism follows from the fact that the inclusion 
Fao ~ Fa is a homotopy equivalence, since for any slightly smaller closed disc 
A', concentric with A, F~, is deformation retract of both Fao and Fa, by -~he 
Covering Homotopy Theorem. 

Set T = Ma, L = My w Moa w A a, K = Moa ~3 AA then T -  K = F~o, T -  L = Fv. 
Then T, L, K are as in (6.1) and T--L is a 2m-dimensional, orientable (r=al) 
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�9 : @ b  ~0 

Fig. 2 

manifold, so: 
Hq (Fno, Fv) ~- H2" -q (Mv  u Mon u An, Mon ~ An). 

Let {7} = Vn  ~A, excise first F0A -- F r and then A v to obtain 

H 2 rn - q (Mv u Mon u An, Moa u An) ~-  H 2  m - q (M v ~ An , My u An) 

~- H 2"-q(Mv,  M r w Av). 

By the triangulation theorem, everything in sight is a polyhedral pair, so the 
excisions are valid. Clearly A~=A x {7} is a deformation retract of A v = A  x V 
so we further have: 

H 2 m -  q (Mv,  Mr u Av) ~ -  H 2 m -  q (Mv,  Mr). 

By an argument similar to the above M v  is a deformation retract of Ma so 
Hq(Mv, Mr)"~-Hq(Mn, My) and H2"-q(Mn,  Mr)~_H2"-~(M~, Ma), also as 
above. Stringing the isomorphisms together we obtain our result. 

Homology calculation. In our final proposition we consider the following situa- 
tion: Let Hi: C" + 1 ~ C, t e112 be a family of polynomials depending polynomially 
on teC. Suppose that for some fixed P e C  "+1, Ht(P)=O for all tOE and that 
the conditions (5.5) hold, where w is replaced by P. Let B, d be as in (5.5) 
and such that OB and H;-I(0) meet transversely for t eA;  let e and 6 be the 
radius of B and A respectively. Let M=M~,~ be the set {(x, t )eB x A: Ht(x)=0} 
and M, = M n B x {t). 

Proposition 6.1. Let Hi: flY'+ 1 ~ C, tOE, P e C  "+ ~, b e C  and M = M~.~ be as above. 
Gicen an e, 6 may be chosen small enough so that I~e( Ht) is independent of  t ea  - {b} 
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and such that for all tEA -- {b}: 

H"+I(M, M,)~-Z ~, 2=#e(Hb)-#v(H,), 

Hq(M, Mt)~_O, q . n + l .  

Proof Let p: M ~ A denote the map (x, t ) ~  t. We may pick a ball B' about 
P of radius e', and shrink 6 so that the conditions on M,.~ hold for M'=M~,o 
and such that M~= B ' n  H~-1 (0) is homeomorphic to a cone. By Ehresman's 
Fibration Theorem p: M -  M' ~ A is locally trivial since each Mt meets 0B u 0B' 
transversely and Ht has no critical points in H~-~(O)n(B-B'). By a Mayer 
Vietoris argument 

H~(M, M,)..~H~(M ', M't) , M't= M,~M'.  

Dropping, primes, we may assume Mb is a cone. 
By ii) of Corollary 4.2, M is contractible for small enough 6 and by the 

long exact sequence of the pair (M, Mr) we get 

n q (M, M,) ~- ffl ~- 1 (Me). 

Thus it suffices to show that M, has the homotopy type of a bouquet of 2 
n-spheres. According to Timourian, I-T], Lemma 2, there is a disc D, centered 
at 0, such that for t sufficiently close to b, H7 I(D)c~B is homeomorphic to 
Hb-1 (D)c~ B. Moreover, given D, we may shrink A so that for teD 

#e, (H,) =/.t e (Hb) -- #e (H,) = 2 
i 

where PI . . . .  , P~ are the critical points of H, contained in HT*(D)nB-{P}. 
By hypothesis no Pi lies on M,. For  each teA, H~-I(D)nB is homeomorphic 
to H~-t (D)n B which will be contractible for small D. Now, using the fact that 
Ht: OBc~H~-I(D)~D is a submersion, the Morse Theory argument of w may 
be easily modified to prove that M, has the homotopy type of a bouquet of 
2 n-spheres. All is now proven. 
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