Deux nouveaux facteurs de type II₁

J. DIXMIER et E. C. LANCE (Paris et Newcastle upon Tyne)

Depuis les travaux de Murray et von Neumann [3], Schwartz [6], Wai-Mee Ching [1], Sakai [5], on connaît cinq facteurs de type II₁ deux à deux non isomorphes dans les espaces hilbertiens séparables. En utilisant des idées voisines de celles de Ching et Sakai, nous allons construire deux nouveaux facteurs de type II₁. Zeller-Meier a obtenu encore deux autres facteurs de type II₁ (cf. un article ultérieur dans ce journal).

Le premier auteur a bénéficié de remarques de Zeller-Meier, le deuxième de remarques de Kadison et Vowden; tous deux ont pu consulter [1] et [5] avant publication.

- 1. Soit F un facteur fini. La norme usuelle d'un élément t de F sera notée ||t||. Si $t, t' \in F$, on posera $(t|t') = Tr(t\,t'^*)$ et $||t||_2 = (Tr(t\,t^*))^{\frac{1}{2}}$, où Tr est la trace normalisée de F. Quand on dira qu'une suite (t_1, t_2, \ldots) d'éléments de F est bornée, cela signifiera que sup $||t_i|| < \infty$.
- 2. **Définition.** On appelle suite centrale dans F une suite bornée $(t_1, t_2, ...)$ d'éléments de F telle que, pour tout $t \in F$, on ait $||[t, t_i]||_2 \rightarrow 0$ quand $i \rightarrow \infty$.

On appelle suite hypercentrale dans F une suite centrale $(t_1, t_2, ...)$ dans F telle que, pour toute suite centrale $(t'_1, t'_2, ...)$ dans F, on ait $\|[t_i, t'_i]\|_2 \to 0$ quand $i \to \infty$.

- 3. Deux suites bornées $(t_1, t_2, ...)$ et $(t'_1, t'_2, ...)$ sont dites équivalentes si $||t_i t'_i||_2 \to 0$. Si en outre $(t_1, t_2, ...)$ est centrale (resp. hypercentrale), $(t'_1, t'_2, ...)$ est centrale (resp. hypercentrale).
- 4. Soit $(t_1, t_2, ...)$ une suite bornée d'éléments de F. Supposons qu'il existe une suite $(\lambda_1, \lambda_2, ...)$ de nombres complexes tels que $||t_i \lambda_i||_2 \to 0$ quand $i \to \infty$; autrement dit, supposons que $||t_i Tr(t_i)||_2 \to 0$ quand $i \to \infty$. Alors la suite $(t_1, t_2, ...)$ est hypercentrale. Une telle suite hypercentrale sera dite *triviale*.
- 5. On notera \mathscr{C}_F (resp. $\mathscr{H}_F, \mathscr{T}_F$) l'ensemble des suites centrales (resp. hypercentrales, hypercentrales triviales) de F. On a $\mathscr{T}_F \subset \mathscr{H}_F \subset \mathscr{C}_F$. Quatre cas sont donc possibles, qui s'excluent mutuellement:

$$\mathcal{T}_F = \mathcal{C}_F; \quad \mathcal{T}_F = \mathcal{H}_F \neq \mathcal{C}_F; \quad \mathcal{T}_F \neq \mathcal{H}_F = \mathcal{C}_F; \quad \mathcal{T}_F \neq \mathcal{H}_F \neq \mathcal{C}_F.$$

Nous verrons que les quatre cas se présentent effectivement.

6. Soit F^{∞} l'ensemble des suites bornées d'éléments de F. Cet ensemble est muni de manière évidente d'une structure de C^* -algèbre (en fait, c'est une algèbre de von Neumann). On vérifie aisément que $\mathscr{C}_F, \mathscr{H}_F, \mathscr{T}_F$ sont des sous- C^* -algèbres de F^{∞} . Soit \mathscr{I}_F l'ensemble des $(t_1, t_2, \ldots) \in F^{\infty}$ tels que $||t_i||_2 \to 0$ quand $i \to \infty$. Alors \mathscr{I}_F est un idéal bilatère normiquement fermé de F^{∞} contenu dans \mathscr{T}_F , et $\mathscr{H}_F/\mathscr{I}_F$ est le centre de la C^* -algèbre $\mathscr{C}_F^0 = \mathscr{C}_F/\mathscr{I}_F$. Notons, comme c'est l'usage, l^{∞} l'ensemble des suites bornées de nombres complexes, et c_0 l'ensemble des suites de nombres complexes tendant vers 0. L'homomorphisme canonique composé

$$l^{\infty} \to F^{\infty} \to F^{\infty}/\mathscr{I}_{F}$$

a pour image $\mathcal{T}_F/\mathcal{I}_F$ et pour noyau c_0 , de sorte que $\mathcal{T}_F/\mathcal{I}_F$ est une sous- C^* -algèbre du centre de \mathscr{C}_F^0 canoniquement isomorphe à l^{∞}/c_0 . Les quatre éventualités considérées plus haut peuvent se reformuler ainsi:

$$\mathscr{C}_F^0 = l^{\infty}/c_0;$$

 \mathscr{C}_F^0 est non commutative, et son centre est égal à l^{∞}/c_0 ;

 \mathscr{C}_F^0 est commutative et distincte de l^{∞}/c_0 ;

 \mathscr{C}_{F}^{0} est non commutative, et son centre est distinct de l^{∞}/c_{0} .

Soit π l'application $(t_1, t_2, \ldots) \mapsto (Tr(t_1), Tr(t_2), \ldots)$ de F^{∞} sur l^{∞} . C'est une application linéaire positive fidèle. On a $\pi(\mathscr{I}_F) \subset c_0$ et $(\pi^{-1}(c_0))^+ \subset \mathscr{I}_F$, donc π définit une application linéaire positive fidèle ρ de F^{∞}/\mathscr{I}_F sur l^{∞}/c_0 . En composant ρ avec les caractères de l^{∞}/c_0 , on voit que F^{∞}/\mathscr{I}_F possède une famille séparante de traces finies; en particulier, \mathscr{C}_F possède une famille séparante de traces finies.

- 7. **Lemme.** Soient F un facteur fini, E un sous-ensemble de F engendrant l'algèbre de von Neumann F. Pour $j=1,2,\ldots$, soit A_j une sous-algèbre de von Neumann de F. On suppose que, pour tout sous-ensemble fini E_1 de E, il existe j_0 tel que A_j commute à E_1 pour $j \ge j_0$.
- (i) Si $(t_1, t_2, ...)$ est une suite bornée d'éléments de F tels que $t_j \in A_j$ pour tout j, on a $(t_1, t_2, ...) \in \mathscr{C}_F$.
- (ii) Si, pour tout j, A_j contient un élément unitaire de trace nulle, on a $\mathcal{F}_F + \mathcal{C}_F$.
- (iii) Si, pour tout j, A_j contient deux éléments unitaires u, u' tels que $(u\,u'|u'\,u)=0$, on a $\mathscr{H}_F \neq \mathscr{C}_F$.
- (i) Soit (t_1,t_2,\ldots) une suite bornée d'éléments de F tels que $t_j \in A_j$ pour tout j. Soient $t \in F$ et $\varepsilon > 0$. Il existe t' dans la sous-algèbre involutive de F engendrée par E telle que $\|t-t'\|_2 \le \varepsilon$. Il existe j_0 tel que $[t_j,t']=0$ pour $j \ge j_0$. Alors, pour $j \ge j_0$, on a $\|[t_j,t]\|_2 = \|[t_j,t-t']\|_2 \le 2 \|t_j\| \varepsilon$. Donc $\|[t_j,t]\|_2 \to 0$ quand $j \to \infty$ et par suite $(t_1,t_2,\ldots) \in \mathscr{C}_F$.

- (ii) Supposons que, pour tout j, A_j contienne un élément unitaire t_j de trace nulle. D'après (i), on a $(t_1, t_2, ...) \in \mathcal{C}_F$. D'autre part, $||t_i Tr(t_i)||_2^2 = ||t_i||_2^2 = 1$, donc $(t_1, t_2, ...) \notin \mathcal{F}_F$ et $\mathcal{F}_F + \mathcal{C}_F$.
- (iii) Supposons que, pour tout j, A_j contienne des éléments unitaires t_j , t_j' tels que $(t_j t_j' | t_j') = 0$. D'après (i), on a $(t_1, t_2, ...) \in \mathscr{C}_F$, $(t_1', t_2', ...) \in \mathscr{C}_F$. D'autre part, $||[t_j, t_j']||_2^2 = ||t_j t_j'||_2^2 + ||t_j' t_j||_2^2 = 2$. Donc $(t_1, t_2, ...) \notin \mathscr{H}_F$ et $\mathscr{H}_F \neq \mathscr{C}_F$.
- 8. Lemme. Soient F un facteur fini, A une sous-algèbre de von Neumann commutative de F. On suppose que, pour toute suite centrale dans F, il existe une suite équivalente d'éléments de A. Alors $\mathcal{H}_F = \mathcal{C}_F$.

Soient $(t_1, t_2, ...) \in \mathscr{C}_F$, $(t'_1, t'_2, ...) \in \mathscr{C}_F$. Il existe dans A des suites bornées $(s_1, s_2, ...), (s'_1, s'_2, ...)$ telles que $||t_i - s_i||_2 \to 0$, $||t'_i - s'_i||_2 \to 0$. On a $[t_i, t'_i] = [t_i, t'_i - s'_i] + [t_i - s_i, s'_i] + [s_i, s'_i]$, donc

$$||[t_i, t_i']||_2 \le 2 ||t_i|| ||t_i' - s_i'||_2 + 2 ||t_i - s_i||_2 ||s_i'|| \to 0.$$

Donc $(t_1, t_2, ...) \in \mathcal{H}_F$ et $\mathcal{H}_F = \mathcal{C}_F$.

- 9. **Lemme.** Soient $F, E, A_1, A_2, ...$ vérifiant les hypothèses générales du lemme 7. On suppose en outre que:
- a) pour toute suite centrale dans F, il existe une suite équivalente formée d'éléments de A_1 ;
- b) pour tout j, A_j contient un élément unitaire u_j de trace nulle et permutable à A_1 .

Alors $\mathcal{T}_F \neq \mathcal{H}_F$.

On a $(u_1, u_2, ...) \in \mathscr{C}_F$ (lemme 7(i)), et $||u_j - Tr(u_j)||_2^2 = ||u_j||_2^2 = 1$, donc $(u_1, u_2, ...) \notin \mathscr{T}_F$. Soit $(t_1, t_2, ...) \in \mathscr{C}_F$. Il existe une suite $(s_1, s_2, ...)$ d'éléments de A_1 tels que $||t_i - s_i||_2 \to 0$. Alors $||[u_i, t_i]||_2 = ||[u_i, t_i - s_i]||_2 \le 2 ||t_i - s_i||_2 \to 0$, donc $(u_1, u_2, ...) \in \mathscr{H}_F$ et $\mathscr{T}_F \ne \mathscr{H}_F$.

10. **Lemme.** Soient F un facteur fini, $x \in F$ un élément de trace nulle, et $\varepsilon > 0$. Il existe un élément unitaire $u \in F$ tel que $||[u, x]||_2 \ge ||x||_2 - \varepsilon$.

D'après [2], chap. III, § 5, th. 1, il existe des éléments unitaires u_1, \ldots, u_n de F et des nombres $\lambda_1, \ldots, \lambda_n \ge 0$ tels que

$$\sum_{i} \lambda_{i} = 1 \quad \text{et} \quad \left\| \sum_{i} \lambda_{i} u_{i} \times u_{i}^{-1} - Tr(x) \right\|_{2} \leq \varepsilon,$$

d'où, puisque Tr(x) = 0,

$$\|\sum_{i} \lambda_{i}(x - u_{i} \times u_{i}^{-1})\|_{2} = \|x - \sum_{i} \lambda_{i} u_{i} \times u_{i}^{-1}\|_{2} \ge \|x\|_{2} - \varepsilon.$$

Donc il existe un indice i_0 tel que $\|x-u_{i_0}xu_{i_0}^{-1}\|_2 \ge \|x\|_2 - \varepsilon$, c'est-à-dire $\|[u_{i_0},x]\|_2 \ge \|x\|_2 - \varepsilon$.

- 11. **Lemme.** Soient F, E, A_1, A_2, \ldots vérifiant les hypothèses générales du lemme 7. On suppose en outre que:
- a) pour toute suite $(t_1, t_2, ...) \in \mathcal{H}_F$ et pour tout j, il existe une suite équivalente $(s_1, s_2, ...)$ formée d'éléments de A_i tels que $||s_i|| \le ||t_i||$;
 - b) les A_i sont des facteurs $+\mathbb{C}$.

Alors $\mathcal{T}_F = \mathcal{H}_F + \mathcal{C}_F$.

Soit $(t_1, t_2, ...) \in \mathcal{H}_F$ et supposons que $(t_1, t_2, ...) \notin \mathcal{T}_F$. Nous allons aboutir à une contradiction. Par passage à une suite partielle, on peut supposer, d'après l'hypothèse a) du lemme, qu'il existe une suite bornée $(s_1, s_2, ...)$ telle que $s_j \in A_j$ pour tout j et $||t_j - s_j||_2 \to 0$. On a $(s_1, s_2, ...) \in \mathcal{H}_F$ et $(s_1, s_2, ...) \notin \mathcal{T}_F$. Soit $r_j = s_j - Tr(s_j)$. On a lim sup $||r_j||_2 > 0$. D'après le lemme 10, il existe, pour tout j, un élément unitaire u_j de A_j tel que lim sup $||[u_j, r_j]||_2 \to 0$ On a $(u_1, u_2, ...) \in \mathcal{C}_F$ d'après le lemme 7(i), donc $||[u_j, r_j]||_2 \to 0$ puisque $(r_1, r_2, ...) \in \mathcal{H}_F$; ceci est la contradiction annoncée. En outre, $\mathcal{T}_F \neq \mathcal{C}_F$ d'après le lemme 7(ii).

12. Proposition. Soit F un facteur hyperfini de type II_1 . On a $\mathscr{T}_F=\mathscr{H}_F+\mathscr{C}_F$.

Il existe dans F une suite croissante $(B_1, B_2, ...)$ de sous-facteurs de types $I_2, I_4, I_8, ...$ engendrant F, tels que le commutant A_j de B_j dans F soit un facteur. Soit E la réunion des B_i . Les hypothèses générales du lemme 7 sont vérifiées. Soient $(t_1, t_2, ...) \in \mathscr{C}_F$ et j un entier ≥ 1 . Soit G_j un sous-groupe fini d'ordre n_j du groupe unitaire de B_j engendrant l'algèbre de von Neumann B_j . Soit $s_i = (n_j)^{-1} \sum_{u \in G_j} u \, t_i \, u^{-1}$. Puisque

 $\|[u, t_i]\|_2 \to 0$ pour tout $u \in G_j$, on a $\|t_i - s_i\|_2 \to 0$. D'autre part, s_i commute à G_j donc $s_i \in A_j$. Enfin, $\|s_i\| \le \|t_i\|$. Donc $\mathcal{F}_F = \mathcal{H}_F + \mathcal{C}_F$ (lemme 11).

13. Rappelons quelques faits bien connus. Soit G un groupe discret. Par «classe» de G, nous entendons «classe de conjugaison». On note $\| \|_2$ la norme dans $L^2(G)$. Pour tout $g \in G$, soit $u_G(g)$ ou simplement u(g) l'opérateur unitaire dans $L^2(G)$ défini par $(u(g)f)(g')=f(g^{-1}g')$. Les u(g) engendrent une algèbre de von Neumann $\mathcal{U}(G)$ dans $L^2(G)$. Soit $\mathfrak{A}(G) \subset L^2(G)$ l'algèbre hilbertienne de G, c'est-à-dire l'ensemble des $x \in L^2(G)$ qui définissent par convolution à gauche un opérateur borné $u_G(x) = u(x)$ dans $L^2(G)$. L'ensemble des u(x) pour $x \in \mathfrak{U}(G)$ est $\mathfrak{U}(G)$. Si $g \in G$ et si ε_g est la fonction caractéristique de g dans G, on a $u(g) = u(\varepsilon_g)$. La fonction ε_e est un vecteur-trace séparateur et totalisateur pour $\mathscr{U}(G)$; soient Tr la trace correspondante sur $\mathscr{U}(G)$ et $\| \ \|_2$ la norme préhilbertienne associée; si $x \in \mathfrak{A}(G)$, on a $||x||_2 = ||u(x)||_2$ et x(e) = Tr(u(x)). Si $G \neq \{e\}$ et si toute classe non triviale de G est infinie (nous dirons alors que G est un groupe ICC), $\mathcal{U}(G)$ est un facteur de type II_1 et les notations Tr, $\| \|_2$ concordent alors avec les notations introduites en 1. Pour tout ceci, cf. par exemple [2], chap. III, § 7.6.

- 14. Soit H un sous-groupe de G. Identifions $L^2(H)$ à un sous-espace vectoriel fermé de $L^2(G)$. Les faits suivants sont faciles à voir (cf. d'ailleurs [3], appendix): $\mathfrak{A}(H) = L^2(H) \cap \mathfrak{A}(G)$; si $x \in \mathfrak{A}(H)$, $u_H(x)$ est la restriction de $u_G(x)$ à $L^2(H)$, et $u_H(x) \mapsto u_G(x)$ est un isomorphisme (en fait une ampliation) de $\mathscr{U}(H)$ sur une sous-algèbre de von Neumann de $\mathscr{U}(G)$.
- 15. On a aussi le résultat suivant (lié à la notion d'espérance conditionnelle), qui est connu depuis longtemps de nombreux chercheurs, mais pour lequel nous manquons de référence:

Lemme. Soient $x \in \mathfrak{A}(G)$, y la fonction sur G égale à x sur H et à 0 sur G-H. On a $y \in \mathfrak{A}(H)$ et $||u(y)|| \le ||u(x)||$.

On peut supposer que $\|u(x)\|=1$. Soit $(g_{\lambda})_{\lambda\in A}$ un système de représentants des classes à droite suivant H, avec $g_{\lambda_0}=e$. Soient χ_{λ} la fonction caractéristique de Hg_{λ} , et $Y_{\lambda}=\chi_{\lambda}L^2(G)$. Alors $L^2(G)$ est somme hilbertienne des Y_{λ} . Soit Y'_{λ} l'ensemble des éléments de Y_{λ} à support fini. Soit $z\in Y'_{\lambda}$. On a $y*z\in Y_{\lambda}$. Ecrivons $x=\sum_{\mu\in A}x_{\mu}$ où $x_{\mu}\in Y_{\mu}$. On a $x_{\lambda_0}=y$ et u(x) $z=x*z=\sum_{\mu\in A}x_{\mu}*z$ (série convergeant dans $L^2(G)$). Soit $\mu\in A$ tel que $\mu \neq \lambda_0$. Alors $x_{\mu}*z$ est somme dans $L^2(G)$ d'éléments de la forme $\varepsilon_h*\varepsilon_{g_{\mu}}*\varepsilon_{h'}*\varepsilon_{g_{\lambda}}$ où $h,h'\in H$ et $hg_{\mu}h'g_{\lambda}\notin Hg_{\lambda}$ pour $h,h'\in H$. Donc $x_{\mu}*z\in \bigoplus_{v\neq\lambda}Y_v$. Ainsi, u(x) z=(y*z)+t avec $y*z\in Y_{\lambda}$ et $t\in \bigoplus_{v\neq\lambda}Y_v$. Donc $\|y*z\|_2\leq \|u(x)z\|_2\leq \|z\|_2$. Ainsi l'application $z\mapsto y*z$ de Y'_{λ} dans Y_{λ} se prolonge en une application linéaire continue de Y_{λ} dans Y_{λ} de norme ≤ 1 . Cela étant vrai pour tout λ , on voit que $y\in \mathfrak{A}(H)$ et que $\|u(y)\|\leq 1$, d'où le lemme.

L'application $u(x) \mapsto u(y)$ de $\mathcal{U}(G)$ sur $\mathcal{U}(H)$ sera appelée la projection canonique de $\mathcal{U}(G)$ sur $\mathcal{U}(H)$.

- 16. **Définition.** Soit G un groupe. Une partie A de G sera dite résiduelle s'il existe une partie B de G et des éléments g_1, g_2 de G tels que: (i) $B \cup g_1 B g_1^{-1} \cup A = G$; (ii) $B, g_2^{-1} B g_2, g_2 B g_2^{-1}$ sont des parties de G A deux à deux disjointes.
- Si A est une partie résiduelle de G et si G' est un groupe, il est clair que $A \times G'$ est une partie résiduelle de $G \times G'$.
- 17. **Lemme.** Soient G un groupe ICC, G_1 un sous-groupe résiduel de G, π la projection canonique de $F = \mathcal{U}(G)$ sur $F_1 = \mathcal{U}(G_1)$. Si $(t_1, t_2, \ldots) \in \mathcal{C}_F$, on $a(\pi(t_1), \pi(t_2), \ldots) \in \mathcal{C}_{F_1}$ et $||t_i \pi(t_i)||_2 \to 0$.

Ecrivons $t_i = u(x_i)$ avec $x_i \in \mathfrak{A}(G)$. Soit y_i la projection orthogonale de x_i sur $L^2(G_1)$, de sorte que $\pi(t_i) = u(y_i)$. Puisque G_1 est un sous-groupe résiduel, on peut introduire B, g_1, g_2 conformément à la déf. 16. Puisque $(t_1, t_2, \ldots) \in \mathscr{C}_F$, on a $\|[u(x_i), u(g_1)]\|_2 \to 0$ et $\|[u(x_i), u(g_2)]\|_2 \to 0$ quand

 $\begin{array}{l} i\rightarrow\infty. \text{ Autrement dit, } \|x_i*\varepsilon_{\mathbf{g}_1}-\varepsilon_{\mathbf{g}_1}*x_i\|_2\rightarrow 0 \text{ et } \|x_i*\varepsilon_{\mathbf{g}_2}-\varepsilon_{\mathbf{g}_2}*x_i\|_2\rightarrow 0 \\ \text{quand } i\rightarrow\infty. \text{ D'après la démonstration de [4], lemme 10, on a} \\ \sum_{g\in G-G_1}|x_i(g)|^2\rightarrow 0, \text{ c'est-à-dire } \|x_i-y_i\|_2\rightarrow 0, \text{ d'où } \|t_i-\pi(t_i)\|_2\rightarrow 0. \text{ Il en résulte que } (\pi(t_1),\pi(t_2),\ldots)\in\mathscr{C}_F \text{ et a fortiori } (\pi(t_1),\pi(t_2),\ldots)\in\mathscr{C}_{F_1}. \end{array}$

18. La proposition suivante est essentiellement connue ([3], p. 801 – 803).

Proposition. Soit Φ_2 le groupe libre à deux générateurs. Soit $F = \mathcal{U}(\Phi_2)$. On a $\mathscr{C}_F = \mathscr{T}_F$.

Soient g_1, g_2 des générateurs libres de Φ_2 . Soit B l'ensemble des éléments de Φ_2 dont l'écriture normale se termine par une puissance non nulle de g_1 . Les conditions de la déf. 16 sont vérifiées avec $A = \{e\}$. Donc $\{e\}$ est un sous-groupe résiduel de Φ_2 , et la proposition résulte du lemme 17.

19. **Proposition.** Soit Π le groupe des permutations de $\{1, 2, 3, ...\}$ qui laissent fixes tous les entiers sauf un nombre fini d'entre eux. Soit $F = \mathcal{U}(\Phi_2 \oplus \Pi)$. On a $\mathcal{T}_F = \mathcal{H}_F + \mathcal{C}_F$.

On sait que $\mathcal{U}(\Pi)$ est un facteur hyperfini, donc $\mathcal{C}_{\mathcal{U}(\Pi)} = \mathcal{H}_{\mathcal{U}(\Pi)}$ (prop. 12). Identifions $\mathcal{U}(\Pi)$ à un sous-facteur de F. Il est clair que $\mathcal{C}_{\mathcal{U}(\Pi)} \subset \mathcal{C}_F$, donc $\mathcal{C}_F = \mathcal{H}_F$. Comme $\{e\}$ est un sous-groupe résiduel de Φ_2 , le sous-groupe $\Pi = \{e\} \oplus \Pi$ est résiduel dans $\Phi_2 \oplus \Pi$. Soit $(t_1, t_2, \ldots) \in \mathcal{H}_F$. D'après de lemme 17, il existe une suite équivalente $(s_1, s_2, \ldots) \in \mathcal{H}_F$ telle que $s_i \in \mathcal{U}(\Pi)$ pour tout i. Puisque $\mathcal{C}_{\mathcal{U}(\Pi)} \subset \mathcal{C}_F$, on en conclut que $(s_1, s_2, \ldots) \in \mathcal{H}_{\mathcal{U}(\Pi)}$. Donc $(s_1, s_2, \ldots) \in \mathcal{F}_{\mathcal{U}(\Pi)}$ (prop. 12) et par suite $(t_1, t_2, \ldots) \in \mathcal{F}_F$. Ainsi, $\mathcal{F}_F = \mathcal{H}_F$.

20. **Proposition.** Soit G la somme directe infinie $\Phi_2 \oplus \Phi_2 \oplus \Phi_2 \oplus \cdots$. Soit $F = \mathcal{U}(G)$. On a $\mathcal{T}_F = \mathcal{H}_F \neq \mathcal{C}_F$.

Soit $E \subset F$ l'ensemble des u(g) pour $g \in G$. Soit G_j le sous-groupe de G formé des éléments dont les j-1 premières coordonnées sont égales à e. Identifions $\mathscr{U}(G_j)$ à un sous-facteur A_j de F. Les hypothèses générales du lemme 7 sont vérifiées. Pour tout $g \in G$ tel que $g \neq e$, u(g) est unitaire de trace nulle. Pour tout $k \geq 1$, l'ensemble des éléments de G dont la k^{eme} coordonnée est égale à e est un sous-groupe résiduel de G. Donc, si $(t_1, t_2, \ldots) \in \mathscr{H}_F$, le lemme 17 appliqué j-1 fois prouve l'existence d'une suite équivalente (s_1, s_2, \ldots) dans A_j . D'après le lemme 11, on a $\mathscr{T}_F = \mathscr{H}_F + \mathscr{C}_F$.

21. Soient $(G_1, G_2, ...)$, $(H_1, H_2, ...)$ deux suites de groupes. Nous noterons $(G_1, G_2, ...; H_1, H_2, ...)$ le groupe engendré par $G_1, G_2, ..., H_1, H_2, ...$ avec les seules relations suivantes:

pour $i \neq j$, H_i commute à H_j ; pour $i \leq j$, G_i commute à H_j . (Cette construction est inspirée de [3], p. 805/806.) Soient $K = (G_1, G_2, ...; H_1, H_2, ...)$, L (resp. M) le sous-groupe de K engendré par $G_1, G_2, ...$ (resp. $H_1, H_2, ...$). Alors L est le groupe engendré librement par $G_1, G_2, ...$, et M est la somme directe de $H_1, H_2, ...$. Tout élément g de $L - \{e\}$ a une écriture unique $g_{i_1} g_{i_2} ... g_{i_n}$ où $g_{i_1} \in G_{i_1} - \{e\}, ..., g_{i_n} \in G_{i_n} - \{e\}, i_1 \neq i_2, i_2 \neq i_3, ..., i_{n-1} \neq i_n$; nous poserons $w(g) = i_n$. Tout élément de K s'écrit de manière unique sous forme normale

$$m_1 l_1 m_2 l_2 \dots m_n l_n m_{n+1}$$
 (1)

où

$$\begin{split} p & \ge 0; \quad l_1, \dots, l_p \in L - \{e\}; \quad m_1, \dots, m_{p+1} \in M; \\ \text{pour} \quad i & = 2, 3, \dots, p+1, \quad \text{on a } m_i \in H_1 \oplus \dots \oplus H_{w(l_{i-1})-1}; \\ \text{pour} \quad i & = 2, 3, \dots, p, \quad \text{on a } m_i \neq e. \end{split}$$

Supposons qu'aucun des groupes G_i ne soit trivial. Alors K est ICC. Soit $F = \mathcal{U}(K)$. Soit E l'ensemble des u(g) pour $g \in K$. Soit $M_j = H_j \oplus H_{j+1} \oplus \cdots$, et identifions $\mathcal{U}(M_j)$ à une sous-algèbre de von Neumann A_j de F. Les hypothèses générales du lemme 7 sont vérifiées.

22. **Proposition.** Soit $K = (G_1, G_2, ...; H_1, H_2, ...)$ où les G_i sont isomorphes à \mathbb{Z} et où les H_i sont isomorphes à un groupe commutatif non trivial W. Soit $F = \mathcal{U}(K)$. On a $\mathcal{T}_F \neq \mathcal{H}_F = \mathcal{C}_F$.

Introduisons A_j comme au n° 21. Pour tout $g \in K$ tel que $g \neq e$, u(g) est unitaire de trace nulle. Le lemme 7(ii) prouve que $\mathscr{T}_F \neq \mathscr{C}_F$.

Montrons que M est résiduel dans K. Soit B l'ensemble des éléments de K dont l'écriture normale m_1 l_1 m_2 l_2 ... m_p l_p m_{p+1} au sens du n° 21 possède la propriété suivante:

$$w(l_p) = 1$$
 (donc $m_{p+1} = e$).

Soient g_1 un générateur de G_1 , g_2 un générateur de G_2 . Alors B, $g_2 B g_2^{-1}$, $g_2^{-1} B g_2$ sont des parties de K-M deux à deux disjointes. Montrons que $B \cup g_1 B g_1^{-1} \cup M = K$. Soit g un élément de K tel que $g \notin B \cup M$. Soit $m_1 l_1 \dots m_{p+1}$ son écriture normale. On a p > 0 puisque $g \notin M$. On a $w(l_p) > 1$ puisque $g \notin B$. Il résulte facilement de là que $g_1^{-1} g g_1 \in B$, donc $g \in g_1 B g_1^{-1}$. (Ce qui précède ne suppose pas W commutatif.)

Alors, d'après les lemmes 8 et 17, on a $\mathcal{H}_F = \mathcal{C}_F$.

23. Le facteur de la prop. 22 n'est qu'une variante d'un facteur étudié par Ching ([1], th. 4 et 5). A cela près, les cinq facteurs considérés dans les prop. 12, 18, 19, 20, 22 sont les cinq facteurs considérés par Sakai dans [5]. D'après [5], ces cinq facteurs sont deux à deux non isomorphes. D'ailleurs, pour le vérifier, il suffit, en vertu des propositions précédentes,

de s'assurer que $\mathscr{U}(\Phi_2 \oplus \Pi)$ et $\mathscr{U}(\Phi_2 \oplus \Phi_2 \oplus \Phi_2 \oplus \cdots)$ sont non hyperfinis et non isomorphes. Comme les groupes $\Phi_2 \oplus \Pi$ et $\Phi_2 \oplus \Phi_2 \oplus \Phi_2 \oplus \cdots$ sont non amenables, les facteurs correspondants sont non hyperfinis ([6], lemme 7). D'autre part, comme observé dans [5], $\mathscr{U}(\Phi_2 \oplus \Phi_2 \oplus \cdots)$ est asymptotiquement commutatif tandis que $\mathscr{U}(\Phi_2 \oplus \Pi)$ ne l'est pas.

24. **Proposition.** Soient G_i , H_i , K, W comme dans la prop. 22. On suppose W fini. Soit $F = \mathcal{U}(K \oplus \Pi)$. On a $\mathcal{F}_F \neq \mathcal{H}_F \neq \mathcal{C}_F$, et F n'est pas asymptotiquement commutatif.

Comme au n° 19, on voit que $\mathscr{C}_F + \mathscr{H}_F$. Soit $E \subset F$ l'ensemble des u(g) pour $g \in K \oplus \Pi$. Soit M_j comme au n° 21. Posons $N_1 = \Pi$ et $N_j = \{e\}$ pour j > 1. Identifions $\mathscr{U}(M_j \oplus N_j)$ à une sous-algèbre de von Neumann A_j de F. Les hypothèses générales du lemme 7 sont vérifiées. Puisque M est résiduel dans K, $M_1 \oplus N_1 = M \oplus \Pi$ est résiduel dans $K \oplus \Pi$. D'après le lemme 17, l'hypothèse a) du lemme 9 est vérifiée. Soit $h \neq e$ un élément de H_j . Alors u(h) est un élément unitaire de trace nulle de A_j permutable à A_1 : l'hypothèse b) du lemme 9 est vérifiée. Le lemme 9 prouve que $\mathscr{T}_F + \mathscr{H}_F$. Comme W est fini (hypothèse qui n'a pas encore été utilisée), il existe dans A_1 une suite croissante de sous-algèbres involutives de rang fini dont la réunion est fortement dense dans A_1 . Si F était asymptotiquement commutatif, on verrait, comme dans la démonstration de [5], th. 1, que F est hyperfini. Or $K \oplus \Pi$ est non amenable, ce qui contredit le lemme 7 de [6].

25. **Proposition.** Soit $K = (G_1, G_2, ...; H_1, H_2, ...)$ où les G_i sont isomorphes à \mathbb{Z} et où les H_i sont isomorphes à un groupe W non commutatif et de centre non trivial. Soit $K^{\sim} = K \oplus K \oplus K \oplus ...$ Soit $F = \mathcal{U}(K^{\sim})$. On a $\mathcal{T}_F \neq \mathcal{H}_F \neq \mathcal{G}_F$, et F est asymptotiquement commutatif.

D'après [5], prop. 1, F est asymptotiquement commutatif.

Soit N_1 le sous-groupe de K^{\sim} formé des éléments de K^{\sim} dont la première coordonnée appartient à M. Pour j>1, soit N_j le sous-groupe de K^{\sim} formé des éléments de K^{\sim} dont la première coordonnée appartient à M_j et dont les coordonnées suivantes sont égales à e. Pour $j \geq 1$, identifions $\mathscr{U}(N_j)$ à une sous-algèbre de von Neumann A_j de F. Les hypothèses générales du lemme 7 sont vérifiées. Le lemme 7(iii) et la non commutativité de W prouvent que $\mathscr{H}_F + \mathscr{C}_F$. Comme M est résiduel dans K, N_1 est résiduel dans K^{\sim} . Donc l'hypothèse a) du lemme 9 est vérifiée (lemme 17). D'autre part, le fait que le centre de W est non trivial entraîne que l'hypothèse b) du lemme 9 est vérifiée. Donc $\mathscr{T}_F + \mathscr{H}_F$ (lemme 9).

26. Corollaire. Les sept facteurs de type II_1 considérés aux prop. 12, 18, 19, 20, 22, 24, 25 opèrent dans des espaces hilbertiens séparables et sont deux à deux non isomorphes.

- 27. Remarques. a) L'invariant $\mathscr{C}_F^0 = \mathscr{C}_F/\mathscr{I}_F$ attaché à un facteur F de type II_1 peut sans doute être utilisé plus efficacement et fournir d'autres facteurs de type II_1 . Toutefois, les 4 possibilités signalées en 5, combinées avec la propriété d'asymptotique commutativité, peuvent donner non pas 8 facteurs non hyperfinis, mais seulement 6, car on a le résultat suivant:
 - Si F est asymptotiquement commutatif, on a $\mathcal{H}_F \neq \mathcal{C}_F$.

En effet, soit $(\rho_1, \rho_2, ...)$ une suite d'automorphismes de F telle que $(\rho_n(x)) \in \mathscr{C}_F$ pour tout $x \in F$. Soient y, z deux éléments non permutables de F. On a $\lim \|[\rho_n(x), \rho_n(y)]\|_2 = \|[x, y]\|_2 \neq 0$, $\operatorname{donc}(\rho_1(x), \rho_2(x), ...) \notin \mathscr{H}_F$.

- b) Appelons suite cocentrale une suite $(t_1, t_2, ...) \in F^{\infty}$ telle que, pour toute suite centrale $(t'_1, t'_2, ...)$, on ait $\lim ||[t_i, t'_i]||_2 = 0$. Peut-on obtenir de nouveaux facteurs de type II_1 en considérant la propriété suivante: les suites centrales et les suites cocentrales engendrent la C^* -algèbre F^{∞} ?
- c) Soit U un ultrafiltre sur l'ensemble des entiers. Soit I l'ensemble des suites centrales $(t_1, t_2, ...)$ telles que $\lim_U ||t_i||_2 = 0$. Est-ce que \mathscr{C}_F/I est une algèbre de von Neumann?
 - d) Est-ce que \mathscr{C}_F^0 peut être postliminaire sans être commutative?
- e) Certaines relations entre \mathscr{C}_F et les propriétés Γ ([3]), C ([1]) sont analysées dans un autre article du même journal.

Bibliographie

- 1. Ching, Wai-Mee: Non-isomorphic non-hyperfinite factors (à paraître).
- Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.
- Murray, F. J., and J. von Neumann: On rings of operators IV. Ann. of Math. 44, 716
 – 808 (1943).
- 4. Pukanszky, L.: Some examples of factors. Publicationes math. 4, 135-156 (1956).
- 5. Sakai, S.: Asymptotically abelian II, factors (à paraître).
- Schwartz, J.T.: Two finite, non-hyperfinite, non-isomorphic factors. Comm. pure appl. math. 16, 19 – 26 (1963).

J. Dixmier Institut H. Poincaré Paris 5°, France E. C. Lance
The University of Newcastle upon Tyne
Newcastle upon Tyne 1, England

(Reçu le 11 Janvier 1969)