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Higher Order Twisted Cohomology Operations* 
J. F. MCCLENDON (Kansas) 

This paper gives a definition and axiomatization of higher order 
twisted cohomology operations and an application to the problem of 
classifying cross sections .of fibrations. "Phe axioms are analogous to, 
and essentially include, those given by Maunder [22] for ordinary 
higher order operations. The operations are associated with relations in 
A(D)=H*(D; Zp)C)Ap where D is a fixed space, A m the mod p Steenrod 
algebra, and C) the semi-tensor product operation of Massey and 
Peterson [21]. The operations are defined on the underlying vector 
space of )2 H*(X, B; Zp) where (X, B, ~) is a pair over D (meaning B o X  
and ~:X---, D) and ~cH*(X, B; Zp) is simply H*(X, B; Zp) viewed as an 
A(D)-module via ~. 

There are four parts and an appendix. An outline follows. 

Part I. Motivation, Statement of Axioms. A particular twisted second- 
ary operation is examined from several viewpoints. The purpose of this 
is to motivate the definition that is ultimately given for the general case. 
(The casual reader may wish to read this section and then skip to Part V.) 
The axioms and existence and quasi-uniqueness theorems are stated. 

Part II. The Category ~-(u), u: C--* D. The study of the homotopy 
properties of this category of spaces and maps "under C and over D by u" 
is motivated by I. It is shown that ~--D =g-(id), id:D--, D, has all of the 
good properties of J - ,  = the category of base pointed spaces and maps. 
Homotopy operations are developed in the category and a Peterson- 
Stein formula is proved relating functional and secondary operations. 

Part III. Proofs of the Theorems of I. The theorems are restated in 
the language of YD.  There the techniques of Adams [1] and Maunder 
[22] could be applied directly. However, a slightly different method is 
outlined which owes something to Spanier [30, 31] and Alvez [2]. 

Part IV. Some Exact Sequences. Some special cases of the general 
results of Part II are considered in this part. The functional cup product 
of Steenrod [34] and the twisted functional operation of Meyer [24] and 
Gitler-Stasheff [9] are shown to be special cases of the homotopy 
operations of Part II. 

* This research was partially supported by NSF Grants GP-6520 and GP-5603. 
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Part V. An Application, In this part twisted operations are applied 
to the problem of classifying cross sections of a fibration. Let p: Y-~ B 
be a fiber bundle over a CW-complex B with an n-connected fiber. Let 
Sect [p] denote the set of homotopy classes of cross sections of p. Sect [p] 
has been computed by Steenrod [33], Liao [18], Boltyanski, James- 
Thomas [16], and James [12], for dim B<n+i and i small. Their results 
often apply both to the stable range (i<n) and the unstable range. 
The methods of the present paper are applied only to the stable range - 
however, the results there are a substantial generalization of the earlier 
results. Theoretically the problem is solved (in various ways) for the 
entire stable range (dim B<2n). The answer is stated in terms of a 
decomposition of p (e.g. a modified Postnikov system in the sense of 
Mahowald [19]) and twisted operations in the cohomotogy of B. The 
general result is made concrete in a case involving secondary operations. 
An application to the problem of classifying immersions is given. The 
theme of this part can be stated: twisted operations bear the same relation 
to the classification of liftings as ordinary operations do to the classifi- 
cation of mappings. 

The operations of this paper, based on relations in A(D), were con- 
ceived and developed by the author by analogy with ordinary operations 
based on A(*)=A. The motivation was certain relations in the calcu- 
lations of Mahowald [19] (see also Thomas [36]). However, similar 
operations were considered independently and earlier by others: 
(1) Meyer gave in [24] both a chain complex and an invariant definition 
of functional twisted operations and posed the problem of axiomatizing 
twisted operations; and (2) Gitler and Stasheff, in [9], gave an invariant 
definition of the functional operation and used it to define a large 
indeterminacy version of a twisted secondary operation. However, these 
authors do not prove the additivity property of their twisted secondary 
operation. This property is immediate from the definition of Part III. 
Also, it would be difficult to handle the indeterminacy of operations of 
higher than the second order by their methods (or even to define such 
operations). The thesis of this paper is that the "natura l"  category for 
A(D)-operations is ~--D and that general properties of the operations 
are best proved b3) stating them in the language of J -D,  proving them, 
then translating into more common language. 

Higher order twisted operations are also mentioned by Lamore [17]. 
They have been applied by Thomas [37] to the problem of the existence 
of cross sections of a fibration. 

This paper is a revised and extended version of my thesis [20]. I wish to thank Pro- 
fessor E. Thomas for serving as my thesis advisor. I have profited from his lectures on fiber 
spaces and I am grateful for having had the opportunity of writing up several of them. 
I also wish to thank Professor W. Massey for expressing his interest in this work. 
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Part I. Motivation, Statement of Theorems 

I. Primary Operations. Let A(D)=H*(D;Zp)QAp.  Recall that as a 
vector space this is simply H*(D;Zp) |  The product is given by: 
(d | a) (e | b) = ~ ( - 1)* d a I (e) | a' i' b where �9 = (deg a'i') (deg e) and T a :  

i 

~ a~| T being the coproduct in Ap. A(D) is an associative algebra 

containing A and D as sub-algebras (Massey-Peterson [21]). 
Let ~:X--+D be a fixed map and B c X .  Then H*(X,B)  is an A(D)- 

module via ( d |  (use Zp coefficients everywhere now). 
If necessary denote this A (D)-module by ~ H* (X, B). The exact sequence 
of the pair B c X (or of a triple C c B ~ X) is an exact sequence of A (D)- 
modules. If 13: Y--+D and f :X--*  Y is such that ~ f  is homotopic to 
then f *  is an A(D)-map. 

Consider the following situation 

E~ ~ E  li+ / /  p 
/ / / / l  

D f>B 

where p is a fibration with fibre F and E I--~ D is the induced fibration 
and p l = f  Then Ey--, D admits a section and we can form the exact 
sequence of the "tr iple" (E, E I,  D) (use mapping cylinders to produce 
inclusions here and elsewhere when necessary). Assume (B, D) is ( a -  l)- 
connected and F is (b-D-connected.  A theorem of Serre says that 
H*(B, D)--~ H* (E, Ey) is isomorphic for i<  a + b. We get the following 
exact sequence of A(D)-modules. 

�9 .. -+ H'(E, D ) ~  H'(Ex, D)---, Hi+I(B, D)--~... --~ Ha+b-l(Ef, D). 

This relative Serre sequence is useful for computing H* (E, D). 

2. An Example of a Secondary Operation. The category will consist 
of pairs over D, (X, B, ~) where B c X and :~ :X --~ D, and maps f :  (X, B)--~ 
(X', B') such that )~f--~. For  simplicity we take B empty and X a C W  
complex here. Use Z z coefficients everywhere and A =A 2. The primary 
operations are the elements of A(D). 

Let deHZ(D) be arbitrary, but fixed, and define L = L a = d |  + 
1 |  From the multiplication rule above it follows easily that 
we have a relation in A(D): LL+(SqXL)Sql=O.  Here and elsewhere 
Sq i means l |  i. The key fact is that Sq2d=d  z. Note that if D = ,  
(a point) then this is simply: Sq 2 Sq2 + Sq 3 Sq ~ =0. 

We want to associate a secondary operation �9 with this relation. 
By analogy with the case D = ,  we should get r  s  
such that (at least) 

14" 
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1) it is an additive relation for the abelian group structure. (See 
MacLane [20] for "additive relation". Here, as there, Def=  domain of 
definition, Ind=indeterminacy,  Ker=kernel ,  and Im=image.)  Alter- 
natively, ~ is a homomorphism defined on a subgroup with values in a 
quotient group. 

2) D e f ~ =  ker Lc~kerSq I cHn(X) ,  i.e., q~h is defined i f fLh=O=Sqlh .  

3) Ind ~- -  Im L + I m  Sq~ L. Alternatively, q~ takes values in 
Hn+3(X)/(Im L + I m  Sq ~ L). 

4) 4~ is natural (for maps described above). 

We will imitate the technique used by Adams [1] for D - - .  as closely 
as possible. Let K~=K(Z2,  i), an Eilenberg-MacLane CW-complex of 
type (Z2, i), with fundamental class z~H~(Ki). First note that L can be 
realized as a map s:(D x K , , D ) - ,  (K,+ 2, .), i.e. s is determined up to 
homotopy by s* Zn+ 2 = L(1 | In). Write L for s and Y, for 1 | z,. (Maps, 
their homotopy classes, and the corresponding cohomology classes or 
operations will not usually be distinguished in the future.) Form the 
diagram: 

D X K n + t X K n _  i ~ p q, .Kn+ 3 

l 
D J , D x Kn ~L,sr ~ Kn+2 • K.+ 1 

P is induced from the path-loop fibration o v e r  Kn+ 2 • K,+~. Since a 
representative of (L, Sq t) can be chosen so that D = D  x . c D  • K,  is 
sent to a point by (L, Sql), the fibration over D induced by (L, Sq l ) j  is 
a product as shown. We can use the relative Serre sequence of Section 1 
to find q~eHn+ 3(p,D) such that i* q~=LT,+I + Sq I L-f,. 

Let ~ c : X ~ D  and heScH*(X),  Then ( S q h ) : X ~ D X K n  and 
(L, Sqt)*(Sc, h)=(Lh, Sq ~ h), so (~,h)lifts to P iff L h = O = S q  I h. 

Define: ~ (x) = {cp h[p h --- (~, h)} c [X, Kn + 3] = H" + 3 (X). Properties (2) 
and (4) are immediate. However, (1) and (3) are not so clear. If D = .  
then (L, Sq 1) is a loop map, P is a loop space, and q~ is a loop map for n 
sufficiently large. This plus the exactness of 

IX, Kn+ 1 • K,]  -+ IX, P]  ~ IX, Kn] --~ IX, Kn+ 2 • Kn+~] 

give (1) and (3). If D is not a point none of these things is true. One could, 
with strain, establish the indeterminacy. However, the strain becomes 
greater for higher order operations and, furthermore, can be avoided 
entirely by working in the correct category. 

Let 5 o be the category of spaces and maps over D, i.e. of pairs (X, ~) 
where ~: X ~ D and maps f :  X -* Y such that )3 f = ~ (strict equality, 
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different from the first sentence of this section). Let 9"-D be the category 
of spaces and maps under and over D, i.e., all (X, 2, ~) where 2:D ~ X, 
~:X---~ D and ~ =  1, and maps f : X - +  Y such that 33f=~ and f 2 = p .  
Alternatively, ~--D consists of all pairs (R, r) such that D c R and r :R-+ D 
is a retraction, and maps f : R - - ,  S which are the identity on D and such 
that s f = r. 

Both categories have a natural notion of homotopy - an ordinary 
homotopy which at each stage is a map in the category. Denote the 
corresponding sets of homotopy classes by [X, Y]o (for ~o) and (X, Y) 
(for J-D). 

Consider the following commutative diagram 

H"(X) + " H"+ 3(X) 

I 
Ix, K.] 

I 
[X, D x K . ] ~ { [ ~ , h ] } ,  P* [X,P]  ~'* , [X,K,+3]  

I I 
IX,  D x K.] D , [X, P]o , [X, D x K.+s]  D 

I I 
( X V D ,  D x K . )  <P, ( X V D ,  P )  <~'~'~ , ( X V D ,  D x K , + ~ )  

where q=rcp and ~:D x K,--*D is the projection. 

Our definition of �9 is given by line 2:~(h )=q~ .p , l [~ ,h] .  More 
convenient definitions are given by lines 3 and 4. 

We could work with line 3 exclusively, i.e., in ~ .  It can be proved 
directly that 

[X, D x K,,+ I x K,]D---~ [X, P]D-+ [X, K.] o 

is an exact sequence of abelian groups and that (q, q~), is a homomorphism 
(see IV,l). However, in the proofs some ideas involving Y D  would 
eventually intrude; so it seems more natural to work with the definition 
of �9 given by line 4. We will see that all of the good properties of J - ,  
(=  the category of pointed spaces and maps) are also valid for ~D.  The 
diagram (1.1) is replaced by the following diagram in Y'D. 

D • 2 1 5  i p (q,+~ ~ D •  s 

(1.2) [ 

(D x K.) <~,L, sq~> ~ D x Kn+ 2 • K,+ 1 
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P is the same space as in (1.1). Now, however, P---~ D • K,  is induced 
from the path-loop fibration in J-D: 

D • Kn+ 1 x Kn--~" D • P Kn+ z • PKn+ I-~" D • Kn+ z • Kn+I. 

(n, L, Sq 1) is a loop map, P is a loop space, (q, ~o) is a loop map, and the 
appropriate sequence is exact. In brief, all of the established techniques 
for working with untwisted operations in J - .  can be applied to twisted 
operations when they are placed in Y-D. 

3. Suspension. 

3.1. Definition. a) Let ~:X--~D. Define C o X = D • 2 1 5  
where ~ is the equivalence relation generated by (x, o)~(~(x), o), x 6 X .  
Define Z o X = D x O w X x l w D •  where ~ is the equivalence 
relation generated by (x, o)..~(~(x), o), (x, 1)~(J(x), 1), x 6 X .  

b) Let i : B c X  and ~r 

Define C D i = D • 2 1 5  where ~ is the equivalence 
relation generated by (b, o) ~ (~ (b), o), (b, 1) ~ (i(b), 1), b 6 B. 

Note that each of the spaces is a space over D via a map obtained 
from X • I proj, X ~ , D. This map will be denoted by ~ also. Assume 
henceforth that B is closed in X. This ensures that Co B c  Coi and 
Z o B c Z  o X. This assumption could, and probably should, be avoided 
in what follows by working with the cohomology of maps instead of the 
cohomology of pairs. 

Let u: (X, B) --~ (C o i, C o B) and v: (C o X, C o i) ~ (2; 0 X, X o B) be the 
natural inclusion and "collapsing to D" maps. They are isomorphisms 
on cohomology by excision and deformation retraction. Let 6 be the 
coboundary for the exact sequence of the triple (C o X, C o i, C o B). It is 
an isomorphism since H*(Co X, C o B)~  H~(D, D)=0 for all n. 

3.2. Definition. Zo:~ H"(X, B)--~ ~r H"+I(ZoX, ZDB) is defined to be 
the A (D)-isomorphism v* 6 i*- 1 

Suppose B o X  ~ ,D  t-~E and w=tYc. Then H"(X,B) is an 
A(E)-module via w and the following diagram is commutative: 

~H~(X, B) r, ~cn~+l(Zo X, ZoB)=wHn+I(ZoX,  ZoB) 

11 
wH~(X,B) ~ , wHn+I(ZEX, Z E B / T *  

All maps are isomorphisms. T: (Z o X, Z o B) ~ (Z z X, S E B) is defined 
from t in the obvious way. 

Z D X defined in 3.1 is the bundle suspension of James [-13]. It is also 
a special case of the Whitney join over D (Hall [10]). Z~ X ~ D is the 
Whitney join of ~: X --~ D and proj: D x S ~- 1 __, D. 



H i g h e r  O r d e r  T w i s t e d  C o h o m o l o g y  O p e r a t i o n s  1 8 9  

4. Axioms. The terminology used here ("pyramid of operations", 
"admissable chain complex") is taken from Maunder's paper [22]. 
When D is a point the axioms and theorems are essentially those of 
Maunder. 

Let D be a fixed space and 

C :  C N dn ~ C N _  1 --} "'" --} C I  dl ) CO 

be a chain complex of free finitely generated A(D)-module. Each C i is to 
be graded and satisfy (Ci)q=0 if q<i; each d i is to be an A(D)-map of 
degree 0. A "pair over D" is a triple (X,B,~c) where B c X  and ~:X -~ D. 

- -  _ r ,  s �9 Suppose that for N>_r>s>_O and every (X,B,~) that ~0 (X,B,~):  
Homk(C r, ~ H* (X, B ) ) ~  Hom,,(Cs, ~ H* (X, B)) is an additive relation 
of degree - r + s + l  (so m = k - r + s + l ) .  Here and everywhere else 
HOmk(M, N) means Homa(m,k(M , N)= the A(D)-maps from M to L of 
degree k. An element of Hom(C,,  ~H*(X, B)) can be thought of as a 
vector of cohomology classes of the abelian group H*(X, B). 

4.1. Definition. The collection {q~,,s}, N > r > s > O  is said to be a 
pyramid of stable operations associated with the chain complex C if 
the following axioms are satisfied" 

I) If N = I  then ~01'~ 1). 

II) I f N > l  then 

(1) (Induction.) I f r - s < N  then {q~"'~}, r>u>v>__s is associated with 
the chain complex 

Cr --, ... -~ Cs. 

(2) (Whither-Whence.) 

r 0 (X, B, ~): Hom(C o , ~H*tX,  B ) ) ~  Hom (C N, ~H*(X,  B)) 

is an additive relation of degree - N + I .  DefcpN'~ N-L~ and 
Ind eft' o = Im r 1. 

(3) (Naturality.) Suppose (X, B, ~) and (X 1, B ~, ~ )  are pairs over D, 
g:(X, B ) ~  (X 1, B1), and ~1 g is homotopic to ~. If ee Def r ~' ~ B 1, ~1) 
then g* e e Def q~N, 0 (X, B; ~) and g* (if" o (e) c eft' o (g. e). 

(4) (Suspension.) 2: D rp N' o = (_  1)N- 1 r o ZD" 

(5) (Peterson-Stein relation.) Suppose B t ~ B m X  and ~:X--*D. If 
r/e Def r ~ (X, B a, ~) and i* q eDef  eft' ~ (B, B 1, ~) then 

r N- l j ,  - t  (ff-t,O tl ~ _ b  (pu, O i ' y ,  

where i*, j*, and 6 are from the exact sequence of the triple (X, B, B1). 
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4.2. Definition. The chain complex C: CN-~. . - - - ,  C a is admissible 
if I) N = 1 or II) N > t and there is a pyramid of operators  {(pr, s}, N -  1 > 
r > s > 0, associated with C N_ 1 --~ " -* Co such that  ~pN, ~ 1 (pN- 1, o (r/) = 0 
(with 0 indeterminacy) for each qeDef rp  N- l ' ~  where (pN, N-I is the 
pr imary opera t ion  associated with C N- .  C N_ 1. 

4.3. Theorem. I f  a chain complex has an associated pyramid of oper- 
ations then it is admissible. 

Proof. Take  B = B 1 in axiom 5. 

The next  two theorems will be proved in Part  III. 

4.4. Theorem (Existence). I f  a chain complex is admissible, then it has 
at least one associated pyramid of  operations. 

4.5. Theorem (Quasi-Uniqueness). I f  (p~" o and ~o~' o are two possible 
apexes of  the pyramid of operations {~0r's}, N -  1->_r>s>=0, associated 
with the chain complex 

CN eN~CN_I_ . . . ._~CI  al ~C ~ 

then there exists an operation X associated with 

CN ff ,CN_2 d_N-2 ~,CN_3_~...~C1 dl ,Co 

for some d (X is of the ( N -  1)'st order) such that X(e)~ r176 - cp~'~ 
for each ~ ~ Def qgo N' o = Def  r o. 

We will consider what  happens when D is varied. First, note  that 
t: D ~ E gives t*: A (E) o A  (D). If (X, B, 92) is a pair over D then (X, B, t 92) 
is a pair  over  E and t 92 H* (X, B) gets its A (E) module  structure by pull- 
back along t*. 

Let C 1 be an A(E)-module.  C=A(D)| 1 is an A(D)-module. 
There  is a natural  i somorphism 

~: Homa(E)(C',  t 92 H* (X, B)) ~ Homa~o)(C, 92 H* (X, B)). 

Let  CI:C~--~. . . -~ Clo be a free A(E)-module.  Then C is a free A(D)- 
module.  Let  {r ,} be a pyramid of operat ions  associated with C 1. Define 

r ~: HomA(o), k (C~, 92 H* (X, B)) -~ HomAto) ' ~ (C,,  92 H* (X, B)), 

m = k - r  + s +  1, by cp"~=aq)1~,~a -~ where 

q)l~." : Homa(e).k ( C~, t 92 H* (X, B ) ) ~  HOmA(E),m( C ~, t 92 H* (X, B)). 

Then it is not  difficult to verify that  {r is a pyramid of operat ions 
for C. The  p roo f  of  the suspension axiom depends on the following 
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commutative diagram which is a consequence of the remarks after 
Definition 3.2. 

Homk(Ci,~H*(X , B)) z.> 

Hom (q, U* (X, 

~ m ( 1 ,  T * )  

Homk+ , (Ct, t ~c H* (Z~ X, Z~ B)) 

(p is defined in terms of q~l. On the other hand, if (X, B, 2) is a pair over 
E and it happens that 21 ~ t x  for some ~:X-*D then 91 is determined 
on (X, A, ~) by q~. 

As an example consider t: �9 ~ E. Then t*:A (E) ~ A  ( , )=  A. If ~pl is a 
given operation for the A(E)-chain complex C 1 then ~0=eq~ 1 e-a is 
associated with an A-chain complex so is an Adams-Maunder oper- 
ation [13]. The above discussion shows that if (X, B, ~) is a pair over E 
and ~ is null-homotopic then q~(X, B, ~) coincides with the untwisted 
Adams-Maunder operation cp (X, B). 

Part II. The Category ~-(C--,D) 

I. Definition and General Properties of •(C--,D). Let ~- be the 
category of topological spaces and continuous functions. Define 
~-(C ~ ,D) for u:C--~D~J to be the category whose objects are 
triples (X, ~, ~) where C ~ > X ~ , D and :~ ~ = u. A map f :  (X, ~, ~)-~ 
(Y, _V, Y) is a map f :  X --* Y such that f ~  = ~ and ~ f  = s The triple (X, ~, ~) 
will be denoted by A" and, when confusion seems unlikely, simply by X. 
The map f will frequently be denoted by f .  

It should be noted that the definition makes sense for any category ~ .  
The work of this part could be carried out, with some extra effort, in 
this more general setting. The results would take the form: " I f  ~- has 
such and such a property then f ( C ~ D )  has such and such a property".  
These more general results will be taken for granted later when, for 
example, : -  is allowed to be the category of pairs of spaces. 

Some examples are: 

(1) J-(0-- '  *) where 0 is the empty set and �9 a point. The obvious 
functor ~ - ~ - ( 0 - - '  *) is an equivalence. 

(2) J - ( ,  --, ,). This category is equivalent to the category of pointed 
spaces and pointed maps. 
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(3) ~ ' (C-~ *). This is the category of spaces under C. 

(4) ~--(0 ~ D). This is the category of spaces over D (see Part I). 

(5) 5-(* " ,D). Where u(,)=do~D. This is the category of pointed 
spaces over D. If (X, 2, ~)~3-(.  ~ D) then the base point of X is 2(.). 

(6) 5"(D ~ , D). This is the category of spaces under and over D 
(see Part I). Denote it by J D .  If (X, Xo) is a pointed space then 
(DxX,~,rc)~g-D where I : D - ) D x X  is defined by t(d)=(d, xo) and 
rt: D x X-~  D is the projection. More generally, let D x x 0 ~ R ~ D x X. 
Then (R, t, re) is in J D .  

We observe that J ' (C~D)=5"u  has the following categorical 
properties. See Freyd [8], for example, for the terminology used here. 

(1) 3-u has an initial object C~-A~C " ,D and a terminal object 
C " >D :-A~D. 

(2) 5-u has pullbacks and pushouts. Let f : X ~ Z  and ~,:Y~Z. 
Define K =  {(x,y)eX x Y:f(x)=g(y)}, i.e., K is the pullback o f f  and g 
in ~.  Define C ~  K~--L*D by ~(c) = (2(c),)~(c)) and k(x, y) = ~ (x) = )3 (y). 
The natural projections (from 3-) give the following commutative 
diagram: 

,11 

and it is easy to check that this is indeed a pullback diagram. Pushouts 
are constructed by a dual process. 

(3) ~-u has products and sums. For the product use the pullback of 
the terminal maps. 

(4) Let C' k ) C " ,D--~-~D '. Define a functor F:J(u)~5- (muk)  
by (C ~-~*X ~ ,O)~(C '  ~ k , X ~ D ' ) .  F preserves initial objects iff 
C = C', terminal objects iff D = D', pullbacks iff m is one-to-one, pushouts 
iff k is onto. In particular, O ~ C  u > D ~ D  gives oY--u~--(0---~D) 
preserving terminal objects and pullbacks, so products. 

We now consider homotopy in ~-u. 

(1) Define W:Yu-~J-u  as follows: given C ~ X ~ D ,  set W X =  
{keX1:~ k( t )=~ k(t')V t,t'eI}, where I is the unit interval and X I is 
the space of continuous functions from I to X with the compact-open 
topology. Define WX to be (WX, r r where #(c)=2(c) 1 and ~(k)= 

k(o) (=2r k(t)V tel). Then WX is in ~Y-u. W is the free path function 
(W for weg=free path). Define ~,: W X ~ X  for t e l  by ~t(k)=k(t). If 
f ~, :X ~ Y, say that f and gare homotopic, f ~ g,, if there is an H: X-~ WY 
such that ~o H = f  and ~1H=g .  
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(2) Define Z:Yu--~.Y-u as follows: given C ~ ~X- ~ ,D, set Z X =  
X • I/~,  where ~ is the equivalence relation: (x, t)M(x', t') iff there is 
c~C such that x=Yc(c)=x'. Let k:X • I - ~ Z X  be the identification map. 
Define C ~ , Z X  ~ ,D by 5(c)=k(x(e),t) and 2k(x,t)=ic(x). Then 
Z X  =(ZX, 5, 5) is in ~-u. Z is the cylinder functor (Z for zylinder= 
cylinder). Check that f ~ , "  X-~ Y iff there is an H : Z X - ~ Y  such that 
H ~ o = f  and -~zl =g. 

The result is that Z and W are adjoint functors and provide a notion 
of homotopy with the usual properties. The sections which follow give 
an outline of a development of the elementary homotopy theory of the 
category . fu .  The motive for doing this is given in 1.2. The method used 
will be that of Puppe [28-] and its Eckmann-Hilton dual as worked out 
by Nomura [26]. 

2. Path-Loop Properties of J-u. The homotopy theory of Yu is out- 
lined here. The theorems can be proved by standard methods such as 
those of Nomura  [25]. The purpose of carrying the outline so far is to 
demonstrate how much homotopy theory is valid here, before special- 
izing to u = i d : D - *  D. This is particularly helpful in the dual situation 
since in Part Il l  we will have to work both with 

~-(~3-+D) and J ( D  ia ~D). 

2.1. Definition. Let . ~ Y u .  
a) Define the pointed path space of X, PX, to be the pullback of 

: C ~ X  and w 0 : W X - ~ X .  Define p , : P X - * X  as the composite 
PX--~WX wt~XfortEl .  

b) Define the loop space of X, Y2X, as the pullback of ~:(~-~ X and 
pl : PX---~ X. 

Let f : X - ~  Y. Then P f  and Of  are defined in the obvious ways and 
P and O become functors: ~-u --~J-u. 

Next, the absolute covering homotopy property and the path lifting 
property for f:X--~ Y can be defined in the natural way. They can be 
shown to be equivalent and f is said to be a fibration if it has either 
property. The fiber o f f :  X - *  Y is defined to be the pullback of the initial 
map 3~:C--~ Y and f:X--~ Y. The mapping space E f i s  defined to be the 
pullback of f and Pl : P_Y--~ Y. P Y---~ Y and Ef--~ X can be shown to be 
fibrations with fiber O Y. 

Suppose that the following diagram is homotopy commutative by 
means of H. 

2 I , ~  H : X - * Y  

~, I" ,~, H:bf,,~f'a. 
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Define w = w n : E f - *  E f '  by w(x, c, k)=(a(x), c, (Pb)k+H(x)) .  Then the 
left square of the following diagram is commutative: 

E f -~ X -* Y 

E f ' - ~  X'  --, Y' 

where /?f  and ~ f '  are the natural projections. 

The path-loop sequence for f :  X ~ Y is : 

... f2 2 Y---~ f2 E f --~ g2 X - ,  f2 Y---~ E f -~, X --, Y 

and the path-resolution sequence is: 

... E ~ 2 f - - ~ E ~ f - - ~ E f - - ~ X - ~ Y .  

They are homotopically equivalent. Furthermore, a homotopy com- 
mutative square sending f to f '  as above yields a homotopy commuta- 
tive ladder in both cases and this is preserved under the equivalence. 
This important naturality property is the basis of the homotopy defini- 
tion of a twisted secondary operation. 

3. Path-Loop Properties of ~-(D 1 ,D)=oYD. The objects in J ' D  
are triples (X, 2, ~) where D ~ - ~  X ~ ,D and ~ 2 =  1. Note that 2 is 
actually an inclusion and 2 a retraction of X onto the subspace D. 
D 1 , D I ,D is a zero object for YD. The definitions of the previous 
section take a simpler form here. Each )2 -~(d)~X has a natural base 
point-namely, 2(d). The path space in Y D  is formed simply by taking 
the (disjoint) union of the ordinary path spaces of ~-a(d) for all dED. 
Similarly ~?X= U o(~-~(d)) where O is the ordinary loop functor 

d e D  

(in Y*). Also, i f f : X - * Y  is a fibration in ,Y-D then the fiber is simply 
f - ~ ( D )  (" rope"  might be more appropriate than "fiber" here). Two 
examples are: 

(1) Let x o e X  where X is a space in J.. Form D x X = ( D x X ,  n, l) 
in J-D where i: D - ,  D x X and z~: D x X--~ D are defined by ~ (d) = (d, x0) 
and ~z(d, x)=d.  Then 

P(D x X ) = ( D - *  D x P X - +  D) and (2(D x X)=(D--~ D x ~X--~  D) 

where 15 and O are the path and loop functors of Y*.  

I found example (1) and the associated notions of derived function 
and loop suspension in James-Thomas [14, pp. 501/502]. The defini- 
tions of this part are the result of a desire to generalize these notions to 
cover example (2). 
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(2) Let f : D  x X--* Y be a m a p  in the ord inary  category of spaces 
and maps  such that  f(D x x 0 ) = y  o. F o r m  E f  in the ca tegory;  so E f =  
{ (d ,x , k )~DxXxPY: f (d ,x )=k(1)} .  Then D ' , E f ~ D  is in ~--D 
where ~ (d) = (d, x o, Y~o) and ~z (d, x, k) = d. Let g = (proj, f ):D x X -+ D x Y. 
Then ~, is in Y D  and Ef=E~, and the latter is formed in Y-D (cf. the 
last par t  of  1.2). 

Let A and X be in ~-D. Deno te  by ( A , X >  the set of  h o m o t o p y  
classes of  m a p s  f rom A to X. It is a pointed set with the unique m a p  
A-~,D-+X as point. This m a p  will be denoted by " O "  or "OA,X". 

3.1. Theorem. Let f :X--, Y be any map of J-D. Then the following 
sequence of pointed sets is exact .[or any A in 9-D 

(A, E f ) -  ~I, + (A, X>. f* , (A, Y) .  

Next,  a h o m o t o p y  g roup  structure is defined on f2X. First note  
that,  in J -D ,  

O X  x g2 X = {(k, k') e X ~ x X ~: k (0) = k (I) = k'(0) = k'(1) e x (D) 

and  ~ k (t) = ~ k (t') Y t, t' e I}.  

The produc t  is formed in the category (see I I. 1). Hence  rn: OX x f2X-~  g2X 
defined by m (k, k') = k + k' (ordinary pa th  sum) makes  sense and is a m a p  
in J D .  Now in ~-D there is a zero object b and hence a zero m a p  
between any  two maps  in the category. This, plus the reversal m a p  
r:g2X--+OX defined by rk(t}=k(l - t )  give: 

3.2. Theorem.  (OX, m) is a homotopy group in the category J D .  

For  a discussion of " h o m o t o p y  group  in a ca tegory"  see Eckman-  
Hi l ton [5] and [6]. Just  as in the case D = *  we get that  (A,  (2X> is a 
group,  abelian i f f2X is replaced by (22X, and f2f , : (A,  QX> -+ (A, Y2Y> 
is a h o m o m o r p h i s m ,  etc. 

There  is also a h o m o t o p y  opera t ion  n:OY x E f - + E f  

Y2Y x E f =  {(k', x, k)E y i  x X x YX:k'(o)=k'(1)=k(o)efc(D) 

and igk(t)=~k'(t)=fc(x)gtel}, n is defined by n(k',x,k)=(x,k+k').  
It is easy to check that  it has the expected properties.  

The  above  is s u m m e d  up in the following theorem.  

3.3. Theorem.  Let f : X - +  Y be a map of 3--D and A a space of J D .  
Then there is an exact sequence of pointed sets: 

...(A, E22y> nTL+<A, g2Ef> naI , , (A ,  QX> nf, , (A ,  f2Y> 

- - +  (A, E f )  , (A, X> - , (A, Y> 
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and an action: 

n , : (A,  QY> x (A, E f > ~  (A,  E f>  
such that 

(1) the sequence consists of groups and homomorphisms after the 
third term and abelian groups after the sixth term. 

(2) o- v = v, (u + u'). v= u. (u'. v) and (7 f ) ,  (u + u')= u- (7 f ) ,  u' where 
u,u' z ( A ,  f2 Y> and v z ( A ,  E f>. 

(3) f l f ,  v = f l f ,  v' iff there is a u in (A, f2 Y> such that v' =u .  v. 

(4) 7 f ,  u = T f ,  u' iff - u + u '  is in the image of f2 f , .  

There are two kinds of naturality for the sequence and action of the 
theorem. First, it is quite easy to see that a map A--, A' gives a trans- 
formation of the corresponding sequences and action when f is fixed. 
Second, a homotopy commutative square 

X S ~ y  

l~ Ib H:b f ~ f ' a  

X'  f ' , y ,  

gives a transformation of both sequence and action which depends on 
the homotopy H. These facts about naturality will be used later to define 
homotopy operations in the category. 

4. Cone-Suspension Properties of Y ( C  ---, D) and J D .  The definitions 
and theorems of this section are dual to those of the previous two sections. 
So they will not be stated. 

Notice that here, in contrast to Sections 2 and 3, the case C = 0  is 
interesting. The theorems for J ( 0 ~ , )  and ,Y-(, ~ ,) give a simulta- 
neous development of unreduced and reduced homotopy. Also, the 
cone, suspension, and mapping cone constructions for J (O ~ D) are 
those used in 1.3. For example, if ( X , ~ ) e J ( O - ~ D ) ,  ~:X---,D, then its 
suspension is Z o X ~ D and Zo X is the disjoint union of the ordinary 
unreduced suspension of each )2- t (d) (of each "fiber"). In ~-D the suspen- 
sion is formed by taking the reduced suspension of each x-l(d).  

5. Secondary Operations in J-D. The method of this section was 
inspired by Spanier's article [30]. The first operation considered (the 
bracket operation) is the one treated by Spanier. However, the actual 
definitions used here are more in the style of Steenrod [34] and Peterson- 
Stein [27]. The other operations (the box operations) seem not to have 
been observed before in their general form (even for D = ,). All the opera- 
tions depend on naturality properties of the path-loop and cone-sus- 
pension sequences of Sections 3 and 4. 
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5.1 h. The Bracket Operation-Loop Version. Suppose given 

W f ~X g ~Y h ~Z 

in ,Y-D and suppose g f and h g are null hom otopic. Consider the following 
commutative diagram. 

(X, ~Y) , ( X ,  QZ)  , ( X ,  Eh)  v * , ( X , Y )  , ( X , Z )  

t 1,* 1 1 
<W, f2Y> en*,(W, QZ) ~*,(W, Eh) ,(W,,Y> ,<W,,Z). 

Define (f ,  g, h ) '=  i ,  i f .  p ,  1 ( g ) .  It is a double coset of f*  (X, ~2Z) and 
Oh. (W, ,OY)  in (W, f2Z) and depends only on ( f ) , ( g ) ,  and (h). 
( f ,  g, h)' can also be defined by putting together null-homotopies as in 
Spanier [30]. The operation defined here differs in sign from that of [30]. 
If D = . ,  this operation has the Peterson definition of the functional 
cohomology operation as a special case. More generally, it has a special 
case the functional twisted operation defined by Meyer in [24] and 
Gitler-Stasheff in [9]. This will be made more explicit in Part IV. 

5.1B. The Bracket Operation-Suspension Version. Start with the same 
data: W I , X ~ , y h , Z in J D ;  g f  and hg both null_homotopic. 

Form: 

( s x ,  z )  '~*, (zw,, z )  ~ ( c f ,  z)  , ( x , z )  , ( w , z )  

( S X ,  Y)  , (ZW, ,Y )  ~.(Cf, Y )  ~ * , ( X , Y )  , (W, ,Y) .  

Define ( f , g , h ) = k  *-1 h, i*- l (g) .  It is a double coset of h*(ZW, Y) 
and Z f * ( Z X ,  Y)  in (2;W,, Z) and depends only on ( f ) ,  (g), and (h). 
It differs only in sign from (f,  g, h)'. If D= �9 this version has the Steenrod 
definition [34] of the functional cohomology operation as a special case. 
More generally, it gives the definition of twisted functional cohomology 
operation which is actually used by Meyer and Gitler-Stasheff. 

5.2. The Box Operation-Loop Versions. Suppose that the following 
data in ~--D is given: 

X ~ A -  f , B  H : A - * W M  P o H = s f  

I r t 5 P lH=g  r 

L g~M 

i.e., the box is homotopy commutative by means of a fixed homotopy H. 
Suppose also that f x  and r x are null-homotopic. Consider the following 
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commutative diagram: 

(X, (2A> ~ (X, Y2B> , (X, E f> _2p~ (X, A> ~ (X, B> 

1 1 l- 1, 1. 
( X , ~ L > ~ ( X ,  QM> " ,<X,  Eg> ,(X,L>- , (X,M> 

where w=w n (see 2.15). Define [x, f g ,  r ,s ,H]=i,  1 w . p , l  (x>. It is a 
double coset of g2s.(X, f2B> and g2g.(X, OL> in (X, f2M>. If one 
builds upward using Er and Es, instead of to the left with Es and Eg, 
then the result is an operation which differs from the one defined here 
only in sign. The operation can be defined directly, by putting together 
the null-homotopies of s f  and g r by means of H. 

In the case D = *  the operation has the Adams operations [1] as 
special cases. In the general case this operation gives the secondary 
twisted operations of 1.4. 

5.3. The Box Operation-Suspension Versions. Suppose that the fol- 
lowing data in J -D is given: 

A Y--L~B H:ZA--~M Hio=s f 

l" I ~ Hi ,=gr  

L-  ~ , M - - - - ~ y  

Suppose also that y s and y g are null-homotopic. Consider the following 
commutative diagram 

<sB,  r> - - - .  <SA, r> ----, <C f, r> ---- ,  <B, r> ~ <A, Y> 

l F" T T s. F 
(SM, Y>-  <ZL, Y> <Cg, Y> ;* ~ ~ (M, Y> ~ (L, Y> 

where w=w u (see 3.15). Define [y , f  g, r, s, H] =k  *-1 w* i *-I (y>. It is 
a double coset of Z r * ( r L ,  Y> and ,~f*<SB, Y> in (SA, Y). It can be 
defined vertically (with a different sign) via Cr and Cs or directly by 
putting together null-homotopies. 

If D = .  and Y is an Eilenberg-MacLane space this operation has 
fiber space suspension (in cohomology) as a special case. For any D it 
gives a suspension for a fiber space in J D  and this will be used in Part III. 

The operations 5 .1-  5.3 are related by several formulas of the Peter- 
son-Stein type. One such formula is given here. 

Suppose the following diagram in ~'-D is given: 

W s_Z_~X g_~y  h , Z  R L . M .  
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Suppose also that g f, hg, and kh  are nult-homotopic and that H is a 
null-homotopy of k h. Define On(g)= [g, h, rh, 3~, k] c (X, f2M) based on 
the following diagram in YD. 

X 

the given nutl-homotopy 
Erh=f2M. 

5.4. Theorem. 

~ Y  r ~ D  

Z k , M  

H, and a vertical diagram using E h and 

(Cf. Theorem 4.5 of Spanier [30].) f *  On(g)= 
O k ,  ( f ,  g, h>' for any choice of null-homotopy H. 

Proof. It follows easily from the definitions that the indeterminacies 
of the left and right hand sides of the equation are the same. Hence it 
suffices to find a common element. 

Consider the following diagram in YD.  

~r i ~ Eh w,~ f2M 

U/ VJ p 
:/ // 

/ ./ 

W :, X g~ y h Z k)M 

w = w n is the map, depending on H, which is used in the definition of 
OH(g ). It follows (as in II.2.15) that w n i~f2k .  Let v be any lifting of g 
(using that h g is null-homotopic) and u any lifting of v (using that g f  is 
null-homotopic). Then the diagram as shown is homotopy commutative. 
By the definitions of the operations involved, w v is a representative of 
OH(g ) and (u )  is a representative of ( f ,  g, h>'. Hence f *  (w v> = (wiu> = 
((Ok) u>=Ok,<u> is a common element of the cosets of the theorem. 
Q.E.D. 

Part IlL Proofs of the Theorems of I 

1. Transference. The axioms in 1.4 are stated for the category 5-0 z of 
pairs over D. The object of this section is to show that for the proofs of 
the existence and quasi-uniqueness theorems it will suffice to consider 
a certain full subcategory ~ Y D  of J D .  ~ J - D  consists of spaces which 
contain D as a strongly non-degenerate retract. 

1.1. Definition. Let (X,A,  ~) be a pair over D. Define (X/A)o as 
X w D/~  where ~ is the equivalence relation generated by: a,--~ (a) for 
each aeA.  A map (X/A)o-o  D is defined by ~w 1. Denote this map by 

also. 
The result is that ~ is a retraction of (X/A)o onto D. Also, if A c X 

has the A H E P  over D, it is easy to check that D c ( X / A ) o  has it as well. 

15 Inventiones math., Vol. 7 



200 J.F. McClendon: 

1.2. Definition. •(X, A, ~):(X, A, ~)--, ((X/A) o, D, ~) is defined to be 
the composite (X, A)- " ~ (Col, C D A ) ~  ((X/A)o, D). 

Note that both m and k are maps over D and m is an isomorphism 
on cohomology by excision and deformation retraction. It follows from 
II.4.12 that i f A ~ X  has the AHEP over D then k is a homotopy equiv- 
alence of pairs over D. 

Denote by ~ - D  the full subcategory of ~--D consisting of all (Y, :r 33) 
such that )~:D ~ Y has the A HE P over D. Such a Y can be said to contain 
D as a strongly non-degenerate retract. 

The transfer from ~ 2  to ~ ' - D  is in two stages. First, replace 
(X, A, ~)~,~2 by (M, A, :~) where M is the ordinary mapping cylinder of 
A c X (M formed in ~ is the same as M formed in 3-). The map M -~ O 
defined from ~ is still denoted by ~. Then (X, A, :~)--, (M, A, :~) is a 
homotopy equivalence of pairs over D and A ~ M has the AHEP over D. 
It is easy to check that all axioms can be transferred to the intermediate 
category. Next, apply ~c. It is easy to see that all the axioms except pos- 
sibly the suspension axiom are then transferred to ~ J - D .  For  the sus- 
pension axiom we must relate two different notions of suspension. 

Let (Y,3~,~)~,Y--D. Then by 11.4.1 we have (SY,~,.~)~JD. Now con- 
sider (Y,,O,~)~J-~ z. Then by 1.3.1 we have (ZoY, D, fO~,Y-D z. Note that 
2; Y is obtained from Z o Y by collapsing Z o D to D. Z o Y is an unreduced 
suspension and S Y is a reduced suspension. There is a map k :(Zo Y, Z o D) 
(ZE D). It can be checked that i f D ~  Y has the AHEP over D then k is 
a homotopy equivalence of pairs under and over D. 

1.3. Definition. Let (Y,j~,~)~9--D. Define an A(D)-isomorphism 
Z :H"(Y, D)-* Hn+I(ZY,, D) by Z =k *-1Z D. 

Now let (X, A, :~) be a pair over D and A be closed in X. The following 
diagram in ~ z  is commutative: 

('Y,D X, Z ,  A)~ y~x'A) , (Z,(X/A)D, Z D D) 

~(~ ' o(X )t,, D) 

((zo x / z ,  A),. D). 

This implies that the following diagram of A(D)-modules is commu- 
tative: 

H"(X,A) , ~,x,A). U"((X/A). .D)  
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where all maps are isomorphisms and (2;0 X/s A)D has been identified 
with 2;(X/A)D. 

The result is that in order to prove the existence Theorem 1.4.4 it 
suffices to define operations on ~ J - D  and check the reformulated 
axioms - where "reformulation" in axiom 4 means replacing suspension 
by reduced suspension. 

2. Suspension Operations. In this section two suspension operations 
are defined, one of which is dual to the reduced suspension of the previous 
section. Also, sufficient conditions are given for the operations to be 
surjective. All spaces and maps are assumed to be in J-D. So the func- 
tors P, f2, C, S send Y D  to ~-D and, in particular, 2; coincides with the 
2; of the previous section. 

Consider now the following special case of the operation of II.5.3. 
Le tA 0 S,,A1 f2,A2 be a diagram in J -D and a s su m ef2 f l  is null- 
homotopic by a fixed null-homotopy H. Then we have the following 
homotopy commutative diagram 

Ao , A1 , CJ i k > 2;Ao z$~, SA 1 

D , A 2 , A 2 , D , 2 ; A  2.  

If we apply ( , Z )  to this diagram the resulting rows are exact in the 
sense of II.4.20. 

2.1. Definition. p = pn:<A2, Z> ~ (Ao, QZ> is defined to be k*-  1 w*. 

p is defined on Ker(f2*) and its indeterminacy is f l*(Al,~2Z>. 
Let (g>e<A2, Z )  and let G be a null-homotopy ofgfl. Then a represent- 
ative for p<g> is (Pg) H - G f r  If Ao--~ A 1 ---, A 2 along with H is thought 
of as a fibration then p can be thought of as fiber space suspension. 

Consider QA 0 ~A, QA~ as2 QA 2 and a null-homotopy H' of K2fzQf~ 

determined from H in the natural way. Let 

P'  = PIt '  : < Q A 2 ,  Z )  ~ (QAo, QZ> 

be the corresponding operation. Then it is not difficult to prove the 
following theorem. 

2.2. Theorem. p' ( f2g)  = - O(p (g>). 

An important special case of the operation is obtained by letting 
A0--,A 1--+A 2 be the path-loop fibration and H the constant null- 
homotopy. In case Z is D x K(Zp, n) there is a definition in terms of 
cohomology. 

15" 
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2.3. Definition. Let (Y, 3~, ~) be in YD. Define an A(D) homomorphism 
a:f:H"(Y,D)-~H"-I(~Y, ,D) as 6p* where ~:(PY,~2Y)-~(ED) and 6 
is the coboundary from the exact sequence of the triple (PY, QY, D), 
(an isomorphism). 

In order to see that this is dual to the reduced suspension of the 
previous section, consider the following alternate definition of the latter. 

2.4. Definition. Let (Y,)~, ~) be in ~-D. Define Z:~ H" (Y, D) 
.~ H"+I(Z Y, D) as/r - 1 6 where k:(CX, X) -* (X, D) and ~ is the cobound- 
ary from the exact sequence of the triple (CX, X, D) (an isomorphism). 

This definition coincides with III.1.3 under the (more general) con- 
ditions here. Under the more restrictive conditions of II.1.3 (Dc  Y has 
the AHEP over D) the operation is an isomorphism - although here it 
may merely be an additive relation. Note, however, that Z-1 is always a 
homomorphism. 

Let f :  X-*  ~ Y be in YD and f ' : Z X  ~ Y be its adjoint. So 

f:(X,D)---~(~2Y, D) and f ' : (ZX,  D)--~(Y,D). 

2.5. Lemma. f *  a = 2 ; - l f  '*. 

Proof. Exactly as in Adams [1, p. 62]. 

In order to apply the relative Serre theorem (Serre [29], or Spanier 
[32, p. 506]) to the ~ of 2.3 we need to know that p is a fibration in ~-- = 
category of spaces and maps. This is easily proved. The Serre theorem 
implies that p* : H k (Y, D)-* H k (P Y, 0 Y) is isomorphic for k < 2 (con- 
nectivity of (Y, D))-  1. Hence a of 2.3 is isomorphic in the same range. 
If A1 --~ A 2 in 2.1 is actually a fibration in J -  and Z = D  • K(Zp, n) then 
it follows similarly that p:H"(A2,D)-~H"-I(Ao,D) is epimorphic if 
n <conn  (A2, D) +conn (Ao, D). 

3. Proofs of the Existence and Quasi-Uniqueness Theorems. Let 
d : C ~  C' be a map of free finitely generated graded A(D)-modules. 
A map f :  B--~ B' in ~--D will be called a realization ofd of degree k provided: 

(1) B = D • X i K (Zp, deg (ci) + k) and B' = O x Xj K (Zp, deg (c~) + k) 
where the ci's generate C and the (c~)'s generate C'; 

(2) f = (proj, h) and 

h:(D x X i K (Zp, dog (ei) + k), D) ~ Xj K (Zp, deg (cj) + k) 

is determined by h* ~(i,k)=Zs(i,j)(l|  where d(ci)=Xs(i,j)cj., 
s(i,j)eA(D), and the z's are fundamental classes. 

Suppose that 

C : C N d,,  CN_ l ' . . . .  ~ C1 - - ~  Co 
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is a chain complex as in 1.4. Call 

B(o) f(I~,B(1)-- ,--- r B ( N - I )  f(m~B(N) 

in J-D a horizontal realization of C of degree k provided that f(i) is a 
realization of degree k of d~. Consider the following diagram in :-D. 

Diagram q/k (N) 

t2:e-IB(N-I)--~...E(2, N-1)~,E(1, N-1) ~r 

f2N-2 B(N-2)--+-.. E(2, N-  2)--~E(1, N-2) ~(u-l), QN_2 B(N_ 1) -a-~---2~c~m-~ f2N-2 B(N) 

f22B(2)--* E(2,2) -~ E(1,2) 

1 1 
f2B(1) ---, E(1, 1) 

p(1, o) l 

B(O) 

~(3) 122B(3)... f22 B(N) 

g(2) ---~ t~B(2) ~:~3)~ ftB(3) . . . .  OB(N) 

-f(~Z~L~ B(1) :(-~L~2) B(2) :(-Z~)3) B(3) . . . . .  B(N) 

Denote the diagram by :#k(N). Each E(m, n )~  E(m, n-1)  is a principal 
fibration induced by the map E(m,n- l ) - - , f~  "-1 B(n) where B(0) is 
thought of as E(1, 0), f2 B(1) as E(2, 1) etc. All spaces and maps depend 
on k and this will be indicated by a subscript if necessary. ~K (N) will be 
called a universal example in degree k provided that (g (i)) e p (Qi- 2 f(i)), 
2<_i<_N. p is defined as in III.2.1 using the natural null-homotopy of 
E(1, i -  1) ~ E(1, i -  2)--* f2 i-2 B ( i -  1). 

Define f2 @'k (N) to be the diagram obtained from q/k (N) by replacing 
all spaces by their loops and all maps by their loops except the g(n)'s. 
Replace g(n) by ( -  1) "-112g(n). 

Consider ~'k(N) and qlk+l(N ). We can find a sequence of homotopy 
equivalences from the bottom row of qlk(N ) to the bottom row of 
f2q[k+1(N ) -- giving a homotopy commutative ladder. Pick any such 
sequence. Then homotopy equivalences are induced on all rows to give 
a map: 0~k(N): ~/k(N) --~ ~-~k  + 1(N) with homotopy commutativity through- 
out. The sign introduced with the g's in Oq/k+l(N ) was to guarantee this 
homotopy commutativity (see III,2.2). 

The collection {q/k(N), ~k(N)} =(q/(N), ~(S)) is called a universal 
example for C or a vertical realization of C. 

Fundamental classes for the universal example are chosen as follows. 
First make a choice for the K(Zp, n)'s of the bottom row of qlk(N ) for a 
fixed k. Then always assume tr t, = t._ 1 where (here only) 

6: H" (K (Zp, n); Zp) --~ H"-  1(O K (Ze, n - 1); Zr) 
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is the ordinary cohomology suspension. This gives fundamental classes 
for all of ~#k(N). The a's then determine fundamental classes for all 
oYj(N)'s. These fundamental classes are used to set up a correspondence 
between homotopy and cohomology in what follows. In order for this 
correspondence to be valid it is assumed for all spaces Y (in ~J -D)  
under consideration that (Y,,D) has the homotopy type of a CWpair.  
The results can be extendend to the general case by standard techniques 
(e. g., CW-approximation). 

3.1. Lemma. Let C: C N -+ ... -+ C o be a chain complex as in 1.4 and 
let (~ ~(N)) be a universal example for C. I f  the operations {@,s} are 
defined by 

(3.2) f2 ~ B (s) ~- E (s + 1, r - 1 ) -+ O" B (r) 

then they satisfy the axioms given in 1.4. 

Proof Use induction. The full definition of q~=q~N,0 is q~=g,p,1  
where: 

Hom k (Co,)3 H* ( Y,, D)) 
II 

(Y, Bk (0)> ~P" (Y, Ek(1, N -  1)> ~. (Y, O N-' Bk(N)> 
IJ 

HOmk_N+,(CN, 3~ H* ( Y,, D)) 

and g=g(N),  p=p(1 ,0) . . ,  p(1, N - 2 ) .  The details are omitted (see [23], 
cf. (Maunder [22])) 

3.2. Lemma. Let C: CN-+ ...--~ C o be a chain complex as in 1.4. 
Suppose (pN, o is the peak of  a pyramid of  operations associated with C. 
Then there exists a universal example for C such that ~pt~'~ 
where p=p(1,  0) ... p(1, N -  2). 

Proof This is omitted. In order to retain the homotopic flavor of the 
development use 

p: ( 0  N-2 B ( N -  1), O u-2 B(N)> --+ (E(1, N -  1), O u-1 B(N)> 

to get g from OU-2f(N). p is defined as in III.2.1 by the canonical null- 
homotopy of g ( N -  1) p(1, N - 2 ) .  

Theorems 1.4.4 and 1.4.5 follow without difficulty from these lemmas. 

Part IV. Some Exact Sequences 

Two special cases of the exact sequence of II.3.3 are considered here. 
The first is stated principally in the language of ~o (spaces and maps 
over D). The second is a further specialization and is stated partly in 
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terms of ~ and partly in terms of ~-- * (= the category of pointed spaces 
and maps). The second sequence and its dual are used to show that the 
definition of the functional twisted cohomology operation given by 
Meyer [243 and Gitler-Stasheff [9] can be viewed as a special case of 
the bracket operation of II.5.1. It follows that the functional operation 
is related to the corresponding secondary operation of part III by the 
Peterson-Stein formula III.5.4. 

Suppose that (X, A, PC) is a pair over D (meaning merely that A = X 
and PC:X~D) and (Y,B, 3~,~) is a pair under and over D (meaning 
r  B= Y, ~: Y ~  D, and 3~ r  1). Denote the set of homotopy classes 
of maps, classified by homotopy over D, by [(X, A); (y, B)] o. This can 
be thought of as taking place in ~--2 (0 ~ D) where ~-2 is the category of 
pairs of spaces. (Y, B) is sent into this category by the forgetful function. 
Then [(X,A);(Y,B)] o has [r as a distinguished element. Recall 
from III.l.1 that ((X/A)o, 2, Pc) is in 9-D. The procedure of passing from 
(X, A, PC) to ((X/A)o, ~, PC) is a variation on "adding a disjoint base point" 
and could be viewed as simply that - adding a disjoint copy of D - 
by working in ~-2D instead of ~-D. Now, note that ((X/A)D; Y ) =  
[(X,A);(Y,D)] o. This plus the exact sequence of III.3.3 is all that is 
needed to prove the following theorem. 

1. Theorem. Suppose that f :  Y--> Z is a map of 3"D and that (X, A, PC) 
is a pair over D. Then there is an exact sequence of pointed sets: 

--. --* [(X, A); (f2 2 Z, D)] o 

--~ [(X,A); (f2Ef, D)~o---* [(X, A); (f2Y, D)] D ~ [(X, A); (f2Z, D)]  o 

--* [(X, A); (E f, D)] D -+ [(X, A); (Y, D)] v ---* [(X, A); (Z, D)] o 

and an action 

[(X, A); (f2Z, D)] v • [(X, A); (E f, D)] n ---* [(X, A); (E ~ D)] o 

where flY, f2Z, and E f are formed in Y D .  The sequence consists of groups 
and homomorphisms after the third term and abelian groups after the sixth. 
The action has properties like those in III.3.3. 

The following definition is needed for the next theorem. 

2. Definition. (James-Thomas [t4, p. 501].) Let g:(D x K, D x ,)--, 
(M, , )  be a map of pairs. Define dg:(Dx~2K, D x , ) - , ( f 2 M , , )  by 
A g (d, a) (t) = g (d, a (t)). 

Let g:(D x K, D x ,)--* (M, *) be a map of pairs of spaces. Let E g ~  
D x K be the principal fibration induced by g in Y-*. Let OK and OM 
be the ordinary loop spaces formed in Y*. Let (X, A, PC) be a pair over D. 
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Define 

g: [(X, A i; (K, *)] --~ [(X, A); (M, *)3, fl g:[(X, A); (E g, O)] v 

--, E(x, A); (K, ,)],  

and yg:[(X,A); (OM, *)] -~ [(X,A); (Eg, D)] v as follows: c~g[v]=the 
class of (X, A) ~x, v)~ (D x K, D • *) ~ (M, *), fig [w]o = the class of 

(X, A) *-~ (Eg, D) proj ;. (D • K, D • *), 

and 7 g [u] = the class over D of 

(X, A)- ~x.u). (D • OM, D • ,) ~ (Eg, D). 

3. Theorem. Use the notation above. There is an exact sequence of 
pointed sets 

~ag, [(X,A); (EA g, D)]D a~*' [(X,A); (OK, .)] 

~g, [(X,A);(Eg, D)] v - ~+ [(X,A);(K,.)] 

and an action 

�9 . - - ,  [(X,A);  (O2M, *)] 

"~*+ [(X,A);  (OM, *)] 

"* + [(X,A); (M, *)] 

[(X, A); (OM, *)3 x [(X, A); (Eg, D)]o-~ [(X, A); (Eg, D)]. 

The sequence consists of groups and homomorphisms after the third term 
and abelian groups after the sixth term. The action has properties like 
those in III.3.3. 

Proof. In Theorem2 replace Y by D x K, Z by D x M ,  and f by 
(proj, g). Note that E f, formed in J-D is the same as Eg which is defined 
in g , .  Also, O f  is (proj, A g). Finally observe that [-(X, A); (D • K, D)] .  = 
[(X,A);(K,,)]. Q.E.D. 

4. Example. Let (X,A) and (D,0) be relative CW complexes. Let 
K=K(Z,n) ,  M = K ( Z , n + I ) ,  and dEHk(D,Z). Define, for each non- 
negative integer n, g ( n ) : D x K ( Z , n ) ~ K ( Z , n + l )  by g(n)*t(n+l)= 
d | l (n). Then for a pair over D, (X, A, ~), Theorem 3 gives the following 
exact sequence of abelian groups and homomorphisms: 

... H"-I(X, A) * ,  H"-I+k(X,A)-~, [(X,A);(Eg(n), D)] D 

--~H"(X,A) ~,  Hn+k(X,A)--~[(X,A);(Eg(n+I),D)],--~... 

where q~(w)=~*(d) w. 
Note that if D=X,  ~=identi ty,  and d=xeHk(X)  then q~=xw: 

H"(X, A ) ~  H "+k (X, A). So q~ is the homomorphism defined by cupping 
with x and we have succeeded in including it in an exact sequence in a 
natural way. 



Higher Order Twisted Cohomology Operations 207 

5. Example. Suppose that f : ( X , A ) ~ ( Y , B )  in ~'-2 and u~Hk(y;z)  
are given. Consider (X, A) to be a pair over Y by means o f f  Let w ~ H" (Y, B) 
be such that f ' w = 0  and u.w=O. Define g=u|215  
K(Z, n + k) and form 

(X/A)y f I,(Y/B)u {1,w)) Y x K ( Z , n )  (proj,g), Y x K ( Z , n + k )  

in J -Y If we form the diagram for ( f ,  (1, w), (proj, g)) as in III.5.1 B and 
make the same sort of identifications as in the proof of Theorem 3, then 
the result is seen to be exactly the Steenrod definition of the functional 
cup product uufw.  If III.5.1A is used instead then, as in Example4, 
we get the following dual definition of the functional cup product. 

H.-I(X,A)  s*.~, H.-I+k(X,A) eg , [(X,A);(E, Y)]r 

H"-I(Y,B) , H"-X+k(y,B) ,[(Y,B);(E,Y)] r 

, H"+k(x, A) .c*,~ H,+k(x, A) 

T l 
, Hn(Y, B) u~ , Hn+k(y, B) 

where E=Eg. That is, - u u s w = ( y g ) - l f * ( f l g ) - l w = a  coset of 
f *  Hn-a+k(Y, B)+ f *  uH"-~+k(X,A) in Hn-I+k(x, A). 

6. Example. Let (X,A) and (D,~3) be relative CW complexes. Let 
s~A(D)=H*(D; Zp)Q Ap. Represent s in each dimension n by a map 
s (n)= d | t(n)+ 1 | S qZ t(n):D x K(Zp, n)---, K(Zp, n + k) where k is the 
degree of s. For example, if d~HZ(D;Z2) then s = d | 1 7 4  z is 
represented by s(n)=d | t(n)+ 1 | Sq 2 t(n):D • K(Z2, n)-+ K(Zz,n+ 2). 
For (X, A, ~), a pair over D, Theorem 3 gives the following exact sequence 
of abelian groups and homomorphisms: 

... H n- I(X, A; Zp) -~ H n -1 +k (X, A ; Zp) ~ [(X, A); (E s (n), D)] D 

-+ H'(X,A; Zp)--+ H"+k(X, A; Zp) -+ [(X, A); (Es(n+ 1), D)] o .... 

7. Example. Suppose that f :  (X, ~) ~ (Y, 33) is a map of spaces over D. 
Suppose also that wEH'(Y; Zp), s~A(D),f* w=0, and s(w)=0. Consider 
the following diagram in YD:  

X + f * , y +  <r,~'),D• n ) <Pr~215 

where X+=(X/O)o=XuD (disjoint union), y=33uid,  and w means 
W k_) *. 
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First apply Definition lII.5.1B. After the appropriate identifications 
are made we get the following diagram: 

H"-a(Y) > H"-I(X) , Hn(y, X) J*' H"(Y) , H"(X) 

Hm-a(y) , H m - I ( X )  i* , Bin(y, X)  , Hm(Y)  > H m ( x )  

where m = n + k  and (Y,X) means (Mf, X) where M f  is the ordinary 
mapping cylinder. Then s I w = ( f + ,  (y, w), (proj, s)) = i *-l s j*-I w, a 
coset of sH"-I(X)+f*H"-I+k(Y) in H"-I+k(x). 

This is exactly the definition of the twisted functional operation given 
by Meyer in [24] and Gitler-Stasheff in [9]. 

Definition III.5.1A gives, as in Example 6, the following diagram: 

H"-'(X) ~"-'~, H"-~(X) '~("), IX, E]D , H"(X) , H"(X) 

l l; 1 T 
Hn_l(y) ~.-1), H,._l(y) , [X, E]D t~s~,), Hn(y) , Hm(y) 

where m=n+k  and E=Es(n). So - s iw=(f+, (y ,w) , (pro j ,  s)) '= 
(7 s (n))-1 f .  (/? s (n))-1 w is an alternate, equivalent, definition ofthe twisted 
functional operation. 

PartV. An Application 

Twisted operations occur naturally in connection with existence and 
classification of cross-sections of a fibration. The classification problem 
will be taken up here. 

Consider the following commutative diagram of pointed spaces 
and maps. 

Y 

X 

where p is a fibration and X is a CW complex, g will be spoken of as a 
"map over f ". A "homotopy over f "  is a base point preserving homotopy 
Hz:X--. Y such that pHt= f for each tel .  Let [X, Y]~ be the set of 
pointed homotopy classes of pointed maps ove r f  Denote it by [X, Y]I,p if 
necessary. 

It will be shown that IX, Y]B can be calculated in terms of a tower of 
fibrations which factors p and various twisted operations in H*(X). 
The method described here is designed for use with Postnikov systems. 
The results could be stated in terms of a spectral sequence. A modifi- 
cation of the method yields a spectral sequence of the Adams type - 
this will be the subject of a separate paper. 
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(2) 

1. Generalities. 
Ak) assume that diagram (1) can be embedded in the following diagram 

where 

E"(k) -~ E ' ( k ) -  , E(k) 

+ 1 1 
E " ( k - l ) - - - - ~ E ' ( k - 1 ) - - .  , E ( k - l ) J ( k - ~ ) , C ( k - 1 )  

i i i 
E"(2) - ,  E'(2) - -  , E(2) -~2~ ,C(2) 

Yx~C(0)  ~ t l  E'(I) ~ . ( a ~  E(I) z~l~ ,C(1) 

(1) g:y2_+y  is the square of p-i.e., the pullback ofp  by p. 

(2) E(i+ 1)--~ E(i), E'(i+ 1)--, E'(i), and E"(i+ 1)--~ E"(i) are induced 
from PC(i)---, C(i), the path-loop fibration over C(i). 

(3) v(1) is a fiber homotopy equivalence due to f(O)p-,~O. 
Note that g has a lifting to Y2-namely, sg where s :Y- - ,Y  2 is the 

canonical cross section of g: y 2  __. y. 

Bk) a s s u m e  7~i(Y ) --~ ;~i(E(k)) is isomorphic for i< N k. 

Then the same is true for YZ-+E"(k) and by the approximation 
theorem for liftings (James-Thomas I15]) we have that 

Ex, Y]~= Ex, Y23y~ EX, E"(k)]y 

is bijective for dimension X < N k. 

Ck) assume Y c Y x O C ( 0 )  has the H E P  (homotopy extension 
property) with respect to C(1). Then f (1)u( l )v(1)  is homotopic to g(1) 
and g(1)lY=, .  Let P(2) be induced by g(1). Then P(I)--~Y is fiber 
homotopically equivalent to E"(2)-~Y and admits a section. Replace 
E"(2) by P(2) and repeat the process (with a new assumption). 

The result is: 
C ( k -  1) C(2) C(1) 

(3) l ~'k-l' l "~2' l'"' 
y2 __. P(k) --~ P ( k -  l) --~ �9 .. P(2) --~ Y x (2 C (0) --~ Y 
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where P( i ) -~Y  has, say, s(i) as a section and g( i ) j s ( i ) (Y)=, .  Also 
[X, Y]B = IX, y2] ___, [X, P(k)]y is bijective for dimension X < N  k. 

At this point we can transfer the problem to the category J--Y (see 
Part II for the properties of J-Y). We have the following diagram in 3-Y. 

(4) 

Y x f J C ( k )  , P(k) 

l 
y x t 2 C ( k _ l ) _ i ( k - l l , p ( k _ l )  ~'(k) ~ Y x C ( k )  

Yxf2C(2) , P(2) g'13) ~YxC(3) 
I 

Yx f2 C(1) i(x) g'(2~ , P(1) , g x  C(2) 

YxQC(O) g'o) ~Y• 

Here g'(i)=(p(i),g(i)), p( i ) :P( i ) -*Y is from (3), and P(i+l)-~,P(i)  is 
induced from the path-loop fibration in J Y: Y x Q C(i)-* Y x PC(i)---, 
Y x  C(i). (P and ~ are still the path and loop functors on Y , = t h e  
ordinary category of pointed spaces and maps. Let P and s~ denote the 
corresponding functors on YY. Recall from Part II that P(Yx C(i))= 
Y x P C ( i )  and l ) (YxC(i))=Yxf2C(i) . )  Also [X,Y]B=(XVY,  P(i)) 
where ( , )  denotes the set of homotopy classes in J-Y. 

Dk) assume C(0) is a loop space in ~--, and C(l) . . . .  , C(k) are double 
loop spaces in r  Assume that g'(i) is a loop map in Y-Y. 

Theoreml (classical). Assume A1, B 1, C1, D 1. I f  d i m X < N  1 then 
IX, Y]B~ Ix, ~ c(0)]. 

Theorem 2. Assume A s, Bz, C2, D 2 . I f  dim X < N 2 then 

a) IX, Y]n has a natural group structure�9 

b) (James-Thomas [16]) 

and 

[X, Y ] n = L o ~ L I  ~ L  2=0 

Lo/L 1 = Ker ct~ [X, f2 C(0)], 

La/L 2 = [X, f2 C(1)]/Im 

where ~t is the twisted primary operation determined by g(1). 

Theorem 3. Assume A3, B3, C3, D 3 . If dim X<=N 3 then 

a) [X, Y]B has a natural group structure. 
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b) IX, Y ] n = L o ~ L I ~ L 2 ~ L 3 = O  

Lo/L t = Ker rp c I-X, f2 C(0)], 

L1/L 2 = Ker fl/Im ~, 

L2/L 3 = FX, f2 C(2)]/Im 49 

where e: IX, 0 2 C(0)] -~ IX, OC(1)] and/3: IX, f2C(1)] --~ [X, C(2)] are 
the twisted primary operations determined by g(1) and g(2)i(1), respec- 
tively, and �9 is the twisted secondary operation due to the relation fl c~ = O. 

Theorem k. Assume Ak, Bk, C k, D k . / f  dim X < N k then 

a) IX, Y]n has a natural group structure. 

b) IX, Y ]B=Lo~L1  ~ L 2 ~ . . .  ~Lk=O and the quotients Li/Li+ I are 
determined by twisted operations of order < k - 1 .  The operations are 
determined by the diagram (2). 

Proofs. Apply the functor (X  VY,-  ) to the diagram (4). By 11.3.3 
the result is part of an exact couple of abelian groups. The theorems can 
now be proved by standard techniques. 

Comment. Becker proved in (3) that if dim X <  2 Conn F (F = fiber 
of p) then IX, Y]B has a natural abelian group structure. His theorem 
can be proved by the methods used here. 

2. A Guiding Principle. Associated with every modified Postnikov 
system for p: Y-- B there is a classification theorem. The twisted opera- 
tions involved can be read off from the data of the Postnikov system. 
See Mahowald [-19] or Thomas [36] for "modified Postnikov system". 

3. A Specific Example. Consider 

Vm, m - k --* BSO (k) ~ B S O  (m) 

where k = 4 s +  1, V,,,m_k is the Stiefel manifold of (m-k)-frames in R m 
and BSO (n) is the classifying space for SO (n). The following system was 
constructed by Mahowald in [19]. 

Bk 

E3 

l 
k3 

B k x K4~ + 2 x K 4 s  + 3 X K 4 s  + 4. i2 ~ E2 ~ K4~ + 4 

i l 
Bk___ .BkxK4~+lxK4~+3~E t (k~,k~,k~) ~K4~+3xK4~+4xK4~+5 

t 
B k P ~B,~ ~w~+~'w'~§ 
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where K i = K ( Z  2, i) is an Eilenberg-MacLane space of type (Z 2, i), 
B.  = B S O  (n), 

k2il=LT4~+l ( L = I | 1 7 4 1 7 4 1 7 4  

kZz i 1 = L S q  a T4s+ a + Sq 1 i-4~+ 3 , 

k~ i, =(1 |  W4| l)r4s+l +QT4~+3, 

where Q = W 2 | 1 if K = 8 s + I and Q = 1 | S q2 if K = 8 s + 5, and 

k3 i2 = L-f4s+ 2 + Sq 1/'4s+ 3 ' 

The system has the property that rci(Bk)---~rci(E3) is isomorphic for 
i < 4 s + 5 .  

Assumptions A3, B3, and D 3 of V.I are clearly satisfied with N 3 = 
4 s + 5 .  The classifying spaces and the Ki's can be taken to be metric 
simplicial complexes (Milnor [25]). This and Theorems !1.3 and 2.2 of 
Hu [11, p. 106/117] imply C 3. Theorem 3 of V.I gives the following 
theorem. 

3.1. Theorem. Let f :  X - - ,  BSO (m), g: X -~ BSO (k), and p g = f . Assume 
dim X < 4 s + 5 .  Then [X, BSO(k)]nso(m)=Lo~L1 ~ L 2 D L 3 = 0  and 

Lo/L 1 = Ker ~o 

L1/L 2 = Ker  fl/Im 

L2/L 3 = tt4s+ 3 (X)/Im tp 

where 

o~: HI(X) ~) HI + 2 (X)--~ Hi+ 2 (X) @ Hi + 3 (X) @ HI +4 (X) 

/3: H~(X) @ H ~+~ (X) q) H ~+2 (X) ~ H '+2 (X) 

tp:Hi(X) @ Hi+ 2(X)-~Hi+ 3(X) 

a(x, y ) = ( L x ,  LSq  1 x + Sq ~ y, Sq4 x + W4 x +Qy) ,  

fl(x, y, z ) = L x  + Sql  y,  

and q~ = ~9 2' 0 is due to the relation fl ~ = O. 

If X = R p4~ + 5 (real projective space) the operations are not difficult to 
evaluate, q~ is seen to be trivial by first evaluating it in complex pro- 
jective space and then using the natural map  Rp2"--~ CP n and the 
naturality of qL The following theorem is the result. 
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3.2. Theorem. Let ~ be a vector bundle over R P k +4, k =-4 s + 1. Assume 
that ~ has m - k  linearly independent cross sections. Let 

V,~,m_k--~ E P ~ Rpk  +r 

be the associated bundle. It has a cross section. Denote by Sect [p] the 
group of homotopy classes of  sections of p. Then the order of Sect [p] is 
given by the following table. 

I Sect [p] [ 

16 s even 
W 4(~)=0 8 s o d d  

W4(~)=x4 { 4 s even 
4 s odd 

W4(~)=0 1 

W4(~)=x 4 1 

1) W2 (~)= 0, 

2) W2(~)=0, 

3) W z ( ~ ) = x  2, 

4) W 2 (~) = x 2, 

If r  is the stable normal bundle for RP 4~+5 then Wa(v)=x 2 and 
W4(v)=0. The following corollary now follows from the Smale-Hirsh 
theorem as formulated by James and Thomas in [15]. 

3.3. Corollary. Any two immersions of R p4s + 5 in R p8 ~ + 6 are regularly 
homotopic. 
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