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Abstract. It is shown that vector sequence spaces with a gliding hump property have many 
of the properties of complete spaces. For example, it is shown that the//-dual of certain vector 
sequence spaces with a gliding hump property are sequentially complete with respect to the 
topology of pointwise convergence and also versions of the Banach-Steinhaus Theorem are 
established for such spaces. 

1. Introduction 

The gliding hump property for sequence spaces has been used to 
treat various topics in the theory of sequence spaces [16, 17, 19]. The 
gliding hump property has at least some formal resemblance to the 
2C-property for normed linear spaces introduced in [1], and the 
2C-property has been shown to be a useful substitute for completeness 
in treating various topics in functional analysis such as the uniform 
boundedness principle, the Mazur-Orlicz Theorem for separately 
continuous bilinear maps and the closed graph theorem [3]. This 
suggests that the gliding hump property may serve as a substitute for 
completeness in sequence spaces. In this note we show that this is 
indeed the case. As in the case with the 2C-property, we show that the 
Basic Matrix Theorem of ANTOSIK and MIKUSINSKI ([3] 2.2)"can be 
used to show that sequence spaces with the gliding hump property 
have many of the properties of complete spaces, and, in fact, the Basic 
Matrix Theorem can be used to treat the case of vector-valued 
sequence spaces with operator-valued fi-duals as introduced by 
MADDOX [15]. Our vector results give generalizations of scalar results 
of NOEL [16], and the proofs given by the Basic Matrix Theorem give 
interesting contrasts to the previous scalar proofs. 
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1. Preliminaries 

Henceforth, X and Y will denote Hausdorff topological vector 
spaces and L(X, Y) will denote the space of all continuous linear 
operators from X into Y. We will say that the pair (X, Y) has the weak 
Banach-Steinhaus property if { Tk } c_ L(X, Y) and lim k TkX = Tx exists 
for each x ~ X  implies that TeL(X,  Y); if in addition limk TkX = Tx 
uniformly for x in precompact subsets of X, the pair (X, Y) will be 
said to have the stron9 Banach-Steinhaus property. For example, if X 
is barrelled and Y is locally convex, (X, Y) has the strong Banach-  
Steinhaus property [24]. 

We give a description of the General Uniform Boundedness 
Principle (General UBP) which will be used below. A sequence 
{x j} c_ X is said to be ~ convergent if every subsequence has a further 
subsequence {x.j} such that the subseries ~ j~  1 Xn~ converges in X; a 
subset B ~ X is o,g( bounded if {xj} ~_ B and tj ~ 0 implies that {tjxj} 
is ~ convergent [1, 3]. A X bounded set is always bounded but not 
conversely, in general. A space in which a bounded set is o~ff bounded 
is called an d-space [14]; for example, F-spaces are d-spaces.  For 
N-spaces, we have the following General UBP: if X is an d - space  
and F _  L(X, Y) is pointwise bounded on X, then F is uniformly 
bounded on bounded subsets of X ([14], Corollary 4). 

Let s(X) be the vector space of all X-valued sequences, where the 
operations of addition and scalar multiplication are coordinatewise. 
Let E be a topological vector space which is a subspace of s(X). If 
xeE, the k th coordinate of x will be denoted by x k, i.e., x = {Xk}, and 
the coordinate function x--, Xk will be denoted by Qk. We call E a 
K(X) space if each Qk is continuous [7]; i fX is the scalar field and the 
coordinate functionals are continuous, E is called a K-space. For each 
n, let P,  be the section map E ~ E  which sends x = ( x l , x 2 , . . . ) ~  
(xl, �9 �9 x,, 0,...). We say E has the property AK (respectively, AB, SB, 
SUB) if each P,  is continuous and P,x ---, x for each xeE  (respectively, 
{P,x} is bounded for each xeE,  each P,  is bounded, {P.} is uniformly 
bounded on bounded subsets of E). 

Following NOLL [16] we say a sequence, {z"}, of non-zero vectors 
from s(X) is a block sequence if there exists a strictly increasing 
sequence of positive integers {k j} such that 

z"=(0,  . . ,0, z" z" , 0 , . . ) .  
�9 k n - l + l ' '  ' ' '  k n  " 
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We say E has the stron9 91iding humps property (SGHP) if given any 
block sequence, {z"}, which is bounded  in E there is a sequence {nk} 
such that  z = ~k= 1 z"~eE (the convergence of the series is unders tood  
to be coordinatewise). We say E has the weak 91iding humps property 
(WGHP) if given x~E and any block sequence {x k} with x = Z L I  xk 
(pointwise sum), then every subsequence has a further subsequence 
{nk} with ~ = ~ L 1  x"~eE [16]. 

If x ~ X  and ej is the scalar sequence with a 1 in t h e j  TM coordinate 
and 0 elsewhere, we write ej | x for the X-valued sequence with x in 
the jth coordinate  and 0 elsewhere. Let ~(X) be the linear span of 
{ e j |  x e X }  in s(X), i.e. (I)(X) is the subspace of all X-valued 
sequences with only a finite number  of non-zero coordinates. 

We assume, henceforth, that  E ~ ~(X). Using the nota t ion  of [7], 
E ar will denote  all sequences T =  {Tk} ~--L(X, Y) such that  the series 
~k=lTkXk converges for all x = { x k } ~ E  (we require that  T k be 
cont inuous  as contrasted with MADDOX in [15]). We write T.x = 
= ~ =  1 TkXk when T~E at, x~E. If X and Y are the scalar field, we 
write, as usual, E ar = E a. 

2. Results 

We begin by establishing a sequential continui ty result for spaces 
with SGHP.  

Recall that  the topology of any topological  vector space Y is 
generated by the family of cont inuous  quasi-norms on Yso a sequence 
{yj } ~_ Yconverges to 0 in Yif and only if [yj[---, 0 for every cont inuous  
quasi-norm, [ l, on Y [9]. 

Theorem 1. Let T~E ar and assume that E is a K(X) space haviny 
SGHP. I f  xi--,O in E, then T'xi---~O in Y, i.e., T is sequentially 
continuous. 

Proof. If not,  there is a cont inuous  quasi -norm ] I on Y, a 
sequence x ~ ~ 0 in E and ~ > 0 such that  [ T'x  i [ > ~ for all i. Put  m 1 = 1. 
There exists nx such that  I~k~1 Tkx"~'] > e. By the K-space property,  

�9 i hmix k = 0 for each k and since T k is cont inuous,  there exists m 2 > ml 
such that  ~"k'=llTkx'~2]<e/2. There exists n z > n  1 such that  
I Enk z= 1 TkXk2] > & Hence, [~k~=,l +1 TkXkZ[ > J3/2. Cont inuing  this 
const ruct ion produces increasing sequences of positive integers {mk}, 
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{nk} such that 

I d TkX'~J+' > e/2. (1) 
k=nj+ 1 

Define a block sequence {z j } by z j = (0,. . . ,  0, x mj.j+v...,x.~+ . r,j +1,0,.. . ). 
By SGHP,  there exists {Pk} such that 

z = = 

k = l  

Then T.z = ~ =  1 TkZk' doesn't converge since the partial sums of this 
series are not Cauchy by (1). 

Compare  Theorem 1 with 7.2.9 of [25] and Exer. 3.8 of [13]. 

Corollary 2. Let E be as in Theorem 1. Each T e E  Cr is a bounded 
operator f rom E to Y; if  E is bornological, T is continuous. 

I rE satisfies the hypothesis of Theorem 1 and is bornological, then 
by Corollary 2 we may consider E pr to be a subspace of L(E, Y). Let 
us say that the sequence space E has property (I) if for each j the 
injection x ~ ej | x is continuous from X into E. If E has properties 
(I) and AK, then E pr = L(E, Y); for i f A ~ L ( E ,  Y), then TkX = A ( e k |  
defines a continuous linear operator  TkeL(X ,  Y) and ~k= 1 TkXk ~ AX 
for each x e E so T = { T k } ~ E ~r and A x = T.x. Compare  this statement 
with 7.2.9 of [25]. 

If X is the scalar field in Corollary 2, let E s be the space of 
sequentially continuous linear functionals on E. From Corollary 2, 
we get the following result. 

Corollary 3. Assume X is the scalar field and E is a K-space with 
SGHP.  Then E ~ ~_ ES; i f  E is a bornologieal A K  space, then E p = E'. 

Proof. If E is an AK space, E'___ E p ([13] p. 60) so the result 
follows from Corollary 2. 

This result can be compared with 2.3.9 of [13] which indicates 
that SGHP can be used as a substitute for barrelledness. 

In [2] (see also [3] and [14]), a general version of the uniform 
boundedness principle was established which contained the classical 
version of the uniform boundedness principle for F-spaces as a special 
case. We next show that such a version of the uniform boundedness 
principle holds for certain spaces with the SGHP. As was the case in 
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[2], [3] and [-14], our  principle tool used in the proof  is the Basic 
Matrix Theorem of Antosik and Mikusinski  ([3] 2.2). 

Theorem 4. Assume that E has properties SUB and SGHP and that 
X is an d-space. I f  F ~_ E pY is pointwise bounded on E, then F is 
uniformly bounded on bounded subsets of E. 

Proof. If not, there exist a cont inuous  quasi-norm, f [, on Y, 
{T k} ~ F, {X k} CZ E bounded,  tk---+O and 6 > 0 such that  l tkrk'xkl >" '5 
for all k. 

Before beginning our construction, we make a preliminary observa- 
tion for use in the construction.  For  each n, the section Pn is bounded  
(property SB) and has range in the subspace I-I~'= 1 x x {0,.. .  } = x ,  
which is an d - s p a c e  since X is a ~-space .  The sequence {T k} is 
pointwise bounded  on X,  so {T k} is uniformly bounded  on bounded  
subsets of X,  by the General  U B P  discussed above ([14] Cor. 4). 
Hence, for each n, 

lim t i r kx  k = 0. (2) 
i k = l  

Set m 1 = 1. Pick n I such that  Itm,~"k2 ~ T'~'x'~I[ > 6. By (2), there 
is m 2 > m~ such that  I t,,2~"k~=l r~x'~2[< '5/2. There exists n2 > nl such 
that  I t,,~ 2 k ~ 1  r k 2 X k 2  [ > '5. Thus,  

E > ,5/2. 
k=nl + 1 

Cont inuing  this construct ion produces two increasing sequences 
{rag}, {rig} such that  

i 
"J+ , x,,j +1 6/2 for all j. (3) tin,+, ~ Tk'+ > 

k = n j +  1 k 

Define a block sequence {zJ /by  zJ=(O ,x mj , , x '%0  ) 
. " " " n j -  1 + 1 " " " n j  " " " 

and consider the matrix M =  [t,,,Tm~'zJ]. We claim that  M is a 
J{-matr ix  (see [3] w The columns of M converge to 0 by the 
pointwise boundedness  assumption.  By SUB and SGHP,  given any 
subsequence there is a further subsequence {p~} such that  z--  
= 2 j =  1 Z P J e E "  Then 

t " r m ~ ' z  p j  rai = t,., T "z ~ O  m i  

j = l  
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by the pointwise boundedness assumption, and M is, indeed, a 
J~-matrix. By the Basic Matrix Theorem of Antosik-Mikusinski ([3] 
2.2, [14]), the diagonal of M converges to 0 contradicting (3). 

If E satisfies the hypothesis of Theorem 4 and if E is in addition 
a normed space and T e E  ~Y, then {TPn} n is pointwise bounded on E 
so {TPn} ~ is bounded on the unit ball of E. Thus, one can define a 
fl-norm for T, f l ( T ) = s u p { l t ~ k = l  TkXklI:n, Ilxll ~ 1}. Even in the 
scalar case, the fl-norm is usually only defined for B-spaces, so 
Theorem 4 allows a relaxation of this requirement ([25], 4.3.16). 

Corollary 5. Let E be as in Theorems I and 4. I f  E is bornological 
and quasi-barrelled, then F is equicontinuous. 

Proof. If E is bornological, E ~r ~ L(E, Y) by Corollary 2 and F is 
equicontinuous by Proposition 11 of [14]. 

We now consider the case when X is the scalar field. 

Corollary 6. Assume X is the scalar field and E has properties SUB 
and SGHP. 

(i) I f  E ~ ~_ E', then t~(E', E) bounded subsets of  E p are fl(E', E) 
bounded. 

(ii) I f  E p = E', then tr(E',E) bounded subsets of  E' are fl(E', E) 
bounded so E' (and also E) is a Banach-Mackey  space ([24] 10.4). 

(iii) I r E  ~ = E' and E is quasi-barrelled, then E is barrelled. 

Proof. (i) follows immediately from Theorem 4; (ii) follows from 
(i); (iii) follows from (ii) and 10.1.11 of [24]. 

Note from Corollary 3, ifE is a bornological K-space with SGHP, 
E ~ _ E' so the hypothesis of (i) is satisfied; if, in addition, E is an AK 
space, E' = E ~ so the hypothesis in (ii) and (iii) is satisfied. 

Corollary 6 can be used to drop the completeness hypothesis from 
Theorem 2 of [16]. In Theorem 2 of [16], NOEL used the completeness 
of the space E to invoke a form of the Banach-Steinhaus Theorem. 
From Corollary 60) it follows that if E is a normed (actually even 
bornological ([24] 10.1.10)) K space with properties SUB and SGHP, 
then any pointwise bounded family of elements of E p is equicontinu- 
ous and the form of the Banach-Steinhaus Theorem used by NOEL 
is then available. 

Corollary 6(iii) is a result of the same nature as Theorem 4.1 of 
[5], Satz 3.1 of [21] and Theorem 1 of [17]. The assumptions on the 
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space E are quite different than those in the results cited above; in 
particular, the space E is required to be normed in the results above, 
whereas this condition is relaxed in (iii). 

F rom (iii) it follows that the Closed Graph Theorem is applicable 
to any quasi-barrelled K space with properties SUB and SGHP. 

We next consider the sequential completeness of E ~r with respect 
to the topology of pointwise convergence on E. In the scalar case our 
result gives a generalization of NOLL'S result on the sequential 
completeness of (E ~ , a(E t~, E)) when E has W G H P  ([ 16], Theorem 5). 

Theorem 7. Let E have WGHP and assume that Y is sequentially 
complete and (X, Y) satisfies the weak Banach-Steinhaus property. I f  
{T k} ~_ E ~r is such that lim k Tk'x exists in Y for each x s E  and if 
T~x = limk limk T~x for x e X ,  then T = {Ti}eE~r and 
limk Tk'x = T'x .  (Note Tj as defined above belongs to L(X, Y) by the 
weak Banach-Steinhaus property.) 

Proof. First, we claim that T = {Tj}eE ~Y. If not, there exists xEE 
such that ~ Tjxj doesn't  converge. By the sequential completeness of 
Y there exists a continuous quasi-norm, I [, on Y, an e > 0 and 
increasing sequences {mk}, {rig} with nk < m, < nk+ ~ such that 

mj r k X k  2 > e. (4) 
k=nj  

Let I j = { k : n j ~ k < ~ m j }  and consider the matrix M=[Ti .C~jx] ,  
where C I is the characteristic function of I. We claim that M is a 
~ - m a t r i x .  First, each column of M converges to T. Cljx. Next, if {p j} 
is an increasing sequence of positive integers, by W G H P  {pj} has a 
subsequence {q j} such that Yc = ~.~ ~ C I xEE. Hence, ~'~ . T i. C I x = 

i �9 J =  q~ .r = I qj 
= T -~ converges m Yby hypothesis. Thus, M is a X-ma t r i x  and by 
the Basic Matrix Theorem ([3] 2.2, [14]), 

0 --- lim lim T i. Cijx = lira lim T i. Cijx = lim ~ Tkx k 
i j j i J k~Ij 

contradicting (4). 
Next, we claim that lim i Ti.x = T .x  for each xeE.  If not, we may 

assume that there exist a continuous quasi-norm, ! I, on I', an e > 0 
and x e E  such that ](r i -  T)'x] > e for all i. Put  m 1 = 1 and pick n 1 
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such that I~",~*=1 (T~ - TOXkJ > e. There exists m 2 > m 1 such that 

Ik~=l (T'~ 2 -  Tk)Xk<e/2 

and there exists n z > n 1 such that 

(rT- I > 
SO 

- I > e/2. 

Continuing produces increasing sequences {m j}, {n j} such that 

k=,~l +1 (Tkj -- Tk)Xk > e/2. (5) 

As above the matrix M = [~kC,  + 1 (Tk' -- Tk)Xk] is a ~ff-matrix so 
�9 . - -  j - 1  . . 

its diagonal converges to 0 contradicting (5)�9 
F rom Theorem 7 it follows that E pr is sequentially complete with 

respect to the topology of pointwise convergence on E. In particular, 
when X is the scalar field and E has WGHP,  E p is a(E tj, E) sequentially 
complete. This is a result of NOLL ([16], Theorem 6); the proof above, 
even for the vector case, should be contrasted with NOLL'S proof. In 
this case (Et~,a(EP, E)) is a Banach-Mackey  space and a(EP, E) 
bounded sets are fl(E ~, E) bounded ([24] 10.4.8). 

A sequence space E is said to be monotone  if moE = E, where m 0 
is the space of scalar sequences with finite range and mo E is the 
pointwise product  [6]. Bennett has shown that i fE  is monotone,  then 
o-(E a, E) is sequentially complete [6]. A monotone  space has W G H P  
so NOLL'S result ([16], Theorem 6) gives a generalization of Bennett's 
result. 

Finally, we consider a form of the Banach-Steinhaus  Theorem for 
sequence spaces with SGHP. Recall that if X is an F-space and 
{ Tk} c L(X, Y) is such that limk TkX = Tx exists for each x~X, then the 
Banach-Steinhaus Theorem asserts that T is continuous and, 
moreover,  the limit, limk TkX = Tx, is uniform for x in compact  subsets 
of X ([-3] 5.2)�9 For  E at, the first conclusion of the Banach-Steinhaus 
Theorem was addressed in Theorems 1 and 7. We now address the 
second conclusion for sequence spaces with SGHP. 
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Theorem 8. Let E have properties SGHP and SUB and assume that 
Y is sequentially complete and (X, Y) has the strong Banach-Steinhaus 
property. Let {T  i} ~_ E ar be such that limi Ti .x  = T ' x  exists for each 
x e E  (Theorem 7 is applicable so T~E~Y). I f  K is bounded in E and such 
that QjK is precompact in X for each j, then lim i Ti. x = T ' x  uniformly 

for x~ K. (In particular, if K is precompact and the coordinate functions 
Qj are continuous, the hypothesis is satisfied.) 

Proof. By Theorem 7, T e E  ar so we may assume that T = 0. It 
suffices to show that lira T i- x i = 0 for {x ~} ~ K. If this fails, we may 
assume that there exist a continuous quasi-norm, I a, on Y, an e > 0 
and {x i} c__ K with [ri .xij  > ~ for all i. Put  m 1 = 1 and choose n 1 such 
that 1~7,~ 1 r""x"~l  >e. 

For  each k, lim~ T~x = 0 for x e X  so the convergence is uniform on 
precompact  sets by the strong Banach-Steinhaus  property. Hence, 

lira T~x k = 0 uniformly for x E K  (6) 
i 

since Qk K is precompact.  
By (6) there exists m 2 > m 1 such that 1~7,~= 1 T'~2x'~2[ < ~/2. There 

exists n 2 > n~ such that [ ~ -  1 T'~2x'~l > ~ so [ ~ L . ,  +l T'~2x'~f > ~/2. 
Continuing produces increasing sequences {mk},-{nk} such that 

T~Jx,~ ~ k = .  ~ + 1 > e / 2 .  ( 7 )  

Define a block sequence z J=  (0,...,xmj_ 1 + 1,'" .,X'~j, O...). Then {z j} 

is bounded  in E since K is bounded and E has SUB. Consider the 
matrix M = [Tmi'zJ]. We claim that M is a Y-matr ix .  First, the 
columns of M converge to 0 since zJeE. Next, if {p j} is an increasing 
sequence, by S G H P  {pj} has a subsequence {qj} such that z =  

OO GO = ~,j = a zqj e E so ~ j  = 1 Tra'" zqj = T"'" z ~ 0 by hypothesis. Hence, M is 
a ~(-matr ix and by the Basic Matrix Theorem the diagonal of M 
converges to 0 contradicting (7). 

Corollary 9. (Sequential Equicontinuity). Let E satisfy the hypo- 
thesis of Theorem 8 and let E be a K(X)  space. I f  xJ~O,  then 
lim~ Ti.x  j = 0 uniformly for ieN.  In particular, if E is a metric linear 
space, then { T i} is equicontinuous. 

Proof. The result follows from Theorems 1 and 8. 
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We now consider some consequences of Theorem 8 for the scalar 
case. 

Corollary 10. Let  X be the scalar field. Let  E be a K-space with 
SGHP and SUB. Then x i ~ 0 in a(E p, E) if  and only i f  x i ~ 0 uniformly 
on bounded subsets o f  E, i.e., i f  and only i f  x i -~ 0 in the strong topology 
fl(E ~, E) o f  E p. In particular, a subset B ~ E p is a(E p, E) bounded i f  and 
only if  B is strongly bounded so E is a Banach-Mackey  space ([24] 
10.4.3). 

We can also obtain a version of the Schur Theorem from 
summabil i ty  on the equivalence of weak and norm convergence of 
sequences in f l .  Denote  by Coo the space of all scalar sequences which 
are eventually zero equipped with the sup-norm. 

Corollary 11. Let Coo ~_ E c 4 | and suppose that E p = E ~ with the 
inclusion map from Coo into E continuous. I f  E is a K-space with S G H P  
and SUB, then yi ~ 0 in a( f  1, E) if  and only if  II y~ II1 ~ 0. 

Proof. The set {C,:a_~ N finite} = ~- is bounded  in Coo and, 
therefore, in E. By Corollary 10, y~" C~ ~ 0 uniformly for C,~,~-. Thus, 
given e > 0 ,  there exists n such that  i~> n and a finite implies 
I~ j~y) l  < e. Hence, ~ j ~ l  ly~l-- Ily'[l~ ~< 25 for i>~n. 

If E -- f~ ,  this is a result due to Schur, sometimes referred to as 
Schur's L e m m a  [18]. The result was extended to E = m o  by Hahn  
[10]; a l though m 0 does not  have SGHP,  we can obtain Hahn 's  result 
from Corollary 11 by employing the fact that  m o is a barrelled space 
([24] 15.1.3). Indeed, if E = m o  in Corollary 11, then {y~} is pointwise 
bounded  on E and, therefore, no rm bounded  since m o is barrelled. 
Then the sequence {yl} is equicont inuous and converges pointwise 
on m o which is a dense subspace of ~o~ so {yi} converges pointwise 
on E ~ and Corollary 11 implies [[ y~ 1[ ~ ~ 0. 

The gliding h u m p  proper ty  bears a strong resemblance to the 
quasi-a-family proper ty  of SAMARATUNGA and SEMBER and Corol lary 
11 has much  the same flavor as Theorem 2.5 of [20]. 

3. Hellinger-Toeplitz Result 

The classical Hel l inger-Toepl i tz  Theorem asserts that  any infinite 
(scalar) matrix A = [aij] which maps E 2 into f2, i.e., Vx~f  2, 
{ ~ j ~ l  ai~xJ} = A x e f 2 ,  is (norm) cont inuous  [11]. In this section we 
establish analogues of this theorem for operator-valued matrices 
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which map  vector sequence spaces to vector sequence spaces. 
Let Aij~L(X, Y) for i,j6N and let A be the matrix [Aij]. Let F 
be a sequence space of Y-valued sequences equipped with a 
Hausdorff  vector topology. We say that  A~(E,F) if and only if 
Ax = {~7=a A,jxj}~V for every x~E, i.e., if and only i fA maps E into 
F. We seek condit ions which guarantee the continuity of A with 
respect to the original topologies of E and F as in the classical 
Hel l inger-Toepl i tz  Theorem.  Such a result for vector F K  spaces has 
been established by BARIC ([4] 2.7); see also [23] and [12] 34.7, for 
scalar  results. We can now give our  vector form of the Hell inger-  
Toeplitz Theorem. 

Theorem 12. Assume that each T~E ~Y induces an operator in 
L(E, Y) (e.9., Corollary 2) and that (E, F) has the weak Banach-Steinhaus 
property. Assume that F is an AK space with property (I). Then any 
matrix A which maps E into F, i.e. A6(E, F) is continuous. 

Proof. Let A i be the i th r O W  of the matrix A. Since A~(E, F), each 
AidE 13Y and by hypothesis the composit ion map  x ~ A i. x ~ e ~ | ( A i. x) 
is cont inuous  from E into F for each j. Therefore, T,:x ~ ( A l . x , . . . ,  
A".x,O,...) is cont inuous  from E into F for each n. By hypothesis,  
T , x ~ A x  for each x~E, and since (E,F) has the weak Banach -  
Steinhaus property,  A is continuous.  

If E is a bornological,  K(X) space with SGHP,  each T~E r 
induces an element of L(E, Y) by Corollary 2 so if (E,F) has the 
weak Banach-S te inhaus  proper ty  and F satisfies the hypothesis  of 
Theorem 12, Theorem 12 is applicable in this situation. For  example, 
if X is a Banach space and :P(X) is space of all X-valued sequences 
X = {Xk}  with {[I x k II } ~lp, 1 <~ p <~ oo, then :P(X)has SGHP,  I and is 
a K(X) space if :P(X) is equipped with the (complete) no rm II x lip = 
= II { 1[ x k II } Itv. If 1 ~< p < 0% :P(X) also has AK. Similarly, if co(X ) is 
the space of all X-valued sequences with lim II Xk 1[ = 0 and co(X ) is 
equipped with the sup-norm, then co(X ) is a K(X) space with I and 
AK but  not  SGHP.  If q~(X) is equipped with the sup-norm, then q~(X) 
is a K(X)-space with I and AK. Thus, if Yis also a B-space, Theorem 12 
is applicable with E equal to :v(X) for 1 ~< p ~< oo and F equal to :P(Y) 
for 1 ~ p < oo or co(Y ) or qS(Y). BARIC ([4] 2.7]) has given a similar 
result for complete  metrizable K(X)-spaces; the case F = ~(Y) is not  
covered by BARIC'S result. In particular, the scalar case of this result 
clearly implies the classical Hel l inger-Toepl i tz  Theorem. 
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