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Abstract. It is shown that vector sequence spaces with a gliding hump property have many
of the properties of complete spaces. For example, it is shown that the f-dual of certain vector
sequence spaces with a gliding hump property are sequentially complete with respect to the
topology of pointwise convergence and also versions of the Banach—Steinhaus Theorem are
established for such spaces.

1. Introduction

The gliding hump property for sequence spaces has been used to
treat various topics in the theory of sequence spaces [16, 17, 19]. The
gliding hump property has at least some formal resemblance to the
A -property for normed linear spaces introduced in [1], and the
A -property has been shown to be a useful substitute for completeness
in treating various topics in functional analysis such as the uniform
boundedness principle, the Mazur—Orlicz Theorem for separately
continuous bilinear maps and the closed graph theorem [3]. This
suggests that the gliding hump property may serve as a substitute for
completeness in sequence spaces. In this note we show that this is
indeed the case. As in the case with the J# -property, we show that the
Basic Matrix Theorem of ANTOSIK and MIKUSINSKI ([3] 2.2)‘can be
used to show that sequence spaces with the gliding hump property
have many of the properties of complete spaces, and, in fact, the Basic
Matrix Theorem can be used to treat the case of vector-valued
sequence spaces with operator-valued f-duals as introduced by
MaDDOX [15]. Our vector results give generalizations of scalar results
of NoLL [16], and the proofs given by the Basic Matrix Theorem give
interesting contrasts to the previous scalar proofs.
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1. Preliminaries

Henceforth, X and Y will denote Hausdorff topological vector
spaces and L(X,Y) will denote the space of all continuous linear
operators from X into Y. We will say that the pair (X, Y) has the weak
Banach-Steinhaus property if {T,} < L(X, Y) and lim,, T;.x = Tx exists
for each xeX implies that TeL(X, Y); if in addition lim, T, x = Tx
uniformly for x in precompact subsets of X, the pair (X, Y) will be
said to have the strong Banach—Steinhaus property. For example, if X
is barrelled and Y is locally convex, (X, Y) has the strong Banach—
Steinhaus property [24].

We give a description of the General Uniform Boundedness
Principle (General UBP) which will be used below. A sequence
{x;} € X is said to be £ convergent if every subsequence has a further
subsequence {x ,} such that the subseries Z X, converges in X; a
subset B < X is " bounded if {x;} =Bandt; 50 'implies that {t;x;}
is A" convergent [ 1, 3]. A # bounded set is always bounded but not
conversely, in general. A space in which a bounded set is /£ bounded
is called an </-space [14]; for example, F-spaces are «/-spaces. For
of -spaces, we have the following General UBP: if X is an .«/-space
and I' € L(X, Y) is pointwise bounded on X, then I' is uniformly
bounded on bounded subsets of X ([14], Corollary 4).

Let s(X) be the vector space of all X-valued sequences, where the
operations of addition and scalar multiplication are coordinatewise.
Let E be a topological vector space which is a subspace of s(X). If
x€eE, the k'™ coordinate of x will be denoted by x,, i.e., x = {x,}, and
the coordinate function x — x, will be denoted by Q,. We call E a
K(X) space if each Q, is continuous [ 7]; if X is the scalar field and the
coordinate functionals are continuous, E is called a K-space. For each
n, let P, be the section map E— E which sends x =(x;,x,,...)—
(Xg5--+5X,,0,...). Wesay E has the property AK (respectively, AB, SB,
SUB)if each P, is continuous and P,x — x for each xe E (respectively,
{P,x} is bounded for each xeE, each P, is bounded, {P,} is uniformly
bounded on bounded subsets of E).

Following NoLL [16] we say a sequence, {z"}, of non-zero vectors
from s(X) is a block sequence if there exists a strictly increasing
sequence of positive integers {k;} such that

"=(0,...,0,z" z",0

n el 0,0,
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We say E has the strong gliding humps property (SGHP) if given any
block sequence, {z"}, which is bounded in E there is a sequence {n,}
such that z= ) *  z™eE (the convergence of the series is understood
to be coordinatewise). We say E has the weak gliding humps property
(WGHP) if given xeE and any block sequence {x*} with x =Y  x*
{(pointwise sum), then every subsequence has a further subsequence
{m with =3  x™eE [16].

If xe X and ¢; is the scalar sequence with a 1 in the j* coordinate
and O elsewhere, we write ¢; ® x for the X-valued sequence with x in
the j™ coordinate and O elsewhere. Let ®(X) be the linear span of
{e;®@x:jeN, xeX} in s(X), i.e. ®(X) is the subspace of all X-valued
sequences with only a finite number of non-zero coordinates.

We assume, henceforth, that E 2 ®(X). Using the notation of [7],
EPY will denote all sequences T= {T,} < L(X, Y) such that the series
Y2  Tix, converges for all x={x,}eE (we require that T, be
continuous as contrasted with Mappox in [15]). We write T-x =
=3 T, when TeE?" xeE. If X and Y are the scalar field, we
write, as usual, E*Y = E*.

2. Results

We begin by establishing a sequential continuity result for spaces
with SGHP.

Recall that the topology of any topological vector space Y is
generated by the family of continuous quasi-norms on Y'so a sequence
{¥;} € YconvergestoOin Yifand onlyif | y,;| - 0 for every continuous
quasi-norm, | |, on Y [9].

Theorem 1. Let TeE?Y and assume that E is a K(X) space having
SGHP. If x*—0 in E, then T-x'—-0 in Y, ie, T is sequentially
continuous.

Proof. If not, there is a continuous quasi-norm | { on Y, a
sequence x' — 0in E and ¢ > O such that | T-x'| > e for all i. Put m, = 1.
There_: exists n; such that {37t Tk_xf‘l > ¢. By the K-space property,
lim;x, = 0 for each k and since T, is continuous, there exists m, > m,
such that Zz‘: A Txp?| <e/2. There exists n,>n; such that
Y, Tixg?| > e Hence, |Z;2:m +1 Tex?| > &/2. Continuing this
construction produces increasing sequences of positive integers {m,},
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{n,} such that

Y Txmvi> /2. (1)
k=n;j+1
Define a block sequence {z/} by z/=(0,...,0, Xyt e s Xt 1,0,..).

By SGHP, there exists {p,} such that
z={z}= ) z’™eE.
k=1

Then T'z =) | T,z doesn’t converge since the partial sums of this
series are not Cauchy by (1).
Compare Theorem 1 with 7.2.9 of [25] and Exer. 3.8 of [13].

Corollary 2. Let E be as in Theorem 1. Each TeE*Y is a bounded
operator from E to Y; if E is bornological, T is continuous.

If E satisfies the hypothesis of Theorem 1 and is bornological, then
by Corollary 2 we may consider E** to be a subspace of L(E, Y). Let
. us say that the sequence space E has property (I) if for each j the
injection x —¢;® x is continuous from X into E. If E has properties
(I)and AK, then EFY = L(E, Y); for if AcL(E, Y), then T, x = A(e, ® X)
defines a continuous linear operator T,e (X, Y)and Y 7_, T,x,— Ax
foreach xeEso T = {T,}€ E** and Ax = T-x. Compare this statement
with 7.2.9 of [25].

If X is the scalar field in Corollary 2, let E° be the space of
sequentially continuous linear functionals on E. From Corollary 2,
we get the following result.

Corollary 3. Assume X is the scalar field and E is a K-space with
SGHP. Then Ef c E% if E is a bornological AK space, then Ef = E'.

Proof. If E is an AK space, E' < E? ([13] p. 60) so the result
follows from Corollary 2.

This result can be compared with 2.3.9 of [13] which indicates
that SGHP can be used as a substitute for barrelledness.

In [2] (see also [3] and [14]), a general version of the uniform
boundedness principle was established which contained the classical
version of the uniform boundedness principle for F-spaces as a special
case. We next show that such a version of the uniform boundedness
principle holds for certain spaces with the SGHP. As was the case in
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[2], [3] and [14], our principle tool used in the proof is the Basic
Matrix Theorem of Antosik and Mikusinski ([3] 2.2).

Theorem 4. Assume that E has properties SUB and SGHP and that
X is an of-space. If T < E*Y is pointwise bounded on E, then T is
uniformly bounded on bounded subsets of E.

Proof. If not, there exist a continuous quasi-norm, | |, on Y,
{T*} =T, {x*} = E bounded, t, —»0 and & > 0 such that |z, T* x*| > &
for all k.

Before beginning our construction, we make a preliminary observa-
tion for use in the construction. For each n, the section P, is bounded
(property SB) and has range in the subspace [[7_ X x {0,...} = X,
which is an »/-space since X is a «/-space. The sequence {T*} is
pointwise bounded on X, so {T*} is uniformly bounded on bounded
subsets of X, by the General UBP discussed above ([14] Cor. 4).
Hence, for each n,

lime¢; ) Tix, =0. 2)
L k=1
Set m; = 1. Pick n, such that |z, > 7. Trix"|> 6. By (2), there
ism, >m, suchthat|t,, > ¥  Ty?x7?| < /2. Thereexists n, > n, such
that |z, ) 22, Ty*x7*?| > 6. Thus,
n2
SIS e

k=n;+1

> §/2.

ma

Continuing this construction produces two increasing sequences
{mc}, {n,} such that

nj+1

Z TZ!, +1 xlr:lj+ 1

k=nj+1

t >§/2  forallj. 3)

mi+t

Define a block sequence {z/} by z/=(0.. H,...,xn"’f,O )
and consider the matrix M = [t, T™-z/]. We clalm that M is a
A -matrix (see [3] §2). The columns of M converge to 0 by the
pointwise boundedness assumption. By SUB and SGHP, given any
subsequence there is a further subsequence {p;} such that z=

= zw zPieE. Then

Z b T 2P = ¢, T™ 20

j=1
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by the pointwise boundedness assumption, and M is, indeed, a
A -matrix. By the Basic Matrix Theorem of Antosik—Mikusinski ([3]
2.2, [14]), the diagonal of M converges to 0 contradicting (3).

If E satisfies the hypothesis of Theorem 4 and if E is in addition
a normed space and TeEfY, then {TP,},, is pointwise bounded on E
so {TP,}, is bounded on the unit ball of E. Thus, one can define a
B-norm for T,B(T)=sup{||dr_, Tixill:n, |x||<1}. Even in the
scalar case, the f-norm is usually only defined for B-spaces, so
Theorem 4 allows a relaxation of this requirement ([25], 4.3.16).

Corollary 5. Let E be as in Theorems 1 and 4. If E is bornological
and quasi-barrelled, then T is equicontinuous.

Proof. If E is bornological, E*Y = L(E, Y) by Corollary 2 and T is
equicontinuous by Proposition 11 of [14].
We now consider the case when X is the scalar field.

Corollary 6. Assume X is the scalar field and E has properties SUB
and SGHP.

(i) If EFc E', then o(E',E) bounded subsets of E* are B(E',E)
bounded.

(ii) If E* =F, then o(E,E) bounded subsets of E are B(E' E)
bounded so E' (and also E) is a Banach—Mackey space ([24] 10.4).

(iii) If E®# = E’ and E is quasi-barrelled, then E is barrelled.

Proof. (i) follows immediately from Theorem 4; (ii) follows from
(1); (iti) follows from (ii) and 10.1.11 of [24].

Note from Corollary 3, if E is a bornological K-space with SGHP,
E? = E’ so the hypothesis of (i) is satisfied; if, in addition, E is an AK
space, E' = E* so the hypothesis in (ii) and (iii) is satisfied.

Corollary 6 can be used to drop the completeness hypothesis from
Theorem 2 of [16]. In Theorem 2 of [16], NOLL used the completeness
of the space E to invoke a form of the Banach-Steinhaus Theorem.
From Corollary 6(i) it follows that if E is a normed (actually even
bornological ([24] 10.1.10)) K space with properties SUB and SGHP,
then any pointwise bounded family of elements of E* is equicontinu-
ous and the form of the Banach—-Steinhaus Theorem used by NoLL
is then available.

Corollary 6(iii) is a result of the same nature as Theorem 4.1 of
[5], Satz 3.1 of [21] and Theorem 1 of [17]. The assumptions on the
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space E are quite different than those in the results cited above; in
particular, the space E is required to be normed in the results above,
whereas this condition is relaxed in (iii).

From (iii) it follows that the Closed Graph Theorem is applicable
to any quasi-barrelled K space with properties SUB and SGHP.

We next consider the sequential completeness of EfY with respect
to the topology of pointwise convergence on E. In the scalar case our
result gives a generalization of NOLL’s result on the sequential
completeness of (E?, 6(Ef, E)) when E has WGHP ([16], Theorem 5).

Theorem 7. Let E have WGHP and assume that Y is sequentially
complete and (X, Y) satisfies the weak Banach—Steinhaus property. If
{T*} = E*" is such that lim, T*x exists in Y for each xeE and if
Tx =lim, T*-(e;® x) = lim; T%x for xeX, then T = {T;}€E"" and
lim, T x = T-x. (Note T; as deﬁned above helongs to I{X,Y) by the
weak Banach—Steinhaus property)

Proof. First, we claim that T = {T,}€E*". If not, there exists xeE
such that ) T;x; doesn’t converge. By the sequential completeness of
Y there exists a continuous quasi-norm, | |, on Y, an ¢>0 and
increasing sequences {m,}, {n,} with n, <m, <n,, , such that

nj
Z Tox > e

k=nj

4)

Let I; —{k n;<k<m;} and consider the matrix M =[T"C, x],
where C,is the characteristic function of I. We claim that M is a
A -matrix. First, each column of M converges to T-C 1,%- Next, if {p;}
is an increasing sequence of posmve integers, by WGHP { pJ} has a
subsequence {¢;} such that ¥ =}, C; xeE.Hence,y > T"C; x=
= T* % converges in Y by hypothems Thus Misa A - matrlx and by
the Basic Matrix Theorem ([3] 2.2, [14]),

0 = limlim T*-C,, x—hmhm T:Cpx=lim Y Tyx,

i J j kel ;

contradicting (4).

Next, we claim that lim; T*-x = T x for each xeE. If not, we may
assume that there exist a continuous quasi-norm, | |,on Y, an e >0
and xeE such that |(T'— T)-x| > ¢ for all i. Put m, = 1 and pick ny
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such that |y (T} — T,)x,| > & There exists m, > m, such that

<gf2

Z (Tsz ~ T)x,
k=1

and there exists n, > n, such that

Z (T;cnz_ Tk)xk >8
k=1
SO
Y (T — T)x,| > /2.
k=n1+1

Continuing produces increasing sequences {m;}, {n;} such that

nj

Z (TZ'j — Ty)x,
k=n;_1+1
As above the matrix M = [ZZ;M_ +1 (T — TYx,] is a A "-matrix so
its diagonal converges to 0 contradicting (5).

From Theorem 7 it follows that E*Y is sequentially complete with
respect to the topology of pointwise convergence on E. In particular,
when X is the scalar field and E has WGHP, Ef is 6(E?, E) sequentially
complete. This is a result of NoLL ([16], Theorem 6); the proof above,
even for the vector case, should be contrasted with NoLL’s proof. In
this case (Ef,o(Ef,E)) is a Banach-Mackey space and o(E’ E)
bounded sets are f(E?, E) bounded ([24] 10.4.8).

A sequence space E is said to be monotone if myE = E, where m,
is the space of scalar sequences with finite range and myE is the
pointwise product [6]. Bennett has shown that if E is monotone, then
o(E?, E) is sequentially complete [6]. A monotone space has WGHP
so NoLL’s result ([ 16], Theorem 6) gives a generalization of Bennett’s
result.

Finally, we consider a form of the Banach—Steinhaus Theorem for
sequence spaces with SGHP. Recall that if X is an F-space and
{T,} = L(X, Y)is such thatlim, T, x = Tx exists for each xe X, then the
Banach-Steinhaus Theorem asserts that T is continuous and,
moreover, the limit, lim, T, x = Tx, is uniform for x in compact subsets
of X ([3] 5.2). For E?Y, the first conclusion of the Banach-Steinhaus
Theorem was addressed in Theorems 1 and 7. We now address the
second conclusion for sequence spaces with SGHP.

> ¢/2. ()
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Theorem 8. Let E have properties SGHP and SU B and assume that
Y is sequentially complete and (X, Y) has the strong Banach—Steinhaus
property. Let {T'} < E®Y be such that lim; T'-x = T-x exists for each
x€E (Theorem7 is applicable so Te E*Y). If K is bounded in E and such
that QK is precompact in X for each j, then lim; T x = T-x uniformly
Sor xe K. (In particular, if K is precompact and the coordinate functions
Q; are continuous, the hypothesis is satisfied.)

Proof. By Theorem 7, TeE*Y so we may assume that T=0. It
suffices to show that lim 7%-x' = 0 for {x'} < K. If this fails, we may
assume that there exist a continuous quasi-norm, | |, on Y, an ¢ >0
and {x'} = K with | T"-x'| > ¢ for all i. Put m, = 1 and choose n, such
that Y7 T™-x™|>e.

Foreach k,lim; T, x = 0 for xe X so the convergence is uniform on
precompact sets by the strong Banach—Steinhaus property. Hence,

limTix, =0  uniformly for xeK (6)

since Q, K is precompact.

By (6) there exists m, > m;, such that |)7 | T72x™| < ¢/2. There
exists n, > ny such that |32 Trx™| > ¢ 50 [2at o g Toaxm2] > /2.
Continuing produces increasing sequences {m,}, {n,} such that

1
mj..mj
Z Xy

k=nj_1+1

> /2. )

Define a block sequence z/ = ©,...,x7% L (,...,x,0...). Then {27}
is bounded in E since K is bounded and E has SUB. Consider the
matrix M =[T™-z’]. We claim that M is a % -matrix. First, the
columns of M converge to 0 since z/e E. Next, if {p ;} is an increasing
sequence, by SGHP {p;} has a subsequence {q;} such that z=
=), z%€Es0 Zfz , T™-z% = T™-z -0 by hypothesis. Hence, M is
a A -matrix and by the Basic Matrix Theorem the diagonal of M
converges to 0 contradicting (7).

Corollary 9. (Sequential Equicontinuity). Let E satisfy the hypo-
thesis of Theorem 8 and let E be a K(X) space. If x'—0, then
lim; T'-x/ = O uniformly for ieN. In particular, if E is a metric linear
space, then {T'} is equicontinuous.

Proof. The result follows from Theorems 1 and 8.
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We now consider some consequences of Theorem 8 for the scalar
case.

Corollary 10. Let X be the scalar field. Let E be a K-space with
SGHP and SUB. Then x' -0 in o(E?, E) if and only if x' — 0 uniformly
on bounded subsets of E, i.e., if and only if x' — 0 in the strong topology
B(E®, E) of E*. In particular, a subset B < E* is o(E?, E) bounded if and
only if B is strongly bounded so E is a Banach—Mackey space ([24]
10.4.3).

We can also obtain a version of the Schur Theorem from
summability on the equivalence of weak and norm convergence of
sequences in 1. Denote by c,, the space of all scalar sequences which
are eventually zero equipped with the sup-norm.

Corollary 11. Let c,, S E = ¢* and suppose that Ef = /' with the
inclusion map from c into E continuous. If E is a K-space with SGHP
and SUB, then y' -0 in o(¢*, E) if and only if || y*||; = 0.

Proof. The set {C,:6 =N finite} =% is bounded in c,, and,
therefore, in E. By Corollary 10, y*-C, — 0 uniformly for C,e.%. Thus,
given ¢ >0, there exists n such that i>n and o finite implies
)e0 Vil <& Hence, Y2 |yl =y'], <2efori>n.

If E=/%, thisis a result due to Schur, sometimes referred to as
Schur’s Lemma [18]. The result was extended to E =m, by Hahn
[10]; although m, does not have SGHP, we can obtain Hahn’s result
from Corollary 11 by employing the fact that m, is a barrelled space
([24] 15.1.3). Indeed, if E = m,, in Corollary 11, then {)'} is pointwise
bounded on E and, therefore, norm bounded since m, is barrelled.
Then the sequence {)'} is equicontinuous and converges pointwise
on m, which is a dense subspace of #* so {y’} converges pointwise
on #® and Corollary 11 implies ||y'|; —O.

The gliding hump property bears a strong resemblance to the
quasi-o-family property of SAMARATUNGA and SEMBER and Corollary
11 has much the same flavor as Theorem 2.5 of [20].

3. Hellinger—Toeplitz Result

The classical Hellinger—Toeplitz Theorem asserts that any infinite
(scalar) matrix A=[a;] which maps ¢ into /7 ie., Vxe/?
{352, aiyx;} = Axe/?, is (norm) continuous [11]. In this section we
estabhsh analogues of this theorem for operator-valued matrices
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which map vector sequence spaces to vector sequence spaces.
Let A;;e (X, Y) for i,jeN and let A4 be the matrix [4;]. Let F
be a sequence space of Y-valued sequences equipped with a
Hausdorff vector topology. We say that Ae(E, F) if and only if
Ax={}" | A;;x;}€F for every xeE, ie, if and only if 4 maps E into
F. We seek conditions which guarantee the continuity of A with
respect to the original topologies of E and F as in the classical
Hellinger—Toeplitz Theorem. Such a result for vector FK spaces has
been established by BAric ([4] 2.7); see also [23] and [12] 34.7, for
scalar. results. We can now give our vector form of the Hellinger—
Toeplitz Theorem.

Theorem 12. Assume that each TeEPY induces an operator in
I(E, Y)(e.g., Corollary 2) and that (E, F) has the weak Banach—Steinhaus
property. Assume that F is an AK space with property (I). Then any
matrix A which maps E into F, i.e. Ae(E, F) is continuous.

Proof. Let A' be the i'™® row of the matrix A. Since Ae(E, F), each
A'e EPY and by hypothesis the composition map x — A x — ¢;® (A" x)
is continuous from E into F for each j. Therefore, T,:x —(A!'x,...,
A"x,0,...) is continuous from E into F for each n. By hypothesis,
T,x— Ax for each xeE, and since (E,F) has the weak Banach-—
Steinhaus property, A4 is continuous.

If E is a bornological, K(X) space with SGHP, each TeE’Y
induces an element of I(E,Y) by Corollary 2 so if (E, F) has the
weak Banach—Steinhaus property and F satisfies the hypothesis of
Theorem 12, Theorem 12 is applicable in this situation. For example,
if X is a Banach space and #?(X) is space of all X-valued sequences
x = {x,} with {||xk|I}el" 1 < p< oo, then £7(X) has SGHP, I and is
a K(X) space if /7(X) is equipped with the (complete) norm | x l,=
={l X, I}, If 1 < p< oo, #%(X) also has AK. Similarly, if cG(X)
the space of all X-valued sequences with lim || x,|| =0 and c,(X) is
equipped with the sup-norm, then ¢y(X) is a K(X) space with I and
AK but not SGHP. If ®(X) is equipped with the sup-norm, then ®(X)
is a K(X)-space with I and AK. Thus, if Yis also a B-space, Theorem 12
is applicable with E equal to /?(X) for 1 < p< o0 and F equal to #7(Y)
for 1 <p < or ¢y(Y) or ¢(Y). BARIC ([4] 2.7]) has given a similar
result for complete metrizable K(X)-spaces; the case F = ®(Y) is not
covered by BARIC’s result. In particular, the scalar case of this result
clearly implies the classical Hellinger—Toeplitz Theorem.
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