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Summary. Applying Newton's  method to a particular system of nonlinear 
equations we derive methods for the simultaneous computat ion of all zeros 
of generalized polynomials. These generalized polynomials are from a func- 
tion space satisfying a condition similar to Haar 's  condition. By this approach 
we bring together recent methods for trigonometric and exponential polyno- 
mials and a well-known method for ordinary polynomials. The quadratic 
convergence of these methods is an immediate consequence of our approach 
and needs not to be proved explicitly. Moreover, our approach yields new 
interesting methods for ordinary, trigonometric and exponential polynomials 
and methods for other functions occuring in approximation theory. 

Subject Classifications: AMS(MOS):  65H05, 65H10; CR: G1.5. 

1. Introduction 

Suppose that we are given a polynomial p of degree n which has exactly n 
distinct zeros w~, ..., w, in the complex plane. If we normalize p to have leading 
coefficient one the other coefficients o fp  are related to w~ . . . .  , w, in a well-known 
manner via the elementary symmetric functions. So we can build up a system 
of n nonlinear equations expressing the dependence of the coefficients of p on 
the values of the zeros of p. Usually we know the coefficients of p whereas 
the zeros are unknown. To approximate the zeros of p numerically we can 
now apply the n-dimensional Newton's  method to our system of equations. 
This yields a surprisingly simple iterative method for the simultaneous computa-  
tion of all zeros of p. The Q-rate of convergence of this method is at least 
2 (cf. [10, Definition 9.1.5] for a definition of the Q-rate), since all the conditions 
of the standard theorem on quadratic convergence of Newton's  method are 
fulfilled (e.g. [10, Theorem 10.2.2]). 

The method sketched above occurs frequently in literature and seems to 
have been rediscovered several times using different approaches. The resulting 
formulae can already be found in Weierstrag Ell].  The approach we outlined 
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here was used in Durand [5] and Kerner [6], whereas Do~ev [4] obtained 
the method using a continuation principle. Note that Do6ev had to prove the 
quadratic convergence explicitly. 

Recently, methods for the simultaneous computat ion of all zeros of a given 
trigonometric or exponential polynomial were developed by Angelova and 
Semerdzhiev [2] and Makrelov and Semerdzhiev [7], respectively. These meth- 
ods were obtained using a continuation principle similar to that of Do~ev [4]. 
The Q-rate of convergence of these methods is again at least 2 as is shown 
by rather laborious calculations in [2] and [7]. 

Our unified approach is to generalize the approach of Durand and Kerner 
to other functions than polynomials. Suppose that we are given an (n + 1)-dimen- 
sional space V of functions and an element f of V having exactly n distinct 
simple zeros. We assume that the coefficients of J" with respect to some base 
of V depend in a unique manner  on the zeros of f provided f satisfies one 
additional linear constraint. This constraint may be viewed as a generalization 
of the normalizing condition for polynomials. We then apply Newton's  method 
to the nonlinear system which expresses the coefficients of f as a function of 
its zeros. The resulting computat ional  scheme will be seen to be very simple. 
If the elements of V are sufficiently smooth functions, the theorem on local 
convergence of Newton's  method establishes that our method converges with 
a Q-order of at least 2. For  special choices of the space V we obtain the conver- 
gence results for the methods for trigonometric and exponential polynomials 
of [2] and [7] without any further calculations. Moreover, we will show that 
our approach not only yields new quadratically convergent methods for ordi- 
nary, trigonometric and exponential polynomials but also applies to other 
important  spaces V such as exponential sums or sums of sines which are not 
trigonometric polynomials. 

Finally, let us just mention that our approach is related to a particular 
method which can be used in approximation theory to perform the simultaneous 
exchange step in the iterative method of Remez (cf. [8, p. 115], [9]). 

2. Notation 

Let IK=IR or K = ( E .  Since we will have to distinguish between vectors and 
scalars we reserve the bold characters w,x and y for vectors in IK" with x 
=(x l  . . . . .  x,) r etc. Alternatively, we sometimes will find it useful to denote the 
i-th component  of a vector x by (x)i. 

Given a function f :  U ___ lK" -.D( we write 0 i f (x  ) to denote the partial deriva- 
tive of f with respect to the i-th variable evaluated at x. Analogously, we write 
c~i;f(x ) for the corresponding second partial derivative. 

If  f :  U _ ~ I K ~ I (  is a function of only one variable t we write f ( t )  to denote 
the derivative o f f  evaluated at t. 

We will often be concerned with functions g of the form g = g ( x ,  t) where 
xEIK n, t6~(. In this case, the partial derivative with respect to the variable 
t is again denoted by ~(x, t), whereas the partial derivative with respect to the 
i-th component  of x is written in the form 01 g(x, t). 
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3. The Unified Approach 

Let ! be a subset of  IK which, for the sake of  simplicity, we assume to be 
open. Let V denote an (n+  l)-dimensional subspace of  C2(I), spanned by the 
twice cont inuously differentiable functions g~: I--* IK, i = 1 . . . . .  n + 1. 

Suppose that we are given a function f ~  V having exactly n distinct simple 
zeros wi, ..., w, in I, i.e. we have f ( w l ) = 0  and f(wi)@O for i =  1 . . . . .  n. Usually, 
f will be expressed in terms of  the base functions g~: 

n + l  

f =  ~ aigi, where aielK for i = 1  . . . . .  n + l .  
i = 1  

Our problem is to approximate  the zeros of  f numerically. To this purpose  
suppose that we are given a linear functional 

( :  V--* IK 

such that  for x~ sufficiently close to w~ there is exactly one function gE V satisfying 

and 

g (x l )=0  for i =  1 . . . .  , n (3.1) 

{ ( g ) = ( ( f )  with { ( f ) + 0 .  (3.2) 

Since all scalar multiples of  g satisfy (3.1) too, equat ion (3.2) may be viewed 
as a normalizing constraint  to obtain uniqueness of  g. The above condit ions 
are fulfilled in two typical si tuations:  

a) The functional ( is given by t ':  g~g( to)  with to+wi for i =  1 . . . . .  n and 
V satisfies the (n + 1)-dimensional Haar -cond i t ion :  

Given (n+  1) distinct points to . . . .  , t, e l  and (n+  I) numbers  a0 . . . . .  a , c ~  
there is exactly one function gE Vwith g (h )=  ai, i = 0 ,  ..., n. 

b) The functional { is given by 

n + l  

[ :  g =  '~ bigi---~bj- 
i = 1  

where jE{1 . . . . .  n + l }  is fixed, arid the space spanned by the functions gi, 
i= 1 . . . . .  n + 1, i +j, satisfies the n-dimensional Haar-condi t ion.  

For  the momen t  let us choose the base functions gi in such a manner  that  
we have g,+ l = f  and # (g i )=0  for i =  1 . . . . .  n. This is always possible. A rapid 
calculation now shows that  g satisfies (3.1) and (3.2) if and only if 

g =  ~" blgi-t- f 
i = 1  
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with 

1.  =_ 
b.(x)] gl (x.) ... g.(x.)  

-1 f(.x,)] 
I(x.)j 

(3.3) 

This is a system of  n nonl inear  equat ions  expressing the coefficients bl of g 
as a function of  the vector x = ( x l  . . . . .  x,) r, the vector of zeros of g. Since g 
itself depends on x it will be useful to write 

g = g ( t ) = g ( x ,  t )=  ~ bi(x) g, ( t )+f ( t ) .  (3.4) 
i = 1  

By our  assumptions  the function 

B(x)=(b l (x) ,  ..., b,(x)) r (3.5) 

is defined and twice cont inuously  differentiable in a ne ighbourhood  U_~ IK" of 
w = ( w  1 . . . .  , w,) r, the vector  of  zeros o f f  Moreover ,  B(w)=0.  To  approximate  
w we may  hence apply Newton ' s  method  to B. For  this we have to calculate 
the inverse of  the Jacobian  B'(x) what  will be done  in the following lemma. 

L e m m a  3.1. I f  B'(x) is non-singular its inverse is given by the matrix 
( f l i j ( X ) ) i , j =  l . . . . . . .  where 

fli j(x) = -- g j( xi)/ ~, (x, xi). (3.6) 

Proof  We calculate 

~/~j(x) ak b j ( x ) = - 1  (~1 ) j = 1 ~ (x,, x3 0k J bj(x) g~(x3 

- 1  
- ~(x, xi) 0k(g(x' Xi)--f(xi)).  (3.7) 

The last equality holds by (3.4). N o w  g(x, x3, as a function of  the n variables 
xl . . . . .  x, ,  vanishes identically. Thus  we have 

and 

Okg(x, Xi)=O for k = l ,  ..., n, k + i  

01 g(x, xi) + ~(x, xi) = O. 

Since Ok f ( x 3  = 0 for i = 1 . . . . .  n we see that  the right side of  (3.7) is 0 for i + k 
and 1 for i =  k. This finishes the proof. [ ]  

Note  that  the p roof  of  L e m m a  3.1 also shows that  B'(w) is non-singular,  since 
g(w, t ) = f ( t )  a n d f ( w i ) + O  for i =  1 . . . . .  n. 
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By Lemma 3.1 we see the i-th component  of the Newton-correction 
B'(x)- l B(x) to be 

n 

j=  1 x i )  

By (3.4) the last sum is equal to g(x, x i ) - f ( x i )  or just - f ( x i )  since g(x, xi)=0.  
Hence we have 

(B'(x)-1B(x))i = f (xi)/~, (x, xl). (3.8) 

Putting all our investigations together we obtain the following theorem. 

Theorem 3.2. Let (M) denote the iterative method which is calculating x k+~ from 
x k by the formula 

X k + l  X k ~ ' ~ x k X t ' l X  k xkX 
i : i - - J [  i ) / g [  , i ) ,  

i =  1, ..., n, k = 0 ,  1 . . . .  (M) 

Then there is a neighbourhood U_clK" of w=(w~, ... ,  w,) r, the vector of zeros 
o f f ,  such that the iterates of method (M) converge to w whenever x ~  The 
Q-order of method (M) is at least 2. 

Proof By the preceding discussion, method (M) is just Newton's  method for 
the function B. B was already seen to be twice continuously differentiable in 
a neighbourhood of w with B(w)=0  and non-singular B'(w). So the theorem 
follows directly from the standard theorem on quadratic convergence of New- 
ton's method (e.g. [-10, Theorem 10.2.2]). []  

Note that method (M) is independent of the special choice of the base g l . . . .  , g, + 1 
of V. 

To perform method (M) we need to construct the functions g(x k, t). This 
can always be done by solving the linear system for the coefficients of g(x k, t) 
arising from (3.1) and (3.2). In the case of ordinary, trigonometric and exponential 
polynomials, however, the functions g(x k, t) can be obtained in a more simple 
manner as we will see in the next section. 

4. Applications 

Here we discuss method (M) for particular choices of the space V and the 
functional f. The methods from [2] and [7] will turn out to be special cases 
of method (M). Moreover,  we will obtain other interesting quadratically conver- 
gent methods which seem to have not been discussed before. 

a) Polynomials 

Let V be the space 

n 
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with t ~ .  Take 

f (t) = ~ al t i 
i = 0  

and let the functional ( be given by 

E: ~ b i t  i--~b n. 
i = O  

n 

Then g(x k, t ) = a , .  H ( t - x k )  and method (M) gives 
i = i  

i 

j = l , j + i  

i=  1 . . . .  , n, k=0 ,  1 . . . . .  (4.1) 

This is precisely the method from Durand [5], DoPey [4] and Kerner [6]. 
Usually f is normalized to have a, = 1. 

Another possible choice for the functional { is 

#: g --* g(to), 

provided t o is not a zero off .  Method (M) then reads 

j = l , j * i  

where 

A k = f ( t o  t o - x~ ) ,  i=  1, . . . ,  n, k=0 ,  1 . . . . .  
i 

Of course, method (4.2) requires slightly more computational work than (4.1). 
However, it might be useful in the case where we can evaluate f but ignore 
the coefficient a,. Another interesting method can be derived from (4.2). Assume 
that f is a polynomial with a o 4 0  and a , =  1. Consider the polynomial h(t)-- 

~ ,a i  t "-i. We have h(0)= 1 and h ( t ) = t " . f ( 1 / t )  for t#:0. Applying method (4.2) 
i=o 
with t 0 = 0  to h we get iterates x k which approximate the inverses of the zeros 
off .  Reformulating (4.2) by substituting k k Yi = 1/Xi we finally obtain 

. k + 1 = y 1 + f ( y i  Yi" ( Y i  - -  Yj , Y i  

j = l , j 4 : i  

i=  1 . . . . .  n, k=O,  1 . . . . .  (4.3) 

Herein the iterates yk converge again quadratically to the zeros of f since their 
inverses converge quadratically. 
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b) Trigonometric Polynomials 

Consider the (2m + 1)-dimensional space of trigonometric polynomials 

V=(g(t)=ao + ~ (ak COSkt+bk sin kt),ao, ak,bk~]R} 
k = l  

with t e ( - ~ ,  ~) and take 

f ( t )  = Co + ~ (CR COS k t + dk sin k t). 
k = l  

(4.4) 

A trigonometric polynomial g~ V having 2m distinct zeros x1 . . . . .  X2m can be 
represented in the form (cf. AngeIova and Semerdzhiev [2]): 

2 rrl 

g ( t ) = c - [ I  s in [ ( t - x i ) / 2 ]  with celR. (4.5) 
i = l  

Thus, if we take the functional 

f :  g ~g(t0),  

where to is not a zero o f f  we have 

2 m  

g(x k, t) = B k I ]  sin [(t - x~')/2] 
i = 1  

with 
2 m  

(4.6) 

Method (M) now reads 

x} =xzk--f(x~) 2-'j=l,j*,l--[ sin[(x~--x~)/2] , 

i=  1 . . . . .  2m, k=0 ,  I . . . . .  (4.7) 

This method was derived by Angelova and Semerdzhiev in [2] using a continua- 
tion principle. In [2] the authors had to perform some rather tedious calculations 
to show that method (4.7) has a Q-order of at least 2. Such additional labour 
is not required in our approach. Furthermore, we believe that our approach 
produces the numbers B k in a more natural manner than the approach of ['2]. 

Let us discuss another choice for the functional f. Since f is supposed to 
have exactly 2m zeros the numbers c,, and d,, of (4.4) cannot vanish both at 
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a time. So we may assume that cm#O, if necessary passing from f(t) to f } - - t  . 

Therefore, we can take the functional 

f: g(t)=ao+ ~ (ak c o s k t + b k  s i n k t ) ~ a , , .  
k = l  

We then have 

2m 

g(x k, t) = ~ '  [ I  sin [(t -- x~)/23, 
i = 1  

where 

B k = C m ' ~  COS ~ i = l  

i=  1 . . . . .  2m, k=0 ,  1 . . . . .  (4.8) 

You may easily verify that the function g(x k, t) from (4.8) actually satisfies 
E(g(xk, t))=cm by considering the corresponding complex polynomial in e i'. 
Method (M) now reads 

"~i'k+l--xi--f(xi �9 sin[(xk--x 2 , 

j=l,j*i 

i=  1 . . . . .  2m, k=O, 1, . . . .  (4.9) 

This method has not been given in literature before. Similar to method (4.7), 
it has a Q-order of at least 2. Numerical experiments show that method (4.9) 
has a relatively wide domain of convergence whereas the domain of convergence 
of method (4.7) depends on the choice of the number to which should be far 
from the (usually unknown) zeros of f In addition, the evaluation of /jk in 
method (4.9) requires less computational work than the evaluation of B k in 
method (4.7). So we conclude that method (4.9) should usually be preferred 
to method (4.7). 

c) Exponential Polynomials 

In a similar manner as in b) we can derive quadratically convergent methods 
for the simultaneous computation of all 2m zeros of a given exponential polyno- 
mial 

f ( t ) =  ~, ak ek', akSN for k=--m,. . . ,m, 
k= -m 
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with telR. The resulting formulae are just the same as (4.6)-(4.9) with all trigono- 
metric functions replaced by the corresponding hyperbolic functions. 

The analog of method (4.7) for exponential polynomials was derived by 
Makrelov and Semerdzhiev [7]. Again, the quadratic convergence of the method 
had to be proven explicitly by laborious calculations in [7]. The analog of 
method (4.9) for exponential polynomials is new. It appears superior to the 
analog of method (4.7) for the same reasons as in b). 

d) Exponential Sums 

Let {21 . . . . .  2,+ i} be a set of (n + 1) distinct real numbers, take 

( n+ 1 biE]mt V= ~[g(t)= ,~= , bi exp(2i t), 

with t~lR and let f ~  V be an exponential sum with n distinct zeros. The space 
V satisfies the (n+l)-dimensional  Haar-condition (e.g. [-3, p. 189]). We hence 
can choose the linear functional ( to be 

(:  g-* g(t0), 

where t o is not a zero o f f  and apply method (M). This time there is no product- 
representation for the functions g(x k, t). Therefore, these functions must be con- 
structed by solving the linear system for the coefficients of g(x k, t) arising from 
Eq. (3.1) and (3.2). 

Alternatively, we can also choose ( to be the functional which maps g~V 
on its coefficient with respect to exp(2, t) (r fixed), provided the coefficient of 
f with respect to exp(2r t) is non-zero. This choice for ~ is possible since the 
space spanned by the remaining functions exp(2 i t), i=  1 . . . . .  n +  1, i=t=r satisfies 
the n-dimensional Haar-condition. As in b) and c) this choice for f is often 
favourable. 

In a similar manner as in d) we can treat various other spaces of functions 
arising in approximation theory. Some of these spaces are listed in [-3, pp. 189 
190], including the spaces 

where 

and 

t n+l t g(t)= ~ b,/(1 -,~i t), b,elR , 
i=I 

{~'1, " ' ' ,  '~n+ 1} ~----(-- 1, 1), t~ ( - -  1, 1) 

~+ 1 t), bi~]Rl, g(t) = i=~1 bi sin(2i 
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where 

{~1 . . . . .  ~n+  1} ~ ( 0 ,  1), t e (O ,  7~'). 

Note that in the latter applications each iterative step of method (M) requires 
additional arithmetic work due to the solution of the linear system for the 
coefficients of g(x k, t). Nevertheless, method (M) remains an attractive method 
since numerical experiments show that it often has a wider domain of conver- 
gence than the one-dimensional Newton's  method for the individual searching 
for zeros of f This fact is explained by Makrelov and Semerdzhiev [7] who 
consider a continuous analog of method (Q) in the case of real ordinary, trigono- 
metric and exponential polynomials. Their explanation carries over to all the 
above applications of method (M). 

5. Numerical Examples 

Here we report two numerical examples which illustrate the typical features 
of method (M). 

a) Let V be the 5-dimensional space of exponential sums given by 

V= g( t )=  ~ bi exp(2i t), bie with t e N ,  
i=1  

where 21 = - 2 ,  22= -0 .5 ,  2 3 =0 ,  2,,=0.7 and 2s =2.  We take the function 

5 

f ( t )  = ~ a i exp(2 i t), 
i=1  

where the coefficients a~ were determined such that a s =  1 and that f has the 
zeros w 1 = - 4 ,  w 2 = - 2 ,  w3=0, w4=2. To apply method (M) we choose the 
linear functional 

5 

~: ~ biexp()~it)--*bs. 
i=1  

The numerical results are written down in Table 1, where we report the values 
of Ixk--w~[ rounded to the second non-zero digit. The initial guesses x ~ were 

Table 1 

i 1 2 3 4 

x ~ - 5.0 - t.0 1.0 3.0 
Ix] wil 8.7.10 I 9 . 4 . 1 0 - I  8.3.10 1 3 .5 .10-1 
Ix{-wil 6.0.10 l 7 .7 .10 -  l 4 .3 .10-1  6 .3 .10-3  
IxP-w~l 2.7.10 1 4.3.10--1 1.4.10 2 7.9.10 4 
Ix4--wil 5.2.10 -2 7.2.10 2 1 .6 .10-3  1.5.10 5 

Ix~-w~l 1.8.10 3 2 .2 .10 -3  2 .4 .10-  ~ 2 .9 .10-~  
[x~--wl[ 1.9.10 -6 2.3.10 -6 1.0.10 8 0 
[x]--wi[ 0 0 8.6-10 13 0 
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deliberately chosen far from the zeros of f to illustrate the wide domain of 
convergence of the method. Note that the initial guess - I is very unfavourable 
for the one-dimensional Newton's method for individual searching for zeros 
of f since the first iteration step then yields -19.08.  The subsequent iterates 
change very slowly. For  example, the 15th iterate is still less than - 12. 

All calculations were done on a kws personal computer  using the M 68020 
micro-processor with 13 decimal digits. 

b) Let V be the 5-dimensional space of trigonometric polynomials given 
by 

V={g(t)=ao+ ~, (ak COSkt +bk sinkt),ak,bk~IR} 
k = i  

with t e ( - n ,  n) and let f e  V be the function 

4 

f(t) = I~ sin [(t-- wi)/2 ] , 
i - I  

where wl = - 1.7, w2 =0.3, w 3 =0.5, w4 = 1.7. (This example is taken from Angelo- 
va and Semerdzhiev [2].) Table 2 reports the numerical results when applying 
method (4.9) of application 4 b) to f We took the same initial guesses as Angelo- 
va and Semerdzhiev [2] who applied method (4.7) to .fi Unfortunately, the au- 
thors do not communicate their choice for the value of t o which is required 
in method (4.7), but numerical calculations indicate that it was t o = 1. 

Compar ing Table 2 with the numerical results of [2] we see that our method 
(4.9) requires only 5 iterations to achieve the accuracy which is attained by 
method (4.7) after 7 iterations. 

Table 2 

i 1 2 3 4 

x ~ - 1.5 0.0 0.7 1.4 

tx~-wlt 2 .7-10  2 1 .3 .10  2 2 .5 -10  2 2 . 2 . 1 0  2 

]x{--wl] 5 . 2 , 1 0  -5  1.6-10 3 1 . 9 ' 1 0  3 2 ,4"10  4 

]X3--Wi] 5.3"10 - 1 ~  1.4"10 S 1 . 4 ' 1 0  S 1 .1 ' 10  7 

]x4-wll 0 9.3.10 lo 9.3.10 lo 0 
IxiS-wll 0 0 0 0 

6. Conclusion 

We explained the quadratic convergence of several existing methods for the 
simultaneous computat ion of all zeros of generalized polynomials by showing 
that they actually result from Newton's  method. Besides a better understanding 
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of exist ing methods ,  our  a p p r o a c h  a lso  yields new me thods  app l i cab le  to a 
larger  class of  general ized po lynomia l s .  

Numer i ca l  examples  show tha t  s imul t aneous  searching  for zeros is often 
preferable  to the ind iv idua l  searching for one zero by  N e w t o n ' s  method .  This  
is due  to a ra ther  large d o m a i n  of  convergence  for the s imul taneous  me thods  
and  can heur is t ica l ly  be exp la ined  by cons ider ing  con t inuous  ana logs  (see [7]). 

There  exist me thods  for the s imul taneous  c o m p u t a t i o n  of  zeros which con-  
verge faster than  quadra t i ca l ly .  F o r  example ,  in the case of  an o r d i n a r y  po lyno-  
mial  p, we have the we l l -known Ehr l ich ' s  m e t h o d  

j =  1 , j * i  

i =  l ,  . . . ,  n, 

which is k n o w n  to converge  cubical ly.  N o t e  tha t  this m e t h o d  requires  the evalua-  
t ion of  the first der iva t ive  of  p. 

The  s imul t aneous  me thods  for o rd ina ry ,  t r i gonomet r i c  and  exponen t ia l  
po lynomia l s  exhibi t  a na tu ra l  para l le l i sm which seems to m a k e  them par t i cu la r ly  
a t t rac t ive  for use on  a vec tor  or  para l le l  compute r .  F o r  example ,  m e t h o d  (4.1) 
has p roved  to be efficient on a C R A Y - 1  (see A l t  [1]). 

W e  did no t  address  the i m p o r t a n t  ques t ion  of how to find sui table  init ial  
a p p r o x i m a t i o n s  requi red  for the  s imul taneous  methods .  
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