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S u m m a r y :  Strong uniqueness has proved to be an important  condition in 
demonstrat ing the second order convergence of the generalised Gauss-  
Newton method for discrete nonlinear approximat ion problems l-4]. Here 
we compare  strong uniqueness with the multiplier condition which has also 
been used for this purpose. We describe strong uniqueness in terms of the 
local geometry of the unit ball and properties of the problem functions at 
the minimum point. When the norm is polyhedral we are able to give 
necessary and sufficient conditions for the second order convergence of the 
generalised Gauss-Newton algorithm. 

Subject Classifications: AMS(MOS):  65D15; CR: 5.13. 

I.  I n t r o d u c t i o n  

Consider the discrete approximat ion problem 

minllf(x)]l 1 (i.1) 
x E R P  

where the function II'll 1: R"-~ R 1, defines a norm on R", the f/(x), i=  1,2 . . . .  , n, 
e C 2 IS] where S ~ R p is large enough to contain all values of x of interest, and 
p<n. Let the min imum value of IIfitl be attained at x*. We say that the 
minimum is strongly unique or that strong uniqueness obtains at x* if 3 7 > 0  
such that 

[if(x) II 1 > II f (x  *)tl 1 + ~ II x - x * ]l 2 (1.2)  

Vx in some ball about  x* where lt'112 is an appropr ia te  norm on R p. If  f is a 
linear function, Vf satisfies the Haar  condition so that all p x p minors formed 
from the rows of Vf are nonzero, and li'1tl is the maximum norm, then it is 
known that the solution to (1.1) is strongly unique. The corresponding con- 
tinuous problem is the best uniform norm approximat ion of a function g(t) by 
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linear combinations of a finite set of functions on a compact interval I. It is 
known that strong uniqueness obtains for Vg~C[I] iff the set of approximat- 
ing functions form a Chebyshev set [3J. Recently Cromme [4] has studied the 
consequences of strong uniqueness for nonlinear discrete approximation in the 
maximum norm amongst other problems. Consider the generalised Gauss- 
Newton algorithm in the form: 

(i) at x i determine t i to minimize the linear subproblem (LSP) 

min []f(xi) -k Vf(xl) tll 1 (1.3) 
t 

(ii) set x i + 1 = xi + ti- 
Cromme shows that strong uniqueness of (1.1) is a sufficient condition for 

the second order convergence of this algorithm. Second order convergence has 
also been established [2] in the case that [['}11 is polyhedral. That  is the norm is 
defined by a consistent system of linear inequalities with matrix B, such that 
the set {f; B f <  e} is bounded and balanced, by 

}If I[ 1 = min h~Bf< h e (1.4) 

where e is a vector each component of which is 1. This result extended earlier 
work for the maximum norm [8], and both these studies made use of a 
condition called the multiplier condition to prove second order convergence. 
Note that (1.3) reduces to a linear programming problem when the norm is 
polyhedral. The multiplier condition requires that 3 a common optimal 
reference for this linear programming problem for all x in a neighbourhood of 
x* such that 

(i) 3 an index set a*, [o*[ = p +  1, pi(B)f(x*)= Ilf(x*)]]l, i~a*, 
(ii) 3).i(x)>__2>0~ Y', ;ti(x)pi(B) Vf(x)=0, and 

leo'* 
(iii) rank {pi(B) Vf(x*), lea*} =p 

where pi(B) stands for the i 'th row of the matrix B. 
However, the multiplier condition is used only to show that t i minimizing 

(1.3) satisfies the (p+ 1)x (p+ 1) system of linear equations for (hl, t/r) 

pj(B) (f(xi) + Ff(xi) ti) = hi, j~ a*, (1.5) 

p r o v i d e d  Hxi -x* l l2  is small enough where hi= I]f(xi)--[-Vf(xl)tl[ I l" 
This condition has an important  geometric interpretation. For  consider the 

definition of the norm by dilation of the associated convex set forming the unit 
ball (see [7] for example). We know that 

T f, Vv~s0 I[fll 1 (1.6) llflll=v~ 

where ~tlf[ll denotes the subdifferential of ]['Ill at f, and where the {v~}, the 
subgradients, are the normals to the supporting hyperplanes to the dilation of 
the unit ball at the point f. It is a consequence of the definition of a polyhedral 
norm that pi(B)~aIIf(x*)II 1, isa*. Thus the multiplier condition is being used 
to ensure that both the solution vector f(x*) to (1.1) and also the solution 
vectors of all LSP's with I tx i -x* t[ 2 small enough are aligned with points in the 
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same edge of the unit ball, that is with the set of points on the unit ball having 
the same subdifferential. Here we show that the rank of Ollf(x*)llx is at least p 
+ 1 if the minimum is strongly unique, and that there is a close correspon- 
dence between the multiplier condition and strong uniqueness if the rank of 
c~lif(x*)llx is exactly p + l  in the sense that both imply systems of equations 
equivalent to (1.5). However, it is easy to see that strong uniqueness need not 
imply the multiplier condition. For  consider 

f(x) = x 1 . 

X l  -+- x 2 

Then the maximum norm Ilf(x)tll is minimised when Xl=X2=0,  and 
clearly (using a maximum norm also for x) 

tlr(x)ll ~ >�89 

so that this solution is strongly unique. However, 

and this matrix does not satisfy the Haar  condition which in this case is 
equivalent to the multiplier condition. In fact we show that strong uniqueness 
is implied by the multiplier condition so that it is strictly a weaker condition. 

It is natural to ask if strong uniqueness is the weakest condition that 
ensures second order convergence of the generalised Gauss-Newton algorithm. 
It is shown in Sect. 3 that this is not so, and necessary and sufficient conditions 
are given for second order convergence in the case of polyhedral norms. 

Strong uniqueness is unusual in mathematical programming where the 
usual uniqueness results are a consequence of the well known second order 
sufficiency conditions. Consider, for example, the problem 

min g(x); F =  {x; hi(x)>0, i=  1, 2, ..., m} (1.7) 
xEF 

If the Kuhn-Tucker  conditions [5] characterize a stationary point x * e F  then 
~ ~.* > 0 such that 

Fg(x*)= ~ 2* Vhi(x* ) (1.8) 
i = l  

and 

2* hi(x*)=0, i=  1, 2 . . . .  , m. 

We define the Langrangian function to be 

L(x,,~)=g(x)- ~ ;~,h,(x), 
i=1  

(1.9) 

(1.10) 
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and the second order sufficiency conditions [5-1 require that 3~ > 0 such that 

t T Vx2 L(x *, ;t*) t > ~lltll 2 

YteH(x*, ~,*)= {t; Vhi(x*)t= 0 if )~* >0,  i=  1, 2, ..., m}. (1.11) 

The condition proves to be somewhat stronger than necessary to show that x* 
is a unique local solution of second order by which we mean that 3fl>0,  6 > 0  
such that 

g(x)_>_g(x*)+/~lIx-x*ll 2, VxeFn{x ;  Ilx-x*ll <6}. (1.12) 

This holds if and only if the inequality (1.11) holds for t6 T(x*)nH(x*fl, *) [6-1 
where T(x*) is the tangent cone to F at x* and is defined by 

T(x*)-- {t; 3 {pj} >0,  {xk} -~ x*, {Xk} c f ~ l i m  II/~,(x,-- x*) -- tll -- 0}. (1.13) 
n ~ o o  

Strong uniqueness, in this context, corresponds to the existence of a unique 
local solution of first order and so is clearly a more restrictive condition than 
second order uniqueness. Thus we expect it to imply further information 
concerning problem structure. Certain results in this direction are summarised 
in the following theorem. 

Theorem 1.1. I f  x*~F and the Kuhn-Tucker constraint qualification [-5-1 holds at 
x* then the following statements are equivalent: 

3~>0,  6>0~g(x) -g (x*)>c t l tx -x* l l  , V x e F n { x ;  IIx-x*ll <~}, (1.14) 

Vg(x*)t>0 Vt ~0,  te  T(x*), (1.15) 

(i) 

(ii) 

and 

(iii) T(x*)nH(x*, 2*)= {0}, V~.* satisying (1.8), (1.9). (1.16) 

Proof. ( i ) ~  (ii) is an immediate consequence of the constraint qualification 
which implies the existence of a continuously differentiable arc in F emmanat- 
ing from x* in the direction t, VteT(x*), (ii)=,, (i) follows by a straighforward 
contradiction argument, and (ii)~,(iii) follows from the Kuhn-Tucker con- 
ditions. 

Corollary. For linear programming problems uniqueness implies strong unique- 
ness because (1.15) must hold if the solution of the linear programming problem is 
unique. 

In the next section we make an application of this theorem to show that 
the multiplier condition implies strong uniqueness. 

2. Properties of the Strong Uniqueness Condition 

The interest for us in strong uniqueness lies in its use in proving second order 
convergence for the generalised Gauss-Newton algorithm, and in the fact that 
it is a weaker condition than the multiplier condition which has also been used 
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for this purpose. To amplify these statements we develop in this section three 
kinds of results: 

(i) those relating strong uniqueness to properties of the LSP for points 
close to x*, 

(ii) those relating strong uniqueness to properties of the norm, in particu- 
lar to properties of O}lf(x*)ll i, and 

Off) those relating strong uniqueness and the multiplier condition. 
As a preliminary we recall the characterisation of x* as a stationary point 

of (1.1) [9]. 

Definition. x* is a stationary point of ILf(x)lll iff 

~ v~Sllf(x*)ll 1 ~v* T Vf(x*) = 0. (2.1) 

This statement is closely related to the Kuhn-Tucker conditions of mathemati- 
cal programming. 

Remark. An alternative statement to (2.1) is that 

0e {v r r f (x*);  v~l l f (x*) l [  1} 

as 8lif(x*)lll is convex and closed. The fundamental theorem on linear in- 
equalities ([3], p. 19) states that this condition is necessary and sufficient for 

T Vf(x*)<0, Vv~e01tf(x*)lll to be inconsistent. the system of linear inequalities v~ 
We will see that this inconsistency takes a strong form when strong uniqueness 
holds at x* (for example the inequality (2.10)). 

To develop Cromme's results we write the LSP in the form 

min[Ir(X,x Y)[11 (2.2) 

where 

r(x, y) = f(y) + Vf(y) ( x -  y). (2.3) 

Lemma 2.1. Strong uniqueness of (1.1) is equivalent to strong uniqueness of (2.2) 
when y = • 

Remark. When f is linear (specifically when f(x)= r(x, x*)) the inequality (1.2) 
holds for all x. 

Proof. It follows from the assumed smoothness of f(x) that 

r(x, x * ) =  f(x) + tix - x* I122 w(x, x*) (2.4) 

where w(x, x*) is an appropriate vector of mean values. Let problem (1.1) have 
a strongly unique solution at x*. Then 

tlr(x, x*)lll -- IIf(x) + I Ix -  x* ]1,2 w(x,  x) ll 1 

>= I[f(x) l [1 -  l lx-x*ll22 IIw(x, x*)1fi 

>_- tl f(x*)41 1 + ~ It x - x* it ~ + o(tl x -  x* II 22) 

> I1r(x*, x*)l[ 1 +~l lx-x*N2 



444 K. Jittorntrum and M.R. Osborne 

for all x in a small enough neighbourhood of x*. Clearly the argument can be 
reversed. 

The next result uses Lemma 2.1 show that the successive minimizers of a 
sequence of LSP's converge to x* and that the convergence is second order. 
This is essentially the main result of [4]. 

Theorem 2.1. Let the LSP for y = x *  be strongly unique and let S = { x ;  {Ix 
-x*II2<~} be such that for all xeS 

(i) I [ f ( x * ) - f ( x ) -  V f ( x )  ( x * - x ) [ l l  _-<~cllx-x*lt~, (2.5)  

(ii) II(Vf(x)- Vf(x*)) (t-x*)lll_-</~llx-x*[l~llt-x*lle (2.6) 

(iii) f lHx-x*l t2<7/2 ,  and (2.7) 

(iv) 4xllx-x*lt2/T<O<l. (2.8) 

for positive constants O, fl, x. Let {Xl} be generated by successively minimizing a 
corresponding sequence of LSP's. Then xi+leS , and the rate of convergence of 
the sequence {xi} is second order. 

Proof. We have using (2.5) and (2.6) that, for all x, and for x~eS, IIr(x,x/) 
- r(x, x*)tl 1 < x l lx / -  x*tl~ + fl[Ixl- x*l[2 I lx-  x*ll 2. 

Thus, by strong uniqueness, 

II r (x* ,  x*)t[ 1 + ~llx~+ 1 - x *  115 - x l t x i -  x* II ~ - / ~ l l x ~ - x *  II 2 lix~+ 1 - x * l l  2 

_-< IIr (x i+ .  x * ) I l i - l l r ( x i + x ,  x l ) - - r (x i+  1, x*)111 

< IIr(xi+ l, xi)ll 1 

< IIr(x*, xi)tI 1 
_-< IIr(x*, x*)ll ~ + ~:l lx~-x*ll~ 

whence 

so that 

( ? -  flIIxi- x*[I 2)11x,+ 1 - x* 112 ~ 2 Kllxi-x*[I ~ 

I[xi + 1 - x*  112 < 0 I[ x~ - x*  112. (2.9)  

Thus x i + l e S  and the sequence {x~} converges to x*. The argument also shows 
that the ultimate rate of convergence is second order. 

Remark. There exists at least one minimizer xi+ 1 of the LSP in the proof of 
the above theorem because Ifr(x, xi)l[ 1 is a convex function of x as r(x, xi) is 
linear and 11"1] x is bounded below. It need not be true that x~+ 1 is unique, but 
strong uniqueness of (1.1) ensures that all minimizers are close to x*. Also xi+ 1 
need not minimize the LSP. The argument requires only that 
ILr(xi+ 1,  xi)l[ 1 < Itr(x*,  xi)ll 1. 

The next example considers the case in which the minimizer of the LSP is 
not unique. 
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Example 2.1. Let [1"111 be the maximum norm and consider 

r ex f ( x ) =  - x + l l x  , ~ , 3 > 0 .  

1 

The minimum norm problem has a solution at x =0, and we have 

II f(x)l[ 1 - 1 >__ Ixl + O(x  2) 

which shows strong uniqueness. In this case we have 

" l + ~ + ~ g 2 + ( l + 2 0 ~ g ) ( x _ g )  [ 

r (x,~)= 1 - ~ + f l ~  z + ( - l + 2 / ? ~ ) ( x - ~ )  . 

L 1 
1 1 

If - ~ < ~ < ~  then the LSP has a minimum of 1 which is attained for 

/ ~ 2  0~2 

_ 1 +2f ix  < x < ] - + 2 c ~ "  

This shows both that the minimizer of the LSP is not unique except at the 
optimum, and that second order convergence obtains from good enough initial 
points. 

Our next result characterises strong uniqueness in terms of local properties 
both of the function and of the point of the unit ball which determines its 
norm. 

Theorem 2.2. Problem (1.1) has a minimizer x* which is strongly unique iff ~ y > 0 
such that 

Vt, I[tll2 = 1, 3ve01II(x*)IlI~vT Vf(x*) t>7.  (2.10) 

Proof. Let x* be a strongly unique minimizer of (1.1), and let veO[If(x*)tll so 
that [If(x*)ll 1 = vT f(x*).  Then the subgradient inequality gives (with 
vxE~llf(x)II 1) 

v ~ f(x*) > v~ f(x) + v~(f(x*)- f(x)) 

= II f(x)Ilx + v r ( f (x* )  - f(x)) 
>-- II f(x*)lt~ + ~ II x - x* II 2 + v r  i f ( x * ) -  f(x)) 

using strong uniqueness. This gives 

r Vf(x*)  (X--X*)>__~IIx--x*II2 + O(IIX--X*II 2) (2.11) V x 

and holds for all Vx~altf(x)lit. Now let x - , x *  in the direction t. Then 3 a 
subsequence ~{v~}-+ v~llf(x*)lll  [103. This demonstrates necessity. 

To show sufficiency let {x 3 + x* in the direction t. Then the subgradient 
inequality gives 

II f(x3ll ~ > t[f(x*){I 1 + vr(f(xl)-- f(x*)), VVeOI}f(x*)II 1 
>_-llf(x*)[Ix -{- vr Vf(x*) (xi - x*) + O( [[xl - x* l] 2), 

>_-Itf(x*)lt x +' ; t lx~-x* II 2 + O(llx~- x*tl~) 

using (2.10) to specialize v. This demonstrates strong uniqueness. 
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Corollary. Strong uniqueness implies that rank (Vf(x*)) and rank {v r Vf(x*), 
v~llf(x*)lll} =p. 

Proof. Assume the contrary. Then 3t, t:k0, ~ Vf(x*)t=0 contradicting strong 
uniqueness of the LSP at x, or v r Vf(x*)t=0 Vv~011f(x*)ll 1. 

These results imply that a necessary condition for strong uniqueness is that 
the point f(x*) in R ~ corresponds to a point at which [l'll~ is not smooth (this 
would require a unique supporting hyperplane). It follows from the above 
corollary that rank {v; vec~llf(x*)ll ~} is at least p. This result is improved in the 
next theorem. 

Theorem 2.3. I f  x* is a unique local solution of first order of(1.1) or (2.2) then the 
rank of {v; wc~Ilf(x*)t t 1} is at least p+ 1. 

Proof. This result is trivially true if f(x*)=0. Thus we assume Ilf(x*)lll>0. As 
rank (Vf(x*))=p we can find an orthogonal matrix A such that 

[0 ] 
where U is p x p nonsingular. Let 

[w l' 1 
w~= Lw~2)j = a v e ,  v~01lf(x*)ll ~ (2.13) 

where w~ is partitioned in conformity with (2.12). Clearly {w~} is also closed and 
convex. Now strong uniqueness gives (using (2.10) and noting that vectors of 
the form U t span R p) 

Vt~w~w~l)rt  >0. (2.14) 

Thus inconsistency of the linear inequalities w~l)r t > 0, V w~ is a consequence of 
r Vf(x*)u<0, VusR p, Vv~c~}lf(x*)l[1. It the inconsistency of the inequalities v, 

follows that 

(i) rank {w~ 1)} =p, and 
(ii) 0e{w~l~}. (2.15) 

Now, by definition, 

and 3, by (2.15), 

T , T v, f(x )=  w, A f(x*) = llf(x*)lll, VL~O t l f(x*)l l  1 (2.16) 

Wp+ 1 = [0 , ,2 ) ] .  (2.17) 
[_VVp + 1 

As I[f(x*)tlx>0 it follows from (2.16) that u(2) =t=0. Select tt) w i , i=  1,2,. . . ,p Wp+ 1 
~rank {wl a)} =p  and consider 

W= I w(i)r [; (w,.% l" 
(w? ')d 

(2.18) 
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where k is chosen such that (2) (Wp+l)k4~0. This matrix is clearly nonsingular and 
has rank (p + 1) so that rank {w,} and therefore rank {v~} is at least p + 1. 

We consider now the case where the solution (1.1) is strongly unique and 
f(x*) corresponds to a point on the dilated unit ball which lies in a 'flat' 
subset Q made up from the intersection of the surface of the ball with the 
family of hyperplanes defined by OHf(x*)[tl where rank 01[f(x*)tl 1- -p+1.  Q is 
assumed to have a nontrivial relative interior, and we show that the solution of 
the LSP (2.2) is strongly unique and corresponds to a point in Q if ]ly-x*l]2 
is small enough. Thus strong uniqueness ensures exactly the same behaviour as 
the multiplier condition (see the discussion following (1.5)) for polyhedral 
norms when rank ~llf(x*)ll 1 = p +  1. 

Remark. Examples where rank 011f(x*)[ll=p+ 1 include both the maximum 
and L a norms when the characterization theorems are precisely satisfied so that 
there are exactly p +  1 extrema in the first case and exactly p zeros in the 
second. 

Theorem 2.4. Let x* be a unique local solution of  first order to (1.1). Then g 
=f(x*)/l[f(x*)[[ is the image off(x*)  on the unit ball under dilation so that OIIglll 
=9  lJf(x*)l] 1 = {v~}, and rank {v,} = p +  1. We define Q to be the set 

Q = { t~R" ,  [[ t IT1 = 1, v r ( t -  g) = 0 V v~  {v~} } (2 .19)  

and we require Q to have a non-empty relative interior in the strong sense that 
3 e > 0  

vY( t -g )=0Vv6{v ,} ,  and l i t -g i l l  <~ ~ t sQ.  (2.20) 

Then the solution of  the LSP (2.2) is strongly unique and is attained at a point in a 
dilation of  Q provided IIx*-yl[2 is small enough. 

Proof. Let vi, i=  1, ..., p +  1 be a basis for {v,} corresponding to the set wi, 
i = 1 . . . .  p + 1 constructed in the proof of the previous Theorem. Then 

p+l 
VE{u }:=:>'u 2 ]~ iu  (2.21) 

i = 1  

p+l 
where the /21 are unique, bounded, and satisfy ~ #1 = 1. The conditions for 

i = 1  

r(x, y) to be in a dilation of Q, expressed in terms of the basis for {v~}, are 

vf(0f(x*) - r(x, y)) = 0, i = 1, 2, ..., p + 1, (2.22) 

and 

Let 

]j Of(x*)-  r(x, Y)lI1 small enough. 

A Vf(y)= 0 + E 2 
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where Ea, E 2 a r e  small for [{y-x* f{2 small. The system (2.22) is equivalent to 

vT f ( x * ) 0 - w T { [ U ]  + [EElz]}(x-y)=vTf(y), i=  1, 2 . . . . .  p + l .  (2.23) 

This system is clearly nonsingular when E 1, E 2 a r e  small. Thus the solution is [0] [;] 
a continuous function of y, and x -  y ~ ' y ~ x*. Thus 

~x(y)~r(x,y)e0Nf(x*)l t lQ provided l[Y-X*tl2 is sufficiently small. Now it 
follows from strong uniqueness at x* and the continuity of Vf that 

Vt, [ItlI2=l, S?(y), ve{v~}~v r Vf(y) t > y ( y ) > 0  (2.24) 

Vy~ l] x* -y ] l  2 sufficiently small. This permits us to show that x(y) determined 
by (2.22) solves (2.2). By the subgradient inequality and the definition of Q (this 
implies that {v~} ___011r(x(y), y)l] 1) 

I[r(x, Y)llx >= Ilr(x(y), y)ll~ +vr(r(x,  y)-r (x(y) ,  y)), VvE {v,}, 

>= l]r(x(y), y) N1 + vr Vf(y) ( x -  x(y)) 

_-> II r(x (y), y)111 + ?(y)II x -  x(y)l[ 2 (2.25) 

by choosing v such that (2.24) is satisfied. This last inequality also shows strong 
uniqueness. 

Remark. (i) The condition that rank 0 Nf(x*)IIl=p+ 1 is required to ensure that 
(2.22) has unique solution. Example 2.1 shows one possible situation when this 
condition is not satisfied. Here the solution of the LSP for y + x *  is not unique 
so that strong uniqueness cannot obtain. Note that equation (2.22) corresponds 
to the system (1.5) which we wrote down as a consequence of the multiplier 
condition. 

(ii) If n=p+ 1 then Q must reduce to a single point. However, equation 
(2.22) ensures that r(x(y),y)[lf(x*) in this case. Thus 0[Ir(x(y),y)]ll={v~} so 
that the conclusion of Theorem 2.4 remains valid. 

To conclude this section we complete the demonstration that the multiplier 
condition is the stronger condition by showing that it implies strong unique- 
ness. This result follows by an easy contradiction argument, but it is in- 
structive to prove it using Theorem 1.1 which provides a link between our 
considerations and standard mathematical programming. 

Theorem 2.5. For polhedral norm problems, the multiplier condition implies that 
the minimum to (1.1) is strongly unique. 

Proof Let yER x R v and consider the problem 

min e ry  
y ~ R P  + x 

where e 1 is the usual coordinate vector, subject to 

[ 1 , -  vr Vf(x*)] y > [[ f(x*)[[ 1 i=1,2, p + l  

(2.26) 

(2.27) 
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where the v~, are the vectors aligned with f(x*) in the multiplier condition. This 
linear programming problem has the unique solution 

y,__[l%*,l 1 
and we have by the rank condition 

H = { t ;  [1, v~ Vf(x*) ] t=0 ,  i=  1,2 . . . . .  p +  1}={0}. 

Thus, by Theorem 1.1, 

7 > 0 ~ h -  IIf(x*)ll 1 >_-~IlY-Y* II _>-~' 11 x - x *  112 (2.28) 

for all feasible y under reasonable assumptions on the norm on R p+I. Now 
consider points y such that 

h -  v r Vf(x*) ( x -  x*) > 11 f(x*)II1, V v~eO l] f(x*)111. (2.29) 

Such points are feasible for (2.27) and thus satisfy (2.28). For  a particular x 
now specialize h to be the infimum such that (2.29) holds. As 011f(x*)111 is 
closed 3 v~ such that equality holds in (2.29). Substitting into (2.28) gives 

]1 r(x, x*)I11 > v2 r(x, x*) > II f(x*)II1 + 7 II x -  x* II 2- (2.30) 

This demonstrates strong uniqueness for the LSP and thus for (1.1) by Lemma 
2.2. 

Remark. In the above argument the multiplier condition is used to form a 
restriction of the LSP which is a linear programming problem with a unique 
solution. However, uniqueness at the optimum implies (2.28) as a consequence 
of the corollary to Theorem 1.1. Thus, in particular, uniqueness of the LSP at 
the optimum implies strong uniqueness for polyhedral norms. 

3. Weakest Conditions for Second Order Convergence (Polyhedral Norm Case) 

We have shown that strong uniqueness' is the weakest condition that has 
been used to demonstrate second order convergence of the generalised Gauss- 
Newton algorithm. Thus it is natural to ask if this condition is necessary as 
well as sufficient. Unfortunately this is not so as the following example shows. 

Example 3.I. Consider 1 

[ X §  3 ] 
f ( x ) = l _ l + x _ x 3 j  ' ~>0.  

a simple calculation shows that in the L 1 norm 

llf[[ l=l+2[x[--(1--00[xl  3, x > 0 ,  

= l + ( l + ~ ) l x [  3, x < 0 ,  

l An even simpler example in the max norm was suggested by the referee. Let f=  [11 +x3].  Then 
x + x  3 

II fll = 1 + x, x > O, 1 + Ix[ 3, x < O, and the LSP gives t = - 1 + 3x ~ 
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so that Ilftll is minimized when x=0 ,  and clearly this minimum is not strongly 
unique. The solution of the LSP is found by minimizing (k(t) where 

q~ = I~+ ~3-q-(1 + 3 ~ 2 ) t l  +l l  + ~ - ~ 3  + ( 1 -  3~2) tl, 

and this minimum is attained at 

t =  ~#0 .  
1 + 3 ~ : ~  2 '  

Thus the generalised Gauss-Newton iteration is at least second order convergent 
for we have 

xi+~x 3 2~x~ 
Xi+l=Xi 1 +3c~x/Z- 1 +3~x2" 

However, when 2 = 0  the LSP is minimized for - 1 < t < 0  and so does not have 
a unique solution. 

For  the particular case of polyhedral norms the weakest conditions which 
ensure second order convergence of the generalised Gauss-Newton algorithm 
can be given. Here the LSP reduces to the linear programming problem [1] 

min h ; Z = { [ ~ ]  ; h>=O, pj(B)r(x,s Vj}. 
[h, x]eZ 

(3.1) 

We make the natural assumption that Vf(x*) has rank p and this ensures that 
the solution set of the LSP (2.2) is bounded for It~-x*l12 small enough [3, 
p. 96]. The simplex algorithm applied solve the LSP returns a solution at a 
vertex of the feasible region where p+  1 of the inequalities hold as equations 
and where the matrix of this system of equations is nonsingular. To describe 
the solution set of the LSP let the optimal vertices be indexed 1, 2, ..., q(~), the 
pj(B) determining the corresponding sets of (p+ 1) equations be poinlfed to by 
index sets a ~ (g), i=  1, 2, ..., q(ff), and the matrices of these sets of equations and 
corresponding solutions vectors be denoted by A~(s x~(s i=  1, 2, ..., q(ff) re- 
spectively. Also, if ff is restricted to be one of the iterates Xk, k = l , 2 . . .  
produced by the generalised Gauss-Newton algorithm then the dependence on 
s is abbreviated to the use of a subscript (for example x~). Consider 

Xi= {x; x minimizes [I r(x, xl)ll 1} =conv {x~,j= 1, 2 . . . .  qi}" (3.2) 

The algorithm requires only that 

xi+ leXi, i=  1, 2 . . . . .  (3.3) 

Obviously it is undesirable that the properties of the algorithm depend on the 
choice of xi+ 1 (consider example 2.1). Thus we say that it is second order 



Strong Uniqueness and Second Order Convergence 451 

convergent only if ~ k > 0, i o large enough such that  

II x -  x* 112 < k  IIxi-  x* I] 2 , V x e X i ,  V i> i  o . (3.4) 

It follows from Theorem 2.1 that  s trong uniqueness is a sufficient condit ion 
for second order convergence in this sense. When ll" t11 is polyhedral  it follows 
from (3.2) that  it is only necessary to verify (3.4) for xi+ 1 = x { , j =  1,2 ...,ql. 

Lemma 3.1. If 

then 

3xeX(K)~pj (B)  r(x, K)--- h(K) 

3 i t  { 1 . . . .  , q('~)} ~pj(B)e ~ l] r (x~(K), ~)I]1. 

Proof. From the definition of X(g) it follows that  

q(x) q(x) 
3 ~ > 0 ,  ~ ~ = l ~ x =  ~ O~iXI(X), 

i=1 i=1 

whence, using linearity, 

r(x, s = Z ctl r(xi(s ~) 
i=1 

and the result follows as 

pj(B) r(xi(~), ~) < 11 r(xi(s x)II1 = h(g) 

with equality only if (3.5) holds. 

(3.5) 

Theorem 3.1. Let 11"111 be a polyhedral norm and {xi} be a sequence of points 
generated by the generalised Gauss-Newton algorithm. I f  3 a neighbourhood N of 
x* such that A k has a uniformly bounded inverse for each k~{1, 2 . . . .  qi}, and all 
x i~N then the sequence {xi} is second order convergent if and only/f, V xi, x i 4 = x*, 
[I Xi - -  X* I[ 2 small enough, 

U 0 llr(x, xi)ll 1 c_0 btf(x*)lfl. (3.6) 
xeX~ 

Proof. To show sufficiency we follow the approach used in [2]. Note that  by 
(3.6) 

pj(B) f(x*) = II f(x*)II1 ,J~ a~ (3.7) 

for each k. Thus, using (2.4), 

pj(B)r(x*, x,)= II f(x*)Ili - II x* - x i II 2 pj (B) w(x*, x,). (3.8) 
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k for Subtracting this equation from the corresponding equation determining x i 
Vjea~ gives 

A k [ h l -  tl f(x*)ll 1] (3�9 

for each k. This demonstrates second order convergence as A~ has a uniformly 
bounded inverse for Ilxi-x* [I 2 small enough. 

To show necessity we assume that the sequence {xl} converges and that 
the inclusion (3.6) does not hold. As the set pj(B) is finite it follows, by 
restriction to a subsequence if necessary, that 

3k, {xi} ~ x*~pk(B)eO ltr(x(xl), xl)ll 1 (3.10) 

but pk(B)~c~tlf(x*)lll where x(xi) is the Gauss-Newton iterate�9 From (3.10) it 
follows that pk(B)eO Ilr((x*), x*)H1 by the limiting properties of subdifferentials 
[10]. As x* minimizes I[f(x)llx it is known, [9], that 

II f(x*)111 = llr(x(x*), x*)]I1 (3.11) 

By assumption, Vi large enough, 

pk(B)f(xi) < II f(x*)111. 

Thus 

e > 0, i o (e)~ Pk (B) f(xi) < ]1 r (x (xi), xl)Ill - e, i > i o. 

By Lemma 3.1 

qi 

3cr , ~ cr l~IIr(x(x/), x,)ll~ =pk(B)f(xi) 
j=l 

ql 

+pk(B) Vf(xi) ~ a i (x~-x/)  
j=l 

whence, for at least one j, (say j(i)), 

pk(B) Vf(xi)(x~ r x i) => ~. 

It follows that li x] ") - x* It 2 ~,0, i -+ ~ ,  contradicting (3.4)�9 

Remark�9 (i) The assumption that (A~)- ~ be uniformly bounded corresponds to 
the assumption, usually made in analyzing Newton's method, that the Jacobian 
matrix be nonsingular. If this condition is not assumed then equation (3�9 shows 
that second order convergence will not be obtained in general even if Vf(x*) has 
rank p and the inclusion (3�9 holds. Consider 

[ 1 + x  1 -1- X2 1 

f=il+X~/ll + x 2 /  with c~-fl<0.  

L l +otxl +flxl  
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In the m a x i m u m  n o r m  this p rob lem has a m i n i m u m  of 1 when x 1 =x z =0.  If 
we consider the LSP  at x1=61, x 2 = 6 2 ,  61>62  and 61,62 small then the first 
three componen t s  of r define the o p t i m u m  vertex. The  defining equat ions are 

giving 

l +6i +62 +tl  + t l=h  
l + 62 + 26i q =h 
l+62+262t2=h 

61 6 2 616z2 
q =  2 2 61+62-26162 ' 

61 6 2 6262 
t2 : 2 2 61 + 6 2 - 2 6 1  62' 

h=1_6i62  2(6162) 2 
61+62-26162" 

Evaluat ing the last inequality in the LSP  gives 

1 +0~61 + f l 6 2  + ~ /  1 + f l / 2  
6162 

= 1 + ( ~ - -  fl)(61 --62)/2 
61+62--26162 

<h 

(~62+f l61)  

so t ha t  a II r(t, x) lll : {el, e2, e3} ~ 0 ]l f(0)II1 : {el,  e2, e3, e4}. 
The  successive iterates satisfy 61 - 6 2 > 0 but  not  (3.4), and 

[!1 1 - 1  

A ( x ) =  - 2 x  i 

- 2 x  2 

is singular at the origin a l though Vf has rank 2 there. The  solution of the LSP  at 
the origin is not unique. 

(ii) The  simplest  way that  the inclusion (3.6) can fail to hold is for rank 
c~llf(x*)[ll < p +  1 as it is s traight  forward to show that rank {pi(B),jEa~} = p +  1. 
All we need do is follow the a rgument  of  Theo rem 2.3 as the propert ies  (2.15) 
follow in this case because the simplex a lgor i thm returns a solution point  
corresponding to a vertex of the feasible region for (3.1). 

Consider,  for example,  
XI+X2 1 

f ( x )  = | 1  - x l + x2  

t l + x 2 - < ]  

In the L a norm we have 

IIflla ~ 2+x2 +x 2 

so that  the min imum is a t ta ined for x 1 = x  2 =0 .  
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However, only fl (0, 0)= 0 so that 

~[I f(O, 0)II 1 =cony {1, 1, 1], [ - 1 ,  1, 1]} 

which has rank 2 < p +  1 =3. 
(iii) It is not sufficient for the inclusion (3.6) to hold that rank c3 ]lf(x*)Ul =p  

+ 1 as the following example shows. Let 

Ix + ctx 2 ] 
f(x)= [1 -[-X ~-xE] ' 0<0~< 1. 

In the/~ norm, provided x > - -  
1 

Iif111 : 1 q-(1--CQX2, X<O 
I+2X+(I+cQX 2, x>O, 

so that li f][ 1 is minimized when x = 0, and the minimum is not strongly unique. 
At the minimum f l ( x ) = O .  If we now consider the correction given by the 
generalised Gauss-Newton method we find two cases: 

x,+~x~ ~x~ 
(i) x i < O  , x i + l = x i  l+2ctxi  1+2~x~>0,  and rl(xi+l,xi)=O. 

l + x i + x 2  - l + X 2 < o ,  and r2(x i+l ,x i )=O.  (ii) xi>O , x i + l = x i  = - -  
1+2x/  1+2x/  

In the second case c3 It r(xi + 1, xi)1[ 1 N 0 II f(x*) It 1, but both sets have rank p + i = 2. 

Remark .  If the inclusion (3.6) does not hold then the proof of Theorem 3.1 shows 
that the Gauss-Newton method cannot be expected to converge unless modified 
to include a line search along the direction given by the LSP. One possible 
approach is indicated in [9]. 

4. Conclusion 

Strong uniqueness is important in nonlinear discrete approximation problems 
because it guarantees the second order convergence of the generalised Gauss- 
Newton method. Here we have been able to show that strong uniqueness is a 
weaker condition than the multiplier condition which has also been used for the 
same purpose. An alternative formulation of strong uniqueness has been given 
which emphasises both the local geometry of the unit ball and the structure of 
the problem functions, and some progress has been made towards a characteri- 
sation of strong uniqueness. For example, if the point of minimum norm in (1.1) 
is strongly unique then the corresponding point of the unit ball determining 
[l" II 1 cannot be smooth, and the rank of the set of subgradients at this point is at 
least p + 1. Also we have shown that the multiplier condition is sufficient, and 
that uniqueness of the LSP at the optimum is both necessary and sufficient for 
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s t r o n g  un iquenes s  in p o l y h e d r a l  n o r m  p rob lems .  I t  w o u l d  be  of  in te res t  to  
cha rac t e r i s e  the  weakes t  c o n d i t i o n s  wh ich  ensu re  s e c o n d  o r d e r  c o n v e r g e n c e  o f  

the  gene ra l i sed  G a u s s - N e w t o n  m e t h o d  as ou r  resul ts  in this  d i r ec t i on  are  l imi ted  
to the  p o l y h e d r a l  n o r m  case. In  this c o n n e c t i o n  we n o t e  tha t  the  resul ts  in [9]  

sugges t  tha t  it is l ikely  to be  necessa ry  tha t  the  p o i n t  o f  m i n i m u m  n o r m  
c o r r e s p o n d  to  a n o n  s m o o t h  p o i n t  on  the  uni t  ball .  
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