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The Brauer Group of a Rational Surface 

J. S. M1LNE (Ann Arbor, Mich.) 

Let k be a finite field of characteristic p and let X be an algebraic 
surface which is projective and smooth over k and which is geometrically 
connected. Then, motivated by the relation between Brauer groups and 
Tate-~afarevi~ groups, Tate and Artin have conjectured [ 6 ]  

(a) the Brauer group, Br(X), of X is finite; 

(b) there is a canonical non-degenerate skew-symmetric form on 
Br(X); 

[Br(X)] Idet(Di. Di)l (1 _ql-S)~(x) 
(c) P2(X, q-S) ,.~ q~(X)[NS(X)tors] 2 as s--+l, 

where IS] denotes the order of a set S, q=[k] ,  ~(X)=z(X, Ox)-1 + 
dim(PicVar(X)), p(X) is the rank of the N6ron-Severi group NS(X) of 
X, (Di)a__<i__<p is a basis for NS(X) modulo torsion, and P2(X, T) is the 
characteristic polynomial of the endomorphism of Ht2(~eYet) induced by 
the Frobenius endomorphism of X. 

It has been proved [6] that (a) implies (b) and (c) for the components 
of Br(X) prime to p, and when X is a product of curves the conjectures 
have been proved in their entirety [4]. Nevertheless, it may be of interest 
that for the simplest surfaces, viz. the rational surfaces, the conjectures 
are an almost trivial consequence of known facts. 

Thus, let X be a rational surface over k of the above type, let k be 
the algebraic closure of k, and let k' be a finite extension of k such that 
NS(X')=NS(X--) where X ' = X Q k k '  and S=S(~kk .  Write F and F' for 
the Galois groups of k over k and k' respectively and write F" =  F/F'. 

NS(Y,) is torsion-free and the pairing NS(X) • NS(X)~  Z defined 
by the intersection product has discriminant __+ 1. Indeed, both these 
statements are true for Pk 2 and their validity is obviously preserved by 
dilations. 

The Brauer group of X is isomorphic to Hi(F, NS(X)). This remark 
is due to Artin and ma_y be proved as follows. The Hochschild-Serre 
spectral sequence for Set/Set applied to the sheaf G,, gives an exact 
sequence 

0 ~ H ~ (F, NS (Y,)) --, H 2 (X, Gin) ---, H 2 (X, G~). 
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H2(X, Gin)= Br(.~)=0 because Br(X) is birationally invariant [1] and 
X is birationally equivalent to P~ x P~. If f :  P~ • P~--* P~ denotes a pro- 
jection onto one of the factors then R ~  GIn=G=, Rl f ,  GIn=Z, and 
RSf, Gin=0 for s > l .  Since H'(P~,Gm)=0 for r > l  and HI (P~, Z) = 0, 
the Leray spectral sequence for f shows that H 2 (P~ x P~, Gin) = 0. Hence 
H 1 (F, NS (X)) ~ Br(X). 

There is an exact sequence 

0 -~ H ~ (F", N S  (X')) -* H 1 (F, NS (X)) -* H t (F', NS (X)). 

F' acts trivially on NS(X), and so 

H ~ (F', NS (X)) = Conts Horn (F', NS (A')), 

which is zero because NS(,V,) has no finite subgroups. Hence 

Br (X) ~ n '  (F, NS (X)) ,~ H' (F", MS (X')). 

This last group is finite because F" is finite and NS(X') is finitely 
generated. This proves (a). 

Z, regarded as a F" module with trivial action, is a class module 
for F" in the sense of [2, p. 94]. Since the intersection product induces 
a natural isomorphism NS(X)~, Hom(NS(X), Z), 1-2, IV Thin. 14] shows 
that the cup-product pairing 

H'(F", NS(X)) x H~(r",NS(~X))~H2(F '', z ) ~  z/n z (n= 1-F"]) 

is non-degenerate. This pairing agrees with the pairing on Br(X) (non 
p) defined in [6]. The general properties of cup-products show that the 
pairing is skew-symmetric but (pace [6, p. 19]) it need not be alternating 
and so the order of Br(X) may be twice a square. For examples where 
[Br(X)] = 2, see [3, 3.28]. This completes the proof of (b). 

For (c), consider the commutative diagram: 

N S ( X )  e ~, Hom(NS(X), Z) 

NS(X,) r f ,NS(X)/( tr-1)NS(X) 

where cr is the canonical topological generator of F, f is induced by the 
identity map of NS(X), and e and g are both induced by the intersec- 
tion product. We will say that a homomorphism h of Z-modules is a 
quasi-isomorphism if both ker(h) and coker(h) are finite, and in t h a t  

[coker(h)] 
case we write z(h)= . Lemmas analogous to those on pp. 19, 

[ker(h)] 
20 of I-6] hold for this definition of z. In particular, z(e)= Idet(Di. D j)] 
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where (Di) is a basis for NS(X). (Notice that, unlike the corresponding 
determinant for NS(X), this need not be 1. For example, if X is a non- 
degenerate del Pezzo surface whose degree d is square-free, then 
I det (Di. Dj) I = (cox" COx) = d.) 

Consider the pairing 

NS (X) x NS (X) --, Z 

defined by the intersection product. Suppose DeNS(X) is such that 
rl--1 

ND= ~ aiD=O (where n= IF"], so F " =  {1, # . . . . .  ~-1}). Then, for any 
i = 0  n--1 

E ~ NS (X), n (O. E) = ~, (O. a- '  E) = (NO. E) = O. 
i = O  

Hence (D. E)=0. Conversely, if (D. E)=0  for all EeNS(X) then 
(ND. E)= n(D. E)=0  for all E, and since NDeNS(X), thisimplies that_ 
ND=O. This shows that the kernel of g is ker(N:NS(X)~NS(X)) /  
( a - 1 )  NS(X)=Ht(F '', NS(X)). Since g is obviously surjective, we find 
that z(g)= [Br(X)]-I. 

The 6tale cohomology sequence of 

O___~III.___~G m l"  ~Gm___~0 (14=p) 

gives an isomorphism NS (X)/l" NS (X) ~ H 2 (X,/h,)- Hence 

NS(X)| Z~ ~ [im H 2 (X,/h"), 

and NS(Y,)| in the notation of I-5]. Thus [5, p. 101] if 
a2 is the automorphism of NS(,~) | Q~ induced by a then det(1 - a2 T) = 
P2(X,q -1 T) (see also [7]). g and e both being quasi-isomorphisms 
imply that f is a quasi-isomorphism. Thus,_ by the analogue of [6, z. 4], 
if 0 is the map a -  1 : NS (X) ~ NS(X), then det ( T -  0 | 1) = T '  R (T) 

where p=rank(NS(X)).Also, z ( f ) = R ( O ) = I I ( 1 - - ~ ) w h e r e  the ~, are 

the roots of P2(X, T) which are not equal to q. Now the equality 
z( f)  z(g)= z(e) shows that 

P2(X, q-~),,,[Br(X)] ]det(Di. Dj)[ (1 _ql-~)ptx) as s--~ 1. 

This implies (c) because in this case ~(X)= 1 -  1 + 0 = 0 .  

Example. Let k contain the cube roots of 1 and have characteristic 
. 3 ,  and let a be an element of k which is not a cube in k. Then 

X: Z3o + Z3 + Z3=a Z 3 

is a rational surface which over k'=k(31/a), becomes isomorphic to 
P~, with 6 points blown up. Moreover, NS(X) has rank 1. It follows 
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(using that NS(X) has rank 7 and that F"~Z/3Z has only one non- 
trivial representation over Q) that 

P2 (X, T) = (1 - q T) (1 - p q T) a (1 - p2 q T)a 

where p is a primitive cube root of 1. Hence 

P2(X,q~).~27(1-q l-s) as s---,1. 

By Noether's formula (o9 x �9 O~x)+ rank (NS(X))= 10, and so (o9 x �9 ~Ox)= 3. 
It follows that to x generates NS(X) and that [Br(X)]=9. Because of 
the self-duality of Br(X), this implies that 

Br(X) ~ Z/3 Z 0) Z/3 Z. 
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