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1. Introduction 

Every Lipschitz simple closed curve in R" bounds an area minimizing surface, 
that is, a surface S such that any other surface S' with the same boundary 
satisfies 

area S' > area S. 

Curiously enough, such a surface need not be unique. 
Examples of this nonuniqueness abound. Nitsche [17] thoroughly develops a 

family of examples by taking intersections of Enneper's minimal surface (Fig. 1) 
with ellipsoids x 2 +y2 +~z2 = a  2. (See Fig. 2.) 

The intersection with small ellipsoids is nearly planar (Fig. 2b), and the 
enclosed portion of Enneper's surface gives the unique area minimizing surface. 
As the ellipsoids become larger, eventually (Fig.2f) the enclosed portion of 
Enneper's surface is no longer area minimizing and there are at least two 
different area minimizing surfaces, which presumably look like Figure 3. 

This example provides a one parameter family of nonsimilar curves bound- 
ing more than one area minimizing surface. By symmetrically adding small, 
smooth bumps to these examples, one can obtain a large space of curves 
bounding more than one area minimizing surface, a space in some sense of the 
same dimension as the entire space of curves we shall consider in this paper. 
Nevertheless, we shall prove that the probability of picking such a curve at 
random is zero. 

Nitsche [16, pp. 396-398] refers to many other examples. The author [13] 
gives an example of an analytic curve in R 4 that bounds a whole continuum of 
distinct area minimizing surfaces. (See also Fleming [9], L6vy [12, p.29], 
Courant [5, pp. 119-122].) 

I.I. Previous Results on Uniqueness 

Uniqueness for particular boundary curves in R 3 is known only in a couple of 
special cases: 
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Fig. 1. Enneper's minimal surface 

(1) A Jordan curve whose orthogonal projection on some plane is a simply 
covered convex curve bounds a unique area minimizing surface (for various 
notions of surface in both geometric measure theoretic and mapping contexts). 
(Rado, 1932, [19, p. 36]; see also [-7, 5.4.18].) 

(2) An analytic simple closed curve with total curvature at most 4~z bounds a 
geometrically unique immersed disc of least mapping area. (Nitsche, 1973, [-18].) 

It  seems to be true (as has been recognized for several years, although 
apparently no one has written a proof) that there is an open dense set of C 2 
simple closed curves (under the C 2 norm), such that each curve bounds a unique 
area minimizing surface. Our own proof incidentally shows that the set of C 2'~ 
curves bounding more than one area minimizing surface is a set of the first 
category (Remark 7.12). But even on the real line there are open dense sets of 
arbitrarily small Lebesgue measure. We want to say more: we will prove with 
respect to a genuine geometrically natural measure that almost every curve 
bounds a unique area minimizing surface. 
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Fig. 2. Shapes of curves given by intersections of Enneper's Surface with ellipsoids 

1.2. The Theorem. We study this problem of uniqueness for area minimizing 
surfaces in the context of geometric measure theory. Our analysis holds equally 
well for oriented surfaces in the sense of  integral currents or unoriented surfaces 
in the sense of  fiat chains modulo two. 

To study curves in R 3, it is convenient  and equivalent to study the space of 
parameterizations 

cg={C2,'maps: S1--~R 3} 

where S 1 is the circle R / 2 z Z  and ~ is a fixed positive number  less than one half. 
We endow ff with the C 2 norm:  

IIBII = m a x {  IIBII~, IIB'II o~, IIB'II ~o}. 

To define a measure on r162 we put  a measure on the set of  formal series 

Bo- ~ B.n-3cosnt+B_.n -3sinnt (B.eR a) 
t l = l  
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Fig. 3. Two area minimizing surfaces with the same boundary 

by giving the coefficients B, independent Gaussian distributions with mean zero 
and variance one (except for Bo, which is given a uniform distribution). It 
follows from some work of G. Hunt  [10] that almost every such series converges 
uniformly to an element of cg. The resulting measure # on cr is very closely 
related to Brownian motion (see Theorem4.10) and has many other nice 
properties. It is invariant under Euclidean motions, and open balls in the C 2 
norm on cg are measurable and have positive measure. 

We can now state the theorem (7.1, 7.9, 7.10). 

Theorem. Almost every B ~  bounds a unique area minimizing surface. 

1.3. 7he Proof There are three main steps to the proof, the third of which 
employs a rather novel generalization of a standard density argument. 

(1) P.D.E. Lemma (Theorem5.1). Two area minimizing surfaces with the same 
boundary which are tangent along an interval of boundary are equal. 

(2) Geometric  Lemma (Theorem6.7). Here we confine ourselves to a compact  
set of curves and surfaces and a fixed boundary interval J c S  1. I f  the tangents to 
two area minimizing surfaces with the same boundary are close together on J, then 
the surfaces are close together. 

(3) Density Argument (cf. Remark 7.2). The density of a certain bad set of 
curves is less than one at all points of the set, and therefore the set has measure 
zero. 

The conclusion of step (3) resembles the standard measure theoretic result 
for Z c R k that 

(4) if for almost all a~Z, 

lim Lak(z n B(a, r)) < 1, 
r-,6 ~c~k(B(a, r)) 

then ~PR(z) =0.  
But instead of Lebesgue measure &ok on k dimensional Euclidean space and 

ordinary balls, we are dealing with a measure /~ on the infinite dimensional 
space of curves ~ and balls in the C 2 norm: 

B(Bo,r)={BeC~: liB-Boll __<r}. 

One could still apply (4) if, for example, the measure space (c~,/~) were essentially 
finite dimensional, in the sense that for some positive integer n, given B ~ ,  there 
were positive constants k o, k t, such that for small positive r, 

(5) korn<#(B(B,r))<klr".  
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Although (5) fails for/2, one can decompose cg as a product 

((~,/2) = (%, /2N)  x (~N,/2N) 

where (d N is the finite dimensional space of trigonometric polynomials of degree 
at most N and (~N is the infinite dimensional subspace of (d consisting of curves 
whose first 2N + 1 Fourier coefficients vanish. Since/2N satisfies (5), we can apply 
(4) to prove that bad subsets of c~ N have /2N measure zero and then apply 
Fubini's Theorem to extend the result to ((d,/2). 

Thus the proof boils down to verifying the first part of (3). The basic idea, 
which depends on steps (1) and (2) and exposes the heart of the theorem, is 
described in Remark 7.2. 

The proof of (1) employs in a new way the old Legendre transformation, 
which linearizes the minimal surface equation. Subtleties arise from the de- 
pendence of the transformation itself on the particular minimal surface. 

The proof of (2) involves many uniform estimates on the compact set of 
curves and surfaces and depends heavily on Allard's boundary regularity results 
[2]. 

This theorem seems to be the first application of probability theory to 
geometric measure theory. 

The author would like to thank his adviser, Professor Frederick J. Almgren, Jr., for his invaluable 
counsel and example. He would also like to thank Professor Gilbert A. Hunt for several useful 
conversations on probability theory and for his careful reading of the manuscript; and the National 
Science Foundation for graduate support. 

2. Preliminaries 

In general we follow the notation of Federer's treatise [-7] and Allard's paper 
[-2]. 
2.1. Linear Spaces. Let X be a linear space with norm II [I. For a~X, r~R, put 

B(a,r)={x~X: IIx-all <r} 

U(a,r)={x~X: IIx-all <r}.  

If X = R  n, we sometimes write B"(a,r), Un(a, r). 
I f x e X  and A c X ,  we put 

dist(A, x) = ~naf IIx - a II. 

We define the Hausdorff metric on the set of compact subsets of X by 

HM(C, D) = max {dist (C, d), dist (D, c): ce C, deD}. 

For r~R, we define the homothety 

i~r: X--*X 

l~  r : X I - - ~  r x . 
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For  aEX, we define the translation 

"c~: X ~ X  

~a: x~'-+x + a.  

Linear subspaces. We will identify a linear subspace of R" with the element of 
Horn(R", R") which orthogonally projects R" onto that subspace. 

Tangent cones. If A c X ,  xEX ,  we have the tangent cone of A at x, denoted 

Tan (A, x) 

consisting of all v e x  such that for every e > 0  there exist 

aEA, r>O with I[a-xl l<e,  l l r ( a - x ) - v l l < e .  

Smoothness. By C k we mean of class k, i.e., k times continuously differentiable. 
For  0 < a < l ,  by C k'" we mean having a k th derivative which is a H61der 
continuous. 

2.2. Measures [7, 2.1.2, 2.2.3, 2.2.5]. A measure over a set X is a function r 
2X-+R+u {0, ~ }  such that if F is a countable collection of subsets of X and 
A ~ w  F, then 

r ~ r 
B ~ F  

A measure q~ over a topological space X is called Borel regular if open sets are 
measurable and each subset of X is contained in a Borel set of the same 
measure. If r measures a topological space X and open sets are r measurable, 
we have its Borel regularization ~ given by 

~(A)=min{cp(B): A = B , B  Borel}. 

Examples of Borel regular measures on R k are given by Lebesgue measure L~ k 
and m dimensional Hausdorff measure ~,ugm(O < m < k). Put 

(k) = ~ k  (Bk (0, 1)). 

2.3. Densities and mass ratios. If # measures R", xER", r >0,  kEZ +, we define the 
k dimensional mass ratio of/* at x by 

, / * (B" (x ,  r)) 
Ok(/*'x'r~= 

and we define the k dimensional density of/* at x by 

Ok(/,, x) = lira Ok(/,, x, r). 
r--~O 

We will need to consider more general sorts of densities. We have the 
following lemma of measure theory. 
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2.4. Density Lemma.  Suppose q9 is a Borel regular measure on a normed linear 
space X such that for all x~X,  there exists 2>0 ,  such that for all small r > 0 ,  

r (B (x, 5 r)) < 2 ~p (B (x, r)). 

Let A be any subset of X such that for q9 almost all xeA,  

l iminf  ~o[B(x,r)nA] < 1. 
, ~  0 r [B(x, r)] 

Then ~p(A) =0.  

Proof. [7, 2.9.11, 2.8.17]. 

2.5. Jacobians. Suppose Ais a k dimensional C I submanifold of R '~ and f :  A ~ R "  
is C 1. Let  a~A. 

Df  (a) ~ H o m ( T a n  (A, a), R"), 

A kDf(a)~Hom(A kTan( A, a), A kR") �9 

Put  

dk f (a) = II A ~ D f  (a)ll . 

T h e n  the area  fo rmula  [7, 3.2.22] holds :  

(1) S Jk f ( x )d~k (x )  = S c a r d ( f -  l(y))dgegk(y). 
A R "t 

Suppose g: A ~ R  n is C 1. Then 

(2) [dkf(a)--Jkg(a)l 

<k IlDf(a)- Dg(a) ll max{ IlDf(a)ll k- 1, tlDg(a)[i ~- 1}. 

Proof. 

Idk f (a)-- Jkg(a)l <= II A k D f  (a) -- AkD g(a)ll 

= I (A~Df (a ) -  AkDg(a))(~l A. . .  A Ck)] 

(where {41 . . . . .  r is an or thonormal  basis for Tan(A, a)) 

= IDf(a)(r A. . .  A Df(a)(r A...  A Dg(a)(~k)l 
k 

<= ~ IDf(a)(~l) A ... A Df(a)(~i_ i) A (Df(a)-Dg(a))(r i) 
i = 1  

A Dg(a)(~i+ 1) A ' "  A Dg(a)(~k)l 

<=k IIDf (a)-Dg(a)ll max{ IIDf (a) ll k- 1 iiDg(a) llk- 1}. 

Final ly  we no te  tha t  in case m = k, 
k 

(3) dkf(a)<= I-[ [Dif(a)l 
i = 1  

Di f = CJ~. where 
cxl 
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2.6. Integral Currents 1-7, 4.1.24, 4.2.26]. In R" we have the space Ik(R n) of k 
dimensional integral currents (oriented surfaces) with flat norm ~- and the 
corresponding space I2(R ") of unoriented surfaces with flat norm ~2 .  In general, 
we will make statements for Ik(R"); analogous (and sometimes easier or stronger) 
statements hold for I2(R"). 

We have a continuous boundary operator 

~: Ik(R")~Ik_ I(R ") 

whose kernel we will denote by ~k(R"), and a lower semicontinuous mass 
function 

M: Ik(R")~[0, ~) .  

[7, 4.1.7]. 
Associated to SEIk(R n) we have the Radon measure IISl[, the set sptS 

= spt [ISll, and the integral varifold 

ISI = [id x Zank(llSII, �9 )3. IISII. 

(Cf. I-7, 4.1.5, 4.1.1, 2.2.1, 3.2.16, 4.1.28], 1-1, 3.5].) 
By way of this correspondence, most results on integral varifolds apply as 

well to integral currents. 
The following two fundamental theorems constitute the geometric measure 

theoretic foundation for all our work. 

Compactness Theorem 1-7, 4.2.17]. I f  c ~ O, then 

{S6I k (R"): M (S) < c, M (8S) < c, and spt S c B "(0, c)} 

is compact. 

Isoperimetric Inequality 1-7, 4.2.10]. I f  T~ek_l(R~), then there exists S~Ik(R ~) 
with OS = T and 

M(S)tk- l~/k < 2n2kM( T). 

2.7. Mass Minimizing Currents 

Definition. We say that an integral current S is mass minimizing if whenever S' is 
an integral current and OS'= OS, 

M(S') > M(S). 

Existence. It follows from the Compactness Theorem and the isoperimetric 
inequality that if  B is an integral current with OB=0, then there is a mass 
minimizing integral current S with OS=B. 
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Regularity. If S~I n_ I(R n) is mass minimizing, then except for a set of Hausdorff 
dimension at most n-8, sp tS - sp tOS  is an analytic manifold ([8, Theorem 1], 
[14, Theorem 5.8.6]). The question of boundary regularity will be discussed in 
Chapter 6. 

Monotonicity. Suppose S~Ik(R n) is mass minimizing. If a~spt S - s p t  ~3S, then the 
function 

Ok(ll S II, a, r) 

is monotonically increasing for 0 < r < dist(a, spt gS) [7, 5.4.4]. If bespt ~?S and for 
some R>0 ,  sptc3Sc~U(b,R/3) is a smooth manifold B whose curvature is 
bounded by R-1 in the sense that for x, y~B, 

I ( y - x ) - T a n ( B , x ) ( y - x ) l  <=R- l ly_xl2/2, 

then 
27 k r 

Ok(llSll,b,r)e 8 R 

is monotonically increasing for 0 < r  <R/3 [2, 3.4(2)]. 

3. Curves and Surfaces 

We give the definitions and basic properties related to the spaces of curves and 
surfaces we will consider in this paper. We will be particularly interested in 
compact sets of curves and surfaces, for which we obtain some uniform 
estimates. 

Let 0<~<�89  Put S 1 =R/2nZ .  We also denote by S 1 the associated integral 
current E 1 t__ [0, 2n]. Let 

c~={C2,~maps: S1--,R 3} 

with the C 2 norm 

[IBII =max{ IIBlt | IlB'll | liB" l[ ~}. 

Another metric will be handy: 

[IBl(--max{l(2n) -1 ~ B(t)dtl, IIB'll ~}. 
S 1 

3.1. Lemma. 

ItB IL' _-< II B II _-< (1 + ~2)IL B II'. 

Proof. The first inequality is immediate. 
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To prove the second, let yeS 1 , / /cO*(3,  1). Since ~B'(t)dt---O, ~ IIoB'(t)dt 
$1 $1  

=0  and hence there is a yoeS 1 such that lloB'(yo)=O. But then, since 
ly-yol_-< 7r, 

I H o B'(y)I < 7r II (H o B')' [I oo < ~ liB" II o~ _-< ~ II B II'. 

Therefore IIB'II o~ <re [IB[I'. 
Likewise if yeS 1,/-/eO* (3, 1), there is a yoeS 1 such that HoB(yo) 

=//((2r0 -~ I B(t)dt) and hence 1//o B(yo)l < IlBIl'. 
S 1 

IF/o B(y)[ < IH o B(y0) I + IH o B(y) - H o B(yo) I 

_-< IIBll'+ ~ IIB'll oo--< liB I['(1 + rd). 

Therefore [IBll | __<(1 +~2)IlBll'. 
We conclude that IIB[I < ( l+~r2) l IB[ I  '. Note that both norms give the same 

topology on rg. 
For MeR,  define 

rg(M) = {Berg: H61der constant for B ' <  M}. 

By Ascoli's Theorem, if Boerg and to>0, B(Bo, ro)C~rg(M ) is compact, rg(M) is 

closed and a-compact, rg= 0 rg(M) is a-compact and hence has a countable 
M = I  

basis for its topology. 
Let ~fcrg be the subspace of embeddings of S ~ in R3: 

~f--{Berg: IB'l > 0  and B(s)=B(t)=~s=t}. 

Then g is open. 
For B e 8  we define smooth maps 

z,v: i m B ~ H o m ( R 3 , R  3) 

z (b) = Tan (B, b), 

v(b)=z(b) ~, 

so that if x e R  3, beimB, z(b)(x)+v(b)(x)=x. 
We define a map ~:  rg-*:L~el(R3)clt(R 3) by 

~(B) = B , ( S  ~ ) 

(which we will sometimes simply denote B). 
Put ~ = ~(6~). We have two topologies on ~ :  

~tt induced by the fiat norm ~- on integral currents, and 

J22 induced by ~]8 from [] [I on rg. 
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3.2. Proposition. 

In fact, for B, CeCg, 

o ~ ( ~ n -  ~C)__< liB - C[I (length B ) +  27~ lib - CII 2 

(2) tP is continuous for both topologies. 
(3) ~1~ is open for .~. 

Proof. To establish (1), let B, CCg .  Consider the m a p  

F:  [0 ,2n]  • [0, l i a R  3 

F(t, 2) =(1 - 2) B(t) + 2 C(t). 

Put 

P = F , ( E  2 L [0, 2n]  x [0, 1]). 

Then  ~3P= ~ B -  ~ C ,  so that  ~ (VtB  - 7~C)<M(P).  

<oF 
JzF= & by 2.5(3) 

= I(1 - 2) B' ( t )  + 2 C'(t)l  [C(t)-B(t)l <(IB' ( t ) l  + liB - CII ) l ib  - C l t .  

Hence  by the area  formula  2.5(1) 

M(P)  < f ([B'(t){ 4-lib - Cll) [ IN-  eli d ~  -hE'2 
[0.2~tl • [o, 11 

= IIB - C II (length B) + 2 r~ lIB - C tl :. 

(2) follows immediate ly  from (1). 
To  prove (3), let U be open in & We must  show ~ U  is open. Let ~ C e ~ U ;  

then C is just  a reparametr iza t ion  of some BeU; i.e., there is a C 2 
h o m e o m o r p h i s m  

s: S I ~ S  1 such that  B=Cos. 

Put  k = m a x { 1 ,  IIs'll| IIs'll 2o0, Its"ll| Now choose a positive r so small  that 
B(B, 2 r k ) c  U. W e  claim ~ B ( C ,  r ) ~  ~ U ,  which will complete  the proof. 

Let  DsB(C,r). To show ~Ds~PU, it suffices to show DoseU, for which it 
suffices to show [IB-Dos[l<2rk. But IIB-Dos[l=l[(C-D)os[]<2rk, as one 
easily checks. 

Remark. That  the map  ~ is open means that  every choice of  parametr iza t ion  
(from ~) induces the same topology  at a geometr ic  simple closed curve. 

N o w  fix BoeS ,  M e Z  + and choose rl > 0  such that  

B(Bo, rl) c g .  
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3.3. Lemma. There are positive constants ci, Cl, C 2 such that if 

r<=rl, B, CeB(Bo, r)~C~(M), s, t~S l, 

then 

(l) ]tB]] ~ C 1, 
(2) cx[t-s]<=lB(t)-B(s)[<= ClI t -s[  

and hence c 1 <lB'(s)l < C1, 

(3) [[zB(t))-z(C(t))H __<2c? I IIB'- C'll ~, 
(4) Iv(B(s)) (B(t)-B(s))I < Cz{B(t)-B(s)12/2. 

Proof. Just take C i = IIBoll +rl. 

To obtain cl, consider the function 

f :  B(Bo, h ) c ~ ( M )  x S i x S i ~ R + 

[ B(t)-B(s) s 
f (B ,s , t )=~l  t - s  I # t ,  

klB'(u)l u = s = t .  

Clearly f is continuous except possibly at points of the form (C, u, u). 
But 

If(B, s, t) - t i C ,  u, u)l < If(B, s, t) - f ( B ,  u, u)l + If(B, u, u) - f ( C ,  u, u)l. 

In estimating the first term, we can assume s, t.~u, s<t:  

If(B, s, t ) - f ( B ,  u, u)l < I ( t -s)-  l (B( t ) -B(s ) ) -  B'(u)l 

= ( t - s ) - l ! (B ' ( v ) - B ' ( u ) ) dv  <_ (t-s)-1 i Glv-ul dv 

_-< ( t -  ' It-u[} dv s)- 1 ~C 1 max{Is-u[,  < C 1 max{Is-ul ,  I t -ul}.  
S 

On the other hand, If(B, u, u ) - f ( C ,  u, u)l = IB'(u)- C'(u)l < lib - CII. 
Therefore f is continuous. As a positive continuous function on a compact 

set, f has a positive minimum c~, and (2) holds. (Or if domain f=O,  the 
proposition holds trivially.) 

B'(t) C'(t) _,, _ 
Ilz(B(t))-dc(t))]l = B ~  IC-~[ ~zc~ ~llU'-C'llo~; 

this proves (3). 
Finally put C z = 2 Cl/c ~. Then 

,v(B(s))(B(t)-B(s)),= v(B(s)) (B ' (s ) ( t - s )+ ! ( t -u )B" (u )du )  
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by Taylor ' s  Theorem with Remainder  

< Is - t[ 2 C1 because v(B(s)) (B'(s)) = 0 

<(C1/c21) IB(t)-B(s)[  2 by (2) 

< Ce IB(t) - B(s)le/2. 

3.4. Definitions. Put  r 2 - -min{r l ,  1/3 C2}, 

A : {xER 3 : dist(x, im Bo) < rE}. 

N o w  if BeB(Bo,  rE), then 

A c {x ~R3: dist(x, im B) < 2/3 C2}. 

By [2, 2.1], for any BeB(Bo,  r2), 
= {(a, b)~A • i m B :  a-b~v(b)}  

p={(a, la-b]): a~A, b~imb, a-b~v(b)}  

are cont inuously differentiable functions on A, p(a)= dist(a, im B), and if b = ~ (a), 
then 

liD ~(a)-z(b) l l  < P(a)/( C2 1 _ p(a)) < 3 C 2 p(a) 

and hence 

liD ~(a)ll < 1 + 3 C2 p(a). 

Next  define 5 a = SP(r2) as 

{(S, B)~I2(R 3) x B(Bo, rE) ~ r 

S is a mass  minimizing current  with boundary  B}. 

We give 50 the metr ic  

dist((S1, B O, ($2, B2) )=max  {~($2 - $1), tlB2 - B ~  II}. 

3.5. L emma .  5 e is compact, and if (Si, Bi)~(S, B) in ~ ,  then H M ( s p t  Si, spt S)--, 0. 

Proof B(B o, r2) nCg(M) is compact .  The associated currents, since they minimize 
mass, are of  bounded  mass  and support .  Therefore we can apply the Compac t -  
ness Theorem 2.6 to conclude that  5 a is compact .  

Assume (S~,B~)~(S,B) in 5 e, but  for some e>0 ,  HM(sptS~,sptS)>e. Then 
we can assume there is a sequence of points x 1, x 2, x 3 . . . .  ~ x  such that  one of 
the following holds: 

(a) x ~ s p t  S, dist(x~, spt S~) > e, 

(b) x ~ s p t S  i, d i s t (x~,sp tS)>e .  

In case (a), x e s p t  S, dist(x, spt S~)>e/2 for large i. This contradicts S~ ~ S .  



266 F. Morgan 

Hence we can assume (b). Choose f , g ~ C  ~176 such that f , g > 0 ,  f + g = l ,  
s p t f  cB3(x,  e/2), spt g c R  3 - B ( x ,  e/3). Then 

S = S L  f + S L g ,  

M(S) = M ( S  L f )  + M(S Lg); 

S i = S I L f + S i L g ,  

M (Si) = M (S i L f )  + M (S, L g). 

Since M is lower semicontinuous, 

M(S L f )  < lim M(S i L f )  

M(S L g) < lim M(Si L g). 

But since Si, S are mass minimizing, 

M(S,) ~ M(S). 

Combining this fact with the above inequalities yields 

M(S, L f )  ~ M(S L f) .  

Since by (b) dist(x, spt S) > e, 

M ( S L f ) = 0 .  

On the other hand, for large i, B3(xi, ~/4)cB3(x, ~/3) and dist(xl, im Bi)> ~/4. 
Hence by monotonicity (2.7) 

M(S, L f )  ~ II S, II ( B3 (Xl, e/4)) > z~(e/4) 2. 

This contradicts the fact that M(S~ L f ) ~  M(S L f )  and completes the proof. 
For (S,B)~6 e, b s imB,  we now define 

ns(b). 

If sptS is a C 1 manifold with boundary at b, let ns(b ) be the unique unit vector 
in kerz(b) such that 

Tan (spt S, b) = {z(b) + 2 n s (b): 2 > 0}. 

Otherwise, put ns(b)=0. 

4. Measures on the Space of Curves 

In this chapter we define a measure # on ~ and exhibit the measure space as a 
product 

(~r ~) = (~r ~N) X (~r ~N). 
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After  establishing the basic propert ies  of these measures,  we prove an impor tan t  
L e m m a  (4.6) on uniformly approximat ing  certain subsets of  cr by curves in the 
finite dimensional  space c~ N. Finally, we prove the close relationship between # 
and Brownian mot ion  (4.10). 

4.1. Measures  on R k. Let  ~ k  denote Lebesgue measure  on R k. Define Gauss ian  
measure  f~k as the Borel regular  measure  such that  if E is a Borel subset  of  R k, 

fgk(E) = (2n)-  ~k S e -  ~ Ix12 d ~  k x. 
E 

k 

Note  that  f fk= I-[ ffl, fgk(Rk)= 1, S IXl 2 dffk=k, and fgk is O(k) invariant.  We also 
n = l  

note  that  for r > 0 ,  xER 3, 

(1) 4 -  1 exp( - l(Ixl + r) 2) r 3 < ~3 (B 3 (x, r)) < 3-1 r 3. 

4.2. Measure  on ~ .  Define a probabi l i ty  space 

~Q= ~I  Ra 
t t ~  - ct~ 

n * 0  

with product  measu re / / f#3 ,  which is a Radon  measure.  (Cf. [7, 2.6.6, 2.5.14]. Fo r  
the construct ion it is technically convenient  to de f ine /7  f9 3 on I I R  3, which is 
compact ,  and then restrict to f2, whose complement  has measure  0.) 

It  follows f rom work  by G. Hunt  [10, In t roduct ion  or Theorems  2, 4] that  
for a lmost  all (Bi, B 1 ,  B 2 . . . .  )El2, 

• B , n - 3 c o s n t + B _ , n - a s i n n t  
n = l  

converges in cg (in the C 2 norm).  Let  f2 0 be the linear subspace of ~ of  full 
measure  1 on which we merely have uniform convergence (in the C O norm) to a 
function in ~.  

We can define a bijective linear m a p  

~:  R3 x O 0 ~ c ~  
oo 

�9 : (Bo, B1,B_I, ...)~-*Bo- ~ B ,n -3cosn t+B_nn  -3s innt .  
n = l  

is surjective because even a C 1 function has a uniformly convergent  Four ier  
series. Since the maps  

(Bo,BD B_I . . . .  )~--~B,n- 3 cosnt  + B_~n- 3 sinnt  

are continuous,  their  sum �9 is Borel measurable.  �9 has a cont inuous linear 
inverse 

~ - ' :  ~---~R 3 XQ 

q~-l: B~_~(Bo,B1,B_I,...) 
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which maps B to multiples of its Fourier coefficients: 

Bo =(2rc)-l SB(t)dt, 
St 

B n = - - n  3 ~z- 1 SB(t) cosn  t d t ,  
St 

B_~= -n3r~-'  ~B(t)sinntdt, (neZ+). 
S1 

Define a measure # on ed as the Borel regularization of r  (s I]~r z) (cf. 
2.2), so that if Deed is a Borel set, 

~ ( D ) = Z  3 • 1 T r 1 6 2  1D). 

Of course # induces the measure ~ .  ~ on ~,(R3). 

4.3. Proposition. 

(1) # is invariant under Euclidean motions. 
(2) Let feed. Suppose f "  is square summable. Then 

(~s), ~ ~ .  

(3) Open sets have positive # measure. 

Proof. (1) follows from the facts that any Euclidean motion is a composition of a 
rotation with a translation, Lebesgue measure is translation invariant, and both 
Lebesgue and Gaussian measures are rotation invariant. 

To prove (2), we will use a theorem of Kadota and Shepp 1-11, Theorem 1], 
which says that if ~ Ic~[ 2 < oo then 

]-[ ~c~ ~3 ~ [-[ ~3. 
n * 0  n4=O 

Let (Co, Q,c_~ .... ) = ~ - l f .  Integration by parts shows that the vector of 
Fourier coefficients of f "  is just ( O , c _ l , - q , c _ 2 , - c  2, ...). Hence by 
Plancherel's Formula, 

Ic~] 2= ~]f"'(t)[2dt<~. 

Consequently, by the theorem of Kadota and Shepp, 1--[ %. .  ~r I-I ~r it 
n*O n * 0  

follows by Fubini's Theorem and Borel regularity that 

2z3 x 1 - 1 % ,  ~r 2z3 x l-I ~r 3 . 

To prove (2), suppose Eced,  #(E)=0, and let D be a Borel set, EcDc~g,  
such that #(D)=0. Since s s  
Now,  
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Zy , #(E) < 7:y , #(D) 

= #(D + f )  = (~a3 x 1-[ c~3) (4-1D + (Co, ci, c 1,"  ")) 

=(~,e 3 x 1--['cr ~ f#3) (4 -1D)=0 .  

Therefore ~y ~ # ~ #. 
To prove (3), let U~Cg be open. Since C ~ functions are dense in cg, the 

translates of U by C 4 c ~  cover cg. Since (g is a-compact, there is a countable 
subcover, {(U + f ) :  f~F}.  

Now suppose #(U)=0.  Then #(U+f)=(zs)~#(U)=O by (2). Therefore 
#(c~) < ~ #(U + f )  = 0, a contradiction. 

fe-F 

4.4. For N ~ Z  +, we can view R 3 x f2 as a product 

(R3xf2, ~ 3 x  FIf#3)=( H R3, Aa3• I-[ f~3)x( H R3, 1-I f#3) 
n*O Inl<N 0<lnl_-<N Inl>N [nl>N 

and denote projection onto the first and second factors by zt~ and rc N, so that 

ZrN(Bo, B 1, B_I . . . .  ) =(Bo . . . . .  B_N), 

rcN(Bo, B1, B-1 . . . .  )=(BN§ 1,-'-)" 

Furthermore we can view cg as a topological product 

~=(gN x ~  N 

where 

~N = {Be~:  7zN4-1B =0} 

t } = ao+ ~a~cosn t+a_~s inn t :  a~eR 3 , 
I n = l  

cgN = {BECk: ~ 4 - 1 B = 0 } .  

We also denote projection onto these factors by ~ZN, ~S. 
We observe that R 3 x f2o, the domain of 4, is just 1-I R3 x f2~, where f2~ 

Int-<N 

= rrS(R 3 x f20) , and ( H f~3) (f2o N) = 1. Also, 4 restricts to bijective linear maps 
Inl>N 

4: l-[ R3-'~s, 
Inl < N 

4: O~--,~ N. 

Imitating the definition of #, we can define measures #s, #N on CgN, cgN as the 

Borel regularizations of 4#(L# 3 x I-I f#3), 4#(  I-[ f~3). 
0<lnl-<N Inl>N 

We claim that / I=#NX# N on cg=cgN• Since both are o--finite Borel 
regular measures, it suffices to check this for products D x E of Borel sets in ~gN 
and cgN, because the algebra of disjoint unions of such products generates the a- 

algebra of Borel subsets of cg. 
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#(D x E)=(oL~ a3 x I-I ~ 3 ) ( ~ - I ( D  x E)) 
n*0 

= (~a3 X I-I (~3) ( ~ - l D  x ~ -  1E) 
n*0 

=( "~3x ]--I cg3)(~-'D)'( ~ ~3)(~-IE) 
0<lnl<N InI>N 

=#N(D) '#N(E)  

= (#N X #N) (D x E). 

Therefore  we can view cg as a product  

((~, ]'/) = ((-~N, #N) X ((~N, #N). 

The  following lemma shows that #N is enough like Lebesgue measure to do 
derivat ion theory. (Cf. L e m m a  2.4.) 

4.5. Lemma.  Given C 1 >0,  N ~ Z  +, there are positive numbers ko, k I such that i f  
B~Cg, 

[IBl[oo<C1, and r < C  1, 

then 

ko r 3 (2N + 1) < #N B(TrN B, r) < k 1 r 3 (2N + 1). 

Proof. Put 

k o = [4 exp( 1C~(2N 2 + 1) 2) (2N + 1) 3] -  (2N + 1), 

k 1 = 4~(8N9/3)  2N+I. 

For  any B~Cg, let q ~ - I B = ( B o , B 1 , B _ I  . . . .  ). It follows from the characterizat ion 
of O-  1 in 4.2 that 

(1) [Bn[~2N3][B[[~o for [n[<=N. 

Now  fix B~Cg and suppose CEcgN. 
If C~B(nNB , r), then [Cn-B~[ <= 2 N 3 r  for In[ _-< N by (1), so that 

N 
~-IB(TrNB, r) c YI B3(B~,2N3r)  �9 

n~ --N 

Hence,  

~NB(~NB, r)=(~ 3• ~ ~3)(~-~B(~NB, r)) 
0<lnl_SN 

O<Inl=<N 

N 

N~rc(2N3r) 3 1-I (3-1(2N~r) ~) by4.1(1) 
n ~  - - N  

n * 0  

_<_ 4rc(8 N9/3)2N + 1 r3(2N + l) = k 1 r 3(aN + lJ. 
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On the other  hand, C~B(nNB, r) 

if ICo-Bol  + I(C1 -BI)/I[ + ... + [(C_N--B_N)/NI <r, which holds 

if [Cn-Bn[<r / (2N+l  ) for tnl<=N, 

so that  
N 

~-~B(nNB,  r )=  1--[ B3(Bn, r / (2N+I)) ,  
n =  - - N  

and as above,  one obtains the est imate that  

#N B(nN B, r)__> k o r 3~z~+ 1~. 

The following l emma will enable us to go to ~N to carry out somewhat  
intricate geometr ic  density a rguments  in Chapter  7. 

4.6. Approximat ion Lemma.  Let H be a set of functions: S l u R  3 with equicon- 
tinuous second derivatives which are bounded by a positive constant K 2. 7hen 
given t />0 ,  there is a positive integer N such that given hr there exists f ~ N ,  
such that 

I I f - h l l  <~/. 

Proof. First choose &>0 such that  h~H, Is-t l<&=:,lh'(s)-h'( t) l<tl /2(l+lr2).  
Next  choose N z Z  + so that  the function 

q: S l u R  

q(t) = c((1 + cos t)/2) N 

(where c is chosen so that  S q( t )d t= 1) satisfies 
$1 

sup {[q(t)l: & < t < 2 r e -  f} < ~//4K2(1 + zr2). 

N o w  let h~H. Define 

g: Sl  --~ R 3 

g(t) = Sh"( t - s )  q(s) ds 
$1 

= ~h"(s) q ( t - s )  ds. 
S t 

The second expression for g(t) shows that  g~C4 N. Using the first we est imate that  

[g(t) - h"(t)[ = I ~ [h"(t - s) - h"(t)] q(s) ds[ 
$1 

t~ 2 ~ - ~  

< ~ q ( s ) Ih" ( t - s ) -h" ( t ) l d s+  ~ 2K2q(s)ds  
t=  - -~  t = f i  

< t//2(1 + n2) + r//2 (1 + rc 2) = t//(1 + n2). 
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Furthermore, ~ g(t)dt= ~ q(s) I h"(t-s)dtds=O because ~ h"(t-s)dt= I h'(t-s) 
S l s e S  ~ t~S  1 , tES 1 ON 1 

= 0. Hence we can integrate g(t) term by term and Stay inside ~fs. To get f(t), 
do this integration twice and add on a constant of integration so that 

~ f(t) dt= ~ h(t)dt. 
S 1 S 1 

It follows that I l f -h l{ '<  q/(1 + n2), so that by Lemma 3.1, 

I l f -hl[  <t/.  

4.7. Brownian Motion. We will now prove the intimate relationship between # 
and Brownian motion, which could have been used to define 4~ and #. Theorem 
4.10 will show that ~"  is just Brownian motion with two minor adjustments. 

One dimensional Brownian motion is a Gaussian process X: probability space 
x real interval, I-~ R characterized by 

mean EX t = ~ X t -~- 0 te l  

covariance E X s X  t = rain {s, t} s, tel  

and continuous sample paths (continuity in t). 
If {X (1) 1 <i<n} are independent one dimensional Brownian motions, then 

(X t~), X (2), ..., X (")) is n dimensional Brownian motion. 

4.8. Proposition. Define 

X : f i  (R, (ql) • [0, 2 It) -o R 
n ~ - - o o  

Xt =X((Y o, I11, Y ~ . . . .  1, t) 

=(2n)-�89 Y0t+n -~ ~ Y.n- l (cosnt - -1)+Y_.n- l s innt .  

Then X t is Brownian motion on [0, 2n). 

Proof Once again it follows from Hunt's work [10, Theorem 2] that almost 
surely this series converges uniformly to a continuous function of t. 

Note that {11,} is an orthonormal set in L2(I-[ R) and EY,=0. Since 

~=MY.n-l(cosnt--1)+ Y_.n- ls inn 

N N 

= ~ n-2[(cosnt-1)2+sinant]<-_5 ~ n -2, 
n = M  n = M  

the series for X t is L z Cauchy and hence converges to X t in L 2 and in L 1. As a 
sum of Gaussian processes, X t is Gaussian. 
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EX t =0  

EX~ Xt = X~ . X, (inner product in L 2) 

=(2n)-l st + lz -I ~, n-2[(cosns-1)(cosnt-1)+sinnssinnt]  
n = l  

= rain {s, t} by the following formula [4, p. 167] : 

~ n-2cosnt=~c2/6-(n/2)t+(1/4)t 2 (0<t  <27t). 
n = l  

Therefore X t is Brownian motion. 

4.9. Corollary. 

X: (R3, ff3)• F I f f 3 ) •  3 
n : r  

X~=(2n) -~ Yt+n-~  ~ B , n - l ( c o s n t - 1 ) + B _ , n - l s i n n t  
n = l  

is three dimensional Brownian motion. 

Comparing this expression for three dimensional Brownian motion with our 
definition of O, we get the following theorem. 

Put ~2" =(R 3, (~3) • (R 3, ~3) X ~ with typical element (Y, B o, B1, B_ 1 . . . .  ), so 
that we can view both �9 and Brownian motion X as functions: ~* x [0, 27r)-~R 3, 
defined almost everywhere, with their defining series convergent in C2[-0,21t) 
and C[0,2rc) (with C 2 norm and C O norm) respectively. 

4.10. Theorem. 

O " ( t ) = ~  [X(t)+ 1 t 2~ 

and 

X(t) = It- ~ [O"(t) - O"(0) + 2- * Yt]. 

Remark. 0" is Brownian motion with two adjustments to make �9 2n periodic. 

(~- ) X(2~z) 1 t First, - ~ -  is added to make O" 2n periodic. Second, the average 

value of X(t) is subtracted to make O'= SO" periodic. (The constant of in- 
tegration is chosen to make SO'(t)zero, i.e., to make �9 periodic. In integrating �9 
from O', the constant of integration is the random variable Bo. ) 

5. Uniqueness and P.D.E. 

As the first step towards the Uniqueness Theorem 7.1, we prove that two area 
minimizing surfaces which are tangent along an interval of boundary are equal. 
Because such surfaces are analytic manifolds on the interior, it suffices to prove 



274 F. Morgan. 

the theorem locally, at a boundary point where the two surfaces can be viewed 
as graphs of functions u, u': R 2 ~  R satisfying the minimal surface equation 

(1 + u 2) uxx - 2ux uy Uxy + (1 + u 2 ) uyy = 0. 

Thus the problem becomes one of partial differential equations. We know that u 
and u' have the same values and derivatives along the boundary, and we want to 
conclude that u = u'. The difficulty stems from the nonlinearity of the minimal 
surface equation. Nevertheless, general results from the theory of partial differ- 
ential equations due to Aronszajn 1-3] give the result if u, u' are C 3. 

We use a different technique, which only assumes u, u' to be C 2. The 
Legendre transformation (cf. [6, Volume II, pp. 32-34, 38]) introduces u~ and uy 
as new coordinates on the surface. Under this transformation, the minimal 
surface equation becomes a linear elliptic second order partial differential 
equation for some new function co corresponding to u and co' corresponding to 
u'. On first consideration, this proves nothing, because the Legendre transfor- 
mation itself depends on the particular function u. However, it turns out rather 
surprisingly that because the values and first derivatives of u and u' agree along 
a boundary segment of their common domain, the domains of co and co' have a 
common boundary segment on which the values and first derivatives of co and 
co' agree. It  follows that co = co' and consequently u = u'. 

5.1. Theorem. Let S, S' be mass minimizing integral currents with OS=aS'=B,  
BeN. Suppose that for all t in some subinterval of S 1, spt S and spt S' are C 2 
manifolds with boundary at B(t) and 

ns(B(t))=ns,(B(t)). 

Then 

S=S' .  

5.2. Lemma.  Let  S be a mass minimizing integral current with boundary B, Be# ,  
such that for some t~S 1, spt S is a C 1 manifold with boundary in a neighborhood of 
B(t). Then s p t S - s p t  aS is connected. 

Proof. Let D be the component  of spt S - s p t  aS which intersects the neigh- 
borhood of B(t). Since s p t S - s p t a S  is an analytic manifold (2.7), so is D, and 
a D c  spt aS. 

Put T = S L D .  Then s p t a T c s p t a S .  It follows from [7, 4.1.31] that a T = r a S  
for some reR.  Considering our neighborhood of B(t), we see we must  have aT  
= aS. Since S minimizes mass, T--S .  Therefore spt S -  spt aS is connected. 

Proof of  Theorem. Let b o be a boundary point where sp tS  and sptS '  are C 2 
manifolds with boundary. For  convenience we will assume b o = 0  and 

Tan (spt S, 0) = Tan (spt S', 0) c R2 x {0}. 

Denote by H orthogonal projection onto R 2 • {0}. 

Choose Po > 0  such that if 

W=U2(O, po) •  
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then spt S n W and spt S' c~ W are C 2 manifolds with boundary given nonpara- 
metrically as graphs of C 2 functions 

u,u': G-oR 

where 

G = H(spt  S n W) = H(spt  S ' n  W) 

is a domain in U2(0, Po) including the boundary segment 

B = H(spt 3S n W) = H (spt DS' n W). 

For  (x, y)eG, u must satisfy the minimal surface equation 

(1 +u2y)Ux~,-2UxUyUxy+(1 + 2 !.,r Uyy = O, 

and similarly for u'. 
Note that since by hypothesis at points of B, u and u' have the same values 

and first derivatives, their second partial derivatives involving differentiation 
along B also agree. Applying the minimal surface equation, we conclude that all 
their second derivatives agree: 

(1) uln=u'ln, ux]B=u'xln, uylB=u'ylB, uxxlB=u',,~lB, 
uxrlB=u'xyln, uyyln=u'yylB. 

In particular, if 

K: spt S n W--*R 

K':  spt S' c~ W-oR 

denote Gaussian curvature, then KIB =K'IB. Unless KIB=0 ,  we can assume (by 
moving b o and shrinking P0 if necessary) that K, K'  are nonvanishing on 
spt S n W, spt S' c~ W. Therefore it suffices to consider two cases: 

Case I. KIB =0.  
Case 2. K, K' nonvanishing on spt S n W,, spt S' n W. 

Case l .  Since S L W  must be mass minimizing, s p t S n W  must have mean 
curvature H = 0 .  But H, K both 0 on s p t ~ S n  W implies that Tan(sptS, b) is 
constant for b~spt OSn W,, and hence that s p t ~ S n  W = B ~ R 2  x {0}. Hence at 
points of B, the partial derivatives of u, and the second partial derivatives 
involving differentiation along B are 0. By the minimal surface equation, all the 
second derivatives are 0. Therefore u can be continued as a C 2 function across B 
by 0. Since on the interior u is analytic, u = 0. Likewise, u '=  0. Now by analytic 
continuation and Lemma 5.2, S = S'. 

Case 2. Consider C 1 maps 

ff': G---+RZ={(~,r/): r 

f (x, y) = (Ux(X, y), uy(x, y)), 
r if(x, y)= (u'~(x, y), Uy(X, y)), 
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and the cont inuous  m a p  

p: G ~ R  

p(x, y) = u~,(x, y) U~y(X, y) 
uxy(x,y) uyy(x,y)" 

F. Morgan 

l, lyy~ Lco~ coq~l J 

so that  

[co~ co~q] i [Uyy --Uxy 1 
co~ co,I~J--P L--Ux~ Uxx J" 

N o w  since the min imal  surface equat ion  holds for u for all (x.y)~G. we have for 
all (~, ~/)~ H,  

(1 + ~2)co~ + 2 ~ r/cor + (1 + q2)con~ = 0. 

Of  course,  with a similar definition for co' in te rms of u'. we conclude that  for 
all (4, q)~H', 

(1 + ~2)co~ + 2~q co~, +(1 + q2)co',, = 0. 

These  two equat ions  hold s imul taneously  in H".  Fur thermore ,  for (4, q)~ C c H",  

o~(~,,7)= co'(~,,7), 

At  every (x,y)eG, p(x,y) is a posit ive mult iple of K(x,y,u(x,y)) and hence 
nonzero  (negative in fact). 

By (1), D f ( 0 ) = D f ' ( 0 ) .  Since J2f(O)=J2f'(O)=lp(O)]>O, by shrinking Po if 
necessary, we can assume that  f and f '  are C ~ h o m e o m o r p h i s m s  onto H, 
H ' c R  2. Since f IB=f ' lB ,  if H=f(G) and H'=f'(G), then H"=H~H'  is a 
domain  with a bounda ry  interval C = f(B)= f'(B). 

N o w  via f -  ~ we can view x, y, u as C ~ functions on H. Define 

co: H--*R 

co.---x~ + yq-u .  

Differentiat ing with respect to x and y yields the matr ix  equat ion 

Uxy Uyy~ blyy~ 

Since p is nonvanishing,  we conclude tha t  

(2) co~ = x,  (-% = y. 

This  shows us that  co is in fact C 2. 
Differentiating these last two equat ions  with respect  to x and y we get 
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by (1) and (2) and the analogous statement for co'. 
Define 

co": H " ~ R  

CO" = CO - -  0 ) ' .  

Then CO" satisfies the differential equation 

t! 2 yl __ (1 + ~2)CO~, + 2 ~ ~ CO~. +(1  + ~ )CO..- 0, 

and for (~,~)~C, 

H CO"(~, ~) = co~'(~, ~) = CO, (4, ~) = o. 

Hence the second partial derivatives involving differentiation along C are 0. 
Finally, by the differential equation, we conclude that all the second derivatives 
are 0: 

CO~'r ~) = CO~',(~, ~) = CO,',(~., ~) = 0 .  

Therefore CO" can be continued as a C 2 function across C by 0. But on the 
interior, as the solution to the elliptic partial differential equation, CO" is analytic. 
Therefore, co" = 0. 

But now for (4, q)~H",  

f - 1  ( ~ ,  q )  : (COr (Dq) : (CO~, CO'.) ~"  f ' -  ~(~, ,). 

Hence if G" = f - a(H")= f ' -  I(H"), f i G " =  if[G'. Therefore if (x, y)~G", 

u(x,  y) = - co( f  (x, y) ) + (x, y ) . f ( x ,  y) 

= - co'(if(x,  y)) + (x, y).  f ' ( x ,  y) 

= u'(x ,  y ) .  

By analytic continuation and Lemma 5.2, S - S ' .  

6. Boundary Regularity 

Boundary regularity will play an essential role in our arguments. Although it is 
true that a mass minimizing unoriented surface in I22(R a) with a C 2'~ boundary 
is a C 2'~ manifold with boundary, the corresponding statement of boundary 
regularity for integral currents is not known. However, Allard [2, p. 429] has 
proved that any integral varifold with a C 2 boundary whose first variation is 
summable to a power greater than its dimension is a C 1 manifold with 
boundary at any boundary point where its density is �89 Proposition 6.1 summa- 
rizes his results as they apply to mass minimizing integral currents. 

Our Uniform Boundary Regularity Theorem6.4 produces a small positive 
number r 5 such that Proposition 6.1 can be applied uniformly to 

S ~ = {(S, B)eI2(R a) x B(Bo, rs) c~ C~(M): 

S is a mass minimizing current with boundary B}. 
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It follows that as(b), the inward unit vector normal to the boundary at b and 
tangent to sptS, is a continuous function on the space of curves and sur- 
faces (Lemma6.6), and hence that if the tangents to two area minimizing 
surfaces with close boundaries are close together on J, the surfaces are close 
together (Theorem 6.7). The proof of the Uniqueness Theorem 7.1 will depend 
fundamentally on this result. For convenience, we conclude this chapter by 
formulating from Theorem 6.7 the lemmas we will need in Chapter 7. 

6.1. Proposition (Allard [2, p. 429]). Given e, 0 < ~ <�89 there is a positive number 6, 
such that if B~g,  S is a mass minimizing current with boundary B, b~im B, and the 
following two hypotheses are satisfied: 

(1) I v ( z ) ( y - z ) l<6 ly - z lZ /2  

for y, zeimBc~U3(b,  1), 

OZ(llSlt,b, 1)__<�89 (2) 

then 

(3) 

(4) 

spt S~U3(b, l - e )  is a C 1 manifold M with boundary, 

if y , z ~ M - i m B  and T is the plane containing Tan(M,b), we have the 
estimates 

IlTan(M, y) - TII = e, 

[I Tan(M, y) - Tan(M, z)[I =< elY - z[ 1/3, 

(5) there are an isometry 0 of R 3 ~ R Z x R  and a continuously differentiable 
function f: R 2 ~ R such that 

0M c graph s 

Ob=(O,f(O)), OT=R 2 x {0}, 

Df(0) = 0, IDi f (y)-Di f (z) l  <=e ly-z[  1/3 

for i= 1, 2 and y, z~R 2. 
The difficulty in applying this proposition uniformly to 5:(r) for some r > 0  

lies in satisfying hypothesis (2) uniformly, since (1) follows from 3.3(4). The next 
two lemmas overcome this difficulty. 

6.2. Lemma. Given Borg ,  there are a closed interval d c S  a and an r 5, 0 < r  5 =<r z, 

such that if (S,B)e5#(rs) , re J, then 

02(S, B(t))=�89 

Proof By a lemma of Allard's [-2, p. 445], it suffices to show there are 
independent real linear functions//1,//2 such that 

i m B c { x ~ R a :  f l i (x-B(t))>O, i= 1,2}. 

To formulate this condition geometrically, for a~R 3, v, w unit vectors in R 3, 
7/> 0, we define a wedge 

W(a,v, w, tl)= {xERa: v.(x-a)>__qlw.(x-a)[}.  



Almost Every Curve Bounds a Unique Area Minimizing Surface 279 

Now it suffices to produce independent unit vectors v, w e l l  3, r 4 > 0  , such that 

(1) im B c W(B(t), v, w, r4), 

because we can then put 

]~1 (Z) = (V --/'4 W)" Z, 

fl2(z)=(v-l-r4 w) �9 z, (zER3). 

It is easy to fit such a wedge about  an extreme point of im Bo; we prove it can 
be done as well for points and curves nearby. 

Let R =  I]Bol 10o and choose to~S 1 such that ]Bo(to)l=R. Put 

r 3=min{r : , � 89  c2 c,  [ c~ ~/ '~ 
8 R ( C , + I ) '  2 \SMR-]  J '  

,m+ 
32 (R+  1) 2, 4RC~ 

r s =min{r~ ,qrJ4 ,  R/2}, 

= ~ 1 1 M !  ' 

J = [ t  o - 6, to + c~]. 

(2) First  we will prove t h a t / f  

BEB(Bo, 2rs) ~ CK (M), 

then there are independent unit vectors" v, w~R 3 such that 

im B c W(B(to), v, w, r4). 

By choice of R and to, at t o the derivative of the function Bo(t). Bo(t) must be 
0 and its second derivative must  be nonpositive: 

Bo (t o)' B~ (to) = 0 

(3) B•(to). B o (to) + B;  (to)- B•(to) =< 0. 

Secondly, if B ~ B ( B o , 2 r s ) ~ ( M ) ,  then 

B'(to) B'o(to) < 2  liB-Boll  
S'(to)l ]B~)(to)l = IB~(to)l <=4r5/c' <_r 4. 

Hence there is a unit vector vCR 3 such that 

v.B'(to)=O and Iv+R-IBo(to)l<=r4. 

Choose a unit vector w independent  of v such that w.B'(to)=O. Because 
imBcB3(O,R+2rs)  and B3(Bo(to),r3)cB3(B(to), 2r3), (2) is an immediate con- 
sequence of the following two claims: 
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Claim 1. 

im B c~ B3( B(to), 2r3) c W(B(to) ,  v, w, r ,). 

Claim 2. 

B3(0, R + 2 r 5 ) -  B3(Bo(to), r3) c W(B( to)  , v, w, r4). 

P r o o f  o f  Claim 1. If B(t)~B3(B(to) ,2r3) ,  then by 3.3(2), 

I t - t o [  <2r3 /c l  ~ (c2 /8  M R )  TM 

by choice of r 3. Hence  

v . B"  (t) = v. (B" ( t ) -  B~(t)) + v . ( B ~ ( t ) -  B~(to)) 

+ (v + R -  1 Bo (to))" B~ (to) - R - 1 So (to) . B~ (to) 

>= --r  3 - M  It - t o l  ~ --r ,  C ,  - R -  'Bo( to ) .  B~(to) 

>= - c2/8 R - c2/8 R - c 2/4 R - R -  ' U o (to)" B~ (to) 

> - c2 /2R + [B'o(to)12/R by (3) 

> c21/2R. 

Applying Taylor 's  Theorem with Remainder  yields 

v. (B( t) - B(to) ) > (c~/2 R )(�89 ( t - to) 2) = (c~/4 R )( t - to) 2. 

On the other  hand, 

Iw'B"( t ) l< IB"(t)l 

< lB~(to)} + r3 q- M I t -  tol ~ 

< C 1 + c2 /4R,  

so that  again by Taylor 's  Theorem,  

r4 Iw. (B(t) - B(to))l < r3 (Ci  + c2/4R)(�89 (t - to) 2) 

<= (c~/8 R + c~/8 R)(�89 (t - to) 2) 

<__(c2/8R)(t-to) 2. 

Therefore  B ( t ) e W ( B ( t o ) ,  v, w, r4) and the first claim is proved. 

P r o o f  o f  Claim 2. Let  yeB3(0,  R + 2 r s ) - U 3 ( B o ( t o ) ,  r3). Then 

r3 ~ lY - -  Bo(to)[ ~ 2R + 2r 5 . 

Also 

(R d- 2r5) 2 >-lyl 2 = Jy - B o ( t o )  + Bo(to)l 2 

= lY -- Bo(to)l 2 + 2Bo(to)" (Y ~ Bo(to)) + R2.  

F. Morgan 
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Hence 

- R -  a Bo(to)" ( y _  Bo(to) ) > lY- Bo(to)12/2R- 2r5 - 2r2/R 

> r2/2 R - 2 r 4 - 2 r]/R 

> r 2 / 2 R -  r ~ / 1 6 R -  r~/16R = 3 r~/8R. 

v. (y - B ( t o )  ) = -- R -  1Bo (to)" (Y -Bo( to))  + (v + R - 1 B  o (to))' (Y -Bo( to) )  

+ v. (Bo(to) - B(to)) 

> 3 r 2 / 8 R -  r4(2R + 2 r s ) - 2 r  5 

> 3 r 2 / 8 R - ( r ~ / 3 2 R 2 ) ( 4 R ) - 2 r ,  

> 3 r2/8 R - r 2/8 n - r2/16 R 

>=r2/8R. 

r4 Iw" (y ~B(to))l < r4(2R + 4r5) =< r4(4R) --< r~/SR. 

Therefore y~ W(B(to), v, w, r4) and the second claim is proved. 
Now we complete the proof of the lemma by deriving (1) from (2). Let 

B~B(Bo,  rs)~C6(M), tEJ. Put C=BoTt_to. Now 

l iB- Cll _-< 11 l iB- ell' (Lemma 3.1) 

= l l m a x  ~ B ( t ) d t - ~  No _ IlB"-(Bo~,_to)"lI~ 
0 

=11 IIn"-n'o~,_,oll~ 
< l l M l t - t o [ ' <  l l M  f~ =rs .  

Therefore C e B ( B  o, 2r5), and we can apply (2) to get independent unit vectors v, 
w 6 R  3 such that 

im B =im C ~  W(C(to), v, w, r4)= W(B(t), v, w, r4). 

The lemma is proved. 

6.3. Lemma. Given 6>0,  ' there is a positive number s o, such that if  r<so,  

(S, B)~S~(r5), and t~J,  then 

02(11511, B( t ) , r )< �89  

Proof  Otherwise, since 5g x J is compact, there are convergent sequences 

(S1,B1) , ($2,B2) , . . . ~  (S,B)~S~, 
tl ' t2, ...--* tEJ,  
Sl ' S2, ...---~ O, 

with 

O2(ltSiil, Bi(ti), si) > �89 + 6. 
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Since by Lemma 6.2 02([[S[[,B(t))=�89 we can choose r, 

O<r<min{r2 , (7C2)  -~ In(2 + 46)(2 + 36) - l  } 

such that 

O2(}ISI[, B(t), r) <(2  + 3)/4. 

Put  r /= �89 r (1 - (2 + 2 &) ~ (2 + 3 &)- }). Choose i large enough that 

(1) si<=r-211, 

(2) IIS,]I(B3(B(t), r-~7)) 

_-< Ira II (aa(B(t), r)) -I- zc r 2 3/4, 

and 

(3) 

F. Morgan 

[B (t) - B i(ti)[ < ~/. 

Now 

O~(llSll, B(t), r) = I[Sll (B(B(t), r))/n r 2 

(llS~ll (B(B(t), r - , 1 ) ) -  ~ r2 6/4)/n r 2 

>(llsitl (B(Bi(ti), r -  2 rl)))/Tz r 2 - 6/4 

= O2(11S,]I, B,(t,), r -  2~/) [ ( r -  2 t/)/r] 2 _ 3/4 

> O2(IIS~ II, Bi(ti), sl) e 7c~s'- 7c~r [(r - 2 ~/)/r] 2 _ 6/4 

because by boundary  montonic i ty  2.7, whenever ( S , B ) s ~ ,  02(S ,b , r ) e  7c2" is 
nondecreasing in r for 0 < r < ro (since r o < 1/3 C2) 

>__ (�89 + 3) e -  7c~'(2 + 23)(2 + 33)-  1 _ 3/4 

> 4 - 1 ( 2 + 4 6 ) ( 2 + 3 6 ) ( 2 + 4 6 ) - 1 ( 2 + 2 6 ) ( 2 + 3 6 )  - 1 - 3 / 4  

= (2 + 3)/4. 

But this contradicts the choice of r. 

6.4. Uniform Boundary Regularity Theorem. Given ~1, 0 < el < �89 there is a positive 
number sl,  such that if  

(S,B)~Aa(rs) and t~J ,  

then 

(1) spt S n U 3 ( B ( t ) ,  sl) is a C 2'~ manifold M with boundary, 

(2) if  y, z ~ M - i m B  and T is the plane containing Tan(M,B(t ) ) ,  we have the 
estimates 

IlTan(M, y) - TI[ _-__el, 

II Tan (M, y) - Tan(M,  z)ll _-< ~1 I(Y - z)lsll i/3, 
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(3) there are an isometry 0 of Ra-~R2 • R and a continuously differentiable 
function f: R2--* R such that 

0 M c graph f 

O(B(t))=(O,f(O)), 0 T = R  2 • {0}, 

Df(0) = 0, IDif(y)-Dif(z)[ ~e I I(y--z)/Sl[ U3 

for i= 1, 2 and y, z~R 2. 
Furthermore, 

(4) if y~M, d i s t (y ,~ , , )T )< l /~e  a ly-B(t)l. 

Proof Given ea>0,  choose 6 > 0  so that Proposition6.1 holds. Then choose 
s0>0  as in Lemma6.3. Put sl=lmin{so,6/C2}. For r<sl, we will apply 
Proposition 6.1 to /~t2sl)-l.S with boundary (2s0-~B,  with b=(2sa) -a B(t). By 
Lemmas 3.3(4) and 6.3, the hypotheses of Proposition 6.1 are satisfied. The first 
three conclusions of our theorem follow immediately from those of the pro- 
position. That the manifold M is C 2'" as well as C a follows from the higher 
differentiability theory of Morrey [15, Theorem 7.5]. 

To verify (4), let yeM. By (3), Oy=(xo,f(xo) ) for some xo~B2(0, S1) , and for 

all x~BZ(0, st), ]Df(x)J <V/2ex. Consequently, 

dist(y, T) = dist (0y, R 2 x {0}) --If(xo)[ 

<1/~ e~ IXol __<V~el IOy-OI =l/~ea ly-B(t)l. 

6.5. Definitions. For fixed B0eg, let J and r 5 be as in Lemma 6.2. We also denote 
by J the associated integral current E ~ t__J. Let Jx be a closed interval in the 
interior of J. Put It =length Ja. Let (p: $1-~[0, 1] be a C ~ function such that q~lJ~ 
= 1 and spt q~ is contained in the interior of J. We will sometimes denote 
5o(r5/2 ) simply by 5O. 

6.6. Lemma. ns(B(t)) is a continuous function on 5o(rs/2) x J. 

Proof Otherwise there are (, 0 < ( <  1, and convergent sequences 

(Sa, BO, ($2,B2) , ... ~ (S,B) in 5 ~ 

ta, t2, -..--* t in J 

such that 

Ins(/~(t))-ns~(Bi(ti))l > ~. 

By replacing Bi by Bi o ~,- t ,  we can assume t 1 =t2 . . . . .  t. Similarly by applying 
small rotations and translations if necessary we can assume 

B~(t)=B(t) (for simplicity of notation, say B(t)=O), 

B'i(t), B'(t) are linearly dependent. 

Then taking just the tail of the sequence, we can assume (S~, B~)~SO(rs). 
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Taking g1=((/8) 2, choose St>0  SO that the conclusions of the Boundary 
Regularity Theorem 6.4 hold. Choose i large enough so that 

HM(spt  S, spt Si)__< el sl 1/~/4. 

Put z=z(B(t))=z(Bi(t));  v = z  I. Put 

u = n s ( B  (t)),  ul = ns ,  (Bi (t));  

W={x~R3:  qv x -  v x . ul < l /2  ~ s d  , 

Wi = {x~R3: l v x - v x "  u,I <l/2~x s d .  

By 6.4(4), 

spt S~Ua(0 ,  s 0 c  W, 

spt Sic~ Ua(O, s O c  Wii. 

There is some y~spt S~U3(O, sl)c~v with lYl=�89 because sptSnU3(O,  s O n v  is 
a 1 manifold in v n U 3 ( 0 , s 0  with a single boundary point 0. Since yeW, 

y .u  = ]y. u[ > ly1-1/~ el sl = s~ /2 - ] /~  ~1 s~. 

r ~ - u  = 2 - 2 ~ . u  

= 2-(4/sl)(y. u) -__2 -2  + 4 l / ~ ,  - - 4 ~ 1 .  

Hence ~ -  u __< 31/~-1 �9 

Since HM(spt  S, spt Si)<_-e~ s 11/2/4 < sl/6, there is a zespt S i with 

ly-z l<=elsxl /~/4<sa/6;  Sa/3<=lvzl<=2sl/3. 

Since z~Wi, vz. ui> Iv z1-1/2~1 sx. 

vz ~2 2 vz . 
~ - ~ - u Q  = - 2 ~  u , < 2 - 2 + 6 1 / 2 ~ 1 = 6 1 / ~ 1 .  

VZ ~ r--- 
Hence ~-~-u~ = 3]/e 1 . Finally we estimate that 

y v z  

Therefore [u - ui[ < 8 ~ = ~. Consequently l ns(B(t)) - ns,(B~(t))] < ~. This con- 
tradiction proves the lemma. 

6.% Theorem. Given r/>0, there is a positive number 6 such that if(S, B), (R, C)~6 e 
=6~(rs/2), 
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IIB-Cll <& and 

sup [ns(B(t)) - na (C(t))[ <,5, 
t ed  t 

then 

HM(spt S, spt R) < r/. 

Proof. The function 

�89 C[[ + sup Ins(B(t))--nR(C(t))[ ) 
rE J1 

is by Lemma 6.6 lower semicontinuous on the compact set 

{(S,B,R, C ) ~  • ~ :  HM(spt S, spt R)> r/}. 

If that set is empty, we are done trivially. Otherwise the function attains its 
minimum & By Theorem 5.1, 6>0.  

We conclude this section with two lemmas we will need later. 

6.8. Lemma. Given 8>0 ,  there is a nonnegative C ~ function ~b: S 1 ~ R  such that 
for all (S,B)E~, 

sup I(nso B * ~b-nso B)(t)l ----< 8- 
tEspttp 

Proof. By Lemma 6.6, ns(B(t)) is a continuous function on ~ x J. Since ~ x J is 
compact, n is uniformly continuous and we can choose (, 0<(<dis t (sp t tp ,  JC), 
such that for all (S, B ) ~  

Is - tl < ~ =~ Ins(B(t) )  - ns (B(s ) ) l  < 8 .  

Now let ~b be a nonnegative C ~176 function: S l u R  such that ~ p = l  and 
spt t k c ( - ( , ( ) .  Then for any (S,B)eb a, t~spt tp, sl 

Ins o B * ~ b ( t ) - ( n  s o B ) ( t ) l  

= [ ~ [(n s o B ) ( t - s ) - ( n  s o B)(t)] ~(s) dsl 
$L 

<= ~ Ins(B(t-s))-ns(B(t)) l tk(s)ds  
(-GO 

___ ~ 8 ~ ( s ) & = 8  
(-~,O 

6.9. Lemma. Given rl > O, there is a positive number ~ such that if 

(S, B), (R, C )e Y  

and 

[. Ins(B(t)) - nR(C(t))l 2 IB'(t)[ dt < r 
Jl 
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then 

a o = sup Ins(B(t))- nR(C(t))l 2 <= rl. 
t~Jl 

Proof Since by Lemma 6.6, n is uniformly continuous on 5 r x J, there is a 6, 
0<t5</1,  such that if (S,B), (R, C)e5 p and I s - t l<6 ,  then 

Ilns(B(t))- nR(f(t))l 2 --Ins(B(s)) - nR( C(s))I21 <�89 q. 

Put (=�89 1. Now by choice of tS, there is a subinterval of Jl of length 6 on 
which 

Ins(B(t))- nR( f (t))] 2 > ao--�89 ~l. 

Consequently, 

S Ins(B(t))-nR(C(t))l 2 IB'(t)l dt>(ao-�89 6cl. 
Jl  

Hence (a o- �89  6c 1 < (. 

ao <=�89 + ~/6cl =77. 

7. The Uniqueness Theorem 

We now give the main result of this paper. 

7.1. Uniqueness Theorem. Almost every curve in ~ bounds a unique mass 
minimizing integral current. 

Proof Let ~ be a positive number. Put 

Z = Z ~ =  {B~o~: there are mass minimizing integral currents S, T with bound- 
ary B such that HM(spt S, spt T)=> e}. 

Let M ~ Z  +, B0~g, r s>0 .  Put 

Z(Bo) = Zr~B(Bo, r ff2) c~(M) .  

Z(Bo) is compact by Lemma 3.5. 

It suffices to prove that p(Z(Bo))=0. Indeed, if #(Z(B0))=0, then # (Z)=0  
because countably many such sets cover Z=Z~.  Finally taking a countable 
sequence of e's-~ O, we conclude that 

/~ {B~8: there are mass minimizing currents S, T with boundary B with S 4: T} 

Hence almost every curve in 8 and hence in ~ = ~u(8) bounds a unique mass 
minimizing integral current. 
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J 

Fig.4. In a, the curves are going into the paper, b gives a three-dimensional perspective 

Now fix e > 0 ,  M ~ Z  +, Bo~& The previous chapters associate with Bo 
positive constants rl > r2  >rs, cl, C 1, C 2, a tubular neighborhood A, intervals 
Ja c J c S 1 ,  a C ~~ function ~o, and a set 6a=6e(rs/2).  We also have the set Z(Bo) 
as defined above. 

7.2. Remark. To prove that bt(Z(Bo))=0, we will show that near any B~Z(Bo), 
there are lots of  curves that lie outside Z(Bo), and then use a density argument.  
Indeed, we will show that  if C almost lies inside an area minimizing surface S 
with boundary  B, then CCZ(Bo). 

The heuristic reason Cr is illustrated by Figure4. If all area minimiz- 
ing surfaces with boundary  C go off almost horizontally along the dotted arrows 
(Fig. 4a), by Theorem 6.7, the surfaces stay within e and CCZ(Bo). 

The only possible trouble arises if some area minimizing surface R goes off at 
some substantial angle like the solid arrow. But that cannot happen:  P would 
have less area than S, a contradiction. 

7.3. Definitions. Put  l=2nC1,  so that if B~B(Bo,rs)~Cg(M), then length B<l.  
Choose 6 > 0 so that Theorem 6.7 holds with t /=  e/2. Next by Lemma 6.9, choose 
fl, O<fl<min{1,6/2ct} ,  so that if (S,B), (R, C ) e ~  and 

S Ins(B(t)) - nR (C(t))[2lB'(t)[ dt < 80fl 1, 
Jt 

then 

sup I ns(B(t)) - ng(C(t))l < 6. 
t eJ l  

Choose  ~b so that  Lemma 6.8 holds. Put 

C 3 =6(1  + I1~011 + II~0'"ll ~)(1 + I1~11 + II0"11oo). 
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If (S, B ) ~ ,  then ~p(~ * nso B) is C ~, and one can compute  that 

IJ~(~ * ns ~ B)[I ~ 2 g C 3 ,  

II(~p(@ * n s  o n ) ) ' "  II ~ -<_ 2 ~ C 3, 

Therefore by the Approximat ion  Lemma4 .6  we can choose 
that if (S,B)e6e, there exists f ~ C  N such that 

II f -  ~p(~k �9 n s o B) tl </V2. 

Put  e 1 =min{fl /96,  f lcl /96C1},  and choose s l, 

0 < s 1 < min {rs/2, flcl/8 C a, el/C2} 

so that the Regulari ty Theorem 6.4 holds. Henceforth assume 0 < r < sl. 
N o w  for (S ,B)e6  a, put 

S = S L { x e A : p ( x ) < r  and ~(x)eB(J)}. 

By Theorem 6.4, 

F :  spt ~q ~ B(J) x [0, r] 

F(x) = (~(x), p(x)) 

is a C 1 bijection. Put  G = G s = F -  1 

7.4. Lemma.  G is continuously differentiable, 

DG(B(t), r ) -  \llJ(~'(t)l ns(B(t))t! I[ < 24e1' 

and 

IJ2G - 11 < 84el. 

Proof. F r o m  3.4, for xesp t  S, b = ~(x), 

IlD r  z(b)ll < 3 C 2 r ~ 3 e 1 .  

Since p(x) = Ix -b ] ,  for y e R  3, 

p(x) D p(x) (y) = (x - b) . (y - D ~(x) (y)). 

But it follows from 6.4(4) that  I ( x - b ) - p ( x ) n s ( b ) [  ____2e i p(x). 

p(x)lD p(x) (y) - ns(b) �9 Yl 

< I(x - b). (y - D ~(x) (y)) - p(x) ns(b)- (y - D ~(x) (Y))I 

+ Ip(x) ns(b) �9 (y - D ~(x) ( y ) ) -  p(x) ns(b) �9 (y - z(b) (y))[ 

< 2 ~  p(x)(3lyl)+ p(x)(3el)lyl 

< 9 e l  p(x)lyl. 

F. Morgan 

N e Z  + such 
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Therefore  if p(x) > O, 

IIDp(x)- ns(b). If <9/~1" 

We conclude that 

]lOF(x)-(z(b), ns(b ) ")11 < 12e~. 

Now let T and T'  denote  the planes containing Tan(sptS,  x) and Tan(sptS,  b) 
respectively. 

IIDF(x) o T -  (z(b), ns(b) �9 ) o T'  I[ 

<= HDF(x)o T-(z(b) ,  ns(b ) ")o T r[ 

+ It(z(b), ns(b) �9 ) o T -  (z(b), ns(b ) �9 ) o T']] 

__<12el+2ex=14e 1 by 6.4(2) 

]J2 F o r(x)  - 11 

= I.I2 F o T(x) -J2(z(b), ns(b) ") o r ' l  

<2 (14e0(1  + 14e 0 by 2.5(2) 

<42e  I < 1. 

Hence J2 F is nonvanishing, and G is C 1. Furthermore,  since J2 G =(J2F)-~ ,  

"42 e 1 
[J2 G -  1[__< 1 - 4 2 e  1 ~84~1" 

Finally define a linear map 

L: TB(oB(J) • R ~ R  2-~ T ' = R  3 

, B'(t) 
L(u, v)= ~ u + ns(B(t))v, 

so that (z(B(t)), ns(B(t)) ' )oL=id.  Then 

[[ DG - LI[ <= [1 To L - DG 11 + I[ To L -  T'o L II 

<= IIDGI]]lDFo T - ( z ,  Us ")o T'[I IILl[ + l iT -T ' l [  IILlt 

< (1 - 12e 0 -  '(14ei) (1) + (ca)(1) 

< 2 4 e  1. 

7.5. Definitions (see Fig. 5) 

Fix (S ,B)e5 a. Put b = n s o B .  Define a C ~ map 

9 , :  S~-- ,g  

~,(t) = ~ Gs(B(t)' r q~( t)) t~J, 

(B(t) tCsptq0, 
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R~ 

/~/,1/ j / . $ / /  
/s'/ 

//,///~ / /" 
..p 7f 

" /  ! ' e  B r 

S 

I r I 
0 f i r  r 

Fig.5, The curves and surfaces defined in 7.5. The curves are going into the paper 

and a C 2 map 

/~,: S 1 ~ R  3 

B,(t) = B(t) + r q~(t) (~k * b(t)). 

Suppose  (R, C)~6 f and 

IIC-B, II <r/~. 

Put  e = n R o  C. Define a C 1 map  

~: S 1 --,/~ 

~.. (GR(C(t),r~o(t)) rE J, 
(t) . I  

C(t) t q~ spt ~o. 

7.6. Lemma.  We have fo l lowing  estimates. 

(1) JJB-/~,JI < r C a .  

(2) liB- Cll <�89 
(3) l iB -  CII~ <2r .  
(4) [ I n -  t~l[oo <3r .  
(5) I(/~,(t)- n(t)) - r ~o(t) b(t)l < fir ~o(t) 
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and 

]( C ( t ) -  C ( t ) ) -  rcp(t) e(t)l < flrtp(t). 

(6) IIC-B, llo~ <3flr. 
(7) II(C-B)-r~p(b+e)llo~ <3fir .  

(8) II/~',-n'll ~ <�89 
(9) [IC'-B'II~ < f l c t .  

Proof  

(1) follows from the definitions of/3r and C 3. 

(2) l i b -  e l l  ~ l ib - /~r l1-1- I I /~r -  CII < r  C 3 --~-r~ < 1 ~ c  1 . 

(3) I I B - C l l ~ < l l B - B ,  I I o ~ + l l ~ - C l t < r + r ~ < 2 r .  
(4) I l B - C ] [ o ~ < l J n - c l J o ~ + [ [ f - C I J o o < 2 r + r = 3 r .  
(5) Let v = B r ( t ) - B ( t ) .  Iv[ =r~p(t). By choice of r and 6.4(4), 

dist (/]~(t), xm,  T)  < ~ ~1 r~o(t) < �89 fir qg(t). 

Iv-(v" b(t)) b(t)l <�89 

Squaring both sides yields 

r 2 ~o(t) 2 - (v. b(t)) 2 < �88 f12 r 2 ~o(t)2. 

(r r - v. b(t)) (r q~(t) + v. bft)) < �88 2 r 2 ~o(t) 2. 

Since v. b(t) >0,  

r~o(t) - v. b(t) < �88 2 r ~p(t). 

Iv - rq~(t) b(t)[ 2 = 2r z ~o(t) 2 - 2r r v. b(t) < f12 r 2 ~o(t)2. 

Therefore, I(/~r(t) - B(t)) - r ~p(t) b(t)l = Iv -  r q~(t) b(t) l < flr ~p(t). The analogous re- 
sult holds for C. 

(6) II C-Br l l  ~ --< l[(/3r-B)-r~~ bll 0o + II/~r- (B + r~0 b)ll ~ + IIBr- eli 

< flr + flr + f l r= 3flr 

by (5); definition of/3, ,  choice of 0;  and choice of C. 

(7) [ l (c -n) - r~o(b+e) [ [  ~ 

< [[(B~- n ) - r c p  bll ~ + II C-B~I[ + II(C- C ) - r ~ e l l  | 

< flr + flr + f lr= 3 flr 

by definition o f / ~ ,  choice of 0;  choice of C; and (5). 

(8) and (9) From the definition of/~,,  we have 

,, , fDGs(B(t),  r~9(t))(IB'(t)l, r~o'(t)) t~J ,  
B,(t) = ~B'(t) t~spt ~p. 
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I/~'~(t)-B'(t) <= IDGs(B(t), r rp( t))(lB'(t)l, r qr ( t)) 

- ( B ' ( t )  - r go'( t)  b(t))l + IB'(t) + r rp'(t) b(t) - B'(t)l 

<24e1(C 1 -I-rCa)+rC 3 by Lemma 7.4 

<24el  C1 +2 rC 3  

< ficl/4 + 2 C3(flcl/8 Ca)= �89 tic 1. 

Likewise I I 0 ' -  ' C Iloo <~3Cl. Combining this estimate with (2) yields (9). 

7.7. Some Comparison Surfaces 

P. Define 

fp: J x [0, 1] ---}R 3, 

f~,: (t, 2) ~ (1 - 2) B(t) + 2 C(t). 

Put 

P=fe#(J  x [0, 1]); 

OP=fe~(OJ x [0, 1 ] ) -  (C~(J ) -B , ( J ) ) .  

To estimate M(P), we first estimate J2fe. 

J2TP<__IDIT~tlD2AI (cf. 2.5(3)) 

= I(1 - 2)  B'(t) + 2 C' ( t ) l  I C ( t )  - B ( t ) l  

<= I B ' ( t ) l l C ( t )  - B ( t ) l ( 1  + fl) by 7.6(9) because IB'(t)l _-> c l. 

M(P)=< S J2fvdtd2 by 2.5(1) 
Jx[0,1]  

=< (1 + fl) S I (~(t) - S(t)l JB'(t)l dt 
J 

<=~lrgo(b+e)(t)llB'(t)ldt+6flrl by 7.6(4,7). 
J 

Q. Define 

f o :  S 1 x [0,  12 ~ R  3, 

fq: (t, 2)~-*(1 - 2)/~,(t) + 2 C(t), 

and put 

Q =fQ,(S  1 x [0, 1]), 

Q =fQ,((S 1 - J )  x [0, 1]). 
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We have that 

~Q = ~ , ( s q -  c , ( s ' )  = ~r ~(J) + B,(S' - J ) -  C,(Sq, 

8 0 = / ~ . , ( S ' - j ) - C . ( S  ~ - S ) - f a , ( S S  x [0. 1]) 

= B , ~ ( S  1 - J ) - - C . ( S  1 - J ) - f v , ( ~ J  x [0, 1]). 

Here we have used the fact that on J~, B =/~,, C = C, fe =fQ. 
As for P we can compute 

J2 fo < I(1 - 2)/~'(t) + 2 C'(t)[IB~(t) - C(t)[ 

<lB'(t)llB~(t)-C(t)l(l+fl) by 7.6(2,8). 

M(Q)__< ~ J2 f  atd~ 
St x[0,1] 

__<(1 +fl) ~ IBr(t)- C(t)l IB'(t)l dt 
Sl 

<6til t  by 7.6(6). 

and I~. We observe that 

= G s o (B • id) ,  (E 2 L_ {(t, s) EJ • [0, r] : s < r r 

/~ _--- G R o (C • id) .  (E 2 L_ {(t, s)~J x [0, r] : s < r r 

a S = B , ( J ) - B . , ( J ) .  

~ = c , ( J ) -  ~,(J).  

rtp(t) 

M(S)= ~ ~ (J2Gs~215 dsdt 
t ~ J  s= 0 

rtp(t) 

> ~ ~ [B'(t)ldsdt-84elrl by Lemma 7.4 
t e J s = O  

_~ ~ r~o(t)lB'(t)ldt-flrl. 
t ~ J  

Similarly, 
rtp(t) 

M ( R ) >  S ~ IC'(t)] d sd t -84~ l r l  
t eJ  s =  0 

rip(t) 

> ~ ~ [B'(t)[dsdt-flrcl/2-84flrl/96 
t~J  s=0  

by 7.6(2) and choice of 51 

> ~ rq)(t)lB'(t)l d t -  fir 1/47t- 7fir 1/8 
t 6 d  

~ rq~(t)lB'(t)ldt-flrl. 
t ~ J  
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X and Y. Put 

X = ( S - S ) - Q ,  

Y=(R-~)+P+~. 
dX = dS - d S -  dO 

= B , ( S I ) -  B , (J)  + JB , , ( J ) -  B r , ( J ) -  B , (S  1 - J) + C#(S 1) 

= C ,  (S I) = dR. 

Therefore, since R minimizes mass, 

M(R) < M(X) ~ M (S - ~) + M(Q) = M(S) - M(S) + M(Q). 

Similarly, d Y= dS and therefore 

M(S) __< M(Y) __< M(R) - M(/~) + M(P) + M(Q). 

Adding the inequalities yields 

M(S) + M(/~) __< M(P) + 2 M(Q). 

Now applying our previous estimates on these masses yields that 

S (r tp(t) + r ~p(t) - I r  ~p(t) (b(t) + e(t))l)lB'(t)] dt ~ 20fir I. 
t e J  

Since the integrand is nonnegative, 

S r tp(t) (2- lb( t)  + c(t)[)lB'(t)l dt < 203r I. 
rE J1  

Since ~PlJ~ = 1, 

( 2 - I b + c l  (t))lB'(t)ldt < 2O lff l. 
r e  J1  

Since I b -  el2 = (2 + ]b + el)(2 - I b  + el) < 4(2 - Ib + el), 

Ib(t)- e(t)l 2 IB'(t)ldt < 80/~1. 
~ e J l  

By choice of ~, 

sup Ib(t)- e(t)l < 6. 
re  J l  

Since also by 7.6(2) l iB-  CLI <�89 <6, it follows by choice of 6 that 

HM(spt  S, spt R) < el2. 

F. Morgan 
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We conclude that if (R1, C), (R2, C)~6 a, then HM(sptR~, sptR2)<e, so that 
ccZ(Bo). 

In summary, we have shown that 

B(/~,, flr)c~Z(Bo) = ~J, 

while we also know that 

B(~,, flr)cB(B, 2rC3). 

7.8. The Density Argument. Z(Bo) is compact and hence measurable. For E~Cg N, 
put 

Z(B0, E) = {DeCks: D + E~Z(Bo)}. 

We want to apply the Density Lemma 2.4 to Z(Bo, E) and the measure #N, which 
satisfies the hypotheses by Lemma 4.5. 

Let D~Z(Bo, E). Put B = D + E e B ( B o ,  rJ2)c~(M) .  By choice of N, we can 
choose b~cdN such that 

11/9- r0(~ * b)fl <�89 

Then for r<s~, 

lIE +D+rD-B,l[ <�89 flr. 

By the conclusion of 7.7, 

B(D + rD, �89 ]Jr)r~Z(Bo, E) = ~ ,  

B(D + r/),�89 flr) cB(D,  3r C3). 

#N(B(D, 3r C3)nZ(Bo, E)) < 1 
#N(B(D, 3r C3)) 

Therefore, 

Z,,(BW + r~, �89 
#N(B(D, 3r C3)) 

k0(�89 3(2N+" 
<1 k l (3 rCa)3 (2N+ l ) 

ko [ fl \3(2N+I) 
<_- 1-r  ) �9 

by Lemma 4.5 

l~m #N(B(D, s)~Z(Bo, E)) < 1. 
s ~ o # N ( B ( D ,  s ) )  

Since this holds for all DEZ(Bo, E), it follows from Lemma2.4 that 

/~N(Z(B0, E)) = 0. 

Since this holds for all E ~  N, by Fubini's Theorem, 

Z(Z(Bo) )  = o. 

This proves the Uniqueness Theorem. 
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7.9. Remark. Almost every curve is an embedding, i.e.,/~(c~_ ~ )=  0. Hence almost 
every curve in cr or in ~ t ( R  3) bounds a unique mass minimizing integral current. 

Proof We use product decompositions and Fubini's Theorem as in the argu- 
ment above (7.8). It is convenient to identify R 2 with C and view 

~: ( C x C x R x R x  1 - I R 3 , ~ Z x ~ Z x ~ I x ~ I x ~ 3 x  I~ ,~3) 
n=i=l n~0,1 

~ R  3 ~ C x R, 

B = ~(C1, C_ a,D1,D_ 1 , ( B o , B 2 , B _ 2  . . . .  )) 

=(2-�89 C_ le-it],D1 cos t+D 1 sin t) 

+ B o -  ~ B ,n -3cosn t+B_ ,n -3s inn t .  
n ~ 2  

Denote by P projection of R 3 onto R 2 x {0}. 

(1) For fixed C_ 1, 1)1, 1)-1, (Bo, B2 . . . .  ), for ~ 2  (or equivalently ff2) almost 
all C~, ]PoB'I>O. That is, for fixed C 2'~ f :  S l ~ C ,  for almost all CleC, 
f - 2 - � 8 9  ~t has a nonvanishing derivative: indeed, it will unless C l e { - 2  -~ 
/f '(t)e -it" teS1}, which is a set of measure zero. Therefore almost every 
curve in ~ has a nonvanishing derivative. 

(2) For  1)1 = D - 1  =0,  for fixed C_l ,  (Bo,B 2 . . . .  ), for almost all C1, P o B  has 
only finitely many self intersections. That is, for fixed C2"~f: Sl - ,C,  for almost 
all CleC, f - 2 - ~ C ~ e  it has only finitely many self intersections. As proof, 
consider the C ~ function 

F: S 1 x S 1 - {(u, u): u6S 1 } -*C 

., f ( t ) - f ( s )  ]/~. 
F: (s, r~--~ ~ ~-~ 

Then f - 2 -  ~ C 1 e/' has �89 card F-I(C1) self intersections. But by the area formula 

S card F -  l ( C 0 d ~ 2  C 1 = ~J2Fd..~P 2 < oo 
C 

because J2F is bounded (as one can easily check). Therefore c a r d F - 1 ( C 0 <  oo 
for almost all C1. 

(3) Using the same argument as in (1), we deduce from (2) that almost every 
curve in cg is injective. 

We conclude from (1) and (3) that # ( c g - g ) = 0 .  

7.10. Remark. The results of this paper hold equally well for fiat chains modulo 
two. In fact, some of the arguments simplify in that case. We conclude that 
almost every curve bounds a unique mass minimizing fiat chain modulo two. 

7.11. Remark. The results of this paper also hold for the classical Plateau's 
problem (cf. [5, pp.95ffJ). Almost every curve bounds a geometrically unique 
immersed disc of least mapping area. However, there seem to be open sets of 
curves bounding more than one stable immersed disc: we only assert that for 
almost every such curve, one such surface will have less area than all the others. 
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7.12. Remark. T h e  c o n c l u s i o n  o f  7.7 shows  t h a t  Z(Bo) is n o w h e r e  dense .  It  

f o l lows  t h a t  the set o f  curves bounding more than one area minimizing surface is a 
set o f  the first category. 
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