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1. Introduction

Every Lipschitz simple closed curve in R” bounds an area minimizing surface,
that is, a surface S such that any other surface S’ with the same boundary
satisfies

areaS' =areas.

Curiously enough, such a surface need not be unique.

Examples of this nonuniqueness abound. Nitsche [17] thoroughly develops a
family of examples by taking intersections of Enneper’s minimal surface (Fig. 1)
with ellipsoids x> +y?+%z2=a” (See Fig.2.)

The intersection with small ellipsoids is nearly planar (Fig.2b), and the
enclosed portion of Enneper’s surface gives the unique area minimizing surface.
As the ellipsoids become larger, eventually (Fig.2f) the enclosed portion of
Enneper’s surface is no longer area minimizing and there are at least two
different area minimizing surfaces, which presumably look like Figure 3.

This example provides a one parameter family of nonsimilar curves bound-
ing more than one area minimizing surface. By symmetrically adding small,
smooth bumps to these examples, one can obtain a large space of curves
bounding more than one area minimizing surface, a space in some sense of the
same dimension as the entire space of curves we shall consider in this paper.
Nevertheless, we shall prove that the probability of picking such a curve at
random is zero.

Nitsche [16, pp. 396-398] refers to many other examples. The author [13]
gives an example of an analytic curve in R* that bounds a whole continuum of
distinct area minimizing surfaces. (See also Fleming [9], Lévy [12, p.29],
Courant [5, pp. 119-122].)

1.1. Previous Results on Uniqueness

Uniqueness for particular boundary curves in R is known only in a couple of
special cases:
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Fig. 1. Enneper’s minimal surface

(1) A Jordan curve whose orthogonal projection on some plane is a simply
covered convex curve bounds a unique area minimizing surface (for various
notions of surface in both geometric measure theoretic and mapping contexts).
(Rado, 1932, [19, p. 36]; see also [7, 5.4.18].)

(2) An analytic simple closed curve with total curvature at most 4n bounds a
geometrically unique immersed disc of least mapping area. (Nitsche, 1973, [18].)

It seems to be true (as has been recognized for several years, although
apparently no one has written a proof) that there is an open dense set of C?
simple closed curves (under the C? norm), such that each curve bounds a unique
area minimizing surface. Our own proof incidentally shows that the set of C**
curves bounding more than one area minimizing surface is a set of the first
category (Remark 7.12). But even on the real line there are open dense sets of
arbitrarily small Lebesgue measure. We want to say more: we will prove with
respect to a genuine geometrically natural measure that almost every curve
bounds a unique area minimizing surface.
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e

Fig. 2. Shapes of curves given by intersections of Enneper’s Surface with ellipsoids

1.2. The Theorem. We study this problem of uniqueness for area minimizing
surfaces in the context of geometric measure theory. Our analysis holds equally
well for oriented surfaces in the sense of integral currents or unoriented surfaces

in the sense of flat chains modulo two.
To study curves in R3, it is convenient and equivalent to study the space of

parameterizations
% ={C*>*maps: S'>R?}

where S! is the circle R/27Z and o is a fixed positive number less than one half.
We endow € with the C* norm:

1Bl =max {||Bll s, IBll o 1B"ll o} -
To define a measure on ¥, we put a measure on the set of formal series
o

Bo— ¥ B,n~3cosnt+B_,n"3sinnt  (B,eR’)

n=1
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Fig.3. Two area minimizing surfaces with the same boundary

by giving the coefficients B, independent Gaussian distributions with mean zero
and variance one (except for B,, which is given a uniform distribution). It
follows from some work of G. Hunt [10] that almost every such series converges
uniformly to an element of €. The resulting measure u on € is very closely
related to Brownian motion (see Theorem4.10) and has many other nice
properties. It is invariant under Euclidean motions, and open balls in the C?
norm on % are measurable and have positive measure.
We can now state the theorem (7.1, 7.9, 7.10).

Theorem. Almost every Be€ bounds a unique area minimizing surface.

1.3. The Proof. There are three main steps to the proof, the third of which
employs a rather novel generalization of a standard density argument.

(1) P.D.E. Lemma (Theorem 5.1). Two area minimizing surfaces with the same
boundary which are tangent along an interval of boundary are equal.
(2) Geometric Lemma (Theorem 6.7). Here we confine ourselves to a compact
set of curves and surfaces and a fixed boundary interval J =S, If the tangents to
two area minimizing surfaces with the same boundary are close together on J, then
the surfaces are close together.
(3) Density Argument (cf. Remark 7.2). The density of a certain bad set of
curves is less than one at all points of the set, and therefore the set has measure
Zero.

The conclusion of step (3) resembles the standard measure theoretic result
for Z R* that

4) if for almost all acZ,

. FYZAnBar)
Im = Bar) 0

then #*(Z)=0.

But instead of Lebesgue measure #* on k dimensional Euclidean space and
ordinary balls, we are dealing with a measure p on the infinite dimensional
space of curves % and balls in the C? norm:

B(Bo,r)={Be%: |B—B,| =r}.

One could still apply (4) if, for example, the measure space (%, u) were essentially
finite dimensional, in the sense that for some positive integer n, given Be¥, there
were positive constants kg, k,, such that for small positive r,

(5) kor"Su(B(B,r) =k, r"
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Although (5) fails for p, one can decompose ¥ as a product
((ga ,u) = ((gN’ ”N) X ((gN, .uN)

where ¥y is the finite dimensional space of trigonometric polynomials of degree
at most N and %" is the infinite dimensional subspace of € consisting of curves
whose first 2N + 1 Fourier coefficients vanish. Since u,, satisfies (5), we can apply
(4) to prove that bad subsets of ¥, have uy measure zero and then apply
Fubini’s Theorem to extend the result to (%, u).

Thus the proof boils down to verifying the first part of (3). The basic idea,
which depends on steps (1) and (2) and exposes the heart of the theorem, is
described in Remark 7.2.

The proof of (1) employs in a new way the old Legendre transformation,
which linearizes the minimal surface equation. Subtleties arise from the de-
pendence of the transformation itself on the particular minimal surface.

The proof of (2) involves many uniform estimates on the compact set of
curves and surfaces and depends heavily on Allard’s boundary regularity results
[2].

This theorem seems to be the first application of probability theory to
geometric measure theory.

The author would like to thank his adviser, Professor Frederick J. Almgren, Jr., for his invaluable
counsel and example. He would also like to thank Professor Gilbert A. Hunt for several useful
conversations on probability theory and for his careful reading of the manuscript; and the National
Science Foundation for graduate support.

2. Preliminaries

In general we follow the notation of Federer’s treatise [7] and Allard’s paper
[2].

2.1. Linear Spaces. Let X be a linear space with norm | ||. For ae X, reR, put

B(a,r)={xeX: |x—al| £r}
Ua,r)={xeX: |x—al <r}.

If X =R", we sometimes write B"(a,r), U"(a,r).
If xeX and A<= X, we put

dist(4, x)=in£|]x~a|l.

We define the Hausdorff metric on the set of compact subsets of X by
HM(C, D)=max {dist(C, d), dist(D, ¢): ce C,deD}.
For reR, we define the homothety

uo X-X

n. xXOrX.



258 F. Morgan

For ae X, we define the translation

7,0 X=X

T, XX +a.

Linear subspaces. We will identify a linear subspace of R" with the element of
Hom(R"* R™ which orthogonally projects R” onto that subspace.

Tangent cones. If A= X, xeX, we have the tangent cone of 4 at x, denoted
Tan(4, x)

consisting of all ve X such that for every ¢>0 there exist
acA,r>0 with (a—x| <s |r(a—x)—v| <e.

Smoothness. By C* we mean of class k, i.e., k times continuously differentiable.
For O0<a<1, by C** we mean having a k™ derivative which is « Holder
continuous.

2.2. Measures [7, 2.1.2, 2.2.3, 2.2.5]. A measure over a set X is a function ¢:
2¥X5R*U{0, 00} such that if F is a countable collection of subsets of X and
AcUF, then

P(A)= ) @(B).

BeF

A measure ¢ over a topological space X is called Borel regular if open sets are
measurable and each subset of X is contained in a Borel set of the same
measure. If ¢ measures a topological space X and open sets are ¢ measurable,
we have its Borel regularization ¢ given by

@(A)=min{¢(B): A =B, BBorel}.

Examples of Borel regular measures on R* are given by Lebesgue measure £*
and m dimensional Hausdorff measure #™(0<m<k). Put

a(k)=L* B (0,1)).

2.3. Densities and mass ratios. If y measures R”, xeR", r >0, keZ™*, we define the
k dimensional mass ratio of u at x by

_u(B"(x,1)
T ak)rt

O (1, x,7)
and we define the k dimensional density of u at x by

0" (1, x)=1lim & (, x, 7).

We will need to consider more general sorts of densities. We have the
following lemma of measure theory.
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2.4. Density Lemma. Suppose ¢ is a Borel regular measure on a normed linear
space X such that for all xeX, there exists 1>0, such that for all small r>0,

o(B(x,5r) = A@(B(x,1)).
Let A be any subset of X such that for ¢ almost all xeA,
.. @[B(x,r)nA]
liminf ————~=
r-0  o[B(x,r]
Then @(A)=0.
Proof. [7, 2.9.11, 2.8.17].

2.5. Jacobians. Suppose Ais a k dimensional C! submanifold of R™ and f: 4—»R"
is C!. Let aeA.

Df(a)eHom(Tan{(4, a), R"),
AwDf(@)eHom(A, Tan(4, a), A R").
Put

Jf@=IADf (.
Then the area formula [7, 3.2.227 holds:
(1) ;’;Jk f(x)dfk(x)=l§ncard(f‘ HNdAH(y).
Suppose g: A—R" is C'. Then
@ U f@-Jeg@)l
<k|Df(a)—Dg(a)| max{|Df @|*~*, | Dg(@)*~'}.
Proof.

[ f(@)—J g@| A Df (@)= A Dg(a)l
=|(AxDf (@) — ADg@)(&s A ... ALY

(where {&,,...,&,} is an orthonormal basis for Tan(4, a))

=|Df @& ) A ... ADf(@)(&)—Dg(@)(E) A ... ADgla) (&l
= i IDf(@(&1) A ... ADf(@)(&i_ 1) A(Df (@) —Dg(a))(&)

ADg@)(i ) A ... ADg(a)(Cy)l
<k|Df(a)—Dg(@)|max{|Df@|* ', IDg(@a)*~}.

Finally we note that incasem =k,
k

Gy Sf@=]]ID;f()

=1

where D, f =§f.

i



260 F. Morgan

2.6. Integral Currents [7, 4.1.24, 4.2.26]. In R" we have the space L (R") of k
dimensional integral currents (oriented surfaces) with flat norm % and the
corresponding space 12(R" of unoriented surfaces with flat norm 2. In general,
we will make statements for I, (R"); analogous (and sometimes easier or stronger)
statements hold for IZ(R").

We have a continuous boundary operator

J: L(R")-L_,(R")

whose kernel we will denote by Z(R"), and a lower semicontinuous mass
function

M: L(R")~[0, c0).

[7,4.1.7].
Associated to Sel,(R") we have the Radon measure ||S|, the set sptS
=spt|S], and the integral varifold

|S|=C[id x Tan*(|SIl, )1+ IIS]-

(Cf. [7,4.15,4.1.1, 2.2.1, 3.2.16, 4.1.28], [1, 3.5].)

By way of this correspondence, most results on integral varifolds apply as
well to integral currents.

The following two fundamental theorems constitute the geometric measure
theoretic foundation for all our work.

Compactness Theorem [7, 4.2.17]. If ¢ =0, then
{Sel,(R"): M(S)<c,M(dS)=c, and spt S<B*(0,c)}
is compact.

Isoperimetric Inequality [7, 4.2.10]. If TeZ,_,(R"), then there exists Sel (R")
with 6S=T and

M(S)*~ D <2n2*M(T).

2.7. Mass Minimizing Currents

Definition. We say that an integral current S is mass minimizing if whenever §' is
an integral current and 08’ =438,

M(S") = M(S).

Existence. It follows from the Compactness Theorem and the isoperimetric
inequality that if B is an integral current with 0B =0, then there is a mass
minimizing integral current S with S =B.
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Regularity. If Sel, _ [ (R") is mass minimizing, then except for a set of Hausdorff
dimension at most n-8, sptS—sptdS is an analytic manifold ([8, Theorem1],
[14, Theorem 5.8.6]). The question of boundary regularity will be discussed in
Chapter 6.

Monotonicity. Suppose Sel,(R") is mass minimizing. If aespt S —spt 08, then the
function

CH(NN:RY

is monotonically increasing for 0 <r <dist(a,spt 8S) [7, 5.4.4]. If bespt 8S and for
some R>0, sptdS~U(b,R/3) is a smooth manifold B whose curvature is
bounded by R~ in the sense that for x, yeB,

I(y—x)—Tan(B,x)(y ~x)| SR |y —x[*/2,

then

27,1
8 ‘R

O(|ISil,b,r)ye

is monotonically increasing for 0 <r <R/3 [2, 3.4(2)].

3. Curves and Surfaces

We give the definitions and basic properties related to the spaces of curves and
surfaces we will consider in this paper. We will be particularly interested in
compact sets of curves and surfaces, for which we obtain some uniform
estimates.

Let 0<a<i. Put S!=R/2nZ. We also denote by S' the associated integral
current E*L_[0,27]. Let

% ={C*>*maps: S'>R?}
with the C? norm

| Bl =max {| Bl s, [B'll > 1B"ll -} -
Another metric will be handy:

IIBII’=maX{I(27T)‘1SIIB(t)dtI, 1Bl }-

3.1. Lemma.
IBl' <|I|B| £(1+n?)|BJl".

Proof. The first inequality is immediate.
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To prove the second, let yeS', TeO*(3, 1). Since [ B'(1)dt=0, | IToB'(t)dt
st st
=0 and hence there is a y,eS' such that IToB'(y,)=0. But then, since
|y —yOI é T,

HeB'y)|snl(HeBY|,=n|B"|,=n|B]"

'l
oC

Therefore ||B'|| , <= | B}l
Likewise if yeS?*, TeO* (3, 1), there is a y,eS* such that ITo B(y,)
=II((2n)~! | B(t)dt) and hence [IT - B(y,)| < ||B'.
St

HI e B(y)| =T o B(yo)|+|IT > B(y)—ITe B(yo)|
S|BI'+= B, < IBJ'(1+7?).

[

Therefore ||B|, <(1+=?)||B}".
We conclude that |B||<(1+=?)|B|’. Note that both norms give the same

topology on €.
For MeR, define

€(M)={Be¥: Holder constant for B" < M}.
By Ascoli’s Theorem, if Boe® and r,>0, B(B,,r,) "% (M) is compact. €(M) is
closed and g-compact. #= () #(M) is s-compact and hence has a countable
M=1

basis for its topology.
Let & =& be the subspace of embeddings of S! in R3:

&={Be¥:|B|>0 and B(s)=B(t)=>s=t}.

Then & is open.
For Be& we define smooth maps
1,v: im B—~»Hom(R3,R?)
t(b)=Tan(B,b),
v(b)=1(b)*,

so that if xeR3, beim B, 7(b)(x)+ v(b)(x)=x.
We define a map ¥: - Z,(R* <I,(R?) by

¥(B)=B,(S")

{which we will sometimes simply denote B).
Put 2 =¥(&£). We have two topologies on Z:

J, induced by the flat norm & on integral currents, and
7, induced by P|& from | || on €.
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3.2. Proposition.

1) Jics,.

In fact, for B, Ce%,
F(YB—-Y¥YC)s|B—Cl(length B)+2=||B—C)%

(2) ¥ is continuous for both topologies.
3) YI¢ is open for F.

Proof. To establish (1), let B, Ce¥. Consider the map

F: [0,27] x [0,1]—R?
F(t,)=(1—A)B(t)+ 1C(1).

Put
P=F,(E*L [0,2n] x [0, 1]).
Then P=¥YB— ¥, so that #(¥YB— ¥ C)<M(P).

OF | |oF
=z by 250)

=l1-D)B®)+1COHCO-BOI=(B' ) +IB-Cl)|B-C|.

J,F<

Hence by the area formula 2.5(1)
MP)s |  (B@I+IB-Cl)|B-C|d¥?

[0,2n] x[0,1]

=||B— C|| (length B)+ 27 |B— C|%.

(2) follows immediately from (1).

To prove (3), let U be open in &. We must show YU is open. Let ¥ Ce¥ U,
then C is just a reparametrization of some BeU; ie, there is a Cc?
homeomorphism

s: St—S8!  such that B=Cos.

Put k=max {1, |s'll, 5[, Is"] »}- Now choose a positive r so small that
B(B,2rkycU. We claim ¥B(C, r)y< ¥U, which will complete the proof

Let DeB(C,r). To show ¥YDe?U, it suffices to show DeseU, for which it
suffices to show |[|[B—Dos| <2rk. But |B—Dos||=[(C—D)os||<2rk, as one
easily checks.

Remark. That the map ¥ is open means that every choice of parametrization
(from &) induces the same topology at a geometric simple closed curve.
Now fix Bye&, MeZ* and choose r, >0 such that

B(By,1)=6.
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3.3. Lemma. There are positive constants ¢,, C,, C, such that if
rsrn, B,CeB(By,r)n%(M), s,teS,
then

1) IBll=G,
() c4lt—=s|=IB(O)—B(s)| = Cilt—s|

and hence ¢, S|B'(s)) £ C,,

B3) ltB@)—t(CENI£2c1 B —C' s
) |[v(B(s) (B(t)—B(s)| = C,|B(t)— B(s)]*/2.

Proof. Just take C, =|B,l| +7.

To obtain c,, consider the function

f: B(Bo, ) nE(M)xS! xS! >R+

B(t)— B(s)
f(B,s,t)z[ t—s S*L,
| B (u)] y=s=t.

Clearly f is continuous except possibly at points of the form (C, u, u).
But

|/ (B, s,0)—f(C,u, )| | f(B,s, ) —f (B, u, w)] +1f (B, u, ) = f(C, u, u)l.

In estimating the first term, we can assume s, txu, s<t:

|f (B, s,t)—f (B, u, u) <|(t—5)" (B(t) ~ B(s)) — B'(u)]

(t—-s)“lj(B/(u)—B’(u))du <|(t—s)~! i Clv—u|dv

< < €, max {|s—ul, |t~ ul}.

t
(t—s)~* {C, max{|s—ul,|t—ul} dv

On the other hand, | f(B, 4, u)~f(C,u,u)| =|B'(w)— C' )| £ |B—-C]|.

Therefore f is continuous. As a positive continuous function on a compact
set, f has a positive minimum c¢;, and (2) holds. (Or if domain f =@, the
proposition holds trivially.)

B() C'(1
IB'(®) 1C'(®)]

IB®)—(C@)] = L2 HIB = C'ls

this proves (3).
Finally put C,=2C,/c}. Then

[v(B(s)) (B(t)—B(s))| =|v(B(s)) (B’ ©)(¢t=s)+ [(t—u) B"() du)
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by Taylor’s Theorem with Remainder
<|s—t|*C, because v(B(s))(B'(s)=0
S(Cy/e}) B —-BE)IP by (2)
< C,|B(t)—B(9)I*/2.
3.4. Definitions. Put r,=min{r, 1/3C,},
A={xeR?: dist(x,im By)<r,}.
Now if BeB(B,,r,), then
Ac{xeR?: dist(x,im B)<2/3C,}.

By [2, 2.1], for any BeB(B,, r,),
¢={(a,b)cA xim B: a—bev(b)}

p={(a,la—b|): acA, beimb, a—bev(b)}

are continuously differentiable functions on A, p(a)=dist(a, im B), and if b=¢(a),
then

ID¢(@ =B =p@/C3 " —p(a)=3C,p(a)
and hence
ID&(a)| =1+3C; pla).
Next define & =(r,) as
{(S, B)eL,(R®) x B(B, 1,) N4 (M):
S is a mass minimizing current with boundary B}.
We give & the metric
dist((S,, B,),(S,, B,))=max{#(S,—S,), |B, —B,|l}.
3.5. Lemma. & is compact, and if (S;, B;)— (S, B) in &, then HM(spt S;, spt §) = 0.

Proof. B(B,,1,) "€ (M) is compact. The associated currents, since they minimize
mass, are of bounded mass and support. Therefore we can apply the Compact-
ness Theorem 2.6 to conclude that % is compact.

Assume (S, B;}—(S, B) in &, but for some ¢>0, HM(sptS;, sptS)>e. Then
we can assume there is a sequence of points x,, x,, X5, ... =X such that one of
the following holds:

(a) x;esptS,  dist(x;,sptS;)>e,
(b) x;esptS;, dist(x;,sptS)>e.

In case (a), xespt S, dist(x, spt S;}>¢/2 for large i. This contradicts S; - S.
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Hence we can assume (b). Choose f,geC® such that f,g=0, f+g=1,
spt f =B3(x, ¢/2), spt g=R*—B(x, ¢/3). Then

S=SL f+SLyg,
M(S)=M(SL )+ M(SL g);
S;=S;f+S,Lg,
M(S)=M(S;L /)+M(S;Lg).

Since M is lower semicontinuous,
M(SL f)<lim M(S;L f)
M(SL g)<lim M(S,L g).

But since S;, S are mass minimizing,
M(S;) - M(S).

Combining this fact with the above inequalities yields
M(S;L f)-M(SL f).

Since by (b) dist(x, sptS)=¢,
M(SL f)=0.

On the other hand, for large i, B*(x;, /4)=B3(x, ¢/3) and dist(x;, im B))=¢/4.
Hence by monotonicity (2.7)

M(S;L )z 11S:]| (B3(x;, &/4) = n(e/4)”.

This contradicts the fact that M(S;L f)>M(SL f) and completes the proof.
For (S, B)e %, beim B, we now define

ng(b).

If spt S is a C' manifold with boundary at b, let ng(b) be the unique unit vector
in ker t(b) such that

Tan(spt S, b) = {r(b)+ Ang(b): A=0}.

Otherwise, put ng(b)=0.

4. Measures on the Space of Curves

In this chapter we define a measure u on € and exhibit the measure space as a
product

(€, W)= 8y, iy} x (€", ).
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After establishing the basic properties of these measures, we prove an important
Lemma (4.6) on uniformly approximating certain subsets of ¢ by curves in the
finite dimensional space 4. Finally, we prove the close relationship between u
and Brownian motion (4.10).

4.1. Measures on R¥. Let #* denote Lebesgue measure on R*. Define Gaussian
measure %* as the Borel regular measure such that if E is a Borel subset of R¥,

GHE)=2m)~ ¥ [ et g p*x.
E

k
Note that ¥*= || 4", #(R" =1, [|x|> d¥* =k, and " is O(k) invariant. We also
n=1
note that for r=0, xeR?3,
1) 4 texp(—3(x|+nNH)rP <L B (x, =377
4.2. Measure on %. Define a probability space
o= [] R?

n=—
n*0

with product measure IT %>, which is a Radon measure. (Cf. [7, 2.6.6, 2.5.14]. For
the construction it is technically convenient to define I71%> on ITR3, which is
compact, and then restrict to 2, whose complement has measure 0.)

1t follows from work by G. Hunt [10, Introduction or Theorems 2, 4] that
for almost all (B,, B_,, B,,...)eQ,

Y B,n"*cosnt+B_,n">sinnt

n=1

converges in % (in the C? norm). Let Q, be the linear subspace of Q of full
measure 1 on which we merely have uniform convergence (in the C® norm) to a
function in €.

We can define a bijective linear map

d: RPxQ,-%
o)
®: (By,B;,B_,,...)~By— Y B,n"*cosnt+B_,n"3sinnt.
n=1
@ is surjective because even a C' function has a uniformly convergent Fourier
series. Since the maps
(Bo, By, B_,, ...)’>B,n"*cosnt+B_,n"’sinnt

are continuous, their sum & is Borel measurable. ¢ has a continuous linear
inverse

-1 #-R3xQ
&': Br—(By,B;,B_,, ...)
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which maps B to multiples of its Fourier coefficients:

B, =(2n)_1sle(t)dt,

B

n

=—n>n"'[B(t)cosntdt,
38

—-n

B_,=—n*n"'{B(t)sinntdt, (neZ*).
st

Define a measure p on & as the Borel regularization of @, (#° x [[%°) (cf.
2.2), so that if D<=% is a Borel set,

u(D)=23x [19*(@~1D).
Of course u induces the measure ¥, u on Z,(R?).

4.3. Proposition.

(1) p is invariant under Euclidean motions.
{2) Let fe¥. Suppose f'"is square summable. Then

() s n<p.
(3) Open sets have positive u measure.

Proof. (1) follows from the facts that any Euclidean motion is a composition of a
rotation with a translation, Lebesgue measure is translation invariant, and both
Lebesgue and Gaussian measures are rotation invariant.

To prove (2), we will use a theorem of Kadota and Shepp [11, Theorem 1],
which says that if )’ |c,|* <co then

[Tz, +9<[]¥%.
n+0 n+0
Let (co,¢y,¢_y,...)=® ' f. Integration by parts shows that the vector of

Fourier coefficients of f" is just (0,c_;, —¢;,c_5, —Cy, ...). Hence by
Plancherel’s Formula,

Y lel>=[If" (@) dt< 0.
Sl

n=—00
n*0

Consequently, by the theorem of Kadota and Shepp, [[r.,+%°<[[%. It

n+0 n*0
follows by Fubini’s Theorem and Borel regularity that

L x[]r.,. <L <[] 9.

To prove (2), suppose Ec¥, u(E)=0, and let D be a Borel set, EcDc4,
such that p(D)=0. Since Z>x[]¥*(@ :D)=0, &> x[]%., % (P 'D)=0.
Now,
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Tpy WE) STy u(D)
=,u(D+f)=(£”3 X H gs)(@“lD“‘(cOscu c—la ))
=(Z*x [z, %) (@' D)=0.
Therefore 7, p<p.
To prove (3), let Uc¥ be open. Since C* functions are dense in €, the
translates of U by C*n¥ cover %. Since € is o-compact, there is a countable

subcover, {(U + f): feF}.
Now suppose u(U)=0. Then u(U+f)=(t;)4 p(U)=0 by (2). Therefore

MBS Y w(U+ f)=0, a contradiction.
feF

4.4. For NeZ*, we can view R* x Q as a product

R3xQ L3 x [[9)=([[ R, £>x [1 (IR, [19)

n*0 || SN 0<|n|EN |l >N In|>N
and denote projection onto the first and second factors by 7y and =¥, so that
nn(Bg, By, B_4,...)=(Bg, ..., B_y),
a¥(Bg, B, B_,...)=(Byy1s---)
Furthermore we can view € as a topological product
G=CyxE"
where

%y=1{Be%: n" ¢~ 'B=0}

N
:{ac—i- Y a,cosntta_,sinnt: a,,eR3},
1

%" ={Be¥: ny & 'B=0}.

We also denote projection onto these factors by my, ="

We observe that R®x Q,, the domain of &, is just [] R®xQf, where oy

[nt=N
=n"(R3xQ,), and ( [T ¥°) (Q))=1. Also, ¥ restricts to bijective linear maps
In{>N
o [[ R°—%y,
[a| =N
o: QY >E".

Imitating the definition of u, we can define measures py, 4" on %y, %~ as the

Borel regularizations of @,(£3x [ 9°), @.( [[ 9.
O<|nlEN |n|>N
We claim that p=puyxu" on €=%y x %N, Since both are o-finite Borel
regular measures, it suffices to check this for products D x E of Borel sets in €y
and €, because the algebra of disjoint unions of such products generates the o-

algebra of Borel subsets of €.
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wD xE)=(£*x [[9°)(#-1(D xE))

n*0

=(*x [|9*) (@ 'Dx P 'E)

=(Z*x [] #»@'D)-(]] 93 (27 'E)
O<[n|EN In|>N

=y (D) - u"(E)

=(uy x p") (D X E).

Therefore we can view € as a product

(%a [J) = ((gN’ #N) X (%Na ﬂN) .

The following lemma shows that py is enough like Lebesgue measure to do
derivation theory. (Cf. Lemma 2.4.)

4.5. Lemma. Given C,>0, NeZ™, there are positive numbers kg, k, such that if
Be%,

IBlo,<C,, and r=C,
then
ko p3@N+D é.uN B(ﬂ:N B, r) < kl p3@N+Y

Proof. Put
ko=[4exp(; C2N? +1)%) 2N +1)*] =GN+,
k,=4n(8N®/3)*N+1,

For any Be¥, let #~'B=(B,, B,,B_,,...). It follows from the characterization
of @1 in 4.2 that

(1) |B,|s2N?|B|l,, for [n|SN.

Now fix Be¥ and suppose Ce%y.
If CeB(nyB,r), then |C,— B,|<2N3r for [n| <N by (1), so that
N

&~ 'B(nyB,r)c [] B*(B,,2N3r).

n=-—N
Hence,

uyB(ryB,r)=(£>x [] 4°)(¢7'B(nyB,7))

O<in|=N N
<@*x 1 99(1I B3(B,,,2N3r))
O<|n|EN =-N

<4n(2N3*r)p ﬁ (3-12N3r)?®) by 4.1(1)
n=—N
n+0

§4n(8N9/3)2N+1r3(2N+” =kl 7'3(2N+1).
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On the other hand, CeB(ny B, r)

if |Co—Bol+(C, —By)/1]+--+|(C_y~B_y)/N|<r, which holds
if |C,—B,|<r/@QN+1) for [n|<N,

so that
N

@~ 'B(nyB,r)> [] B*(B,,r/(2N +1)),
n=—N
and as above, one obtains the estimate that
Uy B(y B, 1) ko r3 2N+ 1,

The following lemma will enable us to go to %y to carry out somewhat
intricate geometric density arguments in Chapter 7.

4.6. Approximation Lemma. Let H be a set of functions: S'—R3 with equicon-
tinuous second derivatives which are bounded by a positive constant K,. Then
given n >0, there is a positive integer N such that given heH, there exists fe%y,
such that

1f—hii<n.

Proof. First choose 6>0 such that heH, |s—t|<é=|h"(s)—h"(t)| <n/2(1 +72).
Next choose NeZ™* so that the function

qg: S1-R
() =c((1 +cos £)/2)"

(where c is chosen so that {g(t) dr=1) satisfies
3

sup{lg(t)]: §StL2n—0} <n/4K,(1+n?).
Now let he H. Define
g: S'>R3
g() =SI1 B'(t—s)q(s) ds
= ijh”(s) q(t—s)ds.

The second expression for g(t) shows that ge®,,. Using the first we estimate that

lg@)—h"(O)|=] [ [H"(t—5)— K" ()] g(s) ds]
Sl

8 2rn—48
< [ g@h'E—s)—h"({t)ds+ { 2K,q(s)ds

t=—2¢

<0200+ 12+ n/2(1 + 1) =n/1 +=?).
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Furthermore, | g(t)dt= { q(s) [ h’(t—s)dtds=0 because [ h"(t—s)dt= [ H(t—s)
s1 seS!  teS! .teS1 81
=0. Hence we can integrate g(t) term by term and stay inside €. To get f(r),

do this integration twice and add on a constant of integration so that
{f@)de= [h(t)dt.
st st

It follows that | f—h|' <n/(1+=r?), so that by Lemma 3.1,
If—hl<n.

4.7. Brownian Motion. We will now prove the intimate relationship between u
and Brownian motion, which could have been used to define @ and y. Theorem
4.10 will show that @” is just Brownian motion with two minor adjustments.

One dimensional Brownian motion is a Gaussian process X: probability space
x real interval, I - R characterized by

mean EX, = [ X,=0 tel
covariance EX _X,=min{s, t} s, tel
and continuous sample paths (continuity in t).

If {X® 1<i<n} are independent one dimensional Brownian motions, then
(X, X@ .. X™)is n dimensional Brownian motion.

4.8. Proposition. Define

X: ﬁ R, %Y x [0,27) >R

n= - Q0

X,=X({(Y,, ¥, Y_,...)0)

=Q2n) " tYyt+n %) Y,n '(cosnt—1)+Y_,n"'sinnt.
n=1
Then X, is Brownian motion on [0, 2 7).

Proof. Once again it follows from Hunt’s work [10, Theorem 2] that almost
surely this series converges uniformly to a continuous function of t.
Note that {Y,} is an orthonormal set in I*(J| R) and EY,=0. Since

2

N
Y Y,n~cosnt—1)+Y_,n"'sinnt
n=M

2

N
n~2[(cosnt—1)*+sin*nt]<5 ) n?
n=M

o=

n

the series for X, is I? Cauchy and hence converges to X, in I? and in I!. As a
sum of Gaussian processes, X, is Gaussian.
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EX,=0

t

EX,X,=X,-X, (inner product in I?)

=Q2n)~tst+n"' ) n~2[(cosns—1)(cosnt—1)+sinnssinnt]

n=1
=min{s, t} by the following formula [4, p. 167]:

Y n~2cosnt=n?/6—(n/2)t+(1/4)* (05t<2n).

n=1
Therefore X, is Brownian motion.

4.9. Corollary.
X: (R, %) x(Q, [[9))x[0,2m)>R?

n+ 0

X,=Qmn)y"*Yt+n~*) B,n"cosnt—1)+B_,n"'sinnt
n=1

is three dimensional Brownian motion.

Comparing this expression for three dimensional Brownian motion with our
definition of @, we get the following theorem.

Put Q*=(R3, %% x (R?, £*) x Q with typical element (Y, By, B;,B_,,...), 0
that we can view both @ and Brownian motion X as functions: Q* x [0,27)—R>,
defined almost everywhere, with their defining series convergent in C2[0,2n)
and C[0,2n) (with C? norm and C° norm) respectively.

4.10. Theorem.

1t 1 %r

& (t) =t [X(t)+ (5—»2;) X@m) 5 X0 dt]

and
X({t)=n"t[®"(t)~ d"(0)+2"* Y¢].
Remark. @ is Brownian motion with two adjustments to make & 27 periodic.

1t .

First, (5—2—) X(2r) is added to make &” 2x periodic. Second, the average
n

value of X(¢) is subtracted to make @'= [@" periodic. (The constant of in-

tegration is chosen to make [’ (r)zero,ie., to make @ periodic. In integrating &

from &', the constant of integration is the random variable B,.)
5. Uniqueness and P.D.E.
As the first step towards the Uniqueness Theorem 7.1, we prove that two area

minimizing surfaces which are tangent along an interval of boundary are equal.
Because such surfaces are analytic manifolds on the interior, it suffices to prove
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the theorem locally, at a boundary point where the two surfaces can be viewed
as graphs of functions u, u': R?— R satisfying the minimal surface equation
t+ud)u,,—2u uyu, +(1+ud)u,=0.

y Xy

Thus the problem becomes one of partial differential equations. We know that u
and v’ have the same values and derivatives along the boundary, and we want to
conclude that u=u'. The difficulty stems from the nonlinearity of the minimal
surface equation. Nevertheless, general results from the theory of partial differ-
ential equations due to Aronszajn [3] give the result if u, u’ are C>.

We use a different technique, which only assumes u, w' to be C2. The
Legendre transformation (cf. [6, Volume I, pp. 32-34, 38]) introduces u, and u,
as new coordinates on the surface. Under this transformation, the minimal
surface equation becomes a linear elliptic second order partial differential
equation for some new function w corresponding to u and ' corresponding to
u'. On first consideration, this proves nothing, because the Legendre transfor-
mation itself depends on the particular function u. However, it turns out rather
surprisingly that because the values and first derivatives of u and u’' agree along
a boundary segment of their common domain, the domains of w and «’ have a
common boundary segment on which the values and first derivatives of w and
o' agree. It follows that w =’ and consequently u=u'".

5.1. Theorem. Let S, S' be mass minimizing integral currents with 0S=0S'=B,
Beé&. Suppose that for all t in some subinterval of S, sptS and sptS’ are C?
manifolds with boundary at B(t) and

ng(B(t)) =ns.(B(2)).
Then
S=5.

5.2. Lemma. Let S be a mass minimizing integral current with boundary B, Beé,
such that for some teS?, spt S is a C! manifold with boundary in a neighborhood of
B(t). Then sptS—spt S is connected.

Proof. Let D be the component of sptS—sptdS which intersects the neigh-
borhood of B(t). Since spt S —spt S is an analytic manifold (2.7), so is D, and
0D <spt 0S.

Put T=SL. D. Then spt 8T <spt 8S. It follows from [7, 4.1.31] that 0T =rdS
for some reR. Considering our neighborhood of B(t), we see we must have ¢T
=08. Since S minimizes mass, T =S. Therefore spt S —spt 0S is connected.

Proof of Theorem. Let b, be a boundary point where sptS and sptS’ are C?
manifolds with boundary. For convenience we will assume b,=0 and

Tan(spt S, 0)=Tan(spt S’, 0) = R? x {0}.

Denote by IT orthogonal projection onto R? x {0}.
Choose py>0 such that if

W=U2(0,p0)x(°—p0,p0),
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then sptS W and spt S~ W are C? manifolds with boundary given nonpara-
metrically as graphs of C* functions

uu': GoR

where
G=H(sptSnW)=H(sptS'n W)

is 2 domain in U?(0, p,,) including the boundary segment
B=II(spt0SnW)=I(spt 0S'n W).

For (x, y)eG, u must satisfy the minimal surface equation

(1 +udyu,, —2uuu,, +(1+ul)u,, =0,

xUyYxy

and similarly for v’

Note that since by hypothesis at points of B, u and ' have the same values
and first derivatives, their second partial derivatives involving differentiation
along B also agree. Applying the minimal surface equation, we conclude that all
their second derivatives agree:

() u|B=u|B, u,|B=u,|B, u,|B=u}|B, u,.|B=u,,lB,

u,,|B=u,|B, u,|B=u,,|B.

In particular, if

K: sptSnW-R

K': sptS'nW-R
denote Gaussian curvature, then K|B=K'|B. Unless K|B=0, we can assume (by
moving b, and shrinking p, if necessary) that K, K' are nonvanishing on
spt S W, spt '~ W. Therefore it suffices to consider two cases:

Casel. K|B=0.

Case 2. K, K’ nonvanishing on sptSn W, sptS'nW.
Casel, Since SL W must be mass minimizing, sptS~W must have mean
curvature H=0. But H, K both 0 on sptdS~ W implies that Tan(sptS,b) is
constant for besptdSn W, and hence that sptdSnW =B <=R2 x {0}. Hence at
points of B, the partial derivatives of u, and the second partial derivatives
involving differentiation along B are 0. By the minimal surface equation, all the
second derivatives are 0. Therefore u can be continued as a C? function across B
by 0. Since on the interior u is analytic, u=0. Likewise, u'=0. Now by analytic
continuation and Lemma 3.2, S=5".

Case 2. Consider C' maps
L1 GoR2={(&n): & neR}
S, y)=(ulx, y), u,(x, ),
1%, y)= (%, ), 4,(x, ¥)),
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and the continuous map
p: GoR

uxx(xa y) uxy(x> )’)

PEN=| ) w9

At every (x,y)eG, p(x,y) is a positive multiple of K(x,y,u(x,y)) and hence
nonzero (negative in fact).

By (1), Df(0)=Df'(0). Since J, f(0)=J, f'(0)=1|p(0)|>0, by shrinking p, if
necessary, we can assume that f and f’ are C! homeomorphisms onto H,
H' <R2 Since f|B=f'|B, if H= f(G) and H' = f'(G), then H'=HnH is a
domain with a boundary interval C= f(B)= f'(B).

Now via f~! we can view x,y,u as C! functions on H. Define

w: H-R
w=x&+yn—u.

Differentiating with respect to x and y yields the matrix equation

alind 5l s ol | W
uxy u}’y w'l uxy uJ’y y
Since p is nonvanishing, we conclude that

2) W=Xx, @,=}y.

This shows us that w is in fact C2.
Differentiating these last two equations with respect to x and y we get

[uxx uxy] [wéé co{,,] _ [1 O]
Ugy Uyl LWgy  Wyy 0 1
so that

[‘”é& wén] _1 [uyy _uxy:l'

Wy Oppd P LUy Uny

Now since the minimal surface equation holds for u for all (x, y)eG, we have for
all ({,n)eH,

(14 ENwge+2En g+ (1 +1P)w,,=0.

Of course, with a similar definition for «’ in terms of u’, we conclude that for
all ({,n)eH’,

1+ E¥ e+ 2En wp, +(1 +1P)ay, =0.
These two equations hold simultaneously in H". Furthermore, for (¢,7)e CcH”,

w(,n)=w'(,n),
w (& n)=wi(&,m), 0, (&, m=w,(&n)
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by (1) and (2) and the analogous statement for w'.

Define
wll, H//_)R
w//=w_a),

Then w” satisfies the differential equation
(1+ &y, +2¢n o, +(1 +5*)w), =0,
and for (¢,n)eC,

" (&, m=wi (& m=wy(&n=0.

Hence the second partial derivatives involving differentiation along C are 0.
Finally, by the differential equation, we conclude that all the second derivatives
are 0:

wie(&m=wg, (& n) =& n)=0.

Therefore w” can be continued as a C? function across C by 0. But on the
interior, as the solution to the elliptic partial differential equation, " is analytic.
Therefore, " =0.

But now for (£,n)eH”,

f7HE M =(0g, 0,) =(w;, 0= "~ HEn).
Hence if G"'= f~Y(H")=f'~Y(H"), f|G"= f'|G". Therefore if (x, y)eG",

u(x,y): —-w(f(x,y))+(X,y)-f(x, y)
=—o'(f' (%) +xp) (X
=u'(X, ).

By analytic continuation and Lemma 5.2, §=§".

6. Boundary Regularity

Boundary regularity will play an essential role in our arguments. Although it is
true that a mass minimizing unoriented surface in IZ(R?) with a C** boundary
is a C** manifold with boundary, the corresponding statement of boundary
regularity for integral currents is not known. However, Allard [2, p. 429] has
proved that any integral varifold with a C? boundary whose first variation is
summable to a power greater than its dimension is a C' manifold with
boundary at any boundary point where its density is 1. Proposition 6.1 summa-
rizes his results as they apply to mass minimizing integral currents.

Our Uniform Boundary Regularity Theorem 6.4 produces a small positive
number r; such that Proposition 6.1 can be applied uniformly to

& ={(S, B)el,(R?) x B(By, rs) n€(M):
S is a mass minimizing current with boundary B}.
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It follows that ng(b), the inward unit vector normal to the boundary at b and
tangent to sptS, is a continuous function on the space of curves and sur-
faces (Lemma6.6), and hence that if the tangents to two area minimizing
surfaces with close boundaries are close together on J, the surfaces are close
together (Theorem 6.7). The proof of the Uniqueness Theorem 7.1 will depend
fundamentally on this result. For convenience, we conclude this chapter by
formulating from Theorem 6.7 the lemmas we will need in Chapter 7.

6.1. Proposition (Allard {2, p. 429]). Given ¢, O <e <3, there is a positive number 9,
such that if Be&, S is a mass minimizing current with boundary B, beim B, and the
Sollowing two hypotheses are satisfied:

D) Ry-2IL8ly—2zI?2

for y,zeim BAU?(b, 1),

2) e*(Isl,b,1)=3+0;

then

(3) sptSnU3(b,1—¢) is a C' manifold M with boundary,

(4) if y,zeM-imB and T is the plane containing Tan(M,b), we have the
estimates

[Tan(M, y)— T}l 2,
ITan(M, y)~Tan(M, 2)[| sely—z|'?,

(5) there are an isometry 0 of R*=R?* xR and a continuously differentiable
function f: R* - R such that

OM cgraph f,
0b=(0,f(0)), OT=R?*x{0},
Df(0)=0, ID;f(y)—D,f()=sely—z|"?

fori=1,2 and y, zeR2,

The difficulty in applying this proposition uniformly to &(r) for some r>0
lies in satisfying hypothesis (2) uniformly, since (1) follows from 3.3(4). The next
two lemmas overcome this difficulty.

6.2. Lemma. Given Bye&, there are a closed interval J =S* and an rs, 0<rs<r,,
such that if (S, B)e&(rs), ted, then

6%(S,B(1)=1.

Proof. By a lemma of Allard’s [2, p. 445], it suffices to show there are
independent real linear functions f,, f, such that

im Bc {xeR3: B,(x—B(1))=0, i=1,2}.

To formulate this condition geometrically, for aeR3, v, w unit vectors in R?,
n>0, we define a wedge

Wia,o,w,n)={xeR3*: v-(x—a)=n|w-(x—a)|}.
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Now it suffices to produce independent unit vectors v, weR?, r, >0, such that
(1) lmBCW(B(t)a v, w, r4)9
because we can then put

BI(Z)=(D—V4W)‘Z,

B,(@)=(w+r,w)-z, (zeR3).

It is easy to fit such a wedge about an extreme point of im B,; we prove it can
be done as well for points and curves nearby.
Let R=|B,| ., and choose t,eS! such that |B,(t,)|=R. Put

ry=mindr,}, — o1 Sl_( i )”“
> T2 8R(C,+1) 2 8MR/] |’

. r’ c?
MM HRT )P 4RC, [

¥s =min {7'4, Cqy r4/4, R/z}a

5 rS 1/
- (IIM) ’

J =[t,—0,t,+0].
(2) First we will prove that if

BeB(B,,2rs)n% (M),
then there are independent unit vectors v, weR? such that
im B< W(B(ty), v, W, 7).

By choice of R and t,, at ¢, the derivative of the function B,(t)- Bo(t) must be
0 and its second derivative must be nonpositive:

Bo(to)- Bolto) =0
(3) By(to) Bo(te)+ Bylto)- Bolto) =0.
Secondly, if BeB(By, 2¥;) "€ (M), then

B'(ty)  Bo(to) | 2B~ Byl < .
B BotollS Bay = Tr="

Hence there is a unit vector veR? such that

0-B(ty)=0 and |v+R~1Bo(to)l <rs.

Choose a unit vector w independent of v such that YV'B’(I.O)=O. .Because
im B<B?(0, R +2r5) and B3(By(to), ) =B (B(to), 213), (2) is an immediate con-
sequence of the following two claims:
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Claim 1.
im BAB3(B(ty), 21r;) =« W(B(t,), v, W, 4).

Claim 2.
B3(0, R +2r5) —B3(B,(to),73) = W(B(to), v, W, 7).

Proof of Claim 1. If B(t)eB3(B(t,), 2r;), then by 3.3(2),
[t—tol £2r5/c; S(c2/8MR)'*

by choice of r;. Hence
v-B7(t)=v-(B"(t) - By(t)) +v- (Bg(t) — Bg(to))

+(v+R™1 By(ty)- By(te) — R By(to)- Byl(to)

2 —ry—Mt—tof*—r, C; =R~ By(to) Bs(to)
= —ci/8R—c}/8R—c1/AR—R~1By(to)- By(to)
2 —ci/2R+|By(to)*/R by (3)

>c?/2R.

Applying Taylor’s Theorem with Remainder yields
v-(B(t)~ B(to) Z(c1/2R)(3 (t — t0)*) = (ci/AR)(t — t,)".
On the other hand,
lw-B”(6)| < |B"(1)]
SIBsto)l+rs+ Mt —to*
<C,+c}/4R,
so that again by Taylor’s Theorem,
raw-(B(t)=B(t ) £r3(Cy + /ARG (t—10)*)
<(ci/8R+ci/8R)(G(t— o))
S(ci/8R)(t—to).

Therefore B(t)e W(B(t,), v, w,r,) and the first claim is proved.

Proof of Claim 2. Let yeB3(0, R +2r5)—U3(B,(t,),r5)- Then
r3 S|y —Bo(to)| S2R +2r5.
Also

R+ 2"5)2 Z I)’lz =|y —By(to) +Bo(to)]2
=]y —By(to)l> +2By(to) - (y = Bol(to)) +RZ,

F. Morgan



Almost Every Curve Bounds a Unique Area Minimizing Surface 281

Hence
—R "By (to)- (v~ Bo(to)) Z 1y — Bo(to)l*/2R—2rs—2r3/R
>r3/2R—-2r,—2r}/R
=7r2/2R—r%/16R—r3/16R=3r%/8R.
v-(y = B(to)) = =R Bo(to)-(y =Bo(to) +(v+ R By(to) - (y— Bolto))
+v-(Bo(to) — Bto))
>3r3/8R—r, (2R +2r5)—2r5
>3r3/8R—(r3/32R*(4R)-2r,
>3r2/8R—r3/8R—r3/16R
>r2/8R.
ralw-(y = B(t)| SryQR +4r;) <, (4R)£r3/8R.

Therefore ye W(B(t,), v, w, r,) and the second claim is proved.
Now we complete the proof of the lemma by deriving (1) from (2). Let
BeB(B,,rs)n€(M), teJ. Put C=Boz,_, . Now

IB—C|<11|B-C| (Lemma 3.1)

=11rnax{

1 2n 1 2n
5 [} B(t)dt—ﬁ (f) Boz,_, (H)dt], ||B”~(Bor,n,°)”|1m}

0
=11|B"=B"°7_ll
<UMt—t ' SULIM & =rs.

Therefore CeB(B,,2rs), and we can apply (2) to get independent unit vectors v,
weR?3 such that

im B=im Cc W(C(to), v, w,r,)=W(B(t), v, w,14).
The lemma is proved.
6.3. Lemma. Given 6>0, there is a positive number s, such that if r<s,,
(S,B)e&(rs), and teJ, then
O*(|IS, B(t), ) S3+36.
Proof. Otherwise, since & x J is compact, there are convergent sequences

(S19B1)’ (S2=B2)s S (S,B)Ey,
t, ty, - ted,
Sy, S5, PRS 0,

with
@2(I'S;”a Bi(ti), Si) >%+ d.
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Since by Lemma 6.2 ©2(||S|, B(t))=1, we can choose r,
0<r<min{r,,(7C,)~ ! InQ2+45)2+36)~1}
such that
O2(||S|, B(t), ) <(2+ 6)/4.
Put n=%4r(1-(2+28)*(2+368)~*). Choose i large enough that
(1) s;sr—2n,
2 IS: (B*B(), r—n)
< (IS B*(B(@),r) +nr? 5/4,
and
(3) IB@®)—B(t)i<n.
Now
(IS, B(e),r) = |SII(B(B(2), ))/nr?
2(I1S;| B(B(e), r —m) —mr* 6/4)/nr?
Z(IS;1| B(B;(t), r—2n))/nr? ~ /4
=0*(IS:l, Bi(t), r—2m)[(r—2n)/r}* - 5/4
2 O%(|IS;ll, Bit), s)) " 217020 [(r — 21)/r]* — 6/4

because by boundary montonicity 2.7, whenever (S,B)eS, ©3(S,b,r)e’ " is
nondecreasing in r for 0<r <r, (since ry,<1/3C,)

=2(G+08)e 72 4+28)(2+38)" 1 -5/4
24712+40)(2+39)(2+49)"12+28)(2+30) "1 —4/4
=(2+9)/4.

But this contradicts the choice of r.

6.4. Uniform Boundary Regularity Theorem. Given ¢,, 0<¢, <3, there is a positive
number s,, such that if

($,B)e&F(rs) and ted,
then

(1) spt SNU3(B(t),s,) is a C** manifold M with boundary,
(2) if y, zeM-im B and T is the plane containing Tan(M, B(t)), we have the
estimates

ITan(M, y)~ Tl <é,,
ITan(M, y)~Tan(M, 2)l| Se, [(y—2)/s,|"”,
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(3) there are an isometry 0 of R*~R? xR and a continuously differentiable
function f: R* >R such that

OM <graph f,
0(B(1)=(0,f(0), OT=R*x{0},
Df(0)=0, ID,f(»)—D;f(2)<e,lly—2)/s,'

for i=1,2 and y,zeR2
Furthermore,

@) if yeM, dist(y, 15, T)<V/2¢, Iy —B().

Proof. Given &, >0, choose >0 so that Proposition 6.1 holds. Then choose
so>0 as in Lemma 6.3. Put s, =%min{sy,d/C,}. For r<s,;, we will apply
Proposition 6.1 to p,,,-14+S with boundary (2s,)~! B, with b=(2s,)~"! B(t). By
Lemmas 3.3(4) and 6.3, the hypotheses of Proposition 6.1 are satisfied. The first
three conclusions of our theorem follow immediately from those of the pro-
position. That the manifold M is C** as well as C! follows from the higher
differentiability theory of Morrey [15, Theorem 7.5].

To verify (4), let yeM. By (3), 0y =(x,,f(x,)) for some x,eB*(0,s,), and for

all xeB2(0,s,), |IDf(x)| <}/2¢,. Consequently,
dist(y, T)=dist(0y,R* x {0}) =] f (x,)|
<V/2e, Ixol £1/2¢, 10y —0|=1/2¢, [y—B(®)l.

6.5. Definitions. For fixed Byed, let J and r5 be as in Lemma 6.2. We also denote
by J the associated integral current E*L_J. Let J, be a closed interval in the
interior of J. Put [, =length J,. Let ¢: S!-[0,1] be a C* function such that ¢|J,
=1 and spto is contained in the interior of J. We will sometimes denote

& (rs/2) simply by Z.
6.6. Lemma. ng(B(t)) is a continuous function on & (rs/2) x J.

Proof. Otherwise there are {, 0<{ <1, and convergent sequences

(S4,B,), (S,,B,), ---—>(S,B) in &

t15 tz, i d t in J
such that
Ins(B(1)) —ns,(B;(t)| > L.
By replacing B; by B;c 7, _,, We can assume f; ={,=--- =L Similarly by applying

small rotations and translations if necessary we can assume
B,(t)=B(t)  (for simplicity of notation, say B()=0),
Bi(t), B'(t) are linearly dependent.

Then taking just the tail of the sequence, we can assume (S, B)e (rs).
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Taking ¢, =({/8)% choose s,>0 so that the conclusions of the Boundary
Regularity Theorem 6.4 hold. Choose i large enough so that

HM(spt S, spt S,.)gslsl]/i/4.

Put t=1(B(t))=1(B,(t)); v=1*. Put
u=ng(B(t)), u;=ng(Bi(1);
W={xeR? [vx—vx-u|<1/2¢,s,},
W, = {xeR3: |vx—vx-u,-|§]/§81s1}.

By 6.4(4),
spt SAU3(0,s,) =W,
spt S;nU30,s,)= W,

There is some yespt SN U?(0,s;)Nv with [y| =15, because spt SAU3(0,s,) v is
a 1 manifold in vAU3(0,s,) with a single boundary point 0. Since yeW,

Y'uzb"ulgM—ﬁ% Sy =31/2_]/§3151-

=2 (@s))(y- 0)S2—2+4)/2¢, =412,

<3Y/e,

Since HM(spt S, spt $;)<¢, 5;1/2/4<s,/6, there is a zespt S; with

Hence

v
-

ly—zi<e; s,V 2/4<5,/6;  51/35v2£2s,/3.

Since ze W, v2ouig|vz|—1/§slsl.

2
(” ui) =22 5 22246726, =61/2¢,.

o

vzl
Hence l—v—z—l—ui §31/:97 . Finally we estimate that
vz
L2l 2y sty sy s2v
= = = 1= .
vt vzl |~ In S1 ,

Therefore |u—u|<8}/e, ={. Consequently |ng(B(t))—ns(B,()<{. This con-
tradiction proves the lemma.

6.7. Theorem. Given 5 >0, there is a positive number & such that if (S, B), (R, C)e&
=&(rs/2),
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[B—C| <d, and
sup [ng(B(1)) —ng(C ()| <4,

ted,

then
HM(spt S, spt Ry <.
Proof. The function
3(IIB—Cl| +sup Ing(B(£)) —ng(C©)))

teJy

is by Lemma 6.6 lower semicontinuous on the compact set
{(S,B,R, C)e¥ x &: HM(spt S, sptR)=n}.

If that set is empty, we are done trivially. Otherwise the function attains its
minimum 8. By Theorem 5.1, >0.
We conclude this section with two lemmas we will need later.

6.8. Lemma. Given >0, there is a nonnegative C* function y: S* - R such that
for all (S,B)eZ,

sup l(ngo B+ —ngo B) ()| <.

tespte

Proof. By Lemma 6.6, ng(B(t)) is a continuous function on & x J. Since & xJ is
compact, n is uniformly continuous and we can choose {, 0<{ <dist(spt @, J°),
such that for all (S, B)e.¥

s —t] < = Ing(B(£) —ns(B(s)| <.
Now let ¥ be a nonnegative C* function: S'—R such that |y =1 and
spt Y =(—, ). Then for any (S, B)e¥, tespt o, s
Ingo B+ (1) —(ng o B)(t)l
=| [[(ngoB)(t—5)—(nge B) ()] ¥ (s)ds]
Sl
< | Ing(B(t—s)—ng(BO)|¥(s)ds

(=49

< [ By(sds=5.

(-4.0
6.9. Lemma. Given >0, there is a positive number { such that if
(8,B), (R Ce¥
and

§ Ing(B(£) —ng(CE) 1B (1) dr £,
Jy
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then
ao =sup [ng(B(t)) —ng (C(1))|* <.

teJy

Proof. Since by Lemma 6.6, n is uniformly continuous on % x J, there is a 9,
0<d<l,, such that if (S, B), (R, C)e& and |s—t|<J, then

[Ins(B(£)) —ng(CO)* — Ins(B(s)) —ng(C($)*| <3 7.

Put {=4#ndc,. Now by choice of 8, there is a subinterval of J; of length 6 on
which
Ing(B(t)) —ng(C(t)I*>ao— 1.

Consequently,

§ Ins(B(£) —ng(C @) [B' () dt Z(ao—3m) dc;.

Jy
Hence (ay—31)dc, <¢.

ao<3n+{/dc,=n.

7. The Uniqueness Theorem

We now give the main result of this paper.

7.1. Uniqueness Theorem. Almost every curve in & bounds a unique mass
minimizing integral current.

Proof. Let ¢ be a positive number. Put

Z=7_={Beé&: there are mass minimizing integral currents S, T with bound-
ary B such that HM(spt S, spt T)=¢}.

Let MeZ*, Byeé&, rs>0. Put
Z(Bo)=ZNB(B, rs/2)nE(M).

Z(B,) is compact by Lemma 3.5.

It suffices to prove that u(Z(B,))=0. Indeed, if u(Z(B,))=0, then u(Z)=0
because countably many such sets cover Z=Z,. Finally taking a countable
sequence of ¢ s —0, we conclude that

u{Be&: there are mass minimizing currents S, 7 with boundary B with S+ T’}
=u(JZ,)=0.
£

Hence almost every curve in & and hence in 9 = ¥(£) bounds a unique mass
minimizing integral current.
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(a) {b)

Fig.4. In a, the curves are going into the paper. b gives a three-dimensional perspective

Now fix £>0, MeZ*, Bye&. The previous chapters associate with B,
positive constants r, =r,>rs, ¢;, C;, C,, a tubular neighborhood A4, intervals

JycJ <8, a C* function ¢, and a set & =F(rs/2). We also have the set Z(B,)
as defined above.

7.2. Remark. To prove that u(Z(B,))=0, we will show that near any BeZ(B,),
there are lots of curves that lie outside Z(B,), and then use a density argument.
Indeed, we will show that if C almost lies inside an area minimizing surface S
with boundary B, then C¢Z(By).

The heuristic reason C¢Z(B,) is illustrated by Figure4. If all area minimiz-
ing surfaces with boundary C go off almost horizontally along the dotted arrows
(Fig.4a), by Theorem 6.7, the surfaces stay within ¢ and C¢Z(B,).

The only possible trouble arises if some area minimizing surface R goes off at
some substantial angle like the solid arrow. But that cannot happen: P would
have less area than S, a contradiction.

7.3. Definitions. Put 1=2nC, so that if BeB(B,rs)né(M), then length BZI
Choose >0 so that Theorem 6.7 holds with #=¢/2. Next by Lemma 6.9, choose
B, 0< B <min{1,d/2¢,}, so that if (S, B), (R, C)e& and

§ Ing(B(®)) —ng(C@))*|B (1) dt <8081,
Ju

then
suplng(B(1) — ng(C(1))| <5.

teJ;

Choose i so that Lemma 6.8 holds. Put

Cy=6(1+ ol +1¢" lo) (1+ ¥l + ¥l o)
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If (S, B)e &, then @(¥ *nge B) is C*, and one can compute that
lo@ *nse B)| <21 Cj,,
[(@() * ngo B))" | <27 Cs,.

Therefore by the Approximation Lemma4.6 we can choose NeZ* such
that if (S, B)e, there exists feCy such that

I.f — (¥ *ngo B)|| < /2.
Put &, =min{f/96, fc,/96C,}, and choose s,
0<s,=min{rs/2,Bc,/8C;,¢,/C,}

so that the Regularity Theorem 6.4 holds. Henceforth assume 0 <r<s,.
Now for (S, B)e#, put

S=SL {xed:p(x)<r and &(x)eB(J)}.
By Theorem 6.4,

F:sptS —» B(J)x[0,7]

F(x)=(&(x), p(x))
is a C! bijection. Put G=Gg=F~1.
7.4. Lemma. G is continuously differentiable,

HDG(B(t), - (Pﬂ ns(B(t))) <24z,

IB'(0)

and
,G— 1] <84¢,.
Proof. From 3.4, for xespt S, b=&(x),
IDE(x)—t(b)| <3 C,r<3e;.
Since p(x)=|x —b|, for yeR>,
p(x) D p(x)(y)=(x—b)-(y — D&(x) ().
But it follows from 6.4(4) that |(x —b)— p(x) ng(b)| =2¢, p(x).
pID p(x) (y) —ns(b)- yl
Sl —b)-(y—D &) (v) — p(x) mg(b) - (y — DE(x) (M)
+p(x) ns(b) - (v — D £(x) (y) — p(x) ng(b) - (y — 1(B) ()|
<2¢; p(x) (3ly))+ p(x) Bey)Iyl
<9¢ px)Iyl-
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Therefore if p(x)>0,
D p(x)—ng(b)- | =9e;.

We conclude that
IDF(x)—(x(b), ns(b} )|l =12¢,.

Now let T and T denote the planes containing Tan(spt S, x) and Tan{(spt S, b)
respectively.
IDF(x)o T—(z(b),ng(b) =)o T'|
S IDF(x)e T—(t(b),ng(b) *)o T
+(z(b), ng(b) *)o T—(2(b), ng(b) *)o T"|
<12¢,+2¢,=14e, by 6.4(2)
Mo Fo T(x)—1
=|JyF o T(x) = Jy(1(b), ng(b) -)o T'|
<2(14¢,)(1+14¢)) by 2.5(2)
<42e, <1

Hence J,F is nonvanishing, and G is C*. Furthermore, since J,G=(J,F)~",

42¢
—1I= L <84¢,.
7,6 1|_1*4281< g,

Finally define a linear map
L: TyyBUJ)xR=R?— T'<R?
_BO)
|B'(¢)l
so that (t(B(t)), ng(B(1))*)e L =id. Then

L(u, v) u+ng(B(t))v,

IDG—L|<|TeL-DG| +|ToL-T'~L]|
S|DGI|DF e T—(t,ng)o T'[ |LI+ | T=T'} LI
<(1—-12¢)) " (14e ) (D) +(e,)(1)
<24e,.

7.5. Definitions (see Fig. 5)
Fix (S, B)e. Put b=ngo B. Define a C' map
B:S!-5S

(G4BOrel) el
5 '(”z{B(r) éspto,
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0 Br r

Fig.5. The curves and surfaces defined in 7.5. The curves are going into the paper

and a C? map
B,:S' 5R?
B(t)=B(t)+ro() (¢ *b(1)).
Suppose (R, C)e¥ and
IC~B,|=rp.

Put ¢=ngo C. Define a C! map

C:S' >R
2 JOR(C@,ro@t) ted,
o= { C(r) t¢spto.

7.6. Lemma. We have following estimates.

(1) |B-B,|<rC,.
(2 IIB—-C|<3Be,.
3) |B-CJ,<2r
4 |B-C|,<3r
(5) I(B(2)—B(t)~ro()b(®) < Bro()

F. Morgan
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and
(C@®)— C)—ro() e < Bro).
(6) |C-B,|,<3pr
(7 HC—B)—rod+o)l, <3pr.
®) B, —Bll,<3Bc,.
9 1€ =B <fe;
Proof.
(1) follows from the definitions of B, and C,.
2 IB-C| éllB—Erl_H |B,—C|| <rCs+rf<3pe;.
() IB=Clo=IB=B,l,+|B,—Cl<r+rp<2r.
4 |B=Cl SIIB=Clo+C—Clo<2r+r=3r.

(5) Let v=B,(t)—B(t). [v|=ro(t). By choice of r and 6.4(4),

dist(Bt), Tae TSV 28,7 0(8) <4 Brof).
lv—(v-b(&) (D) S Brop(t).

Squaring both sides yields

rro(t)’ —(v-b(O)? 5 B2r* o(1)*.
(r@(t)—v-b(®) (ro(t)+v-b) <% B2r* ().
Since v-b(2) >0,

ro(f)—v-b(r)<;Bro(t).

lo—re() O =217 @(t)* —2rp(t)v- () < B 1* 9(1)*.
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Therefore, |(B,(1)—B(t)) —ro@®)be)|=lv—ro@b(t)| £Bre(t). The analogous re-

sult holds for C.

©6) 1C—B,l,<I(B,~B)—robl,+|B,~(B+rob)l,+[B,~C|

<pr+pr+pr=3pr
by (5); definition of B,, choice of ¥; and choice of C.
(M) (C—B)=reb+o)l,,

<|(B,~B)—rebl,+IC—B,[+I(C—C)—rocl.

<Br+pr+pr=3pr

by definition of B,, choice of y; choice of C; and (5).
(8) and (9) From the definition of B,, we have

Bi(f= DG4(B(®), re)(B(t), re'(t)  tel,
O=1p téspto.
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|B,(t)—B'(t) £|DG(B(2), r (1)) (| B' (1), r ' (1))
—(B'(®)—re ()b +1B(t)+r¢'(2) b(t) - B(0)|
<24e,(C;+rC;)+rC; by Lemma 74
<24, C,+2rCy
<Bci/4+2C5(Bc,/8C3)=1%Pc;.

Likewise |’ — C’||, <31 Bc,. Combining this estimate with (2) yields (9).

7.7. Some Comparison Surfaces

P. Define

fp:d x[0,1]>R?,

S, H)—=(1-2) B(t)+ A C(2).
Put

P=fp,(J x[0,1]);
OP=fp4(8J x [0, 1)) = (C 4(J)— B4 ().

To estimate M(P), we first estimate J, fp.

T2 fp =Dy fellDy fel - (cf. 2.5(3))
=|(1-)B@®)+1C@)ICe)-Be)l
<IBOIICE)~B@I(1+p) by 7.6(9) because [B(1)=c,.

M(P)S | J,fpdtdi by 2.5(1)

Jx[0,1}

=@ +ﬂ)£ |C()— B()||B/(2)|dt
<[ire®+o) @B M dt+68rl by 7.6(4,7).
J

Q. Define

fo: S x[0,1]>R3,

Jo: @, )= (1-14) B(t)+AC(t),
and put

0=/fo+(8'x[0,11),
0=1o+(8' =) x[0,1]).
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We have that
‘3Q =Br#(sl)_ C#(SI)ZEr#(J) +B#(Sl =)~ C#(Sl),
80 =B, ,(S' —J)— C (8" =J)— fo+(0J x[0,1])
=B (S'—J)— C4(S' —J)—fp4(0J x[0,1]).
Here we have used the fact that on J%, B=B,, C=C, fo=/,.
As for P we can compute
T fo (1= 1) Bi(t)+AC'(®) B — Co)l
<IB@)|IB(—COI1+p) by 7.6(2,8).
MQ< [ Jpfdedi

Sl x[0,1]
s(1+ ﬂ)sfl |B,()— C(1)I|B'(1) dt
<6Blr by 7.6(6).
$ and R. We observe that
§=Ggo (B xid),(E2L{(t,s)eJ x [0,r]:s<re(1)}),
R=Ggo(C xid),(E*L{(t,5)eJ x [0,r]:s=Srp(1)}),
ag:B#(J)_Er#(J)’
OR=C,(J)—C.(J).
M(©S)= wjm(Jz Ggo (B xid))dsdt

teJ s=0
rolt

)
> | | |B(t)ldsdt—84g,rl by Lemma 7.4

teJs=0

z [ ro@B@)ldt—prl.

ted

Similarly,
ro(t)
M@R)2 | [ |C(9)ldsdi—84e;rl
te s=0
re(t)

=2f | [B'(t)|dsdt— Prc,/2—84rl/96

teJ s=0

by 7.6(2) and choice of &,

> | ro()B(®)dt—Br l/An—TBr1/8

ted

> | ro(t)B@)dt—prl.

teJ
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X and Y. Put
X=(5-9)-0,
Y=(R-R)+P+9Q.
0X =05—-05—0Q
=B4(S)~By()+B,,(J)) = B,4(J)~B4(S' = J)+ C (8"
=C,4(S*)=0R.
Therefore, since R minimizes mass,
M(R)<M(X) <M (S - $)+M(Q)=M(S)—M(S) + M(Q).
Similarly, dY=0S and therefore
M(S) <M(Y) <M(R) —M(R) +M(P) + M(Q).
Adding the inequalities yields
M(S)+M(R) <M(P)+2M(Q).
Now applying our previous estimates on these masses yields that
, Ejj(r @(8)+r () —r () (b(z) + e()NIB'(¢)| de =20 r L.
Since the integrand is nonnegative,

§ re@®@—b@)+c@IB(0)de <208rl.

teJq
Since ¢|J; =1,

[ @=Db+cl @B (@)dr <2081

teJy

Since [b—¢|2=Q2+b+c)(2—|b+c) 42— |b+c]),

§ Ib(e)—c(t)*|B(t)|dt <80BL.
teJy
By choice of S,
sup |b(z) —¢(t)| < 6.

teJy

Since also by 7.6(2) |B— C|| <3 B¢, <4, it follows by choice of ¢ that
HM(spt S, spt R} <¢/2.

F. Morgan
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We conclude that if (R,, C), (R,, C)e&, then HM(spt R, spt R,)<¢, so that
C¢Z(B,).
In summary, we have shown that

B(B,, Br)nZ(Bo) =,
while we also know that
B(B,, Br)=B(B, 2rC;).

7.8. The Density Argument. Z(B,) is compact and hence measurable. For E e%n,
put

Z(B,, E)={De%y: D+EcZ(Bo)}.

We want to apply the Density Lemma 2.4 to Z(B,, E) and the measure uy, which
satisfies the hypotheses by Lemma 4.5.

Let DeZ(B,, E). Put B=D+EeB(Bqg,rs/2)n¥(M). By choice of N, we can
choose De%y such that

1D~ @ «b)[| <3 B.

Then for r<sy,
|E+D+rD—B,| <5 Br.

By the conclusion of 7.7,
B(D+rD,3 Br)nZ(Bo, EY=,
B(D+rD,L Bry<B(D,3rCs).

pin(B(D,3r C3)nZ(Bo, E)) _ (B +rD, % pr))

<1
Hn(B(D,3r C3)) - un(B(D,3r C3))
k (_1_ ﬁr)3(2’” 1)
§ 1 _k—i;—r—w by Lemma 4.5
3(2N+1)
<1 _"—0( 4 ) .
="k, \6C,
Therefore,
— un(B(D, 5)nZ(B,, E)) <1

im
s=0 un(B(D, 5))
Since this holds for all DeZ(B,, E), it follows from Lemma 2.4 that
”N(Z(BO’E)) =0,
Since this holds for all Ee%", by Fubini’s Theorem,
H(Z(By))=0.

This proves the Uniqueness Theorem.
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7.9. Remark. Almost every curve is an embedding, i.e., u(€¢ — &)=0. Hence almost
every curve in € or in &,(R>) bounds a unique mass minimizing integral current.

Proof. We use product decompositions and Fubini’s Theorem as in the argu-
ment above (7.8). It is convenient to identify R? with C and view

®: (CxCxRXRx [[R,¥*x%*x%' xg' x ¥ x [] 4
n*1 n¥0,1

->RI=CxR,

B=%(C,,C_,,D,,D_,,(By,B,,B_5,...))
=273 [C,é'+C_,e "],D,cost+D_,sint)

Lo o
— Y B,n"*cosnt+B_,n"3sinnt.

Denote by P projection of R* onto R? x {0}.

(1) For fixed C_,, D, D_,, (By, B,,...), for #2 (or equivalently %?) almost
all C,, [PoB|>0. That is, for fixed C*>* f: 8'-C, for almost all C,eC,
f—2"%C,é" has a nonvanishing derivative: indeed, it will unless C,e{—2"%
if'(t)e ": teS'}, which is a set of measure zero. Therefore almost every
curve in ¥ has a nonvanishing derivative.

(2) For D, =D_, =0, for fixed C_,, (B,,B,,...), for almost all C,, P- B has
only finitely many self intersections. That is, for fixed C**f: 8! C, for almost
all C,eC, f—27*C,¢" has only finitely many self intersections. As proof,
consider the C! function

F:S'xS'—{(u,u):ueS'}-C

P01

Then f—2-*C,¢" has $card F~!(C,) self intersections. But by the area formula

feard F~Y(C)d > C,=[J,Fd¥* <o
C

because J, F is bounded (as one can easily check). Therefore card F~1(C,)<
for almost all C,.
(3) Using the same argument as in (1), we deduce from (2) that almost every

curve in € is injective.
We conclude from (1) and (3) that u(% —&)=0.

7.10. Remark. The results of this paper hold equally well for flat chains modulo
two. In fact, some of the arguments simplify in that case. We conclude that
almost every curve bounds a unique mass minimizing flat chain modulo two.

7.11. Remark. The results of this paper ailso hold for the classical Plateau’s
problem (cf. [5, pp.95ff]). Almost every curve bounds a geometrically unique
immersed disc of least mapping area. However, there seem to be open sets of
curves bounding more than one stable immersed disc: we only assert that for
almost every such curve, one such surface will have less area than all the others.
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7.12. Remark. The conclusion of 7.7 shows that Z(B,) is nowhere dense. It
follows that the set of curves bounding more than one area minimizing surface is a
set of the first category.
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