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The anisotropic Kepler problem is a one-parameter family of classical mechani- 
cal systems with two degrees of freedom. When the parameter  # = 1, we have the 
well known Kepler or central force problem. As # increases beyond 1, we 
introduce more and more anisotropy into the Kepler problem. As we show 
below, this changes the orbit structure of the system dramatically. 

When p = 1, the system is completely integrable and the orbit structure is 
well understood. With the exception of certain collision orbits, all orbits are 
closed and lie on two dimensional tori in the case of negative total energy. 

For p >  1, we keep the same potential energy, but make the kinetic energy 
anisotropic, i.e. the kinetic energy becomes 

K ( p ) = l ( l ~ p Z  + p~). 

This forces orbits to oscillate more and more rapidly about the y-axis as # 
increases. By the time # reaches 9/8, this behavior becomes highly random: one 
can find orbits which oscillate an arbitrarily large number of times about the y- 
axis before crossing the x-axis. 

This motivates the introduction of symbolic dynamics into the problem. For 
each # > 9/8, we isolate a closed subset M,  of phase space having the following 
characterization: to each orbit remaining for all time in M,  we may associate a 
doubly infinite sequence of symbols 

(S)~---(...S_2,S 1, S o ; S 1 ,  S 2 . . . .  ) 

where each s k is a non-zero integer. We determine (s) as follows: [Ski indicates 
the number of times the orbit crosses the y-axis between the k th and the (k+ 1) st 

passage close to the x-axis. This will be made more precise in w 7. The sign of s k 
indicates whether the orbit oscillates about the positive of negative y-axis during 
t h e  k tla passage. Let S k denote the set of all such sequences where I sjl >_- k for all j. 
Our main result is then: 

* Partially supported by NSF Grant M PS 74-06731 A 01 at Northwestern University, Evanston, 
Illinois 
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Theorem A. There is an open and dense subset of parameter values in (9/8, ~ )  for 
which the anisotropic Kepler problem satisfies: there is a closed subset M,  of 
phase space and an integer k(#) such that the set of orbits which remain for all 
time in M r is topologically conjugate to the suspension of the Bernoulli shift on the 
closure of Sk~,r 

In particular, any periodic sequence in Skt~ corresponds to a hyperbolic 
closed orbit of the system. Hence there exist infinitely many long closed orbits 
for the system, and the associated string of symbols accurately describes the 
qualitative behavior of the trajectory in configuration space. 

We remark that this theorem improves a result of Gutzwiller [-8], who 
showed the existence of similar orbits for certain values of # via different 
methods. 

The main ingredient in the proof of Theorem A is the existence of bi-collision 
orbits in the anisotropic Kepler problem. These are orbits which begin and end 
in collision with the origin. For the ordinary Kepler problem, the bi-collision 
orbits fill a two dimensional submanifold of phase space. For # >  1, this 
submanifold breaks up. Some bi-collision orbits do persist: however they are 
generally much longer than the bi-collision orbits in the Kepler problem. In fact, 
as a Corollary of the above Theorem, we have: 

Corollary B. For an open and dense set of parameter values p > 9/8, there is a hi- 
collision orbit of the system associated as above with each finite string of symbols 
of the form (So, S 1 . . . . .  s,). 

To study the bi-collision orbits, we employ a technique introduced by 
McGehee [10] to study triple collision in the collinear three body problem. By a 
change of time scale, the singularity at the origin in configuration space is 
removed, and in its place is pasted an invariant torus A. The new flow extends 
analytically over A, and on this torus, the flow is easily understood. The only 
non-wandering points on A are eight equilibria: two sources, two sinks, and four 
saddle points. Orbits which previously began or ended in collision with the 
origin now tend asymptotically to one of the equilibria. In this framework, bi- 
collision orbits can be interpreted as heteroclinic solutions of the new system. 

There are four primary bi-collision orbits which are crucial for the existence 
of the Bernoulli shift. Two of these orbits connect the sinks to the sources in A. 
When p>9/8,  the characteristic exponents at the sinks and sources become 
complex. Nearby orbits then tend to spiral around these primary bi-collision 
orbits. This accounts for the oscillatory behavior described above. 

The two other primary bi-collision orbits connect distinct saddle points in A, 
and, by symmetry, are trapped on the x-axis in configuration space. Each of 
these orbits lies in the intersection of two dimensional stable and unstable 
manifolds of distinct equilibria in A. One of our most important results is that 
these manifolds meet transversely along the primary bi-collision orbits. 

Theorem C. For all # >  1, the primary bi-collision orbits along the x-axis are 
transversal heteroclinic solutions of the system. 
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The proof employs techniques introduced by Conley and Easton and is 
given in w 6. 

The four primary bi-collision orbits together with certain heteroclinic so- 
lutions within A thus set up a chain of heteroclinic solutions. Using an idea of 
Easton [5], we set up a sequence of "windows" or transversals along this chain. 
Orbits which pass from one window to the next in a certain order then 
determine the subset M,. Orbits which continue to reintersect these windows for 
all time become the subsystem which is conjugate to the Bernoulli shift. This is 
treated in w 

We should like to acknowledge several helpful conversations with R. McGehee and Z. Nitecki 
while this paper was being written. 

w 1. The Anisotropic Kepler Problem 

In this section we discuss the basic properties of the planar anisotropic Kepler 
problem. The configuration space for the system is the plane ~.2 with Cartesian 
coordinates q + (q l, q2). The phase space is the tangent bundle of the plane TIP, 2 
with coordinates p =(Pl, P2) in the fibers. 

The anisotropic Kepler problem is then given as a first order system of 
ordinary differential equations, or a vector field on TIR 2 by 

/ l = M p  
[~= - q/Iq[ 3. 

Here M is the 2 x 2 matrix 

(1.1) 

(1.2) 

where # >  1. When p =  1, this system describes the ordinary Kepler or central 
force problem in Newtonian mechanics; when #>1 ,  the system is no longer 
spherically symmetric, and # measures how anisotropic the system is. 

We henceforth denote by X, the vector field given by (1.1). Note that X u has 
a singularity at q = 0. 

This vector field is a Hamiltonian system on TIR 2. Let V be the usual central 
force potential 

1 
V(q) = ~ .  (1.3) 

And define the kinetic energy K by 

K ( p ) - � 8 9  (1.4) 

The total energy E is then given by 

E - - K - V .  (1.5) 
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Then (1.1) may be written in Hamiltonian form with E as the Hamiltonian: 

dE 

0p (1.6) 
- 0 E  

P=  Oq 

Remark. One can equivalently define the system by making the potential 
anisotropic. More precisely, let 

1 
V ~ - -  

(q) - lM~ql  , 

K'(p)=�89 2, 

E ' = K ' -  V'. 

The Hamiltonian system with Hamiltonian E' is then easily seen to be linearly 
equivalent to (1.6). 

Since the system (1.6) is Hamiltonian, it is well known that the total energy E 
is an integral for the system. That is, E is constant along the solution curves of 
X u. Consequently, the level sets of E are invariant under the flow of X,. We 
denote the level set E-X(e) by S~; such level sets are usually called energy 
surfaces. Henceforth, we consider only negative energy surfaces, i.e. the case 
where e < 0. 

We wish to consider in more detail the topology of the various Z~. For this 
purpose we make the change of variables 

q = r s  

(1.7) 
p = r - � 8 9  

where s is a point on the unit circle S1 and where u is a vector in ~2.  The system 
(1.6) becomes 

~ :=r - �89  

~=r-~(Mu-(s' Mu) s) (1.8) 

= r -  } (�89 M u) u - s) 

and the total energy relation becomes: 

re=�89 M u - 1 .  (1.9) 

(1.8) is an analytic vector field on the open manifold (0, ~ )  x $a • 1~2. 
Since e is negative, it follows that 

0~r_< - 1/e 

for any solution curve in the energy surface E e. That is, Ee projects onto the disk 
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of radius - 1/e in IR 2 -  {0}. Over the interior of this disk, Z e intersects the fibers 
of TIR 2 along ellipses given by 

�89 1 +re.  

Along the boundary r = l/e, Z e intersects the fibers only at the zero vector. For 
this reason, the curve 

r =  -- 1/e (1.10) 

u = O  

is called the oval o f  zero velocity in Z e. Henceforth, we denote this curve by Z. 

Proposi t ion 1.1. For e<O, Ze is diffeomorphic to an open solid torus (i.e. a solid 
torus minus its boundary). 

Proof. Let B be the interior of the ellipse 

� 89  = 1 

in the plane. Define O: Z e ~ S  1 x B by 

~(r, s, .) =(s, n) 

�9 is clearly the required diffeomorphism, q.e.d. 

Note that the diffeomorphism �9 maps the oval of zero velocity onto the core 
circle of the torus and that r=O corresponds to the (missing) boundary of S 1 x B. 

w 2. The  Col l i s ion  Mani fo ld  

The system (1.8) defines an analytic vector field on the open manifold (0, oo) x S 1 
x]R 2. The system does not extend over the boundary r=O since, as r ~ 0 ,  the 

vector field X,  "blows up". In this section we slow down the vector field so that 
the new system does extend to r = 0. 

To accomplish this, we change the time variable via 

d t = r ~  dz. (2.1) 

In the new time scale, (1.8) becomes 

= r (s t M u) 

= M u - (s t M u) s (2.2) 

~=�89 u - s  

while the total energy remains 

r e = � 8 9  (2.3) 
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We note several immediate consequences of this change of scale. First, (2.2) 
has no singularity at r = 0 ;  in fact, this system extends analytically to all of 
[0, ~ ]  x S 1 x R 2. Second, the submanifold r = 0  is now invariant under the flow. 
Thus, this change of time scale has the effect of pasting an invariant boundary 
onto the phase space, and orbits of (1.8) are simply reparametrized. In the sequel 
we consider only the extended system (2.2), which we continue to denote by Xu. 

We now restrict attention to a single energy surface Z e with e < 0. Via (2.3), 
S e meets the boundary r = 0 along the submanifold A defined by 

� 8 9  (2.4) 

s arbitrary. 

A is clearly diffeomorphic to a two-dimensional torus which we call the collision 
manifold. Note that A is independent of the total energy. Thus the change of 
time scale also has the effect of pasting an invariant boundary onto each S e. X u 
extends over this boundary as before, and is given by 

s =  m u - ( s t  m u) s (2.5) 

li = �89 t M u) u - s. 

We summarize this construction in the following proposition. 

Proposition2.1.  For the extended vector f ield X u in (2.2), the negative energy 
surfaces are diffeomorphic to solid tori. The boundary of  Z e is the collision 
manifold A, and X~ extends analytically over A. 

Orbits which previously began or ended in collision with the origin now tend 
asymptotically away from or toward A. Orbits which previously passed close to 
collision now come very close to A. How these orbits behave near the singu- 
larity is thus governed by the flow on A. We therefore discuss this flow in some 
detail in the next two sections. 

3. The Collision Manifold for the Kepler Problem 

The material in this section serves mainly as motivation for our treatment of the 
collision manifold for the case # > 1 in the next section. Most of the material 
below is due to McGehee [11]. 

When # =  1, the vector field X 1 is given by 

= r (s '  u) 

~ = u - ( s t u ) s  (3.1) 

~=�89 u - s  

and the total energy is given by 

re=�89  lul z _  1. (3.2) 
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Fig. 1. The flow on the collision manifold for # = 1 

~p=O• 

We introduce new variables 

s = (cos 0, sin 0) (3.3) 

u = ~  1)(cos q,, sin q,) 

with 0, q, defined mod 2n. The differential equation (3.1) is transformed into 

= r 2~1/5~7~ 1) c o s ( q , -  0) 

0 = 2 V / ~  + 1) sin(q, - 0) (3.4) 

1 
~ =  sin(q,-  0). 

V2(re+ l) 

On A, (3.4) reduces to 

0 = V ~ sin (q, - 0) 
(3.5) 1 

= ~22 sin (q, - 0). 

This system is easily solved. For  our purposes, however, it will be enough to 
note two features of this flow. First, 

0 - 2 q, (3.6) 

is constgnt along the orbits of (3.5). And secondly, the vector field vanishes 
along precisely two circles in A, namely the circles q, = 0 and q, = 0 + n. All other 
orbits on A tend asymptotically away from q, = 0 + rc and toward q, = 0. A sketch 
of this flow is given in Figure 1. 

For the case # > 1, we show below that both of the circles of equilibria break 
up into isolated hyperbolic equilibrium points. However, some vestiges of the 
invariant circles remain: this is a consequence of the normal hyperbolicity 
studied by Sacker [-14] and Hirsch, Pugh, Shub [9]. We take the liberty to adapt 
their definitions and theorems to our particular circumstance. 
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Definition 3.1. Let q5 t be a smooth flow on a manifold M and suppose C is a 
submanifold of M consisting entirely of equilibrium points for the flow. C is said 
to be normally hyperbolic if the tangent bundle to M over C splits into three 
subbundles TC, E s, and E u invariant under d~b t and satisfying 

a) d~b t contracts E s exponentially, 
b) d~b t expands E u exponentially, 
c) TC=tangen t  bundle of C. 

For normally hyperbolic submanifolds one has the usual existence of smooth 
stable and unstable manifolds together with the persistence of these invariant 
manifolds under small perturbations. More precisely, we have the theorem: 

Theorem 3.2. Let C be a normally hyperbolic submanifold of equilibrium points for 
C~r Then there exist smooth stable and unstable manifolds tangent along C to 
E~O TC and EUO TC respectively. Furthermore, both C and the stable and 
unstable manifolds are permanent under small perturbations of the flow. 

For the proof of Theorem 3.2, we refer the reader to [9]. We emphasize that 
Theorem 3.2 does not say that a submanifold of zeroes persists; indeed all zeroes 
may be destroyed by a small perturbation. However, there must be some 
invariant manifold nearby. 

As remarked above, we are primarily interested in applying Theorem 3.2 to 
the circles of equilibria in the Kepler problem. We thus need the following 
proposition. 

Proposition 3.3. The circles ~ = 0 and ~k = 0 + 7~ are normally hyperbolic circles of 
equilibria for X r 

Proof. Using (3.4), one computes easily that 

t -  D X ( O ,  o, o) = 
- 1  

- 1  
which has eigenvalues l/~, ~-~, 0. A similar computation shows that DX (0, 0, 0 + n) 

v - -  

h a s  eigenvalues - l / 2 ,  ~22' O. q.e.d. 

By Theorem 3.2, it follows that both circles of equilibria admit two dimen- 
sional stable and unstable manifolds. The stable manifold of ~k = 0 lies entirely 
within A, and so does the unstable manifold of ~k=0+~ (see Fig. 1). On the 
other hand, the stable manifold of ~ = 0 + rc is a cylinder of orbits which tend 
asymptotically to A, while the unstable manifold corresponding to ~b = 0 consists 
of orbits which tend asymptotically toward A in the negative time direction. 
Inspection of the flow on A shows that these are the only orbits which tend 
asymptotically toward A. 
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Definition 3.4. An orbit  of the anisotropic Kepler  p rob lem which tends asymp-  
totically to A in either forward or backward  t ime is called a collision orbit. An 
orbit  which tends to A in bo th  directions is called a bi-collision orbit. 

We have proven:  

Proposition3.5. The set of collision orbits for negative energy in the Kepler 
problem consists (locally) of two smooth cylinders of orbits. 

Actually,  much  more  can be said. Both the stable manifold of  ff = 0+zr  and 
the unstable manifold of  ~b = 0 meet  along the oval of  zero velocity Z. This 
means  that  orbits  which leave A reach a point  of  zero velocity, and then fall 
back along an orbit  heading for collision. A proof  of this can be found in 1-13]. 
In our  terminology,  we have:  

Proposition3.6. All collision orbits for the Kepler problem with negative energy 
are bi-collision orbits. 

w The Collision Manifold in the Anisotropic Problem 

In this section we turn our  a t tent ion to the flow on the collision manifold when 
# > 1. As before we first introduce the variables 

s -  (cos 0, sin 0) 

n = ~  ( +  cos ~/, sin ~/) (4.1) 
\V # / 

dt=lS2U+re)d~. 

The vector  field (2.2) becomes 

= 2(1 + r e) (r) (]/-p cos (~J) cos(0) + sin (~J) sin(0)) 

0 = 2(1 + r e)(sin(~J) cos (0) - l f ~  cos (~J) sin (0)) (4.2) 

= l f ~  sin (tp) cos (0) - cos (~) sin (0). 

(4.2) is a vector  field on [ 0 , - 1 / e ]  • x S 1. The boundary  r = 0  is the 
collision manifold A which we shall deal with here. The  boundary  r = -  1/e is 
the zero velocity manifold which we shall deal with in w 

Restricted to A, the system is 

0 = 2 (sin (r cos (0) - 1 /~  cos (r sin (0)) (4.3) 

t~ = lf~sin(tP) c o s ( 0 ) -  cos(tp) sin(0). 

Fo r  # = 1 we have the usual Kepler  p rob lem with two circles of  equilibria on 
A. W h e n / ~ >  1, each of these circles breaks up into four distinct equilibria:  two 
sources (or sinks) and two hyperbol ic  saddle points. We single this fact out  as a 
proposi t ion.  
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Proposition 4.1. The vector field Xu admits exactly eight equilibrium solutions. The 
locations as well as the characteristic exponents of these equilibria are as 
displayed in Table I. 

Proof. To see that these are the only equilibria on A, we first note that 0 = 0 iff 
both ~ and 0 are multiples of n, or else 

cot 0=  l /~co t  ff . 

On the other hand, ~ = 0 iff both ~b and 0 are multiples of n, or else 

cot ~ = ] / ~ c o t  0. 

Since # > 1, it follows that 

cot 0 = 0 = cot 0. 

Examination of all of the possibilities then yields the result. 
To compute the characteristic exponents of the various equilibria, one 

simply notes that 

o ,00 , (0 0j 
where A is a 2 x 2 matrix giving the linearization of the restriction of X, to A, 
and where v is either +2 or +_#~, depending on the equilibrium point. 

Table 1 

Equilibrium Characteristic Exponents Type 
point on A 

on A off A 

(~  ~) ~ q ~  2 sink 

,00, Sadd e 

,~ -~+~ 9~-8p 2 Sink 

(~,~) ~1/~ +~ 1/9-# - 8 21/~ Saddle 

(~) ~ ~ ~- + - 2 Source 

(0, re) ~-----~ V~-# - 8 2 -2V~ Saddle 

(2' --2) ~ + ~  --2 Source 

(n,0) ~ -  _~V~-8 -2V~ Saddle 
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o 
Fig. 2. The phase portrait of the flow on A for/~ > 9/8 
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Finally, since 

# < 9 p - 8  

it follows that 

t / ~  < l / ~ - 8  (4.5) 
2 2 

and hence that each of the saddle points in A have one positive and one negative 
characteristic exponent, as required. We leave the rest of the details to the 
reader, q.e.d. 

Note that the characteristic exponents of both the sinks and the sources have 
non-zero imaginary part when p > 9/8. This means that orbits of X~ tend to 
spiral into and away from the corresponding sinks and sources for high 
anisotropy. This fact will have important consequences later on. For  now we 
single it out as a corollary. 

Corollary4.2. I f  p>9/8 ,  then each of the sinks and sources on the collision 
manifold have non-real characteristic exponents. 

We sketch the phase portrait of the flow on A in Figure 2. 
One final qualitative feature of the flow on the collision manifold is the 

ultimate behavior of the stable and unstable manifolds of the saddle points. 
Recall that the stable (resp. unstable) manifold of a hyperbolic equilibrium point 
consists of all points which tend asymptotically toward (resp. away from) the 
equilibrium. Itds well known that the stable and unstable manifolds are smooth 
immersed manifolds. In our case, each of the stable and unstable manifolds of 
the saddle points are analytic curves which consist of precisely two orbits 
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tending toward or away from the equilibrium. We denote the stable (resp. 
unstable) manifold of an equilibrium point p by WS(p) (resp. W u (p)). 

Definition 4.3. Let p, q be distinct hyperbolic equilibria for a flow. An orbit V is 
said to be heteroclinic if 7 lies in WS(p)c~W"(q). If p=q,  ~ is said to be 
homoclinic. In the two-dimensional case, when p and q are both saddles, ~ is 
also called a saddle connection. 

Below we show that, for most values of #, there are no saddle connections 
for the flow on A. Before proceeding with the proof, however, we need several 
additional facts. 

Definition 4.4. Let X be a smooth vector field and let f be a smooth real-valued 
function. X is said to be gradient-like with respect to f if f increases along all 
non-equilibrium orbits. 

Proposition 4.5. Let f . :  A ~ I R  be given by 

fu(s, u) = [M- �89 sl- ~ (s t u) (4.6) 

where M -  �89 is the 2 x 2 matrix given by 

(V 
Then X u is gradient-like with respect to fu. 

Proof. We first compute the time derivative of fu along an orbit. 

f , =  - � 8 9  ~(s'u)(s'M - a g) + IM- ~ sl-*(gt u -  s 'a ) 

= IM-~sl -  ~ { - � 89  u) 2 + s ' M -  1 s ( f fMn - 1)} 

= IM- �89 l(_�89 +stM - 1 s). 

Using (4.1) it follows that 

IM-~sJ ' f .  = ( +  cos(O) sin(~,)-sin(O) cos(~,) ) z . 
W# 

(4.7) 

Hence s  If f , = 0 ,  then it follows from (4.3) that O=0 also. On the other 
hand, X ,  is never tangent to 0 = 0 in A, except at the equilibria. This implies that 
f ,  increases along all non-equilibrium orbits, and this completes the proof 

Corollary 4.6. There are no closed or recurrent orbits for X ,  on A. 

Proof. If so, f ,  would vanish identically on such an orbit, q.e.d. 

As a consequence, all orbits of X ,  must tend toward one of the equilibria. 
Figure 3 shows the flow on A relative to the gradient function fu" Note that 

f ,  has maxima at two sinks for X ,  and minima at the sources. At the saddle 
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Fig. 3. The flow on the collision manifold relative to fu. We take fu to be projection onto a vertical 
axis (a "height" function) 

points, one computes easily that 

fu(O, O) = fu(=, ~) = (2/#~) ~* 
fu(rc, 0) =fu (0, zt) = - (2/#~) &. (4.8) 

Consequently the stable manifolds at (re, 0) and (0, re) must emanate directly from 
the sources, while the unstable manifolds at (0, 0) and (~, ~z) must fall directly 
into sinks for all # > 1. 

To show that there are no saddle connections for Xu, it thus suffices to show 
that the remaining invariant manifolds do not match up. This is true for most 
values of #. 

Remark 4.7. The two branches of WS(zc,0) each emanate from distinct sources in 
A. This follows immediately from the fact that (4.3) is invariant under the 
reflection 

(0, q/)--,(- 0, - 0 ) .  

Similar results hold for the other saddle points. 

Proposition 4.8. For an open and dense set of  real numbers g >  1, the unstable 
manifolds at (re, O) and (0, z~) miss the stable manifolds at (0, O) and (~, re). 

Proof. First consider W"(rc, 0)= W " ( -  re, 0). Eliminating time from (4.3), we have 

dq/ sin(q/- 0) + e cos(0) sin(q/) 
= F(O, q/, e) (4.9) 

dO 2sin(q/-0)-2ecos(q/)sin(0) 

where e = g & - l .  When e=0, WS(=, re) matches up exactly with W"(-rc, 0). See 
Figure 1. Consider the branch of W"( -~ ,  0) which contains the point (0, re/2). By 
(3.6), this curve lies along the line 

2 q / - 0 = ~ .  (4.10) 
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When e increases above 0, this branch of the unstable manifold varies 
smoothly in A. Let ((0, e) denote the qJ-coordinate of this curve, with ( ( - ~ ,  e) 
=0.  Below we prove: 

O 
Lemma 4.9. ~ ((0, 0) < 0. 

Consequently, ((0, e)<n/2 for e small and positive. An easy computation 
then shows that f l  + ~(0, ((0, ~)) > 0. 

Now (4.3) is reversed by the transformation 

(0, ~b) ~ ( -  0, 7r- ~9). (4.11) 

In particular, the unstable manifold through ( - n ,  0) is mapped onto the stable 
manifold through (n, n) by this map. Hence the stable manifold intersects the tp- 
axis at some point (0, ~9o) with ~Jo > n/2. At this point, however, fa +~(0, ~o)<0. 
Consequently, the unstable manifold through (n, 0) misses the stable manifold 
through (n, n), at least for e small and positive. 

Similar arguments show that all the unstable manifolds of the saddle points 
miss all the stable manifolds, at least for small e>0. Since these stable and 
unstable manifolds vary analytically with e, it follows that they intersect only for 
a discrete set of values of e. This completes the proof with the exception of 
Lemma 4.9. 

Proof of Lemma 4.9. Note that ( satisfies the equation 

0 

((0, a)= ~ F(s, ((s), e)ds 

where F is given by (4.9). Write 

= (o(0) +  1(0) + 

We have shown (3.6) that 

~o(0)=�89 7t/2. 

We now compute ~1(0): 

i `aF ~F )  l(S) as 

i sin (~o + s) 
=_,,  2sin(~o_S) ds 

o sin(~s+ ~/2) 
- 2  sin ( - �89  + ~/2) ds 

cos( s) 
= cos(�89 dS 

- ~ / 2  

= sin (0) - n/2 - 0/2. 
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Thus, when 0 = 0, we have 

~, (o) = - ~/2 = ~  ~(o, o). 

This completes the proof of the lemma, q.e.d. 

Combining Propositions 4.5 and 4.8, we have 

Theorem 4.10. For an open dense set of #>1,  the flow of Xu on A satisfies: all 
stable manifolds of saddle points emanate from sources, and all unstable manifolds 
of saddle points die in sinks. 

w 5. Collision Orbits 

In this section, we consider the special orbits of the anisotropic Kepler problem 
which begin and/or end in collision with the origin. The change of time scale 
(2.1) has the effect of slowing such orbits down so that they tend asymptotically 
toward or away from A. 

Let WS(A) (resp. W"(A)) denote the set of points in r e - A  whose forward 
(resp. backward) orbits converge to A. Clearly, WS(A) is contained in the union 
of the stable manifolds of four of the equilibria in A, while W"(A) is contained in 
the unstable manifolds of the remaining four equilibria. 

Recall that a bi-collision orbit is an orbit which begins and ends at collision. 
Such orbits lie in WS(A)f~ WU(A), i.e., they are heterodinic orbits. For # =  1, all 
collision orbits are bi-collision orbits. When p > 1, this is no longer true, as we 
shall prove below. There are several bi-collision orbits which do persist for all #, 
however; these are called the primary hi-collision orbits and are given by the 
proposition below. 

Proposition 5.1. There are four bi-collision orbits for the anisotropic problem 
which persist for all #. Each orbit leaves the origin and travels along the positive 
or negative qi-axis to the oval of zero velocity and then returns to A. 

Proof. The proof follows immediately from the invariance of (1.1) under the 
reflections (ql, Pl)-- '(-ql,  -PO and (qg, P2)-'(-q2, -P2). q.e.d. 

Notation. We denote the primary bi-collision orbit along the positive (resp. 
negative) qi-axis by 7 + (resp. 71-). Also let 

q+ = ~2+ n Z, 

qF = 7F n Z  

where Z is the oval of zero velocity. 

The proof of the next proposition is straightforward. 

Proposition 5.2. 
i) 7~ c Wu(O, O)c~ W~(O, n), 

ii) 77 c W~(n, n) c~ W~(n, 0), 

iii) 7+ = W"(n/2, n/2)n WS(n/2, -n/2),  

iv) 72 = W " ( -  n/2, - n/2) n WS(-  ~/2, n/2). 
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From Tablel ,  both W"(++_rc/2,++_n/2) and W~(+n/2, T-n/2) are one- 
dimensional; this accounts for the equality in iii) and iv) above. This is, of 
course, a highly nongeneric situation. On the other hand, each of the invariant 
manifolds in i) and ii) are two-dimensional. It is natural to ask how these 
submanifolds meet along ~ .  In the next section, we will show that, in fact, 
W'(0, zt) meets WU(0,0) transversely along ~-, and similarly, W'(rc, 0) and 
WU(rc, re) meet transversely along 7~-. For the remainder of this section, however, 
we confine our attention to the bi-collision orbits V2 ~. 

Let A be the annular submanifold of E e defined by 

A={(r,s,u)lr>O, s tu=0} .  (5.1) 

Note that A contains the oval of zero velocity as its central circle. 
From (2.2), we have that 

i = 0  

~=0 (5.2) 

along Z. Hence 

d ~(s 'u)=-Is l :=  -1 (5.3) 

along the oval of zero velocity. This implies that orbits of Xu cross A trans- 
versely in a neighborhood of Z. We wish to examine how WS(A) and W"(A) 
meet this neighborhood, at least near q2. 

Let F, denote the set of points in A whose forward orbits converge to A 
without reintersecting A. Note that q~ belongs to F, for i = 1, 2. Also, F 1 = Z  
identically, as we observed in Proposition 3.6. In Figure 4, we sketch Fu for 
various values of #. 

Proposition 5.3. Suppose #>9/8.  Then there is a neighborhood N of q+ such that 
F, c~ N contains two smooth spirals converging to q+. 

Proof. The bi-collision orbit 7~- through q+ is precisely the stable manifold of the 
point (n /2 , -n /2)  in A. Nearby points in F, must therefore lie in the stable 
manifolds of either (0, r0 or (n, 0). Hence we examine the behavior of these 
manifolds near ~,~-. 

By Remark 4.7, one branch of both W~(0, n) and W'(rt, 0) emanates from the 
source (re/2, -7z/2) in A. For # > 9/8, these orbits spiral away from the source. 
Let 7=~(s) be an arc in W~(Tt, 0) which meets A transversely at ~(0).(rc, 0). We 
follow the orbit of each point in 7 backwards in time until it first hits A. This 
will give one of the spirals above. 

Near (re, 0), we make a smooth change of variables 

(R, O, z) = if(r, 0, 4) (5.4) 
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F,, 

q~" q~--~Jq'~ q ~ - - - ~  

# "~ 9/8 

/ t  < 9/8 

,# < 9/8 

,a > 9/8 

Fig. 4. F, denotes the set of points in A which converge directly to A 

so that the system goes over to 

R= - a R + f l ( R ,  O,z) 

0 =fl+f2(R, 0, z) (5.5) 

~=2z  

where a, fl, 2>0 ,  and where fi(R, O, 0)=0.  Hence the plane z = 0  represents the 
stable manifold of the equilibrium, while R = 0 gives the unstable manifold. 

Let 

2(ro, 6)= {(R, O, z)lR =ro, 0 < z < 6 } .  (5.6) 

For  r0, 6 small enough, S(r o, fi) is transverse to the flow of (5.5). Let X' denote 
the plane z=z*. Choosing ro, 5 smaller if necessary, there is defined a smooth 
Poincare map 

~: Z(ro, 6)~ 2' (5.7) 

obtained by following orbits forward in time until their first intersection with 2;'. 
One computes immediately that �9 assumes the form 

R 1 = R I ( O  , z, to, z * ) = K z  "/z + A  1 -FB 1 
(5.8) 

@ 1 = O 1 (O, z, r o, z*) = @ + (fl/2) log(z*/z) + A 2 Jr- B 2 
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where A i and B i are analytic and satisfy Ai(O, z, O, 0)=0 and Bi(O , z, to, z*)~O 
together with their first partial derivatives as z~0 .  

Using (5.8), one checks that if 7 is any smooth curve in ~(r0, 3) which meets 
z = 0  transversely, then ~(7(s)) is a spiral in z=z* converging to (0, - ,  z*). One 
finally observes that the ordinary Poincare map from z =z* to A preserves this 
spiral. This completes the proof, q.e.d. 

Corollary 5.4. There are infinitely many bi-collision orbits in the anisotropic 
Kepler problem/f # > 9/8. 

Proof. It follows immediately from Proposition 5.3 that Fu meets Z at infinitely 
many points near q~. These points also lie in R(F,) where R is the reflection 

R(r, 0, ~b)= (r, 0, ~+~) .  (5.9) 

But R reverses X~, and so 

R (F~) c W" (A). 

Hence each intersection point above also lies in 

W~(A)c~ W"(A). q.e.d. 

WS(A) consists of the two-dimensional stable manifolds of (0, re) and (~, 0) 
separated by the one-dimensional stable manifolds V2. When # >9/8, the two- 
dimensional stable manifolds spiral around ?~ and hence WS(A) fails to be a 
smoothly immersed submanifold along these orbits. For 1 < # < 9/8, however, the 
equilibria at (+_n/2, -T-n/2) have real and distinct characteristic exponents. This 
eliminates the spiralling and gives: 

Proposition 5.5. For all but a discrete set of # in (1, 9/8), both WS(A) and WU(A) 
are immersed submanifolds of "Y,e. 

Proof. We prove this only for W~(A) along yr. By (4.8), one branch of 
W~(0, ~ )nA and W~(~, 0)hA emanates directly from the source at (re/2, -re/2). 
Thus there are two cases to consider: either these branches coincide exactly with 
the strong unstable manifold at (re/2, -zt/2) or else both branches emanate from 
the source in the direction of the weaker expanding eigenvalue. By symmetry, 
one of these possibilities holds simultaneously for all stable manifolds in A. 

Perturbing away from the Kepler problem shows that the latter possibility 
occurs initially (this uses the normal hyperbolicity of Proposition 3.3). Using 
analyticity of these curves, it follows that W~(0, re) n A misses the strong unstable 
manifold for all but a discrete set of values in (1, 9/8). For the non-exceptional 
values of #, one may then construct a Poincare map as in the proof of 
Proposition 5.3 to show that W*(0, ~z) accumulates along y~ with a well defined 
tangent direction at each point. We leave the details to the reader, q.e.d. 

Remark 5.6. Below we shall show that Fu meets Z transversely at q~. Via 
analyticity, it then follows that, for 1 <#<9 /8 ,  either F,c~Z is a finite set of 
points, or else F,c~Z contains infinitely many points which of necessity only 
accumulate at q2 ~. In the latter case, Proposition 5.5 implies that F~ must be 
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tangent to Z at q~, and that furthermore, the angles of intersection must 
approach 0 as the points of intersection tend to q~. 

We wish to observe one final detail about the spiral given by Proposition 5.3. 
For each /~>9/8, F, meets Z at infinitely many points {xi(#) } converging 
monotonically to q~" as i ~ .  Let 2(xi) denote the angle formed by F, and Z 
relative to the coordinate system (0, 0) in A. Define 

2(#)= lim (2(xi(#))). 

Using the Poincare map (5.8), it is not hard to show that this limit exists for all 
/~>9/8. Furthermore, since the change of coordinates (5.4) as well as WS(0, n) 
depend analytically on #, it follows that 2 is also real analytic for # > 9/8. 

Proposition 5.7. For all but a discrete subset of (9/8, c~), 2(#)4= n/2. 

Proof. It suffices to show that 2(#)+n/2 for some /~(9/8, ~). If 2(#)=n/2 
identically, then it follows easily that F9/8 meets Z transversely at infinitely many 
points near q+. Furthermore, the angles of intersection of F u and Z at these 
points are bounded away from 0 in a neighborhood of q+. This property then 
holds for all # in a neighborhood of 9/8, in particular for an open set of # <9/8. 
This, however, is impossible by Remark 5.6. 

6. The Zero Velocity Manifold 

The goal of this section is to prove that W+(0, n) meets WU(0,0) transversely 
along the bi-collision orbit 7 +. The key idea in the proof is how orbits in these 
invariant manifolds approach the oval of zero velocity. To study such orbits we 
"blow up" the oval of zero velocity into a two-dimensional torus g2. The original 
system extends analytically over f2, and the behavior of orbits close to Z is 
governed by the flow on I2. 

Recall that the change of variables (4.1) converts the original system to 

= 2 (1 + er)(r) (1/~ cos 0P) cos (8) + sin (0) sin (O)) 

0=2(1 + er)(sin(0) cos ( 8 ) - ] / ~  cos(0) sin(8)) (6.1) 

= ] / ~  sin(0) cos(8) - cos(0) sin(0). 

This system is an analytic vector field on [0, - l/e] x T 2. The boundary {0} x T 2 
corresponds to the collision manifold A;the boundary { -  l/e} x T 2 corresponds 
to the oval of zero velocity in the old coordinates. We denote this component of 
the boundary by ~ and call it the zero velocity manifold. Clearly, f2 is invariant 
under the flow generated by (6.1). 

On f2, the induced system is given by 

0 = 0  
(6.2) 

~b = ] /~  sin (0) cos (8) - cos (0) sin (8). 
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J 

/ 
J 

Fig. 5. The flow on the zero velocity manifold 

This system is easily solved. For all # there are two circles of equilibria in 12 
given by 

1/~ sin (~k) cos (0) = cos (~O) sin (0). (6.3) 

For # =  1, (6.3) gives the circles ~O = 0 and ~k = 0 + n in f2. For p > 1, these circles 
are slightly skewed. See Figure 5. We denote by C1 the circle of equilibria 
passing through the point ( - l / e ,  0, 0) in f2. Let C 2 be the other circle. Both C 1 
and C 2 are normally hyperbolic as one sees by computing 

( -2v(O, ~) 0 0 ) 
O X ( -  1/e, 0, ~h)= 0 0 

o ~(o, q,) v(o, ~,) 
where 

(6.4) 

v(O, ~k) = ] /~  cos (~b) cos (0) + sin (~O) sin (0), 

r ~)=  - V ~  sin(if) sin(0)-  cos(if) cos(0). 

We observe that v 4= 0 along C i, since 

v cos (~k) =1 /~  cos(0) (6.5) 

along C i. 
It also follows from (6.4) that C1 is a repellor for the flow on f2 and that C 2 

is an attractor. From (6.1) we have that the flow is everywhere tangent to 
0 = constant. Thus the phase portrait of (6.2) is given as in Figure 5. 

By normal hyperbolicity there is a two-dimensional cylinder of orbits 
tending toward C t in the direction normal to f2. We denote this cylinder by 
WS(O). Similarly, one has a two dimensional cylinder of orbits W"(f2) tending 
away from C 2. In the original system, these cylinders correspond to the set of 
orbits which cross the oval of zero velocity. 

For later purposes, we observe that both circles of equilibria meet the circle 
0 = 0  at an angle fl(#) where, for # >  1, fl(p) satisfies 

n/4 < fl(l~) < n/2. (6.6) 
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This can be proved by implicit differentiation of (6.3). 
The remainder of this section is devoted to proving the following: 

Theorem C. I f  #> 1, then W~(O, n) meets W"(O, O) (resp. WS(n, O) meets W"(n, n)) 
transversely along the bi-collision orbit 7~( (resp. ?i-). 

Proof. We prove that W~(0, n) meets W"(0, 0) transversely along 7+; the other 
case then follows by symmetry. 

The idea of the proof is to examine the intersection of W~(0, n) and W"(O, O) 
with the torus r = r  o in 2; e. Denote this torus by T(ro). If r o is close enough to 
-1/e, T(ro) is an isolating block in the sense of (2) for the invariant set Q. 

For each r o, 0 < r o < - l / e ,  WS(0, r0 meets T(ro) transversely at the point 
(ro,0, n ) in [ 0 , - 1 / e l  x T 2. Hence there is a smooth curve 7~(g, ro) passing 
through (ro, 0, n) in T(ro) n W~(0, n). Let e~(#, to) denote the angle that this curve 
makes with the circle 0 = 0  in T. Lemma 6.1 below shows that 

0 <  c~ (#, ro) < n/4 (6.7) 

i f # > l  and 0 < r o < - l / e .  
Assuming this result for the moment, the proof is completed as follows. For 

each to, 0 < t o < -  l/e, W"(O) also meets T(ro) transversely at (r o, 0, n). Denote 
the angle of intersection of W"(~2)nT(ro) with 0 = 0  by ~,(#,ro). By (6.6), it 
follows that 

re/4 < ft,(#, ro) < 1z/2 (6.8) 

for r 0 close enough to - 1 / e .  
Now the system (6.1) is reversed by the symmetry 

(to, 0, O)-* (to, 0, - O). 

In particular, W~(Q) 
this map. Hence 
W"(O, 0) n T(ro) and 
intersection of these 

is mapped to W"(O) and W~(0, ~) is mapped to W"(0, 0) by 
we have similar results near the point (r0,0,0) for 
W~(g2)n T(ro). Let a,(p, ro) and fl~(#, ro) denote the angles of 
curves with 0 = 0 at (to, 0, 0). We have 

0<~. (z ,  to)<=/4 
n/4 < ~(#, ro) < ~/2 (6.9) 

as above. Figure 6 shows the relative positions of these various curves in T(ro). 
Via (6.1) we have 

0=2(1 +re) sin~ (6.10) 

along 0 = 0. Hence 0 > 0 for 0 = 0, 0 < ~, < n. 
Now let 7(s) be a small arc in W"(0, 0)n  T(ro) passing through ?(0)=(r o, 0, 0). 

Suppose 0(7(s))>0 for s>0 .  The forward orbits of all points ?(s) with s ~ 0  
eventually reintersect r = r o. Let f(s) denote the first such reintersection, for s # 0. 
Then f(s) is a smooth curve in T(ro) satisfying 

lim f(s) = (ro, 0, n) = f(0). 
s ~ O  
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~=~  -S 
W ~ (0,~) 

~ / . - W  ~ (,.Q) 

W ~ (0j0) ~/ . . w  ~ (.,"2) 

O=0 

Fig.6. The intersection of the invariant manifolds with T(ro) 

In fact, ~ is smooth at s = 0 since, in terms of the original system, ~ may be 
obtained from 7 by applying an ordinary Poincare map along the orbit ~ .  

Now (6.10) implies that O(7(s))> 0 for s > 0. Moreover, using the flow of (6.2), 
it follows immediately that ~(s) is contained for small s in the sector bounded by 
0 = 0  and W"(f2). This completes the proof with the exception of 
Lemma 6.1. q.e.d. 

Lemma 6.1. I f  #>1  and 0 < r 0 <  - l / e ,  then 0<~s(#, ro)<n/4. 

Proof. The idea here is to construct a Wazewski set for the flow as in I-3]. Using 
(4.3) one computes easily that the stable eigenspace at (0, 0, re) in A is given by 
the line 

0 ' = � 8 8  0' 

in the tangent space to A. The slope of this line is greater than one, and so the 
result is true for r o = 0. 

Now consider the submanifolds 0 = 0  and 0 = 0 + r e  near 7[. Let D be the 
sector satisfying 

0 < 0 < 0 - r e ,  

z r<0<3n /2 .  

Along 0 = 0 we have 

~:<0, 

0=2(1 +re) sin@, 
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Fig. 7 

o=o 
w S (0, ~t ) qJ=o+x 

(ro,O,~) 

Hence both 0 and q~ are negative along 0=0,  for rc<~9<2rc. 
On the other hand, along 0 = ~ -  re, we have 

~<0, 

0=(1 +re) (#  ~ -  1) sin 2~k, 

q) =�89 -#~)  sin 2~. 

Hence 0 > 0 and ~b < 0 for rc < ~ < 3 re/2. Thus orbits tend to leave the sector D in 
forward time, at least near 7~. See Figure 7. It follows that WS(0, r 0 is trapped 
(at least locally) in the sector D together with its reflection about 7[. q.e.d. 

7. Proof of  Theorem A 

In this section we complete the proof of Theorem A. The basic idea is to 
construct a sequence of transversals or "windows" for the flow and then to 
isolate a collection of orbits which cross these transversals in a prescribed order. 

Throughout this section, ~i, i=  1, 2, 3,4 denotes a small positive number 
depending only on #. We first construct the local transversals in a sequence of 
steps. 

Step I. Construct annuli transverse to the stable and unstable manifolds of the 
sinks and sources in A as follows. First consider the sink at (re/2, re/2) in A. 

f . (~ /2 ,  re/2)=l/~, where 'f ,  is the gradient function introduced in Proposition 4.5. 
Also 

f < 2 � 8 9  -~ 

at any of the saddles in A as we see from (4.8). Choose v such that 

2 ~ # - ~ < v < 2  ~. 

Note that the flow on A crosses the level set fu = v transversely. 
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Fig,8. The sector C + in A 

U, 

~ u = E3(O-ar/ 2) 

- - O  

N o w  define 

A + = {(r, s, u)E2~e[fu(s, u )=v ,  0 <  0 <  re, r < e l } .  (7.1) 

For  small  enough 51, the flow is t ransverse  to A § 
A similar annular  band  B + m a y  be constructed near  the source at (7z/2, 

-1r/2) by applying the symmet ry  

(r, 0, ~O) ~ (r, 0, ~k + re) (7.2) 

to A +. Also we define similar annuli  A - ,  B -  about  ( -  zc/2, -re/2)  and ( -z r /2 ,  Ir/2) 
respectively by reflecting A + and B + via the m a p  

(r, 0, ~k) ~ (r, - 0, - qt). (7.3) 

All o f  these annuli  are t ransverse to the flow if ~ is small  enough,  and each 
meets A in a circle which is complete ly  contained in either the stable or unstable 
manifold  of  one of  the sinks ar sources in A. 

Deno te  by a • b • the intersections A • c~A; B • c~A. 

Step 2. Recall  that  A is the annulus defined by s 'u  = 0  in S e - A .  We choose 
coordinates  (0, u) on A via 

s = (cos 0, sin 0), 

u = u(cos q/, sin tp). 

No te  that  u = 0  cor responds  to the oval of  zero velocity, while q2 ~ correspond to 
( _ n/2, 0). 

We now define sectors C + in A abou t  qz ~ as follows: 

0<0-T-rc/2<e2 (7.4) 

[U[ <=e3(O~n/2  ). 

Also, let D • denote  the disk of radius  e2 in A abou t  (rt/2, 0). See Figure 8. 
Now,  if e 1 is small  enough,  there is defined a Poincare  map  

r A• - a •  ~ D •  - q 2  ~ (7.5) 
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obtained by following orbits in the forward time direction. Similarly, let 

tPl" B -+ - b  -+ --*D -+ - q 2  ! (7.6) 

be a Poincare map obtained by following orbits backwards in time. Observe 
that 

R (J~l = !/'/1 R (7.7) 

where R is the reflection (7.3). 

Step 3. We now construct a square E in A about q~-. Choose coordinates (x, y) 
on A near q[  so that the local stable manifold of (0, zt) is given by y = 0 ,  while 
the local unstable manifold of (0, 0) is given by x = 0. We may further assume 
that 

R(x, y)=(y, x) (7.8) 

so that Z is given locally by the line y = x. 
Now define E to be the open square centered at q~- and having sides of 

length e 4. We denote by A x, Ay the x- and y-axes respectively in E. Now, in 
forward time, points in E - A x tend to follow the unstable manifold of (0, re) in A. 
For  most values of p, each branch of Wu(O, ~) dies in a sink by Proportion 4.8. 
We henceforth consider only those values of #. 

Each branch of W"(0, n) crosses either a + or a - ,  hence if e 4 is small enough, 
there is defined a Poincare map 

~2: E - A ~  ~A+-. (7.9) 

Since each branch of W~(0, 0) must also emanate from sources for these values of 
#, we also have a Poincare map 

IP2: E - A r a B  • (7.10) 

again obtained by following orbits backward in time. 
As before, we define a square E -  about q~- together with Poincare maps 

#2, 7J2 by applying the symmetry (7.3). Figure 9 gives a schematic of these maps 
and transversals. 

Let #, 71: E ~ D  be given by 

---- ~1 o ~2 (7.11) 
~=~elo ~e2. 

Now consider the set of points in E satisfying 

1) ~(x)~ C + 

2) (kUx)- x(o(x))e tPz(E ). (7.12) 

Condition 1) implies that the forward orbit of x meets C + after filtering through 
A +. Condition 2) implies that the orbit returns again to E after filtering through 
B +. Let 2; 1 denote the set of points in E satisfying 1) and 2) above. 
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% (~'12,~'12 ~ C+ 

q~ 2'2- 

Fig. 9. Construction of the local transversals in Theorem A 

~ (~/2;-,,'t'/2 

B+ 

(0,0) 

Define F:  ZI---}E by 

F(x) = ku-1 o ~(x).  (7.13) 

Below we show that  F satisfies the ax ioms of a "hor seshoe"  mapp ing  as in (12). 
Hence  

Z =  (~ Fn(~l)  (7.14) 
n ~ - o o  

is a Can to r  set and the induced mapp ing  F:  Z~Z is topological ly conjugate  to a 
Bernoull i  shift. 

Proof of Theorem A. Let  

axo (y) = (Xo, Y) 
a,o (x) = (x, Yo) (7.15) 

be  lines parallel  to A r and Ax respectively. It  suffices to show that, for x o, Yo 
close enough to zero, 

1) F(a~o(y)c~Z:) consists of  an infinite collection of  curves converging to A r 
in the C a topology  and  satisfying 

IJ-~F(a~o(y))~oo (7.16) 

as y ~ 0 .  
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2) F -  1 (aro(X) n F(Z1) ) consists of an infinite collection of curves converging 
C 1 to A x, and satisfying 

dxd F-  a(ayo(x)) -* oo (7.17) 

as x ~ 0 .  
Below we prove 2); 1) follows by symmetry. 
Lemma 7.1 shows that ~(trxo(y)) is a pair of smooth spirals converging to q~, 

one in each of D • which, in addition, satisfy 

d~ ~(rrxo(y)) ~ oo (7.18) 

as y-*0. By symmetry, 7s(rryo(X)) has similar properties. 
Now, ~b(Ay)=q~(ao(y)) crosses Z n D  +- at infinitely many points. By the 

results of w 5, for most values of #, the angles of these crossings are bounded 
away from re/2 as y-*0. It follows that q~(trxo(y)) meets each ~(aro(X)) trans- 
versely in C + as long as x 0, Yo are close enough to 0. 

In particular, r + consists of infinitely many disjoint strips each 
foliated by the ~(rrxo(y)). Also 

kO(E) n C • =R(~(E)  n C • (7.19) 

and so 7S(E)n C • also consists of infinitely many strips, each of which meet at 
least one of the strips in ~ ( E ) n  C • By choosing C • smaller, we may assume 
that each strip in ~ ( E ) n C  • meets a unique strip in 7S(E)n C • and that that 
intersection contains a subinterval of Z. By the above argument, the lines 
7~(ayo(x)) are transverse to the foliation cb(axo(y)) in ~(E), and thus it follows 
that ~-l(qs(aro(X)) ) consists of infinitely many arcs converging C O to A~. 

We remark at this juncture that one may index these strips as follows. To 
each strip D + (resp. D-)  we assign a positive (negative) integer k where [k[ is the 
number of times the orbit of any point in the strip crosses the q2-axis in 
configuration space before reaching E. That this integer is constant along each 
strip is immediate from the definitions. Also, we note that this assignment is 
one-to-one and onto the set of integers of absolute value greater than some K. 
Here K depends on # as well as all of the e i. Thus one may define the conjugacy 
in Theorem A exactly as in [12-1 or [16]. 

We now prove that the convergence in (7.17) is actually C 1. 
Let ~=~(ayo(X)) be a unit tangent vector field along ayo(X ) and let ~/ 

=r/(tr~o(y)) be a unit tangent vector field along a~o(y). Let p, p '~Z be such that 
F(p)=p'. We suppose for simplicity that ~(p)=qeZ.  The general case is not 
much harder. 

Let wl be a unit vector tangent at q to Z. Let 

w 2 =d~(~(p')). (7.20) 

Clearly, wl and w 2 form a basis of TqC • In this basis, one checks using 
symmetry that 
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d ~(rl(p)) = a(p) w ~ - w 2 (7.21) 

where la(p)l--,oo as p--,0. 
N o w  L e m m a  7.2 below shows that  7 ~- ~ (Z n 7~(E)) is an infinite collection of 

curves converging to A r in the C 1 sense. Fur thermore ,  

I d 7 ~- a (w 1 (q)) I - '  oo (7.22) 

as q ~ q ~ .  Hence 

d ( ~ -  1 o ~)(t/(iv)) = a(p) d 7 t -  1 (wl) _ r (p,) (7.23) 

so that  

I dF  (rl (P)) I - '  oo (7.24) 

as p-*0.  This completes  the proof  except for L e m m a s  8.1 and 8.2. q.e.d. 

L e m m a  7.1. I f  y > 0, ~(~rxo(y)) is a smooth spiral in D + which satisfies 

- ~  r (a xo (y)) -~ oo 

as y--*O. 

Proof. The p roo f  of  this l emma is similar  to the p roo f  of  L e m m a 7 . 2  and 
Propos i t ion  5.3. Hence  we omit  the details. We simply remark  that  the result is 
obvious for x '  o = 0, since ~1 (ao(y)) approaches  a § transversely. If  x o 4:0, howev- 
er, the curve ~l(r approaches  a § tangential ly and one needs est imates 
similar to those below, q.e.d. 

L e m m a  7.2. Let  2 = 2 ( r )  be a ray in D • Then 
1) r consists o f  an infinite collection o f  open subintervals Yi which 

accumulate only at q~ as i ~  oo. 
2) c/i-l(y/) is a collection o f  smooth arcs in E which converge to Ax in the C 1 

topology. 
3) Let  Vi(x ) be a unit tangent vector f i e ld  along Yi. Then 

Ida-  ~(V,(x))l--, oo 

as i--, ~ .  

Proof. The proofs of  1) and  3) are immedia te ;  we prove  only par t  2). The  basic 
idea is to follow the ray 2(r) as it passes by each equil ibrium point.  F o r  this 
purpose,  we construct  two local Poincare  maps,  one near  each of the equilibria. 

N e a r  the source at ( n / 2 , - n / 2 ) ,  the vector  field m a y  be writ ten in polar  
coordinates  

~=fl+. . .  
~ =  - T z  

(7.25) 
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where ~, /3, ~ > 0. The exact values of these eigenvalues are given in Table 1. Of 
course, the variables r, 0 chosen here have nothing to do with the previous 
variables (1.8), (3.3) of the same name. 

We examine the solutions passing from the plane z = z* to the annulus r = r*. 
For z*, r* sufficiently small, these submanifolds are locally transverse to the flow 
and there is a Poincare map between them which assumes the form 

01 = 01 (ro, 0o, z*, r*) = 0 o + (fl/~) log(r*/ro) + A + B 
(7.26) 

z a = z 1 (to, 0o, z*, r*) = z* exp(( - 7/~) log(r*/ro). 

Here A and B are analytic and satisfy A(ro, 0o,0 ,0)=0 and B together with its 
first partial derivatives approaches 0 as to--*0. Call this mapping f l  and let v 
=V(ro, 0o) be a unit vector field tangent to the ray 0o=COnstant at (ro, 0o). Also 
let 

(~,/.]) = (~(01, Zl), q(01, Zl) ) (7.27) 

be a tangent vector to the annulus r=r*  at (r*,01,zl). Consider the sector 
bundle 

Sk(Ol, zl)={(~,~)ll~l~kz1141} (7.28) 

where k>0 .  Using (7.26), one checks easily that there exists k=k( z* , r* )  such 
that, for all r o sufficiently small, 

d f l (v(r o, Oo))~Sk(O a, z j .  (7.29) 

That is, vectors tangent to rays in z = z* are mapped into the sector bundle S k. 
From this, it follows immediately that f l  maps rays in z = z* to curves which 

spiral toward z = 0 in r = r*. 
We also consider a mapping similar to f l  near the saddle point at (0, r 0. Near 

(0, re), X ,  assumes the form 

2 = - a x + H ( x , y , z )  

= - by  + G(x, y, z) (7.30) 

:~=CZ 

where a, b, c >0,  b - a  >0,  and where again the coordinates chosen here have 
nothing to do with the previous coordinates. Also, H and G are analytic and 
contain terms of order two or more. Note that z -  0 gives the stable manifold of 
the equilibrium. We assume that G(x, O, z ) = 0  so that the plane y = 0  is invariant 
and corresponds to A in the original flow. We further assume that H(0, y, 0 )=0  
so that the y-axis is also invariant (the strong stable manifold). This corresponds 
to ~,~ in the original variables. 

As before, we consider a Poincare map obtained by following orbits back- 
ward in time from the plane 

Z=Z* 

y=>O 

to the plane y = y* near (0, y*, 0). Call this mapping f z .  

(7.31) 



250 R.L. Devaney 

For  y*, z* sufficiently small, this mapping  assumes the form 

x 1 = x 1 (Xo, Yo,  z* ,  y*)  = x o ( y* / yo )  "/b + C 1 + D 1 
(7.32) 

z t = z 1 (x  o, Yo,  z*,  y*)  = z* ( Y * / Y o ) -  c/b + C2 + D 2 

where again C~ and D i are analytic for i =  1,2. Also, C ( x o , Y o , O , O ) = O  and D ~ 0  
together with its first partials as y 0 ~ 0 .  

Let 

(~, q) = (~(xo, Yo), q(Xo, Yo)) (7.33) 

be a tangent  vector to the plane z = z *  at (Xo, Yo, z*). Suppose 

Ir/I <Yo Ill .  (7.34) 

Let 

(~1, ~a)= df2 (r q). 

Using (7.32) together with (7.34), one computes  that 

I~11 < (Yoff +"- ,)/b [Ca I (7.35) 

where e > 0  approaches 0 as z*, y * ~ 0 .  
N o w  using (7.35) and (7.29) it then follows that  the global mapping ~ -  ~ 

maps 2(r) ~(E) to a collection of  smooth  curves which approach  A x in the C 1 
topology. This completes the p roof  of  the lemma. 
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