
lnventiones math. 31,229 - 257 (1976) [~ve~tiones 
mathematicae 
�9 by Springer-Verlag 1976 

Limits of Hodge Structures 

Joseph Steenbrink* (Amsterdam) 

Table of Contents 

w 0. Introduct ion . . . . . . . . . . . . . . . . . . . . . .  229 
w 1. Complexes of Ho lomorph ic  Differentials and Their Cohomo-  

logy Sheaves . . . . . . . . . . . . . . . . . . . . . .  231 
w 2. Analytic De R h a m  Cohomology  . . . . . . . . . . . . .  234 
w 3. Mixed Hodge Structures . . . . . . . . . . . . . . . . .  239 
w 4. A Mixed Hodge Structure on the Limit . . . . . . . . . . .  241 
w 5. The Projective Case . . . . . . . . . . . . . . . . . . .  251 
References . . . . . . . . . . . . . . . . . . . . . . . . .  256 

w O. Introduction 

If X is a compact K~ihler manifold, by a construction of Hodge [10] the complex 
cohomology groups of X admit a so-called Hodge decomposition 

H"(X,r  (~) HP'q(X) 
p + q = n  

where for p, q>0 HP'q(X) is the vectorspace of harmonic forms of type (p, q) on X. 
Under complex conjugation with respect to H"(X, ~)  one has 

H p'q (X) = H q' p (X). 

The couple consisting of the abelian group H"(X, 71) and the Hodge decompo- 
sition of H"(X,C)=H"(X, 71)| is called the canonical Hodge structure 
on H"(X, 71). Deligne [3, 4] has extended this construction by attaching to every 
separated scheme X of finite type over ~ a canonical and functorial mixed Hodge 
structure. Its ingredients are a weight filtration W on H"(X, Q) and a Hodge 
filtration F on H"(X, ~), inducing a Hodge decomposition of GrWH"(X, t/2) for 
every k~71. 

* Suppor ted  by the Netherlands Organizat ion for the Advancement of Pure Research (Z.W.O.). 
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The power of these mixed Hodge structures arises from the fact that every 
morphism f :  X--,  Y induces a morphism of mixed Hodge structures 

f * :  H"(Y) --, H'(X) 

and that every such map is strictly compatible with both filtrations. 
Here is one example where functoriality seems to fail. Suppose f :  X ~ S is a 

projective holomorphic map from a complex manifold X to the unit disk S. 
Suppose that Y = f - ' ( 0 )  is a divisor with normal crossings on X and that f is 
smooth on X- .  Y.. For  teS'-.{0} denote X t =  f '(t). Then X t is a nonsingular 
projective variety for all t. Because Y is a strong deformation retract of X, for all n 
the natural map 

~: H"(X)--~ H'(Y) 

is an isomorphism. For t + 0  denote fit: H " ( X ) - , H ' ( X t )  the restriction map. 
The composed map 

fl,~ ' :  H ' (Y)-*H"(X,)  

plays an important role in local Lefschetz theory. However in general it is not 
a morphism of mixed Hodge structures. This problem is related to the study of 
the behaviour of the Hodge decomposition on H"(X,,II?) when t tends to zero, 
as carried out by Schmid [15]. 

In this paper we show that the Hodge structure on H " ( X  t, ~ )  tends to a mixed 
Hodge structure lira H" which can be expressed in terms of the cohomology 
of certain intersections of components of Y by means of a spectral sequence. 
Moreover one has a morphism of mixed Hodge structures 

f l~ - ' : Hn(y)--~ l im H n. 

The monodromy action T on Hn(xt)  induces an automorphisms T o of lira H" 
which determines completely the weight filtration on l imH n. Conversely our 
construction permits in some cases direct computation of the weight filtration; 
this gives then information about the Jordan type of T o . The precise structure of 
lira H" was conjectured by Deligne (cf. [8], conjecture 9.17) and determined by 
Schmid [15]. We give a different proof, using algebraic methods. From this 
result we derive a proof of the invariant cycle theorem, which states that the image 
of/3 ~- 1 coincides with the subspace of invariants of T o . 

In w167 1 and 2 we construct a geometric realization of the canonical extension 
of the relative De Rham cohomology sheaf. The main result is Theorem (2.18); 
it was proved by Katz in the case of a reduced special fibre. 

In w 3 we recall some basic facts about mixed Hodge structures and compute 
the canonical mixed Hodge structure for a variety with normal crossings. 

w contains the construction of lim H n under very general hypotheses. To 
show that it has reasonable properties we consider the projective case in w 5. 

We owe much to conversations with P. Deligne, Ph. Griffiths, N. Katz, A. 
Levelt, D. Mumford and F. Oort. 

This article is a revised version of a part of the author's Ph.D. thesis. 
Notat ions .  We denote 112{Z 1 . . . .  ,Zn} the local ring of convergent power 

series in the variables ZI  . . . .  , Z n. 
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If f :  X --~ Y is a continuous map of topological spaces and ~ is a sheaf on Y, 
we denote f ' ~  the sheaf on X with F ( U , f ' ~ ) =  lim F{V, ~). 

V 3 f ( U )  o p e n  

We denote IRT the hyperderived functors ofa  functor F (cf. [9]). 
If K" is a complex and n~Z, one denotes K'[n] the complex K" with a shift 

of n places, i.e. 

(K[n])V=K p+~ for p~7/. 

The symbol []  means: end of proof or absence of proof. 

w 1. Complexes of Holomorphic Differentials and Their Cohomology Sheaves 

(1.1) Let X be a complex manifold. The sheaf ~l  x of holomorphic 1-forms on 
X is a locally free sheaf and its exterior powers ~2}=A~f2~ for pe2g form the 
hotomorphic De Rham complex on X. 
(1.2) An analytic subvariety Y of X is called a divisor with normal crossings 
if for every point P c  Y there exist local coordinates (z l . . . .  , z,) in a neighborhood 
U of P in X such that 

Y m U =  z~U z i=0  

for some v with 1 < v < n. 
In this case one defines the holomorphic De Rham complex on X with loga- 

rithmic poles along Y, notation f2x(log Y), as follows: a section of ~ ( l o g  Y) 
over an open set U ~ X  is a holomorphic p-form u2 on U \ Y which is mero- 
morphic along Y such that ~o and da) have at most a simple pole along I<. In local 
coordinates as above, [2~(log Y)e is a free C2x, e-module with generators dz~/z 1 . . . .  , 
dzjz~,dz,,+l . . . . .  dz, and s Y)=A~,,t2~.(log Y) (cf. [5], p. 72). 
(1.3) Let X and S be complex manifolds and let f :  X - ~ S  be a smooth holo- 
morphic map, i.e. everywhere of maximal rank. Then f *  t/is is a locally free subsheaf 
of ~/~ and tl~x/s=tl~x/f* t-2~ is locally free on X. Its exterior powers t2~/s(p~Z ) 
form the relative De Rham complex of X over S. 

(1.4) We define a complex ~2x/s(log Y) in the following situation. Let X be a 
complex manifold and let S be a smooth curve. Let f :  X--~ S be a holomorphic 
map. Let T = S  be a finite set of points such that Y = f - ~ ( T )  is a divisor with 
normal crossings on X and such that f is smooth on X \ Y Then f *  t2~(log T) is a 
locally free subsheaf of ~ ( l o g  Y) and t2~c/s(log Y)= ~r Y)/ f*  Q~(log T) is 
locally free on X. Its exterior powers (2]/s(log Y) form the relative De Rham 
complex of X over S with logarithmic poles along E 

If P e X ,  there exists a coordinate neighborhood U of P in X with coordinates 
(z 0 . . . .  , z,) and integers v, Co, ..., e,, with O<<_v<n, ei> 1 such that P = ( 0  . . . . .  0) and 
f ( z  0, ..., z,)-- ZoeO ... Z~ is a coordinate on S at f (P).  Then tl~c/s(log Y)p is the 
Cox, p-module with generators {dzo/z o . . . . .  dzjz~,dz~+l . . . . .  dz,}, subject to the 

v 

relation y, ei dzjz i  = O. 
i = O  
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(1.5) The differentials in the complexes above are induced by the usual differen- 
tiation in the complex D x. These differentials are C-linear in the case of Ox(log Y) 
and even f"  ffs-linear in the case of D'x/s and Ox/s(log Y). 

(1.6) For q~Z and K" a complex of sheaves on a space M, we denote :gt~q(K ") the 
q-th cohomology sheaf of K', i .e.  the sheaf associated to the presheaf 
U~-,Hq(F(U,K')). The remainder of this chapter describes the cohomology 
sheaves of the above defined complexes. 

(1.7) Let X be a complex manifold and let Y = X  be a divisor with normal 
crossings. One defines an increasing filtration W, called the weight filtration, on 
the complex Dx(log Iv') by- ~$~, O~(log Y) = ~x(log Y)/x D~- k. Assume that Y = 
Yi w . . .  w YN is a union of smooth divisors. Denote YtP) the union inside X of all 
intersections Y~.n.-.c~E for 1 < i . < . . . < i  < N  and denote I ~tp~ their disjoint 

, ~ , p  �9 = I p ~ =  

umon. One has a natural projection map av: y~e)__~ X. 
Choose P ~ X  and let (z~ . . . . .  z,) be a coordinate system in a neighborhood 

of P in X such that Y has the local equation z~ ... z~ = 0. We assume that (z~ . . . . .  z,) 
are chosen in such an order that the indices of the components of Y corresponding 
to zi=O (i= 1 . . . . .  /) form an increasing sequence a(1) . . . . .  a(/) in {1, ..., N}. The 
Poincar6 residue map 

R: t ~D] ( logY)~(ak ) ,  e-k 

(cf. [5], p. 76) is defined as follows. A section a of PI~ De(log Y) has the form 

1 ~ i t < , . . < i k < l  

where we have put ~ = dzjz~, and ~i, ... i~ is a section of (2~-- k. Then 

R a=  ~ (a,,...,~)*(~,l...i~) 
l < i l< . . ,< i k< l  

where 

aiI ...r Yr t~ "'" t~ Ya(i~)--~ X 

is the inclusion. One can verify that the definition of R does not depend on the 
choice of the coordinates. 

(1.8) Proposition. For every k >= 0 R induces an isomorphism 

Grk w D~(log Y) , (ak) , ~ ,~,  [-- k]. 

Cf  [5],p. 76. [] 

(1.9) Corollary. 

9ffP(Gr~Wg2x(logY))=0 for p•k;  

3r Y))=(ap), r [] 

(1.10) Corollary. ~P(Dx(log Y))~(ap), C~,p~ for all p~Z.  
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Proof  Use the spectral sequence of the complex f2x(log Y) with its filtration W. 
This  gives 

E~ q = ~ ,  P+q(GrWp t2x(log Y)) ~ ~,"P+ o(f2~(log Y)). 

So E pq = 0 for q # - 2 p and the sequence degenerates at E~. Hence E~ = E{ p' 2 p. [ ]  

(1.11) Proposition (relative Poincar6 lemma). Let f :  X- - - ,S  be a smooth holo- 
morphic map between smooth complex varieties. Then f2"x/s is a resolution of  the 
sheaf  f "  (9 s. Cf. [5], p. 15-16 for  a proof [] 

(1.12) For  the sequel it is convenient  to have the not ion of a Koszul  complex. 
If A is a commuta t ive  ~ -a lgeb ra  and D~, ..., D k are 11S-linear mutual ly  commut ing  
maps  f rom A to A, the Koszul  complex on A with opera tors  D 1 . . . . .  D k is the 
complex  A'a(A k) where d: A ] ( A  k) --~ A~+I(A k) is given by 

k 

d ( f  eh /, ... A % ) =  ~ D i ( f )  e i ^ e i l  A ... /xei, 
i = i  

for f e A  and e~, ..., ek the natural  basis of  A k. If one of the opera tors  is bijective, 
one easily shows that  this complex is acyclic, i.e. has zero cohomology.  

(1.13) Proposition. Let X = I E  "+1 with coordinates (z o . . . . .  z,). Let S=112 and let v, 
eo . . . .  ,e~ be integers with O<_v<n and ei> l. Define f :  X - -~S  by f ( z  o . . . . .  z , )=  
Z~o ~ ... z~  . . . .  Let e = gcd(e o, , e~) and define n i = ei/e. Put y = Z"o ~ ... z~"~. Let  Y be the 
analytic subset o f  X with ideal (y~). Then: 

Jr"~ (Ox/s(l~ Y))o ~ ~ {Y} ; 

Jg'l(f2x/s(log Y))o is the II? {y}-module with generators r . . . . .  ~ and relation 
v 

E e i~ i=0 ;  
i=o 

~p(~;,/s(log r))o = A~y~ ~1  (~Ls0og r))o. 

Proof. The complex ~ / s ( l o g  Y)o is i somorphic  to K ' |  where K" is the 
Koszul  complex on ~ {Zo, ..., z,} with opera tors  

D i = z  i ~/c~z i - (ei /eo)  z o ~/c~z o ( i=  1 . . . .  , v) 

and L" is the Koszul  complex on ~ {z o . . . .  , z,} with opera tors  •/•zj (j = v + 1, . . . ,  n). 
It follows from the relative Poincar6 l emma that HP(L')=O for p + 0 .  F r o m  [7], 
T h e o r e m  1.4.8.1 it follows that  Q~/s(logY)o is quas i - i somorphic  to the Koszul  
complex on C {z o . . . .  , zv} with opera tors  D i (i = l, ..., v). The cohomology  of this 
complex may be compu ted  monomia l  by monomia l ,  because the opera tors  are 
homogeneous .  One only gets a non-zero contr ibut ion from those monomia l s  on 
which the Di are all zero. Because 

Gr v ~ v  Di(z~o~ ... z~ ) = ( ~ i - ~ o  ei/eo) z~ ~ ' ' '  zv , 

this a moun t s  to saying that  z~ ~ ... z~ is a power  of  y. [ ]  
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(1.14) Corollary. For all p > 0 one has 

�9 ~ , e  . ~P(Ox/s(l~ Y) | Cr)o ~ Yg~P(~2~/s(l~ Y))o |162 r {) }/0' ), 

~176 Y)|162 (gr~o~)o ~- ~'P(Wx/s(l~ Y))o |162 C {Y}/O:). [] 

w 2. Analytic De  Rham Cohomology 

(2.1) In this chapter we study the cohomology of the fibers of a proper holo- 
morphic map f from a connected complex manifold X onto the unit disk S. We 
assume that f is smooth over the punctured disk S* and that Y = f  -1(0) is a 
divisor with normal crossings on X. Then the complex f2x/s(log Y) is well-defined. 
We use its relative hypercohomology sheaves IRPf, f2x/s(log Y) to glue the complex 
cohomology groups of the fibers o f f  together. For s~S denote X~ = f  -~(s). 

(2.2) Proposition. If  s 4= 0 then IHP(Xs, f2x/s(log Y) |162 Cx) = HP(X~, IU). 

Proof For s 4: 0, we have f2x/s(log Y)| Cx~---f2xs, which is a resolution of the 
constant sheaf C on X s. [] 

We are going to deduce an interpretation of IHP(Y, f2x/s(log Y)| as well. 

(2.3) Let ,~* = { u ~ C ]Im (u) > 0} be the upper half plane. The map u ~ exp(2 n i u) = t 
makes S* into a universal covering of S*. Denote ~ '*= X • ~* and let k: )(* ~ X  
be the projection map. Denote i: Y--, X the inclusion. One has the commutative 
diagram 

~-* ~ X ,  
I 
I ? 

S* , S ,  

i y 

{o1 

in which both squares are cartesian. 

(2.4) Lemma. HP()( *, (F)~ IHP(X, k,  (2x,) for all p~Tl. 

Proof If U ~ X  is an open subset which is a Stein manifold, then k t(U) is a 
closed subvariety of U • 3*; hence k I(U) is Stein too. This implies that R q k,  ~ = 0 
for all q > 0 and for every coherent sheaf ~ on X. The complex Ox* is a resolution 
of the constant sheaf ~ on )(* with sheaves which are acyclic for the functor k,. 
Hence for all q > 0 one has R q k,  (~,yr "~ ~g~q(k, Qx*)" [] 

(2.5) Lemma, IHP(X, k ,  f2x,)_~ IHP(Y, i" k ,  f2x,) for all p e Z. 

Proof Shrinking S a little bit does not change the homotopy type of X*. Hence 

IHP(X. k, Y 2 x . ) - ~ I H P ( S  ~(U). k, f2~,,Is-,~,). 
O e U c S  
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If U runs over a fundamental  system of ne ighborhoods  of 0ES, then f I(U) 
runs over  a fundamenta l  system of ne ighborhoods  of Y in X. So 

IHP(X, k ,  f2x,) ~- lim flHP(E k,  f2x, lv ) 
y c V ~ X  

~ II-Ip(Y, i" k ,  f2x,). [ ]  

(2.6) It has been shown in [6] that the complex i ' k ,  Ox, is quas i - i somorphic  to 
its subcomplex  consisting of germs of meromorph ic  quasi-unipotent  sections. 
The idea of the following p roof  is due to Katz. For  ~ Q  with 0 < ~ < 1  denote  E,  
the complex of sheaves on Y whose sections have the form 

s 

09 = t ~ ~ coi(1og t) i 
i = 0  

with coo . . . .  , co s sections of i" f2x(log Y). The rules t " =  exp(2 ~r i ct u) and log t = 2 n i u 
make  L'~ into a subcomplex of i" k ,  f2],. The natural  m a p  

q)" @ E  --~ i" k ,  f2x, 
ct 

is lnjectlve. 

One  defines a m a p  

r  @ L ' ~  f2x/s(log Y)|162 r 
~t 

s 

as follows, if co = t ~ ~ cog(log t) i is a section of L'~, then r is the image of coo 
i = O  

under the natura l  m a p  i" f2x(log Y) --~ f2x/s(log Y) |162215 Cp One easily checks that  
is a h o m o m o r p h i s m  of complexes. We will show that  tp and ~b are quasi-iso- 
morphisms.  This  can be checked locally on Y.. 

(2.7) Fix a point  Q ~ Yand let (z 0 . . . . .  z,) be a coordinate  system on a ne ighborhood  
U of Q in X centered at Q; let v, e o . . . . .  e ~ Z  with O<v<n ,  ei>=l such that  
f ( z  o, . . . ,  z,) = So ~ ... z v~ . . . .  Denote  e = gcd(e o, , e,.) and n i = ei/e. Put 

~i = dzl/zi (i = 0, .. . ,  v). 

The fundamenta l  relation is 

f * ( d t / t ) =  ~, e i ~i. 
i = 0  

By abuse  of no ta t ion  we write dt/t  instead of f* (d t / t ) .  

(2.8) Lemma.  o)~g'Jq(i" ]r (2x.)r 2 is generated over C by the classes of the Jorms 

( 0 o ) "  A"  '"=~ ........ ~; 
t-ale zn' ~il  A " '"  %iq lO<i l<. , .< iq<=V 

i -  

v 

which are subject to the relation ~ e i ~i = O. 
i=O 
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Proof For  every e > 0  choose r />0  with q , ~  such that  if Be= {z~UJ Ilzl[ <~}, 
the intersection of 6B~, and X, is transversal for all t ~ S, = {t ~ S[I t[ < r/}. The  sets 
V~=B~nf-I(S~) for e--~0 form a fundamental  system of ne ighborhoods  of Q 
in X. Hence 

Moreove r  

Denote  F = y~' = 1 . Choose integers a0, ..., a~ with ~ aj ej = e. Then 
' =  . j = 0  

the map  g: k - I (V~) - -*FxS  * defined by g(z o . . . . .  z,; u)=(yo, ..., y,; u ) where 
Yi = zj e x p ( - 2  n i aju/e) if j__< v and yj = z~ for j > v, is a homotopy  equivalence, as 
well as the project ion Pl: F x ~* --* F. 

The manifold F is the disjoint union of e components ,  each of which is iso- 
morphic  to (~*)~. Denote  z = y~~ ... y ~ s  H~ C). Then ~ generates H~ ~ )  as a 
ll~-algebra and z~ = 1. Moreover  H 1 (F, t17) is the H~ ~)-module  generated by the 

classes of dyj/y~ ( j = 0 ,  ..., v) with the relation ~ ej dyj/yj=O. Finally Hq(F, t1~)is 
j = O  

the q-th exterior power of H~(F, 1I~) as a H~ ~)-module .  One gets the desired 
representatives of ~q( f  k, Q~*)e by applying g* p* to the usual basis of Hq(f, I1~). 

[ ]  

(2.9) Remark. In the same way one shows that (f R q k, ~2*)Q (resp. (i" R q k, Q~,)Q) 
is generated over  Z(Q)  by the classes of  the forms 

- -  ~ ~ - "  t -  "/~ z~" (2 rci)- q ~i, A..-/x ~i~, (~ = exp(2 n i/e), 
e a=O \ i = 0  

subject to the relation ~ ei ~i=0, [ ]  
i =O 

(2.10) Lemma.  I f  0 < ~ < 1  and ~r  . . . . .  l - l / e }  then the complex 
f t - "  f2x(log Y)Q is acyclic. 

Proof This complex is i somorphic  to the Koszul  complex on ~ {Zo, ..., z,} 
with opera tors  Do , . . . ,  D, where D~ = z i 0/Oz~- g e~ if 0 < i < v and D i = O/az~ for i > v. 
If ~ eir Z then D i is bijective (i < v). [ ]  

(2.11) Lemma.  I f  ~=a/e with a6{0,  1 . . . . .  e - l } ,  then ~ ( f t - ~ f 2 x ( l o g Y ) ) a  has 
as a basis over ~ the classes of  the forms 

{t-~ (i(I=oZT') ~ ~q /x "" /x ~i~ O<-_i~ <'"<i~<=v}. 

Proof As in the proof  of proposi t ion (1.12) one reduces to the case n=v. So 
/" r -" f2x(log Y)r is quasi- isomorphic to the Koszul  complex on ~ {Zo, ..., Zv} with 
opera tors  D~=z~ O/Ozl-an i ( i = 0  . . . .  , v). Again these are homogeneous  operators  
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and the only non-zero contr ibut ion to the cohomology comes from those mono-  
mials on which the D i are all zero, i.e. from (Z"o ~ ... z~) a only. [ ]  

(2.12) Lemma. Let M" and E be bounded complexes of ~-vectorspaces with 
increasing filtrations F resp. G such that m ' =  ~)F,M" and IS= U G,L'. I f  

n > O  n > O  

(p : (m', F) - .  (L', G) is a morphism of fihered complexes and Gr,(q): Gr f (m ' )  --~ Gr,~(L ") 
is a quasi-isomorphism for all n, then (p is a quasi-isomorphism. 

Proof. Left to the reader. [ ]  

(2.13) Denote  H q the subspace of i't-~(2qx(logY)Q generated over ~ by the 
representatives of the cohomology as given in lemma(2.11). Denote Hq[ logt ]  

the subspace of Lq,e consisting of elements of the form ~, ~oi(log t) i with ~geH~. 
Then  Hi[ log t] is a subcomplex of E~,Q. i o 

(2.14) Lemma.  The inclusion Hi[ log  t] -* E~,Q is a quasi-isomorphism. 

Proof. Denote F the filtration on H~,[logt] and E~, e by the degree in logt. 
Then  the map 

Gr, F H i flog t] -* Gr, v E~, e 

is just the inclus ion/ /~  --~ i" t - "  ~2x(log Y), which is clearly a quasi-isomorphism. 
Next  use lemma (2.12). [ ]  

(2.15) Lemma.  The injection H'~--~ H'~ flog t] induces surjective maps 

Hq~ -~ Hq(H'~[log t3) 

with kernels .formed by the elements rl = dt/t /x to Jor ~o ~ H q. 

Proof. Let co= ~ mi(logt) i with ~oi~Hq for i = 0  . . . . .  s. Then d(o=O if and only 
i = 0  

if dt/t/x co i = 0 for i = 1, ..., s. By a lemma of De Rham (cf. [1], p. 8) this implies that 
s 

n e  q-1 ~ ( k + l ) - I  t)k+t o3~=dt/tA~hforsome . H a . P u t ~ / =  qk(tog . T h e n ~ o = ~ o o + d  q. 
k - I  

This proves that H~ ~ Ha(Hi[log t]) is surjective. Moreover  ~o o is mapped to zero 
if and only if there exists (~  H~ - t with m = d(~ log t) = dt/t/x ~. 

(2.16) Proposition. HP(X *, ~ ) ~  IHP(Y,, ~2~/s(log Y)|162 for all p>O. 

Proof. The above lemmas show that the maps q and r from (2.6) are quasi- 
isomorphisms. [ ]  

(2.17) Warning. Unlike the isomorphism in Proposi t ion (2.2), the map in Propo-  
sition (2.16) is not canonical but depends on the choice of a parameter  t on the 
disk S. We return to this problem later. 

(2.18) Theorem. For all p>=O, the sheaf ~"f,(f2"x/s(log Y)) is locally free on S 
and for all s6 S the canonical map 

RPf,(~2"x/s(log Y)) |  ((gs, f ires:)  --~ IHP(X~, ~2x/s(lOg Y) | (gx) 

is an isomorphism. 
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Proof. Propositions(2.2) and (2.16) together with the fact that X* ~S* is a 
locally trivial C ~-fibre bundle, show that for any p > 0 the function 

s ~-~ dime IHP(Xs, Ox/s(log Y) |162215 Cx) 

is constant on S. Moreover f is flat because f is surjective, X is connected and 
d i m S =  1. Conclude by [14], Corollary 2, p. 50. [] 

(2.19) We conclude this chapter with some facts concerning the Gauss-Manin 
connection. We refer to [11] and [12] for more details and proofs. Keeping the 
same notations, the Gauss-Manin connection can be constructed as the connecting 
homomorphism 

V: lRVf, •x/s(log Y) -* a~(log O)| lRPf, ax/s(log Y) 

in the long exact sequence of hypercohomology, associated to the exact sequence 
of complexes 

0 -~ f*  s 0) | t]x/s(l~ Y) [ -  l] a , Qx(IOg y)__, ~x/s(log y) --~ 0 

on X. Its sheaf of horizontal sections on S* is the local system RPf, Cx,. For 
s~S* the fundamental group gl(S*,s)=7Z acts on HP(Xs, C). The action of a 
generator of this extends to an automorphism T of the sheaf lRVf, ~x/s(log Y), 
called the monodromy. Denote T o the induced automorphism of 

IFIP(Y, ~x/s(l~ Y) | Cy). 

Define Ro: Q~(log 0)--~ C by Ro(fdt / t )=f(O ). The map 

(g o | id) o V : IRPf, Px/s(log r)o --~ IHP(Y, ~x/s(log Y) | Cy) 

is zero on tlRPf, ~x/s(log Y)o. The induced endomorphism of 

IHv(y, Qx/s(l~ r)|162 (gv) 

is denoted by Reso(V ). It can also be seen as induced by the C-linear endomorphism 
(derivation) V~o/o, of ~ v f ,  Qx/s(log Y)o, 

(2.20) Proposition. I f  ct is an eigenvalue of Res o (V), then ot ~ ~ and 0 <-_ ~ < 1. 

Proof. The Gauss-Manin connection acts on the spectral sequence 

E~ q = RPf, (jt~q(~x/s(log Y)) ~ ~,P+qf,(f2"x/s(log Y)) 

(cf. [13]) hence its residue acts on the spectral sequence 

EPq-2 - HVtE, , Jc~q(~x/s(l~ Y) |162 (gr)) ~ HP+q( Y, O'x/s(l~ Y)|162 . 

If ~ is an eigenvalue of Reso(V ), it has to appear as an eigenvalue of the action on 
some E~ q. This action is induced by maps 6q ~ End(~f~q(Qx/s(log Y)| Cr)) which 
are defined as the connecting homomorphisms in the long exact sequence of 
cohomology sheaves, associated to the exact sequence 

0--~ Qx/s(log Y) |162 Or[ -- 1] ~ Qx(log Y)| -~ Qx/s(log Y)| -* 0 
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of complexes on Y, where p(~o)= ~o/x dt/t. Computation of 6q in local coordinates 
(notations as in Proposition (1.12)) gives 

tiq(y" r A-. .  ^ ~,,)=-~-. y~ ,~, A.. .  A ~,, 

s o ~ = a / e f o r s o m e a ,  e e T l a n d O < a < e .  [] 

The relation between T o and Reso(V ) is given by 

(2.21) Theorem. To=exp(-2~iReso(V)) .  Cf [5], Theorem II.3.11. [] 

Because the characteristic polynomial of T s is constant on S, these two state- 
ments prove that the eigenvalues of the monodromy are roots of unity. 

w 3. Mixed Hodge Structures 

(3.1) We list some notions from Hodge theory. We refer to [3] and [4] for 
details and proofs. 

Let A be a noetherian subring of IR such that A |  is a field. An A-Hodge 
structure of weight n is an A-module H A of finite type together with a finite decreasing 
filtration F on H e =  HA @A(U such that for all p, q~Z with p + q = n +  1" 

F p H c Q F  q H r  He. 

This is equivalent to the splitting of He into a direct sum 

H e =  @ H pq 
p + q = n  

such that H pq = H qp. One takes H pq = FPHr F'~ FqHr + q = n) and 

FPHr @ H  . . . .  . 
r>~p 

(3.2) Example. If X is a compact K~ihler manifold and p,q~Tl, let HPq(X) be 
the space of harmonic forms on X of type (p, q). Hodge [10] has shown that 

H " ( X , ~ ) ~  @ Hrq(x) 
p + q  n 

and HPq(x) = HqP(x). 
A similar statement holds for X a complete nonsingular algebraic variety 

over C : 

H"(X,r @ Hq(X, f2]) 
p + q = n  

and 

FVH"(X, r IH"(X, a> e~2x) 

where a> denotes the stupid filtration ("filtration b6te") which is defined for any 
complex-K" by a>= pKq=K q i f q>p  and a~ , K q = 0  if q<p .  

(3.3) The Hodge structure of Tare Z(1) is the Hodge structure of weight-2, purely 
of type ( -  1, - 1) with H z = 2 n i Z = ~  = H ~  t' -t. 
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If (H z, F) is a Hodge structure of weight n and k~Z, one denotes Hz(k ) the 
tensor product Hz| | which is a Hodge structure of weight n - 2 k .  

(3.4) Let A be a noetherian subring of R such that A | is a field. A mixed 
A-Hodge structure consists of the following data: 

(i) a finitely generated A-module Ha; 

(ii) a finite increasing filtration W on HA|174 called the weight filtration; 

(iii) a finite decreasing filtration F o n  H A |  , called the Hodge filtration, 

such that GrW(HA | together with the filtration, induced by F on GrW(l-la | 
is a A @zll~-Hodge structure of weight n for all ne7l. 

(3.5) Example. Let Y be a complete complex algebraic variety with irreducible 
components Y~ . . . . .  YN which are nonsingular of the same dimension, such that 
for all p the intersections Ypc~ Yq for q+p  form a smooth divisor on Yp with only 
normal crossings. Then H"(Y, 7/) carries for all neZ  a canonical and functorial 
mixed Hodge structure [4] which can be constructed as follows. 

Denote for k > 1 

r ~ =  H r , , ~ ' " ~  
il < ' " < i k  

and denote ak: ~-~k) ~ y the natural map. Let 6j: ~k)_~ ~k -1) be the map with as 
components the inclusions 

Y,I ~ ..- ~ Y , ~ -  Y, lC~ -.. c~ Y,~_I~ Y,,+I ~ ... ~ Y~. 

On Y one defines a double complex K'" as follows. Put KPq=(aq+l), ~2~+,, 
(p,q>O). Define d': KPq--~K p+L't to be the differentiation in the complex 

q+l 
(aq+0, Qr~,+~, and let d ' :  KPq--~K p'q+l be defined by d"=  ~ ( -  1)q+J 8 *. 

j = l  

One defines filtrations F and W on K" by FPK "'= (~)K ~" and WqK"= @ K". 
r>=p s> - q  

Denote K" the associated single complex. This is a resolution of C r. Moreover 
W and F induce filtrations on the hypercohomology groups IH"(Y, K'), which 
give a mixed Hodge structure. 

The weight filtration on H"(Y, ~) is obtained as follows: for ~y  one has the 
resolution 

0 ---r a ,  ~ , )  ~ (a2),([~ i, ,2, ~ . . -  

Hence the hypercohomology of this complex is just H"(Y, Q). The spectral se- 
quence of hypercohomology of this complex with its stupid filtration gives 

E~'q = Hq(I 7(p+1), ~)  ~ Hp+ q(Y, Q), 

and 

Epq _ r~pq = GrWHp+ q(y, ~). 2 - - ~ o o  

q + l  

T h e m a p d l : E ~  q - ,Ep+Lqis jus t  ~ ( -  1)q+JcS;.* 
j = l  
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(3.6) The preceeding example shows a situation, where the Hodge and weight 
filtrations on H e are induced from filtrations on a complex of sheaves by passage 
to hypercohomotogy. This leads to the following definition. 

Let A be a noetherian subring of IR such that A |  is a field, and let X be a 
topological space. A eohomological mixed A-Hodge complex on X consists of 
the data: 

(i) an object K~ of the derived category O + (X, A) (cf. [9]) such that for all 
n~Z the A-module IH"(X, KA) is of finite type; 

(ii) an object (K~| W) in the filtered derived category D+F(X,A| 
where W is an increasing filtration, such that K'a| ) in D+(X, A| 

(iii) an object (K~:, W, F) of the bifiltered derived category D + Fz(X , ~) where 
W is increasing and F is decreasing, such that (K~, W)~_(K~|174 W) in 
D + F(X, I~). 

One postulates that for all n, ke:g the couple 

(IH"(X, GrW(K~| (IH"(X, GrkW K~), V)) 

is an A|  structure of weight n+k. 
For example (3.5) these data are: 

(i) the sheaf :E r ; 

(ii) the complex O-~(at).q).id-~(az),q).~,d-~2~... with its stupid filtration; 

(iii) the complex K'" with the filtrations W and F. 

w 4. A Mixed Hodge Structure on the Limit 

(4.1) Let X be a connected complex manifold and let S be the unit disk. Let 
f :  X - ~ S  be a proper suriective holomorphic map. We assume that Y = f - t ( 0 )  
is a union of smooth divisors on X with normal crossings and that f is smooth 
at every point of X*=X' . .  Y. We choose a parameter t on S. For t#:0 denote 
f - 1 (t) = X,. 

Under the assumptions that the monodromy automorphism T of Hq(Xt,q2) 
is unipotent and that Y is an algebraic variety, we put a mixed Hodge structure 
on IHq(Y, f2~/s(log Y)| In this chapter we investigate how it depends on 
the choice of the parameter t and how it is related to the canonical mixed Hodge 
structure on H~(Y, 112). In w 5 we will consider the case of a projective morphism. 

Throughout w and w we fix the following notations. We put S * = S \ { 0 } ,  
let S* be its universal covering and )~* = X  x sS*. Denote k: J f * ~  X, j:  X*-* X, 
i: Y--, X and ~z: S* --, S the natural maps. 

2 * - - k  , X ,  i y 

X* 

f 

~* - - -~ - - ,  S ~ - - -  {0} 
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Let Y = Y~ u---  w YN, and for k > 1 denote 

LI 
il < ' " < i k  

Denote ak: ~{k}~ y and 6~: ~{k} ~ ~{k-D (]= 1, ..., k) as in Example (3.5). 

(4.2) If r is a constant sheaf of abelian groups on )(*, a generator of rh(S*) 
acts on the sheaf k , ~ .  By functoriality one gets an action of rtl(S* ) on the object 
i'iRk,r of the derived category D+(Y,Z). For r any of the sheaves 7Z~,, r  
or r we denote (i'iRk,ffJ)u, the maximal subobject of i ' i R k , ~  on which r h (S*) 
acts with unipotent automorphisms. 

(4.3) Lemma. 

H"(X*, II~) = IH"(Y, (i'iRk, ~ , ) , , ) ,  

H"(X*, •)---_ lI-I"( Y,, (i'iRk, r 

Proof  This follows from the fact that the monodromy T is unipotent and 
from Lemmas (2.4) and (2.5). [] 

(4.4) If Z is a topological space and {D is an object of D + (Z, ~), for k ~:E we denote 
~3(k) the object (2zci)k r of D+(Z, Q). 

(4.5) Define 0 =f*(dt / t ) .  Because the form dt/t on S* has period 2~i, one should 
consider 0 as an element of H 1 (X*, ~(1)). 

Cupproduct with 0 defines for every K~Ob  D+(X *, Q) a morphism 

O: K ~ K ( 1 )  [1]. 

Because 0 A 0 = 0, this morphism has square zero. By funtoriality one obtains 
a morphism 

O: i'IRj, K ~ i'IRj, K(1) [ l ] .  

(4.6) Lemma. The sequence 

i ' iR j ,~x ,  ( -  1) [ -  1] ~0 i . iRj, ff)x, O~ i.iRj, ff)x,(1 ) [1] 

is exact in D+(Y, ~) .  
Proof  With notations as in (2.7) the stalk of i 'Rqj,  ff)x, at Q is generated 

over ~ by the classes 

{(27zi) -q ~i, A-'- A ~/~]0<i x < . . .  <i~<v}. 

The lemma follows from the lemma of De Rham ([1], p. 8). [] 

(4.7) Denote k': ~ ' * ~  X* the projection. Then for all q4:0 one has R~k,Q~,=0.  
Hence 

k', ll) ~, = iR k , Q ,2, . 

The isomorphism of derived functors 

IRk, = IRj, o IRk, 
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(cf. [9], p. 59) induces a canonical isomorphism in D+(Y, Q): 

i']Rk , ~ ,  ~ f lR j ,  (k', ~ , ) .  

Denote q/: i ' IRj ,~x,  -~ i ' lRk,Qx, the map induced from the inclusion ~x,--~ k, ~:~, 
by functoriality. 

(4.8) Lemma. Im ~9 is contained in (i'IRk, ~x,)u . and the sequence 

i'IRj, O~x,( - 1) [ - 1] o i'IRj, q)x* ?-~ (i']Rk, q)~,)u,-~ 0 

is exact in D+(Y,, ~). 

Proof The first assertion follows from the fact that nl(S*) acts trivially on 
i'lRj, ff)x,. The exactness follows from Lemma (4.6) and Remark (2.9). []  

(4.9) One obtains an injective map 

O: (i'lRk , ~2,)u,--~ i'IRj, ~x,(1 ) [1]. 

Denote W the canonical filtration on i'lRj, Qx, (cf. [3], (1.4.6)). Because 0 
maps Wk(i'lRj,~x, ) to Wk+~(i'IRj, Qx , (1 )[1] )=(WjIR/ ,Qx ,  ) (1) [1], it induces 
maps 

O: H~-~ H~ § (k >O) 

where H~ = f iR j ,  Qx,(k + 1) [k + 1]/(I~i ' lRj, r + 1) [k + 1]. 

(4.10) Lemma. The sequence 

. .  

is exact in D+(E Q). 

Proof This just means that for all q > 0  the sequence 

0 --~ (i'Rqk, ~2,) , ,  ~ i'R"+lJ,~x*(1) ~ i'Rq+ZJ,~x*(2) -*""  

is exact. This is an immediate consequence of Lemma (4.6). [] 

(4.11) Definition. Denote A~ the associated single complex of the double 
complex H~-~ H~ ~ . . . .  Define the filtration W on A~ as follows 

W,H~: = I fr  + 2k + l ( i '~,~j,  Q x ,  ) (k + 1) [k+  1]/Wk( i'IRj, Qx, ) (k + 1) [k+  1] 

W,A~ is the associated single complex of the double complex W,H~-~ W,H~-~ .... 
Define A~ = (i'IRk,Zx,)~,. 

(4.12) Lemma. 0: A~| -~, A~ in D+(Y, Q). This is a translation of Lemma (4.10). 
[]  

(4.13) Lemma. For reTl one has 

Gr~(A~)~ (~ (a~+zk+,) , ~ t ,  . . . . . .  , ( - r - k ) [ - r - Z k ] .  
k > 0  

k ~  - r  

Proof The map 0: H~-~ H~ +1 induces the zero map GrWH~ ~ GrWH~+L Hence 

GryA~_-__ (~) GrW(H~) [ - k ] .  
k>__O 
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Moreover Grff(H~) ~ Gr,W+ z k + 1 (i 'IRj. ~x*) (k + 1) [k + 1] if k > 0 and r > - k, and 
GrW(H~)=0 otherwise. The lemma now follows from the isomorphism (see [3], 
(3.1.4.)): 

Gr  w(f  IRj, Qx.) ~ (aq). t1~ f,,, ( -  q) [ - q] (q > 1). []  

(4.14) We pass to the C-level. The results of w easily show that the isomorphism 
in D + (Y,, I!2) 

i ' lRk,  C2 * _z, Ox/s (tog y ) | 1 6 2  (_9 r 

composed with the canonical map 

(2x/s(log Y) |  f2x/s(log Y)| Crrod 

induce an isomorphismin D § (Y, ~): 

(i'lRk,ll;yc,)un -~ f2x/s(l~ Y)|162 (grrod" 

Denote A pq = f2} +q + 1(log Y)/Wq (2~ +q +1 (log Y). 

Define d': APq- * A p+Lq by d'(m)=cl(do)).  

Define d ' :  A pq --~" A p' q+ 1 by d"(o)) = c l(O a o)) where 0 = f*(dt / t ) .  Then d'd" + 
d"d' =0, so (A", d', d") is a double complex. 

Define A~: to be its associated single complex. 

(4.15) Lemma. One has an exact sequence of  coherent sheaves on y~a: 

0 --~ Q~/s (log Y)| Oy~o~ & A p~ & A p' & .--. 

Proof  One has to check that 0 is strictly compatible with the filtration Won 
(2~(log Y), i.e, that 

GrW_a f2} -~ (log Y ) a  OrWO}(log y) _0~ G r ~  12} +a (log Y) 

is exact for k > 2 and that 

Ker (0: GrWf2} (log Y) --* Gr2Wf2} +~ (log Y)) 

~- W0f2} -~ (log Y)/l(yrea) �9 f2}-~(log Y). 

This can be done by taking Poincar6 residues. The resulting sequences are 

o - ,  a~o~ ~ %), ~ ~-~ (a~),a~,~, ~ . . . .  
Here d" is the same map as in example (3.5) except for a factor % before 6* in the 
restriction maps 

P ~ ~f~P 
~'-~g il c~. . ,  c~ Y i j - t c~ g i j + 1 t~ . , .  ca g i k  Y il  ~ " "  c~ g i k "  

This does not spoil the exactness of the sequence. [] 

(4.16) Corollary. The map O: ~2x/s(log Y ) |  r defined by 0(fo)= 
( -  1) p 0/~ o) for  o) section o f  O}/s(log Y)| is a quasi-isomorphism. 

Proo f  After Lemma (4.15) one only has to check that 0 is a homomorphism 
of complexes. One has 

O(do)) = ( -  1) p+I 0 A do) = ( -  1)P d(O ^ o))= dO(o)) 

for o) a section of f2}/s(log Y)| [] 
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(4.17) We define filtrations F and ty F decreasing and W increasing, on A~: as 
follows. 

Let FP A'~= (~ A "q. 
p' ->. p 
q > O  

Let Wr A~:= (~ IV, A pq where 
p , q ~ O  

W, A pq = WEq+,+l f2~+q+l (log Y)/Wq f2~+q+~ (log Y). 

One checks that d' and d" are compatible with the filtrations F and W. 

(4.18) Lemma. Gr~VA~:~ @ (a2k+,+l). f2~,2~+,~[--r--2k]. 
k~0 

k ~  - r  

Proof Analogous to the proof of Lemma (4.13), [] 

(4.19) Theorem. The data A'~, (A~,W) and (A'c,F,W) together with the iso- 
mosphisms 

A~| ~ --z-~ A~ in D+(Y, Q) 

and 

(A~|162 ~-~(A~:,W) in D+F(Y, tI~) 

determine a cohomological mixed Hodge complex on Y 

Proof That the natural map A'~|162 is a quasi-isomorphism follows 
from (4.14) and (4,16), The formula's in (4.13) and (4.18) show that it is strictly 
compatible with the filtration IV. 

The Hodge-theory for complete nonsingular algebraic varieties guarantees 
that for all q>0, r~2g the couple 

(IHq(K GrW(A~)), (IHq(Y, GrWA~:), F)) 

is a ~-Hodge structure of weight q + r, namely: 

IH~(Y, Gr~ ' (4) )=  @ Hq-"-2k(f :tzk+~+'), Q ) ( - r - k ) .  
k >O  

k >  - - r  

This has indeed weight q - r - 2 k - 2 ( - r - k ) = q + r .  [] 

(4.20) Corollary. (of [4], scholie 8.19) 
(i) The spectral sequence of hypercohomology,for the filtered complex (A~, IV) 

wE~-',q+,=lHq(y; GrWA~) ~ IH~(Y, A~) 

degenerates at  E2, i.e, E z = E~ ; 
(it) The spectral sequence of hypercohomology for the filtered complex (A'r F) 

vEf q = Hq( Y, f2fc/s(l~ Y) |162 (9r'-~) ~ IHp +q( Y' f2x/s(l~ Y) | (gr~o") 

degenerates at Ex. [] 

(4.21) Proposition. GrWlHq(Y, A~)+0 ~ O<_r<_2q. 
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Proof GrW IHq(Y, A~)=wE ~ . . . .  4:0 implies that wE~ . . . .  4:0, i.e. there exists an 
integer k with k > 0 and k > q - r  such that 

H2q-r-Zk(Y(Zk+r-q+l),Q)4:0, i.e. 2 q - r - 2 k > O  

a n d s o : 2 q - r > 2 k .  T h u s 2 q - r > O a n d 2 q - r > = 2 q - 2 r i . e . O < r < _ 2 q .  [] 

(4.22) The space IHq(Y, A~) has an additional structure: it has a nilpotent endo- 
morphism N =  Reso(V ). To see how it behaves with respect to the mixed Hodge 
structure, we construct an endomorphism ~ of the complex A~ which induces N if 
one takes hypercohomology. 

Analogous to the proof of (2.20) one obtains N as the connecting homo- 
morphism in the long exact sequence of hypercohomology associated to 

0 --+ f2x~s 1 (log Y) | (grre~ 0 , g2x(lOg y) | (9rrod 

--~ f2x/s(l~ Y) | C r r . d  --~ O. 

Define a double complex B~ as follows. Denote B pq = AP-I'qO A pq (p, q >0). 
Denote v: APq--. A p-a'q+l the canonical projection 

Q~+q+l(log Y)/Wq Q]+q+l(log Y)-~ ~r Y)/Wq+~ Q]+q+~ (log Y). 

The differentiation in B~ is given by 

d'(~~ m2)=(d' 01 ,  d' o2 )  , 

d"(091 , 09z)=(d" ~01 + ( -  1) p+q+l v(m2), d" ~02), 

for ~01 and ~0 2 sections of A p-~ 'q resp. A pq. 

Define r/: f2x(log Y) | (~r red ~ B~ by 

q(~o) = (o9 mod W o, ( -  1) p 0/x o9) 

for ~o a section of f2Px(logY)| .... Then one has a commutative diagram of 
complexes with exact columns 

0 0 

f2x/s(logY)|162 [ -  1] - ~ , A'r 1] 
J 
J 
I 

Qx(log Y)| (grr~d " 'B~ 

f2x/s(lOg Y)| ~ , A 

0 0 
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Because 0 is a quasi-isomorphism, one can use the five-lemma to show that r/is a 
quasi-isomorphism. The construction of connecting homomorphisms shows that 
N" IFIq(Y,A'r162 is induced by the endomorphism i~ of A~: which is 
( -  1) '+q+l v on A pq. It anti-commutes with the differentiation. 

(4.23) Proposition. ~ ( ~  A'~)c W~_ 2 A'r and the induced map 

9~: GrWA~: ~ GrW~ A~: 

is an isomorphism for all r > O. 

Proof For reT/, p, q > 0  one has 

W~ A "q = Wzq+r+t O• +q+l (log Y)/Wq 0~; +q+l (log Y) 

and 

W~_ 2 A p-t'q+' = W2,+,+1 Fi~c+q+l (log Y)/Wq+, Fi~+q+l(log Y). 

For r >_ 0 one has 

OryA'q=Gr~+,+, Q]+q+t(log y)=GrW A,-'.q+'; 

these are identified by ~". [] 

One deduces from this proposition that N acts on the spectral sequence 

wE~-',q+'=lFIq(Y, GrWA~) ~ IHq(Y, A~), 

mapping wE1 -r'q+" to  wE1 r+2'q+r-2 and inducing isomorphisms 

Nr: wElr ,  q+r ~ wE~,q -~ 

for all q, r > 0. 

Unfortunately this is not sufficient to deduce that N ~ maps GrW+r 
isomorphically to GrqW,IFIq(E Q). We will prove this in Chapter5 under more 
restrictive conditions. 

Because ~(F p A'~,)~ F p-1A'r the induced map N is a morphism of mixed Hodge 
structures of type ( -  1, - 1) (cf. [15], p. 217). 

(4.24) Dependence on choices. 

In our construction we have chosen a parameter t on the disk S. This choice 
fixes an isomorphism in D+(Y,, ~)  

@t: i" Fix(log Y) [log t] --~ Fix/s(log Y) |162 CY~o~ 

(see (2.6)), by 0t %(log t) k = (~ the image (% under the natural map 
k 

i" Fix(log Y) ~ Fi)/s(log Y)| (groom" 

Let t'=c~t be an other parameter on S, such that ~ is invertible on S. Then 
log t ' - l o g  t =logc~ is a holomorphic function on S. Choose a Stein covering tl 
of Y. Then for q > 0 

IHq(Y, i" Fix(log Y) [log t]) = Hq(C'(ll, i" ~x(log Y) [log t])) 
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where C"(~I, f t2x(log Y) [log t]) is the t~ech-bicomplex of i" f2x(log Y) [log t] 
associated to the covering 1L A similar expression holds for f2x/s(log Y)| (9Y .... 
Let NoeCq(ll ,  t2x/s(logY)| represent the class x0 and let O~-l(ffo) be 

s 

represented by the cocycle o9= ~ COk(lOgt) k with O)keC"(ll, i'f2"x(logY)). The 
k = 0  

cocycle condition for co gives the relations: 

do)~=0; 

k + l  dt 
&Ok-- 2hi t /XCOk+I (k=0  . . . . .  s -- l ) .  

Hence the images o3 k e C"(ll, f2x/s(log Y) |162 (Qyred) satisfy: 

d(h k = 0 (k = 0 , . . . ,  s). 

Denoting fig the cohomology class of r k, one has by definition of N: 

Nffs=0;  

k + l  
N~k-- 2hi "~k+l 

Hence 
( - 2 n i N )  k _ 

-Xk -- k ! x~ 

NS+l Xo =0.  

This shows that 

so 

(k=0  . . . . . .  s -  1). 

(k = 0 . . . . .  s). 

~b,, ~9t-'(ffo)= ~ C0k(lOg~) = ~, (1og~(0))kffk=exp(--2niN log~(0))X o 
k = O  k = O  

] 
~,, ~k 71 = exp( - 2 n i N log ~(0)) t. 

We make the following observations. 
1. For every choice of the parameter t, the morphism of complexes fit is 

compatible with cup-product. This implies that the induced map 

~,: @IHq(Y, i" f2x(log Y))-,  @IHqY, f2x/s(log Y)@r (~yred) 
q q 

is a ring homomorphism with respect to the cup-product. Because it is bijective, 
it is even a ring isomorphism. 

2. For every pair (t, t') as above, ~k t, $(1 preserves the weight filtration on 
IHq( Y, f2x/s(l~ Y)| (9yr,d), and induces the identity on the graded vectorspace 
associated to the weight filtration. This follows from 

e x p ( -  2 n i N  log ~(0))= I -  2 n i N  log c~(0) + . . . .  I + R  

where R(I/V~)c W~_ 2. Our construction thus provides a one-parameter family of 
mixed Hodge structures with fixed Hodge and weight filtrations but a varying 
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integral lattice. If one takes the inverse image under one ~,, one gets a fixed integral 
lattice Hq(X *, Z), a fixed weight filtration on Hq(~ "*, Q) and a varying Hodge 
filtration. This is the same ambiguity as in Schmid's construction. Cf, [15], p. 255. 
One can ask the question of independence from a different point of view. If we 
are given a proper and smooth family X* over the punctured disk with unipotent 
monodromy, does there exist an intrinsic characterization of the sheaf 

IRqf,  ~2x/s(log Y) on S, 

independent of the choice of an extension X of the family over the whole disk? 
The answer is yes. The sheaf IRqJ, f2x/s(log Y) is the unique locally free sheaf on S 
such that its restriction to S* is lRqf, (2x./s, (by abuse of language we denote the 
restriction of f to X* again by f )  and such that the Gauss-Martin connection 
extends to a connection with a logarithmic pole at 0 with a nilpotent residue, 
Cf, [5], Proposition IL5.2. 

(4.25) The functorial properties of our mixed Hodge structure can be expressed 
by making some standard exact sequences into exact sequences of mixed Hodge 
structures. This is a powerful tool in many kinds of problems, because every 
morphism of mixed Hodge structures is strictly compatible with the weight 
filtration. We will apply this in the next chapter. 

The key role is played by H*(X*). It occurs in the Wang sequence 

�9 ,. -~ n q ( x  *) - ,  H q ( X , ) ~  Hq(X,)~ . . .  ( teS*)  

and in the sequence 

.... ~ Hq(X) ~ Hq(X*) ~ H}+I (X) --~ Hq+t(X) _-~ ,.. 

which is dual to the usual exact sequence on homology: 

-,- --, Hq(0X)-* H q ( X ) ~  Hq(X,  aX)--~. . -  

A mixed Hodge structure on Hq(X *) can be obtained as follows. First observe 
that j: X* --~ X induces an isomorphism Hq(X *, ~)~II-Iq(X, 1R j ,  Zx, ). As in [3] 
one shows that 

Hq(X *, (E)~IHq(X, f2x(log Y)). 

With the same argument as in Lemma (2.5) one shows that IHq(X, f/x(log Y))= 
IHq(Y,, i" t2~(log Y)). Moreover the maps 

i" t2x(log Y) -~ f/x(log Y)|162 (gy~o~ -~ B'~. 

are quasi-isomorphisms. Hence Hq(x*, tE)~IHq(Y,B'O.  We give B~ a Hodge 
filtration F and a weight filtration W such that in the exact sequence 

0--, A~: [ -1]  z-~B~: " , A ~ - ~ 0  

2 induces a morphism of mixed Hodge structures of type (1, 1) and/~ induces a 
morphism of Hodge structures of type (0, 0). Define W r B pq = ~ _ 2 Ap-  1, qG W, A p,q 
and denote F r B ~ = F  p-  1A~-~ • FPA"~. Then W and F are filtrations of B~ by sub- 
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complexes, because the map ~: A~ -~ A~ satisfies 

~(W,A~)c Wr_2A ~ and ~(FPA'OcFP-IA'e. 

One checks easily that # is compatible with both filtrations, that 

)~(FPA'r l ] ) c  F v+l B'r and 2(W~ A~:[- l J ) c  W,+ 2 B~> 

Moreover Gry' B~ is the complex 

OrWA~ ~ ,  Sty;  z A4(-  1), 

if B~ is defined analogous to 34. Resuming: 

(4.26) Proposition. The "Wang sequence" 

--- - ,  Hq(Y, B;) --, Hq(Y, A~) N , Hq(y, A; ) ( -  1) -~.-- 

is an exact sequence of mixed Hodge structures. [] 

(4.27) Because Yis a strong deformation retract of X (cf. [2]) the restriction map 
Hq(X)-~Hq(Y) is an isomorphism for all q=>0. The canonical mixed Hodge 
structure on Hq(Y) induces a mixed Hodge structure on Hq(x). 

Claim. The natural map Hq(x) --* Hq(zl~ -*) is a morphism of mixed Hodge struc- 
tures. 

Proof. Denote A~(Y)=Ker(~). Then A'c(Y) is a resolution of ~ r  and the 
filtrations W and F on A'~: induce filtrations W and F on A~:(Y). The resulting 
mixed Hodge structure on Hq(Y) is the canonical one, as one may see comparing 
the complex At(Y) and the complex K'" from Example (3.5). [] 

In D +(Y,, r  the sequence 

0--~ Ker(~) ~ B~--~ Coker (~) [ -  1] -~ 0 

is exact, for B~ ~ ~(A~ ~ A~:) where ~ denotes: take the associated single complex. 
This induces a long exact sequence 

�9 .. -~ H~ 112)--+ Hq(X *, ~) --, IH q-1 (Coker(9)) --~ H q+l (Z {l~)--+ .... 

This shows that It-I ~ (Coker(~))~ H} + 1(X, 112) and gives H} + 1 (X) a mixed Hodge 
structure. 

(4.28) Because Y is complete, GrYHq(Y)=0 if r >  q. This can also be concluded 
from the fact that Gr w A~:(Y) = 0 if r > 0. For Coker (7) one has GrW(Coker (~)) = 0 
if r < 2 (mind that ~ decreases weight by two or, equivalently, preserves weight in 
A~ _A~ A~(-  1); hence Coker(?) has to be considered as a quotient of A~(-  1)). 
This implies that Gr w HI +1 (X)=0 for r < q + 1. 

(4.29) Proposition, The sequence 

H ( Y ) - - - ,  Hq(X *) a , H}+,(X)_,  Hq+~(y)_, ... 

is an exact sequence of mixed Hodge structures. In particular ,for rNq: GrW(a) is 
surjective, and GrW(fl) is injective for r > q + 1. [] 
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w 5. The Projective Case 

(5.1) In this chapter we preserve the notations and assumptions of (4.1). We 
make the additional assumption that X is a closed subset of IP" x S for some m 
and f is the restriction to X of the projection on the second factor. Let dim X -- n + 1. 
Let H = I P "  be a hyperplane which intersects all components of Y transversally 
such that ( ( H x S ) c ~ X ) u Y  is a divisor with normal crossings on X. For t eS  
sufficiently small H intersects X t transversally. After possibly shrinking S we may 
assume that H intersects all Xt(t~S* ) transversally. Denote H t = X t ~ H  and let 
L,e H2(Xt, 77) be the cohomology class of H t. 

Remind the "hard Lefschetz theorem" ([16], Cor. to Th. IV.5): 

L]: H"-q(X,, Q) - , H"+q(X,, Q) (q>0) 

where L](Og)=L]/x o9. The map L, can be decomposed into 2 maps as follows. 
Denote 

p,: H'(X t, Q)--~ H'(H,, Q) 

the restriction map and let 

7,: HI(H,, Q)--~ Hi+Z(x,, Q)(1) 

be its dual, i.e. the Gysin map. Then L,=(2zti) -a ?tPt. Because Pt and 7t are mor- 
phisms of Hodge structures, L, is a morphism of Hodge structures of type (1, 1), 
as is also clear from its definition. 

Denote L~HZ(IP ", 77) the cohomology class of H, and let L 0 be the image of L 
under the composed map Hz(]P m, 77) re~ H2(y, 77) ~ iHZ(y,, A~). 

(5.2) Proposition. For all q >= 0 cupproduct with L o induces 

Uo: IH"-"(Y,A~} - , IH"+q(KA~) .  

Proof Choose a parameter t on S, a point u ~ S* and let 2 = ~(u)~ S*. One has an 
injection i,: X, ~ )(* which is a homotopy equivalence. The diagram 

H2(IP ", ~ )  , H2(y, Q) 

res i!! 

4, 

is commutative, so Lo=r -1 L~. The proposition follows now from the hard 
Lefschetz theorem for X~ and the fact that fit and z,, are ring isomorphisms for 
cup-product. [] 

(5.3) We determine the behaviour of the weight filtration under cup-product 
with L o. Remark that the restriction of f to (H • S) a X satisfies all conditions for 
our construction. Hence one disposes of morphisms of mixed Hodge structures 

p: IHI(Y, A~)~IW(H r Y, A~lu~r) 
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and 

7: IH~(H ~ Y,, A~ln~r)-~ lI-Ii+ Z(Y, A~)(1) 

such that L o = (2 n i)-1 y p. 

Both p and 7 induce morphisms of the spectral sequences of hypercohomology 
of the complex A~ (resp. A~lu~r) with the filtration W. On the E~-terms they 
induce the restriction map 

p: H'(YI c~. . .~  Yip ,~)~  Hi(Y/ n . . .  c~ Yipc~ H ,Q)  

resp. the Gysin map 

7: Hi(yh n"" c~ Yipc~ U, ~))-~ Hi+ 2(Yilc~'"c~ Yi;, ff))(1). 

From the hard Lefschetz theorem for every ~'~P), one deduces that for all 
r~Z, q >=0 the map Lqo induces an isomorphism between 

E 1 . . . .  q+ ,=  ( ~  Hn-q-r-2k(y(2k+r+l),ff~)(--r--k) 
k__>O 

k_- > - r  

and 

E~-r"+q+'= (~) H'+q-r-Ek(y ~2k+~+I), ~ ) ( - r - -k ) ,  
k > O  

k >= - r  

for ~ ' ( 2  k + r + 1) is nonsingular projective of dimension n - 2 k - r. 

Because p and 7 are morphisms of mixed Hodge structures of type (0,0), 
L o = (2 n i) - 17 P is a morphism of mixed Hodge structures of type (1, 1 ). In particular 
L o is strictly compatible with the filtration W. Recall that the spectral sequence of 
hypercohomology for (A~, W) degenerates at E 2 and that (of. (4.20)): 

E 2 . . . .  q+'= GrWq+~IH n-q(Y, A~). 

Hence for all r e Z, q > 0 the map Uo induces an isomorphism between E2 . . . .  q + 
and E2 ~'"+q+". 

(5.4) For q, f eZ ,  i = 1 , 2  we define the primitive part Pi . . . . .  q+~cE/- . . . .  q+~ by 
Pi . . . . .  q+~= Ker L~o +1 if q > 0  and Pi- . . . .  q + ' = 0 i f q < 0 .  

Then for E~- . . . .  q+r one has the Lefschetz decomposition 

E/- . . . .  q+'= @ Lk Pi . . . . .  q+r-2k. 
k > O  

Cf. [16], Theorem IV.5. A primitive cohomology class is by definition an element 
of Pi . . . . .  q+' for some q, reTZ. 

(5.5) The primitive cohomology groups of a smooth projective variety V of 
dimension n carry a positive definite quadratic form, which is defined as follows. 
For  q > 0  denote P"-q(V, Q)=  H"-q(V, ~)  the primitive part. Because L is a mor- 
phism of Hodge structures (of type (1, 1)), P"-q(V, ~)  is a sub-Hodge structure of 
H"-q(V, ~). 
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One defines the operator C as being multiplication with i ~-~ on H ~''. Then 

Q(x, y) = ( - 1)(" -q~(" -q-  ~)/2 C x t", L q ~[V] 

defines a positive definite quadratic form on P""~(V, tt2). 

(5.6) Returning to the weight spectral sequence, we define Z(E~S)= Ker(d~ ~) and 
rs r - - l , s  B(E~ )= Im(d~ ). The following lemmas show the relation between dx and the 

primitive decomposition. If ~ Z ( E ~ ) ,  we denote [3] its class in E~ ~. 

(5.7) Lemma. ( f  ~ Z ( E f q ) ,  there exist r/eB(Ef q) arm ~keZ(E~ "q-2k) (k >O) with ~ 
primitive and 

k>O 

Moreover 

k>O 

is then the primitive decomposition of [~]~E~ q. 

Proof. Write [~ ]=  ~, Lko[~] with [~]sp~,q-2k.  First assume that {~ is 
k>O 

primitive too. Then put ~/= ~ -  ~ k , Eo Ck- Because [t/] = 0  we have indeed rt eB(Ef*). 
k>__O 

Remains to be shown that every primitive element of some E~ ~ can be rep- 
resented by an element of Pfq. 

Let (eE~ ,"-q- '  be such that da ~=0  and [ ( ]eP~ '"-q-' .  This implies that 
Lqo +1 ~eB(E~'n+q-'+2). Choose 7eE~ -L"+q- '+2 with L q+t ~=d~ ~. There exists a 
unique y' with 7'eE~ - ' l '"-q-" and y=Lqo +~ y', Then Lqo+l((-d~ 7')=Lqo+~ i f - d ? = 0 ,  
so ~ - d y '  is primitive. Moreover [ ~ - d y ' ]  = [~]. []  

(5.8) Lemma. I f  ~ = ~ L~o ~ B ( E f ~  with ~ primitive and ~k~Z(Ef 'q-2k) jbr all 
k ~ O  

k > O, then for each k ~k~B(Ef'q-2k). 

Proof. Because Ck~Z(Ef 'q- 2k) one has the relation 

o = [r = E 
k=>O 

and [~k]e p~,q-2k for all k, Because the primitive decomposition is a direct sum, 
one obtains [ ~ ]  = 0  for all k=0.  

Now we have all ingredients to prove (cf. (4.23)): 

(5.9) Theorem, The endomorphism N of IHq(Y, A~O) induces for all q, r>O an iso- 
morphism of Hodge structures of weight q + r 

N': & ) -  & ) ( - r ) .  
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Proof Consider again the weight spectral sequence. One has the diagram, 
which is commutative up to sign 

Ex_r_l,q+r a~ ~ E~r'q+r d~ ~ E~-r+l'q+" 

~r ~_ ~ ~ ~r 

Hence the theorem is equivalent to the conjunction of the statements 
r,q--r - -  r ,q--r  . (A) V Z(E["q+ ' )+  B(E1 ) - Z ( E  1 ), 

(B) V Z(Ef"q+' )nB(E] 'q -9=V B(E("q+" ). 
We first prove (B). 

We deduce from (4.13) that 

E~ l 'q-r=V Elr-l'q+roHq-r(y(r), (l~). 

The map, induced by d I on the second factor, is just 

0: Hq-'(~ "('), (1))~ H"-r(~ "(~+1), Q)=E~ 'q-'. 

Take ~ Z ( E / ' ' q + r )  with V (~B(E~'~-r). Write ~ = dl t/+ ~ Lko Ck with ~k primitive 
k > O  

and d 1 Ck =0  for all k. We first show: V Ck~B(E~ "q-~-2k) for every k. 
Because L o and ~ commute, the elements V ~k are primitive. Clearly 

V r ~ k E Z ( E r l ' q - r - 2 k  ) and ~ L k o V r ~ k = V r ( r  
k>=O 

which is an element of B(E~'q-~). By Lemma (5.8) one concludes that 

Vr 'q-r-2k) for all k. 

To show r we may therefore assume that ( is primitive. In particular 
q<n. 

Because B(E~ "q-') = V B(E~- ~'q +9 + 0 H q-'(~'(r), Q) we may assume that V ~ = 0 r/ 
for r/e H q -"(~'t~), Q). This implies that ~ ~ Pq -~( Yt" + ~ ), Q) ( - r). Denote 

~: Hq-'(l? t'+t), Q)(-r)--~ Hq-'+2(~ "('), Q ) ( -  r + 1) 

the map induced by d~. Then ? is nothing but a generalized Gysin map. It is the 
dual map to 

P = E (  -- 1) i ~*:  H2"-q-~(~('), Q)--~ Hz" q r (~-(,+,), Q). 

Cf. Example (3.5). Hence for all ~eH 2"-q- ' ( I  7"(~), ~)  one has the projection formula: 

~^~(~)=p(0A ~=0. 

If Y is reduced we have O=p (cf. (4.15)). Moreover 

Q(~, 4) = + L"o-qC~ A ~[ ~'('+~)3 

= +_p(L"o-qCq) A ~[~'(~+1)] =0. 

Hence r = 0. 
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If Y is not reduced, denote tl=~r/i,...ir with t ~ l i , . . . i ~ H q - r ( Y 6  ~ . . .  c-5 Yii~, tl~), and 
define 

Fl= ~ (eq'"e~,.) -1 rli~...~ . 
21 < . . .  < in 

Then from (4.15) one deduces for ~ = p(~/) that 

(~)io...ir=(eio..ei,.) -1 ~io...i @nq-r(YioC3 ... (3 Yi,, i~). 

Moreover (~o .~ is primitive for all (i o . . . . .  i,). Again 
r 

O=Q(~,~)= Y' (eio...ei~) -1 Q(~,o...,~,~io...,~), 
i o < . . , <  ir  

Hence ~o...~ = 0  for all (io, ..., i~). This proves (B). If Y is reduced one deduces (A) 
from (B) by a duality argument. If Y is not reduced, one can use a duality argument 
with respect to the modified pairing 

()(X, y) =- E (eio"'ei,)-ixio...i~AYio...i~[Y~o~"'~Yi~] 
i o < . . . < i r  

(x~Hq-~(17 "(~+t), Q), yaH2" -q -~ ( f  "~+1), I/))) to conclude (A), []  

(5.10) Corollary. 7he filtration IV coincides with the weight filtration, constructed 
by Schmid [15]. 

Proof. Schmid's definition of IV is, that it is the unique decreasing filtration 
on IH~(Y, A~) such that N(W~)c l~_ 2 for all i and such that 

N~: Gr~+flH"(E A~)--, GrqW_flHq(Y, A~) ( -  r) 

is an isomorphism for every r > 0. Cf. [15], Lemma (6.4). [] 

Remark. In a future paper we will show that Rqf, Q,~/s(log Y) is locally free 
for all p, q>0.  This implies that our Hodge filtration coincides with the one of 
Schmid. 

(5.ll) Corollary, K er N~IHq(Y, A~) is a mixed ttodge substructure and 

Gr~ ' (KerN)=0  ,for r>q. 

Proof. Theorem (5.9) implies that N: Gr, WlHq(Y, A~)-~ GrW2IHq(E A~) ( -  1) 
is injective for r > q + 1. []  

The following theorem was proved by Katz with l-adic methods. It will be 
treated in a forthcoming joint paper of Schmid and Clemens. An analogous 
version of it for an algebraic base scheme has been proved by Deligne ([3], 
Th. (4.1.t.)). 

(5.12) Theorem. (Local invariant cycle theorem). For all q>O the sequence 

Hq(y, Q ) ~  ]nq(y, A~)-~ ]Hq(Y, A~) ( -  l) 

is exact. 
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Proof (Deligne) Consider the diagram 

Hq(Y, Q) 
L 

Hq(x *, I1))~ Ker (N) 

nI+l(x) 
Proposition (4.26) gives that fl is surjective. 
Proposition (4.29) gives that GrW(~) is surjective for r<q. Hence GrW(fl~) 

is surjective for all r < q. Finally Corollary (5.11) implies that fl~ is surjective. []  

(5.13) Remark. Theorem (5.12) gives a strong restriction on the possible Hodge 
filtrations on II-Iq(Y, A~:). It fixes the Hodge filtration on Ker N. Moreover one has 
a filtration of IHq(Y,, A~) by mixed Hodge substructures 

(0)~ Ker N c  ... c K e r  Nq= Ker N q+l = 1Hq(Y, A~). 

The map Nk(k>0) induces an isomorphism (of type ( - k , - k ) )  between 
Ker Nk+:/Ker N k and Ker  N c~ Im N k c  Ker N. This fixes the Hodge filtration 
on Ker Nk+~/Ker N k for every k > 0. In particular there is no choice for the numbers 
h "~ =d im IH~+'(Y, Gr~A'). 

The pure Hodge structures GrW+r]I-Iq(Y, A~) are also completely determined 
by (5.9) and (5.12). If one denotes 

9~q"=Ker(Nr+l:GrW+rIHq(Y,A~)-*GrW_r_21Hq(Y,A'Q)(-r-1)) if r > 0  

and 9~q"=0 for r<0,  then analogous to the Lefschetz decomposition one has 
for all re7/:  

GrW+flH"(Y, A~)= @ Nkg~ "'"+2k(k) 
k->0 

This is a direct sum in the category of mixed Hodge structures. Moreover 
it is clear that 

N': 9tq"~ GrW_,(Ker N ) ( - r )  

is an isomorphism of Hodge structures for every r > 0. So finally: 

(5.14) Proposition. For every q, r6Tl the pure Hodge structures of weight q+r on 
GrW+rIHq(Y,, A~) as constructed above and by Schmid [15] coincide. 
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