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Introduction

We fix throughout a commutative ring K. Let A be a finitely presented K-algebra.
Suppose that, for each maximal ideal m of K, the K -algebra 4, is isomorphic
to a polynomial K, -algebra. Then A is isomorphic to the symmetric algebra
S(P) of a finitely generated projective K-module P. This result, to which the title
refers, is contained in Theorem (4.4) below. Geometrically it asserts that every
locally trivial fibre space over spec(K) with affine space fibres arises from a vector
bundle. The theorem is trivial if 4 is locally a polynomial algebra in one variable.!
The only other case previously known to us is the case, treated in [W], when K
is a principal 1deal domain. The theorem solves a problem posed in [EH] p. 67,
and in [W],§6.2

The paper [ES] contains many results on locally polynomial algebras, but
without our finite presentability assumption. The example (3.15) of [ES] furnishes
a Z-algebra A which is a noetherian UFD, locally a polynomial ring in one variable
over Z, yet not finitely generated over Z, and, in particular, not the symmetric
algebra of any Z-module.

The above result is one of several “localization theorems” we prove here,
by methods inspired by the proof of Quillen’s localization theorem ([Q], Th. 1).
The latter, along with a theorem of Horrocks, was the basis for Quillen’s proof of
Serre’s conjecture in [Q]. We also use a technique developed in [BW].

Roughly speaking, these localization theorems say that two objects A and B
over K which are locally isomorphic (i.e. 4,,=B,, over K,, for all maximal ideals
m of K} are isomorphic over K. For example, in Theorem (4.1) A4 is a finitely
presented (not necessarily commutative) K-algebra equipped with a “nicely
* Paniall;;upporled by NSF Grants MPS 75-08545, MCS 75-05263, and 76-06307, respectively
** To whom offprint requests should be sent

One can easily reduce to the case when K is reduced (see [ W1, Lemma 6.7). Then A admits an
ascending filtration K=A4,< 4, A, c--- such that locally A4, consists ol the polynomials of degree
Zn for any choice of the variable. The K-module P=A,/K is then finitely generated and projective,
S0 we obtain a homomorphism S(P) — 4 which must be an isomorphism since it is one locally
?  The authors have recently learned from A. Suslin that he has also proved this result
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behaved” filtration, and B is the associated graded algebra gr(A). In a particular
case of Theorem (4.13), A is a finitely presented K[ T J-algebra, and B=(A/TA)[ T].
In a particular case of Theorem (4.14), 4 is a finitely presented left E[ T]-module,
where E is any K-algebra, and B=(A/TA)[T]. The special case of this when
E=K is just Quillen’s localization theorem.

Another useful result obtained (from Theorem (4.14)) is the following. Call a
K-algebra A invertible if 4 is a tensor factor of some polynomial algebra
K[X,,...,X,]. Theorem (4.9) asserts that a finitely presented K-algebra which is
locally invertible is invertible.

These results were announced in [ BCW].

The proofs systematically use an argument from [Q], which we have formalized
in § 3, and christened “Quillen induction.” Using the finite presentability assump-
tions, this permits one to pass from local isomorphisms to isomorphisms on a
finite open covering of spec(K), but more importantly, to a covering by two
principal affine open sets. In other words one is reduced to the case where one has
So,s; €K such that Ks,+ K s, =K, and isomorphisms u;: B, — A, over

K, (i=0,1).

To get an isomorphism B — A4 over K we wish to have u,,, =u,,,. We are only
at liberty to modify u; by an automorphism of B, . For any K-algebra L let G(L)
denote the group of automorphisms of L ®y B over L. For example we have
ugy, 4y o € G(K,, 4,)- The problem we pose requires more or less that

G(K,,5)=G(K,),, - G(K, ),
This is unreasonable to expect in general. However, in all the examples treated, B
admits a grading, B=B,® B,@® ---, relative to which we can define a natural action
of the scalars in L on G(L), and, in terms of this, a certain subgroup G,(L) of G(L).
The isomorphisms u; above can be normalized so that u,, u, ,, belongs to Gy(K,_,,).
Then, under a certain mild condition on G, which we call “Axiom @7, it can be
shown that

(*) GO(K ) = G()(ng)sl . GO(KM)M) .

S0 81

The paper is organized as follows:

In §1 we establish Axiom Q for the group functors of interest to us. They
include all classical groups, as well as the automorphism groups of polynomial
algebras. In § 2 we define scalar operations on a group functor G and prove (x),
assuming Axiom Q. In the brief §3 we formulate Quillen induction abstractly.
In § 4 the localization theorems are proved.

We gratefully acknowledge the hospitality of the University of Miami during
an essential stage of this research.

Notational Conventions. All rings and algebras will be understood to be commu-
tative (with unit ) unless the contrary is indicated. If L is a ring and S is a multiplica-
tive set in L we write Ly for the corresponding ring of fractions. If S={s"|n=0}
for some se L we also write L, in place of Lg.

Let G be a functor from K-algebras to groups. Let L be a K-algebra and S
a multiplicative set in L. The homomorphism G(L)— G(Lg) will be denoted
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u - ug for ue G(L). Its image is thus denoted G(L){< G(Ly)). When S consists of
powers of some se L we also use s in the subscripts in place of S.

Let T be an indeterminate, let ' be an L-algebra, and let f be the L-algebra
homomorphism L[ T] — L sending T to an element te .. An element u of G(L[T))
will often be denoted also u(T), and its image under G{f): G(L[T])— G(L) will
then be denoted u(f). When L= L[ T} this defines u(s T) for any seL; take r=sT.
When L= L and t =0 we denote the kernel of G(f) by

G(TL[T])={u(T)e G(L[ TPu(0)=1}.

§ 1. Axiom Q

(1.1) Axiom Q. Let G be a functor from K-algebras to groups. We say that G
satisfies axiom @ if, given a K-algebra L, an element s of L and an element u(T)
of G(TL [T]), then there is an integer r=0 and an element ¢(T) in G(TL[T])
such that u(s" T)=ov(T),.

The applications of this axiom will be made in § 2 and § 4. The balance of this
section is devoted to verifying axiom Q for the examples of interest to us.

(1.2) Remark. Let K" be a K-algebra. For any K-algebra L put =K' ®, L.
If seL then we can identify (L,) with L', where s'=1®se L. Moreover we can
identify L[ T] with L[ T]. Let G' denote the functor on K-algebras L defined by
G'(L)Y=G(L). Then if G satisfies axiom @ so also does G". For suppose se L and
u(NyeG(TL[T)=G(TL, [ T]). Then there is an r=0 and a

o(T)e G(TL[T])=G(TL[T])
such that ¢o(T),(=v(T),) equals u(s" T) (=u(s"" T)).

(1.3) Remark. Let H be a subgroup functor of a functor G satisfying axiom Q.
To deduce axiom Q for H it clearly suffices to have the following condition:
Given v(T)e G(TL[T]) such that o(T),e H(TL,[T]). there is an m=0 such that
u(s" TYe H(TL]T]).

(1.4) Remark. Let H be a normal subgroup functor of G, and define G'=G/H by
G'(L)=G(L)/H(L) for all K-algebras L. If G satisfies axiom Q one sees easily that
G’ does likewise. If, on the other hand, G’ and H satisfy axiom Q then so also
does G. In fact, suppose given u(T)e G(TL,[ T]) as in (1.1). Applying axiom Q to
the image v (T) of u(T) in G(TL,[ T}), we obtain an r, 20 and a ¢}, (T) in G(TL(T])
such that vj(T),=u(s" T). The decomposition of G(L[T])) into the semi-direct
product of G(L) with G(TL[T]) is canonical, so the surjectivity of

GILIT]) > G'(LLTD

implies that of G(TL[T])— G(TL[T]), whence a lifting of t}(T) to some

t(T)e G(TLLTY). Let u(T)=u(s" T) v, (T); !5 its image in G(TL,[T]) is trivial,

soitliesin H(TL,[ T]). By axiom Q for H we obtainan r, 20and a v,(T)e H(TL[ T])

such that v,(T),=u,(s"> T)=u(s"**"2 T) r,(s" T)~'. Putting r=r, +r, and
o(T)=vy(T) v, (s T)

we thus verify axiom Q for G.
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(1.5) For any not necessarily commutative ring E we denote its group of units
by E*. If J is a two sided ideal we put

(1+J)* =Ker(E* — (E/J)™).

Lemma (Quillen, [Q]). Let E be a not necessarily commutative ring, let s be a
central element of E, and let T be an indeterminant. Given u(T) in (1 + TEJ[T])*,
there is an rz0 and a v(T) in (1 + TE[T))” such that u(s" T)=uv(T);.

Write w(T)=1+Tu,(T) and u(T)"' =1+ Tuy(T). For r; sufficiently large the
elements s u, ("' T) and s ui(s" T) lift back to elements w,(T) and wi(T),
respectively, in E[T7]. Putting w(T)=1+4 Tw(T) and w'(T)=1+ Tw{(T) we then
have w(T),=u(s" T) and w(T)=u(s" T)"'. Hence w(T)w'(T)=1+Tx(T) and
w(T)w(T)=1+ Ty(T) with x(T),=y(T),=0. We can thus choose r,=0 so that
s annihilates x(T) and y(T), hence also x(s"> T) and y(s T ), clearly. Put

(T)y=w(s™T) and v'(T)=w'(s"T).

We have v(0)=v'(0)=1 and o(T),=w(s” T),=u(s""*"2T). The lemma will be
proved if we show that v(T) is invertible. But o(T) v'(T)=1-+5" Tx(s" T)=1 and
(M) o(T)=1+s>Ty(s™ T)=1.

(1.6) Proposition. Let E be a not necessarily commutative K-algebra. Let G be
the functor attaching to each K-algebra L the group G(LY=(L & E)”* of units of
L®g E. Then G satisfies axiom Q.

This is immediate from Lemma (1.5).

(1.7) Corollary (Quilien, [Q]). Let A be a not necessarily commutative K-algebra,
and let M be a finitely presented left A-module. Let GL,, denote the functor attaching
to each K-algebra L the group GL\ (L) of (L ®gA)-module automorphisms of
L ®g M. Then GL, satisfies axiom Q.

Let E=End ,(M). For each K-algebra L there is a canonical L-algebra homo-
morphism L ®x E — End, o, , (L ®; M) which, since M is finitely presented, is an
isomorphism when L is flat. Thus we can identify GL,, with the functor G of
Proposition (1.6) on the category of flat K-algebras. This verifies axiom Q in the
special case L=K in (1.1). The case of an arbitrary K-algebra L follows similarly,
once we replace K by L and GL,, by GL; g, »-

(1.8) Remark. Suppose, in (1.7), that M is equipped with a form - M x M — A4
which is sesquilinear relative to some antiautomorphism a—a of A4, i.e. h is bi-
additive and h(a x, b y)=ah(x, y) b for a, be A, x, ye M. This induces a similar form
h,, on the (L®g A)-module L& M, and we may consider the subgroup U(L) of
GL, (L) formed by those elements u leaving h; invariant: h; (ux, uy)=h;(x, y)
for x, ye L®g M. Then U(L) likewise satisfies axiom Q. In view of (1.3) it suffices
to show that if u(T)eGLy (TL[T]) and if u(T), preserves h, r, then u(s"T)
preserves hy . for some m=0. For x,ye L[T]@yM="(LR®M)[T]” put
d, (T)=hy p)(ux,uy)—hy 1(x, y). This lies in T(L[T] ® A) since u(0)=1, and
it is annihilated by some s™ (m depending on x, y), so that d, (s T)=0. In view
of the sesquilinearity of h; (,, it suffices, for our purposes, to make d, ,(T) vanish
when X, y run through a finite set of generators of M. Hence there is an m >0 such
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that d, (s" T)=0 for all x,ye L[T]®xM, and so u(s" T) preserves hy(yy, as
required. Similarly, if 4 is commutative and Q is a quadratic form on M, then the
orthogonal group 0 (M, Q) satisfies axiom Q.

(1.9) Finitely Presented Algebras. Let A be a (not necessarily commutative)
finitely presented K-algebra, and let x=(x,, ..., x )€ A? be a sequence of elements
generating 4 as K-algebra. Then A is the quotient of the free K-algebra on non
commuting indeterminants X, ..., X, by a two sided ideal generated by some
finite set fi,..., f;, where f;=f;(X)=/f/(X,,..., X,). Let B be a K-algebra and
let u: A-— B be a K-algebra homomorphism. Then u is determined by u(x)=
(u(xy), ..., u(x,))e B, and we thus obtain a bijection u > u(x) from Homy_,,(4, B)
to

H(A, By={yeB’| [;(y)=0. j=1,....4}.
For later use we record the following lemma here.

(1.10) Lemma. Let A and B be K-algebras as above with A finitely presented.
Let S be a multiplicative set in K, which we order by divisibility. The canonical map

(*) 114“} Homy, _,, (4, By) —» Homy (A, Bs)

sed
is bijective. If B is also finitely presented then (*) is bijective also with Isom (the
set of isomorphisms ) in place of Hom.

We can identify Homy_,, (A5, Bs) with Homy ., (4, Bs), and so, as in (1.9),
with H(A, Bs). To show injectivity of (*), let seS and y, y'e H(A, B) be such that
ys=ys in H(A, Bg). Then clearly y,=y, in H(A, B, for some teS, whence the
injectivity of (). To show its surjectivity, given ye H(A, Bg), we must find seS§
and ze H(A, B, such that zg= v. First there is clearly a teS and a we BY such that
wg=y in Bf. The finitely many elements f;(w) in B, vanish on passage to Bg,
hence already in B,, where s=11 for some t'eS. Then z=w, belongs to H(A, B,)
and zg=y, as required. To prove the last assertion it suffices to show that an iso-
morphism u: Ag— Bg can be lifted to an isomorphism v: A,-— B, for some seS.
By what has been proved we can find a te§ and homomorphism w: 4, — B, and
w': B, — A, such that wg=u and wg=u""'. Then ww" and w’w become the identities
after S-localization, hence already over K, where s=tt for some t'eS. Then
v=w, is the required 1somorphism lifting u.

(1.11}) Lemma. Let A be a (not necessarily commutative) finitely presented K-
algebra, let se K, and let T be an indeterminate. Let u(T) be u K [T]-algebra
automorphism of A, [ T] such that u(0) is the identity automorphism of A (= A,[T]/
TAJTY). Then there is an ¥ 20 and an automorphism v(T) of the K [T ]-algebru
ALT] such that v(0y=1, and u(s" Ty=v(T),.

(u(s" T) denotes the automorphism obtained from u(T) via the base change
K,[T]1— K, ,[T] sending T to 5" T.)

With the notation of (1.9) we can identify #(T) with the element y(T)=u(T)(x)
in H(4, A,[T])< A, [ T]". The condition u(0)=1,_means that y(T)=x,4+ Ty, (T)
for some y, (T)e A,[T]". Choose r, large enough so that " y, (s"* T)=w, (T), for
some w, (T)e A[T]?, and put w(T)=x+Tw (T)in A[T]?, so that w(T),=y(s" T).
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Now fi(w(T)=f;(x+Tw (T)=f;(x)+Tf; (w(T)=T f; (w(T)). Since [f;(w(T)),
=0 there is an r, 20 such that " f{ (w(T))=0, and so also s f] (w(s"> T))=0.
We can choose one r, to work for all j=1,..., ¢q. Replacing w(T) by w(s"™ T) we
then obtain f;(w(T))=0 for all j, i.e. w(T)eH(A, A[T]). Putting r'=r+r, we
also have w(T);=y(s" T). Similarly we can find w'(T)=x+ Tw/ (T)in H(A4, A[T))
such that w(T),=y'(s"" T), where y{T)=u(T)=u(T)"'(x). We can then adjust
choices so that ' =¢'. The endomorphisms of A[T] corresponding to w(T) and
w'(T) have composites corresponding in turn to elements of H(A, A[T1]), which
we shall denote w(T)ow (T)=x+Tz(T), and w(T)ow(T)=x+Tz'(T). On
localizing to A;[T], w(T) and w'(T) correspond to inverse automorphisms, so
z(T);=2'(T),=0. Choose m=0 so that s" z(s™ T)=s"z(s" T)=0. Then, with
the notational conventions above, w(s™ T)ow'(s" T)=x=w'(s" T)ow(s" T). It
follows that w(s™ T) defines an automorphism v(T) of A[T7], and we clearly have
v(0)=1, and v(T),=u(s’ T) where r=m+r'. This proves Lemma (1.11), from
which the next result is now immediate.

{1.12) Proposition. Let A be « (not necessarily commutative) finitely presented
K-algebra. Let G denote the functor attaching to each K-algebra L the group G(L)
of L-algebra automorphisms of L. ®gA. Then G satisfies axiom Q.

The preceeding proposition and lemmas are valid for nonassociative algebras,
e.g. Lie algebras, as well. One need only interprete the “free algebra™ in (1.9) in
the sense appropriate to the category of algebras being considered.

The results are valid also for graded algebras and graded algebra homomor-
phisms. One need only take care to use homogeneous elements throughout.

The results also have analogues for filtered algebras, but these extensions of
the results are not so straightforward. This setting, which is significant for our
main applications, 1s treated next.

(1.13) Filtered Algebras. Let A be a (not necessarily commutative) K-algebra
equipped with a (descending) filtration,

A=A>42; A,A,cA,,,.
For aeA put ¢(a)=sup {njaecd,}. We call the filtration separating if [} 4,=0,

Le. if o (@) <co for all a+0. We call it absolutely separating if, for all K-algebras L,
thefiltration of the L-algebra L ® A given by the images of the L ®y 4, is separating.

For each n=0 let A, (= A4,) denote the sum of all the ideals 4, --- 4, , where
py+---+p,2n, but p;<<n for each i. We say the filtration is of finite type of there
is a finite subset X of A4 such that

A=At Y AxA

xeX A,

for all n>0. Note then that, for any K-algebra L, the filtration induced (as above)
on the L-algebra L ®g A is still of finite type; one uses 1 ® X to see this.

(1.14)  Examples. 1. Suppose A4 is a K-algebra with a two sided ideal A, generated
by a finite set X. Then the filtration defined by 4,= A} is clearly of finite type.

2. Suppose A=A, DA, @ - is a graded K-algebra, with filtration defined by
Ap=A4,® A, P - (n20). This filtration is visibly absolutely separating. If X



Locally Polynomial Algebras 285

is a finite set of homogeneous generators of 4 as K-algebra then this X serves to
show that the filtration (A4,),-, Is also of finite type.

3. In order that a filtration of a K-algebra 4 be (absolutely) separating it
suffices that, for each maximal ideal m of K, the induced filtration of the K-
algebra A, be (absolutely) separating. This is the case, for example, if 4 is locally
isomorphic to a filtered algebra as in example 2 above.

(1.15) Lemma. Let A be a (not necessurily commutative) K-algebra equipped
with a filtration of finite tvpe, and let X be as in the definition (1.13). Let B be u
( not necessarily commutative ) filtered K-algebra, and let u: A — B be a K-algebra
homomorphism.

(@) Inorder that u preserve filtrations, e that u(A,Y< B, for all n, it is ( necessary
and ) sufficient that u(x}e B, for alf xeX. {(We put B, = nB, .}

(b} Suppose the filtration of A is separating. Let S be « multiplicative set in
K, and suppose that ug: Ag— By preserves filtrations. Then there is an se§ such
that u.: A,-— B, preserves filtrations.

(c) Keep the assumptions of (b) and suppose A is a finitely presented K-algebra.
The canonical map

(%) Lm} Hom{ _,,(4,, B)— Hom{ _,, (4., Bg)

seS

is bijective. (The superscript [ designates that the algebra homomorphisms are
filtration preserving.) Suppose the filtered K-algebra B satisfies all the assumptions
made on A. Then (%) remains bijective with Isom ( the set of isomorphisms) in place
of Hom.

The necessity in (a) is obvious. For sufficiency we prove u(A4,)< B, by induction
on n, the case n=0 being trivial. For n>0 we have u(A4,)cu(A4,)+ Z Bu(x)B.
reXnd,

We have u(x)eB, for xe X n A, by hypothesis, and u(A4,)< B, by the induction
hypothesis, whence (a).

To prove (b), consider x+0 in X. Then ¢(x)=n<oc and u(x) lands in (By),
=(B,)s. Hence su(x)e B, for some se§. Since X is finite we can choose one s to
work for all x+0 in X. Then the composite homomorphism A > B—> B,
preserves filtrations, by (a), and consequently, by localization, u,: A, -» B, does
likewise. In view of (b), assertion (c) results immediately from Lemma (1.10).

(1.16) Lemma. In the setting of Lenmna (1.11), suppose A is equipped with «
separating  filtration of finite type. Let u(T) be a filtration preserving auto-
morphism of A, [T] such that u(0)=1, . Then there is an r20 and a filiration
preserving automorphism v(T) of A[T] such that v(0)=1, and u(s" T)=v(T),.

Lemma (1.11) furnishes an ' 20 and a ¢'(T) such that ¢'(0)=1, and u(s" T)
=1'(T),. Let X be as in the definition of finite type filtration (1.13). Let x+0 be
an element of X, and let n=¢ (x)<o0. We have v'(T)(x)=x+ Ty (T) since ' (0)
=14.Since v'(T), preserves filtration it follows that y (T)landsin A, [ T],=(A4,),[ T].
Therefore there is an m =0 such that 5™ v(T)e 4, [ T], and so also s™ y(s™ T)eA,[T].
Since X is finite a single m will accomplish this for all x40 in X. Then if v(T)
=v'(s" T) we have v(0)=1, and ¢(T),=u(s" T) where r=m+r". Further if x+0
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in X we have o(T)(x)=x+s" Ty(s" T)eA[T]
(1.15) (a) that v(T) preserves filtrations.
Now, just as Proposition (1.12) was derived from Lemma (1.11), we obtain:

o> 50 it follows from Lemma

(1.17) Proposition. Let A be a finitely presented K-algebra with an absolutely
separating filtration of finite type (see (1.13)). Let G denote the functor attaching
to each K-algebra L the group G(L) of automorphisms of the filtered L-algebra
L ®kA. Then G satisfies axiom Q.

§ 2. Scalar Operations on Group Functors

(2.1) Let G be a functor from K-algebras to groups. A scalar operation on G
consists of an action L x G(L)— G(L), denoted (s, u)r— *u, for each K-algebra L.
Thus

Yw=u; Suwy="u;, and ‘urv)=%u ‘e

for s,tel, u,veG(L). Further these actions are to be natural, in the sense that if
f:L— L isa K-algebra homomorphism and if G(f): G(L)— G(L) sends ue G(L)
to u'e G(L) then it sends *u to /' for se L.

The action of L on G(L) amounts to a multiplicative monoid homomorphism
L—End (G(L)). In particular u+— %u is an idempotent endomorphism of G(L),
whose image we denote °G(L), and whose kernel we denote

Go(Ly={ueG(L)|u=1}.

Thus G(L) is the semi-direct product G,(L) x “G(L). and this decomposition is
functorial in L.

(2.2) Example. Let G be any functor from K-algebras to groups, and let T be an
indeterminate. Define a new functor G' by G'(L)=G(L[T]). f u=u(T)eG (L)
and if se L we can define *u=u(s T). This is easily seen to provide a scalar operation
on G'. We then have “u=u(0) so °G(L)=G(L) and G, (L)=G(TL[T]).

More generally, let H=H,® H, ®--- be any graded K-algebra. If se K define
¢ H-—H by ¢ (a)=s"a for ae H,. Then ¢;= 1y, ¢,0¢,=¢,,, and ¢, is a K-algebra
endomorphism of H. Similarly, if L is any K-algebra then H @ L is a graded L-
algebra equipped with an endomorphism ¢, for each sel. If f:L—L is a K-
algebra homomorphism sending s to s’ then (1, ® flog, = o(1;,® f): HRx L—
H®y L. Given G as above we can define G’ now by G'(L)=G{(H ®g L). Then ¢’
admits the scalar operations such that se L acts on G'(L) as G(¢,). When H=K [T]
this is just the example above.

(2.3) Example (cf. [BW]). We consider graded (not necessarily commutative)
K-algebras A=A, A4,® ---, and equip them with the descending filtration
Am=A4,8A4,, @ (n=0,1,2,...). Let B=B,@® B, @ --- be another such graded
K-algebra, and let u: 4 — B be a filtration preserving algebra homomorphism:
u(A,) < B, for all n. As a linear map u can be decomposed into homogeneous
components, u=uq+u, +u, +---, where u, is a K-linear map A — B such that
u,(A,)<=B,,, for all n, p=0, and for a given aeA, u,(a)=0 for all but finitely
many #n. The fact that u 1s an algebra homomorphism is expressed by the fact that
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u(l)=1 and
(*) ulab)= 3 u,la)u,(b)

p+g=n
for alt n=0, a,be A. It suffices to know (*) for homogeneous elements of A.
Let se K. Define *u by (*u), =" u,, in other words

U=ty s U+ 53Uy 4o

Then *u(l)=1, and Cu),(ab)=s"ulaby=s"- 3 ula)u,(by= 3  (u),(a)
p+g=n prg=n
(*u), (b), so *u is again a filtered algebra homomorphism from 4 to B. Visibly we

have 'wu=u and '(‘u)="u, for s,1e K. Moreover “u=u,, which is just the homo-

morphism of associated graded algebras induced by u. Suppose t:B—C is a

second filtration preserving homomorphism of graded algebras. Then (v u),

= > r,U, s0s"(vu),= Y (s v,){s? u,), whence (v u)="r*u. It follows from
+q=n +4=n

thips tqhat if uis an isomorpphiqsm and if u™! is also filtration preserving, then the

same properties hold for *u.

Let L be a K-algebra. Then L ®g A and L ®, B are graded L-algebras, so the
scalars se L operateasabove on thefiltration preserving L-algebra homomorphisms
U L®gA—L®gB. If f:L—L is a K-algebra homomorphism then one sees
easily that, for se L, the following diagram is commutative.

f®x14 ! ! f®klp
v
L ®RA 77{5’(11" @, u) L ®I‘B

Now for a fixed graded algebra A as above, denote by G* the functor attaching
to each K-algebra L the group G*(L) of automorphisms of the filtered L-algebra
L®y A. The discussion above shows then that the maps u—‘u(seL, ueG*(L))
define a scalar operation on the functor G*. Thus G*(L) is the semi-direct product.

GY(L)=Gg (L) x °G*(L)
where °G*(L) is the group of automorphisms of the graded L-algebra L ®y A,

and such that u— “u is the projection on the second factor with kernel the first
factor.

(2.4) Theorem. Let G be a functor from K-algebras to groups which satisfies
axiom Q (see(1.1)). Let G be equipped with a scalar operation (as in (2.1)). For any
K-algebra L let Gy (L)={ueG(L)®u=1}. Suppose sq,s,eL and L=Lsy+Ls,.
Then

GO (Lsosx)z GO (ng) ’ GO (L.\*l)

We first prove a lemma, modeled after its analogue, Lemma 1 of [Q].

s1 S0

(2.5) Lemma. Let G be as in Theorem (2.4). Let L be a K-algebra, se L, and ue G(L)).
There is an integer r=0 such that, if a,belL satisfy a=b mod Ls" then there is a
vin Gy (L) such that v,={("u) (Pu)~ 1.
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Let Y, T be indeterminates and put w=w(Y, T)=("*"Pw)(Yu) e G(L,[ Y. T))
(where we identify G(L,) with a subgroup of G(L,[Y, T])). Clearly w=1 and
w(Y,0)=1. Applying axiom Q to weG(TL,[Y,T]) and seL[Y] we obtain an
r=0 and a v(Y, TYeG(TLLY, T]) such that v(Y, T);=w(Y,s" T). Replacing v
by v-(®v)7!, if necessary, which doesn’t affect the above conditions, we can
further arrange that °v=1. Now suppose a,becL and a=b+s"t for some teL.
Then we have v(b, )e Go(L) and (b, 1), =w(b, s )=(""""u) (Pu)~ ' = (“u) (Pu) ',
whence the lemma.

(2.6) Proof of Theorem (2.4). Given ueGy{L, , ), we apply Lemma {2.5) to the
localizations L, — L, ,, (i=0,1) to obtain an r=0 such that if ¢, el satisfy,
a=b mod L, -s]_;, then there is a v in Gy(L,) such that (“u)(®u) '=v, . To
apply this use the condition Ls,+Ls,=L to obtain aeLs) such that b=1—a
lies in Ls], and write

u=Llu ()™ [ ()

Since 1=a mod Ls{ there is a v, in G,(L, ) such that vy, ='u(“u)"'. Similarly,
since =0 mod Lsj there is a v,eG,(L,,) such that v, =“u("u)~!. Thus u=uv,,,
01, €Gol(Ly ), - GolLy,)s,. a5 was to be shown.

(2.7) Corollary. Let G be a functor from K-algebras to groups satisfying axiom
QUL1). Let H=H,® H, & --- be a graded K-ulgebra with Hy=K, and let ¢: H— K
be the retraction with kernel H, =H ® H,® ---. For any K-algebra L put

G(H, ® L)=K er(G(H® L)-£<21, G(Ly),
where ® denotes Q. If s,, s,€ L generate the unit ideal of L then

G(H+ ®Lsus1):G(H+ ®Ls())51 ) G(H+ ®Lx1)

In particular, if H is the graded polynomial algebra K[T7], we have
G(TL,,,[TD)=G(TL, [T, - G(TL,,[T]),,.

The functor G'(L)= G(H® L) satisfies axiom Q (Remark (1.2)), and it admits the
scalar operations of Example (2.2} such that G,(L)=G(H, ® L). Thus the corollary
is a special case of Theorem (2.4).

Corollary (2.7) applies notably to the functor G=GL,, of (1.7), to the functor G
of (1.12), and to the functor G of (1.17).

(2.8) Corollary. Let A=A;@® A, @ be a (not necessarily commutative) graded
and finitely presented K-algebra. For euch K-algebra L let GY(L) denote the group
of L-algebra automorphisms of L ® ¢ A preserving the filtration

L®kAw, An=4,0A4,,,® (n20).

Let G3(L) denote the subgroup consisting of those automorphisms inducing the
identity associated graded automorphism. Let L be a K-algebra and let s, s;€L
generate the unit ideal. Then

Gé(Lsosl): Gg(Ls(y)sl - Gg(le)xo .
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According to Example (1.14)2, the filtration of 4 is absolutely separating and
of finite type, so Proposition (1.17) implies that the functor L+ G*(L) satisfies
axiom Q. On the other hand Example (2.3) shows that G* admits a scalar operation
such that G&(L)={ue G(L)°u=1}. Therefore Corollary (2.8) is a special case of
Theorem (2.4).

For the applications to locally polynomial algebras we shall need a technical
elaboration of Theorem (2.4), given in Proposition (2.10) below

(2.9) Lemma. Let GA be a functor from K-algebras to groups which satisfies
axiom Q. Let G be a subgroup functor of GA which admits scalar operations. Let L
be a K-algebra, seL, weGA(L,), and ueG(L) be such that “u=1. There is an
r=20 such that if ue Ls" then w™! ‘uw=r, for some ve GA(L).

Let T be an indeterminate and put #{T)=(w ') (Tu) we GA(L [ T]). Since
Yu=1 we have u'(T)e GA(TL,[T]), so axiom Q furnishes an r=0 and a

{TYye GA(TL[T])

such that v'(T),=u'(s"T). Suppose a=s"t with te L. Then with v=t'(t)e GA(L) we
have v,=¢'(t),=u'(s" t}=u'(¢) =w ™! “uw, whence the lemma.

(2.10) Proposition. Let GA be a functor from K-algebras to groups which satisfies
axiom Q. Let G and H be subgroup functors of GA such that G satisfies axiom Q and
admits scalar operations, and such that GA(LY=Gy(L)- H(L) for any K-algebra L,
where Go(L)={ue G(L)|®u=1}. Let L be a K-ulgebra and let s, s, e L. generate the
unit ideal. Then

GA(L&()Sl ()(Lb())81' ( \0\1) GA(L )

By assumption an element of GA(L, ) can be written as a product uw with
ueGy(Ly, ) and we H(L, ;). Let ae L and write

Son

la

uw="uCw)"'w-w 1w,

Let r be a large positive integer. If ae L s}, then Lemma (2.9), applied to the localiza-
tion Ly, — L, ,,. permits us to write w™' uw=1, for some r;eGA(L,). If, on
the other hand, a=1 mod L] then Lemma (2.5), applied to G and the locahzdtlon
L, — L, . permits us to write 'u(“u)"! =u,,, for some v,e Gy(L,,). Since

50
Lsy+Ls =L
we can simuliancously solve the above congruences for a, and so write
UW=Dy, WDy,
as required.

(2.11) Example. Let A=A,@® A, ®--- be a (not necessarily commutative) graded
K-algebra. In addition to the descending filtration (4, =A4,D A, ; ® - )yz0. it
admits the ascending filtration (4™ =A4,@®---@® A4,),5,. For any K-algebra L the
group GA(L) of all L-algebra automorphisms of L® 4 contains the subgroups
G(L) and H(L) preserving the descending and ascending filtrations, respectively,
of L®kA. The functor G admits scalar operations (Example (2.3)). If the K-
algebra A is finitely presented then GA and G satisfy axiom Q (Propositions (1.12)
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and (1.17); see Example (1.14)2). Thus we can apply Proposition (2.10) above
provided that

(x) GA(L)=Go(L)- H(L)

for all K-algebras L. We claim that (x) holds if A4 is the symmetric (or tensor)
algebra of the K-module M=A,. For in this case we can identify the group of
graded algebra automorphisms of 4 with GL(K), the group of linear automor-
phisms of M, and we have an embedding of M* =Hom(M, K) into H(K) sending
te M* to the automorphism f of A determined by t(x)=t(x)+xe KOM=A4,® A4,
for xe M. We then have semi-direct product decompositions

G(K)=Gy(K)»x GLy(K)

(cf Example (2.3)), and H(K)=GL,(K) x M*. Except for the presence of M*.
in place of M, the latter is just the affine group of M, so we shall write Af,(K) in
place of H(K). Now let u be any automorphism of 4, i.e. ue GA(K). For xeM
write u(x) =t(x)+u,(x) with t(x)e K and u,(x)eA;,. Then te M* and if v=u o (—1)
we have, for xe M, v(x)=u(—t(x)+x)= —t{x) + t{x) +u, (x)=u,(x), s0 ve G(K).
Thus u=0vote G(K)- M*=Gy(K)- GL\(K)- M*=G(K) - A f(K). This proves (x)
for L=K. For any K-algebra L, the L-algebra L ® A inherits all the hypotheses
made on A over K, so (x) follows for all L.

(2.12) To apply the above discussion we now codify our notation a bit, to bring
it more into conformity with that of [BW]. Let M be a K-module, and let 4 denote
the symmetric algebra S(M) or the tensor algebra T(M), with the usual grading:
Ay=K, A;=M, ... For any K-algebra L let GA,(L) denote the group of all
L-algebra automorphisms of L ® A. Let GAy(L) denote its subgroup consisting
of automorphisms preserving the descending filtration (L®g A,),5. Where
Am=A4,®A,.,® -, and let GA},(L) denote its subgroup consisting of elements
whose associated graded automorphism is the identity. Let A4f,,(L) denote the
group of automorphisms of L. ® A preserving the ascending filtration

(L®A™),20, where A"=A,® - DA,.

As in (2.11) above we canonically identify A f,,(L) with the semi-direct product
GL (L) x (L ® g M)*, where (L@ g MY*=Hom,(L&x M, L).

Now, by virtue of the discussion in Example {2.11), we obtain the following
Corollary directly from Proposition (2.10).

Corollary. Let M be a finitely presented K-module, and let A be the symmetric or
the tensor algebra of M. For uny K-algebra L the group GAu(L) of L-algebra
automorphisms of L& ¢ A is the product

GAy(L)=GAy(L) - Afy(L),

where Afy (L) is isomorphic to GLy (L) x(L&® g M)*, as above. Suppose s,, s;€L
generate the unit ideal. Then

GAM(LS()Sl): GA;\/I(LSO)SI : A.f}\l(LaU sl) ° GAM(LA'l)SO'
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§ 3. Quillen Induction

Let Loc(K) denote the set of K-algebras of the form K, where S is a multiplicative
set in K. By “Quillen induction” we refer to the following proposition (see the
proof of Theorem 1 in [Q]).

(3.1) Propesition. Let P(L) be a property defined for K-algebras Lel oc(K). In
order that P(L) hold for all LeLoc(K) (in particular for L=K) it suffices that P
satisfy the following conditions.

1) Specialization. P(L) implies P(L} whenever there is a K-ulgebra homomor-
phism L —> L.

2) Finiteness. If S is a multiplicative set in K then P(Kg) implies P(K,) for some
ses.

3) Local validity. P(K,,) holds for all maximal ideals m of K.

4) Sheaf condition. If L.e Loc(K) and if s,, s, €L generate the unit ideal then
P(L,,) together with P(L, ) implies P(L).

Let S denote the set of se K such that P(K,) holds. By specialization, it suffices
to prove that 1€8S. By finiteness and local validity, S is contained in no maximal
ideal of K. Thus it suffices to show that § is an ideal, or that, given s,, s; €S and
seKsy+Ks; then se8S. Let L=K_, and let ; denote the imgage of s; in L. Then
we have L=Lt,+Lt,. Further L, =K, is a localization of K , so P(L,) follows
from P(K,) by specialization (recall that s5;€S). Now the sheaf condition gives
P(L), in the presence of P(L,)(i=0, 1).

Remark. This proposition is used typically in constructing global data on spec(K)
from given local data over the various K,,. Finiteness permits passage to a finite
open covering of spec(K)= U, u---u U, where we may take each U, to be affine, say
spec(K, ). It is technically useful to be able to reduce to the case n=2. This can
be done by arguing inductively on the open sets X, = U, w---uU;(1 £i<n). However
the X, need no longer be affine, and this is troublesome if the construction being
performed is not valid in general on non-affine schemes. It is for bypassing this
difficulty that Quillen induction is useful.

§ 4. Localization Theorems

{4.1) Theorem. Let A be a (not necessarily commutative) K-algebra with an
absolutely separating filtration of finite type (see (1.13)). Suppose that A and its
associated graded algebra gr(A) are finitely presented K-algebras. If A, and gr(A),,
are isomorphic filtered K -algebras for all maximal ideals mof K, then A and gr(A)
are isomorphic filtered K-algebras.

Let B=gr(A). The theorem follows from Quillen induction (Proposition (3.1))
applied to the following proposition, where LeLoc(K) (see (3.1)).

P(L): L®g A and L ®y B are isomorphic filtered L-algebras.

Of the four properties in (3.1) to be verified, 1 (specialization) is trivial, and 3
(local validity) is our hypothesis. To verify 2 (finiteness) suppose P(Kg) holds for
some multiplicative set S in K, i.e. there is an isomorphism u: Ag— By of filtered
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K-algebras. The filtration of B, like that of A, is absolutely separating of finite
type, (Example(1.14)2), and both algebras are assumed finitely presented. It
follows therefore from Lemma (1.15)(c) that u lifts to an isomorphism v: 4, — B,
of filtered K -algebras for some seS.

Finally we verify 4 (the sheaf condition). If LeLoc(K) then L is K-flat so we
can identify L @ gr(4) and gr{L® A). Therefore, up to a change of notation,
it suffices to prove 4 for L =K. We are given s,, s, €K such that Ks,+ Ks; =K,
and isomorphisms u;: B, — A, of filtered K -algebras (i=0, 1). Multiplying by
gr(u;)~ !, if necessary, we can assume gr(u;)= lg, where we identify

gr(A)=gr(B)=B.

For any K-algebra L let G(L) denote the group of automorphisms of the filtered
L-algebra L® B, and let G,(L) denote the subgroup of all u such that gr(u)=1,.
The 1somorphisms u; above furnish two isomorphisms

Uos,

Bsosl > gy s

uisy

of filtered K, -algebras, hence an element u=ug/ u, , € Go(K,,,,). By Corollary
(2.8) we can write u=v,,, vy e With ;€ Go(K,)(i=0,1). Put w;=u;v;: B, — A,
Then wo, Wy, =0gs, UV, = lgg 1.e. Wy, =W, ,. Thus w, and w, patch to form
an isomorphism w: 4 — B of filtered K-algebras such that w, =w;(i=0, 1).

(The last step of the argument derives from the standard fact that, for any
K-module M, the localization square

M — M

| oSt
|
| i

M, — M

S08;

is cartesian. Thus if N is another K-module, Homg (M, N) canonically identifies
with the fibre product of the Homg (M, , N, ) (i=0, 1) over HomKMl(M N,

S0 81° sosl)')

(4.2) Remark. In Theorem (4.1) the finite generation of gr(A) follows from the
other assumptions on A4, but not its finite presentability. For example suppose
ay, ..., a, generate an ideal in K that is not finitely presented as a K-module. In
the polynomial ring S=K[X, Y, ..., Y] let J be the ideal generated by

fi=a; X+ Y (j=1,....,q)

and put 4=S/J. Give A the H-adic filtration, where H is the ideal generated by
the images of X, Y;,..., Y,. Then A4 is a finitely presented K-algebra, but gr(4)
is not.

(4.3) Corollary. Let A be a finitely presented (not necessarily commutative)
K-algebra equipped with an augmentation ¢: A — K; let A=XKer(e). The K-module
M=A/A? is finitely presented. Let B=U(M), where U =S (symmetric algebra),
or T (tensor algebra) or A (exterior algebra); give B the augmentation vanishing
on M. If A, and B,, are isomorphic as augmented K -algebras for all maximal
ideals m of K then A and B are isomorphic as augmented K-algebras.
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Choose generators x, , ..., xpe/i of the K-algebra A. Let T be the free K-algebra
on generators X, ..., X,. Mapping X, to x; we represent 4 in the form /I, and
A=T/I, where T is the ideal generated by the Xs. Then M is isomorphic to
T/T?*+I>~T,/R, where T, =Y KX;and R is the module of linear parts of elements

of I. Finite presentability of 4 implies that I is a finitely generated ideal, from
which one sees easily that R is a finitely generated K-module. Thus M is finitely
presented, and so B=U(M) is a finitely presented K-algebra. The local isomor-
phisms A~ B, plus the universal property of B= U(M)imply that gr(4)= () A4/A"
nz0
admits a graded algebra homomorphism f: B — gr{4) inducing the identity on M
in degree one. The local isomorphisms then further imply that fis an isomorphism,
so permitting us to identify B with gr(A). Thus the corollary will follow from
Theorem (4.1) once we confirm that the A-adic filtration on A is absolutely
separating of finite type. Since the ideal A is generated by the finite set x, , ..., X,
these properties follow from Examples (1.14) 1 and 3.

Remark. Lemma(4.6) below shows that, when U =S or T, any algebra isomorphism
A — U(M) can be modified to be compatible with the augmentations.

(4.4) Theorem. Let A be a finitely presented K-algebra. Suppose that, for all
maximal ideals mu of K, the K, -algebra A,, is isomorphic to the symmetric algebra
of some K -module. Then A is isomorphic to the symmetric algebra SIM) of a finitely
presented K-module M.

(4.5) Remarks. 1. Theorem (4.4) contains the result that finitely presented locally
polynomial algebras are symmetric algebras.

2. Theorem (4.4) has a non-commutative analogue in which the symmetric
algebra is replaced by the tensor algebra. The proof completely parallels that
given below for Theorem (4.4).

3. The module M in Theorem (4.4) is uniquely determined up to isomorphism
by A, as the next (well known) lemma shows.

(4.6) Lemma. Let M und N be K-modules, and let U=S ( for symmetric) or T
(for tensor). If UM) and U(N) are isomorphic K-algebras then M and N are
isomorphic K-modules.

Let u: U(M)— U(N) be an isomorphism. For xeM write u(x)=uv(x)—1(x)
with ¢(x)eK and v(x) in the augmentation ideal U, (N). Let ¢ be the automor-
phism of U(M) defined by 1(x)= x + t(x) for xe M, and put w=u - t. Then w(x)=1(x)
for xeM so w is an isomorphism of augmented K-algebras. We thus have K-
module isomorphisms,

M=U, (MU, (M =U,(N)/U,(N?=N.

(4.7)  Proof of Theorem (4.4). The theorem follows from Quillen induction
(Proposition (3.1)) applied to the following proposition, where LeLoc(K).

P(L): The L-algebra L® A4 is isomorphic to the symmetric algebra S(M) of
some finitely presented L-module M.

Of the four properties in (3.1) to be verified, 1, 2, and 3 follow just as in the proof
of Theorem (4.1), where for 2 one appeals to Lemma (1.10) in place of Lemma
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{1.15). One also uses the easily verified fact that every finitely presented K ¢-module
is the localization of one over K| for some seS. To verify 4, moreover, it suffices,
as in the proof of Theorem (4.1), to establish the implication: P(K,) and P(K,)
imply P(K) whenever s,, s, €K generate the unit ideal. Assume therefore that we
are given a finitely presented K, -module M; and a K -algebra isomorphism from
A,, to S(M)) (i=0, 1). Then the K, -algebras S(M,,,) and S(M, ) are isomorphic,
so Lemma (4.6) tells us that the K, ,,-modules M, and M, are isomorphic.
Using such an isomorphism f: M, — M, , the cartesian square

M —— S M,
| |
¥ i
My — MOS,—f” M

1o

1so

furnishes a finitely presented K-module M such that M, =M, over K, (i=0, 1).
Let B=S{M). For any K-algebra L let GA, (L} denote the group of L-algebra
automorphisms of L&y B=S(L ®x M). Write

GAW(L)=GAW(L)- A fy(L)
as in Corollary (2.12). By assumption we have isomorphisms of K| -algebras
u;: B — A, (i=0,1), whence an element u=ug! u,;, € GAL(K,, , ). According to

Corollary (2.12) we can write u=v,,, wo;s with v,e GAy(K, ). weAf (K
and v, e GAAK ). Let w,=w;v;: By — A, (i=0,1). Then

S()Sx)’

—1 __ g1 . _
wOsl W1 so—'bO.\‘l u Llso*WEAfM(Ksosl)-

Now A fp{L) is the group of automorphisms of S(L ® , M) preserving the ascending
filtration of this graded algebra. It follows that 4 admits an ascending filtration,
K=AcA" <., so that w, and w, are isomorphisms of K -algebras with
ascending filtrations. Put N=A"/4Y = AV/K_ The sequence

0—-K—->AY SN0

splits over K, (i=0, 1), so we can identify A" with K@ N. Let t: S(N)-» A be
the K-algebra homomorphism induced by the inclusion of N in 4. Then it is clear
that wi ! o ¢, is an isomorphism (i=0, 1), whence ¢ is an isomorphism. This proves
Theorem (4.4).

(4.8) Invertible Algebras {(see [BW] and [C]). For any K-algebra L and integer
nz0 let I'"" denote the polynomial algebra L[ X,, ..., X,] in n variables. Call an
L-algebra A invertible if A®; B= 1" for some L-algebra B and some n=>0. Note
then that the augmentation I} L {sending X, to 0) induces augmentations
of 4 and of B. By augmenting B in 4 ®, B we see then that A4 is a retract of 1",
and that A is a finitely presented L-algebra and a projective K-module. If 4 is the
augmentation ideal of A, one sees easily that the A-adic filtration on A is abso-
lutely separating and of finite type, in the sense of (1.13).

Consider an L-algebra C with augmentation &: C — L. By a tensor decomposi-
tion of C we understand a pair («, B) of endomorphisms of the augmented L-
algebra C such that o® =, f*=f, o f=fa=¢ (viewing ¢ as an endomorphism of
C), and such that the homomorphism « C®, # C— C induced by the inclusions
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of xCand fC in C is an isomorphism. Thus, to say that an L-algebra A is invertible
is to say that A =« C for some tensor decomposition (a, f$) of some C = [!",
Suppose S is a multiplicative set in L and that 4 is a finitely presented L-
algebra such that A4y is an invertible Lg-algebra. Thus there is an n20, a tensor
decomposition (a, f) of Cg, where C=I" and an Ls-algebra isomorphism
u: As— o Cg. Let ¢ denote the standard augmentation of C. By Lemma (1.10)
there is an seS and endomorphisms o', i of the augmented Lalgebra C, such
that af=o and f5=p Replacing s by ss for some s'€S, if necessary, we can
further achieve that ' ? =o', f?=f,and o« f'=f o« =¢,. Let 1o/ C.®, p C,~ C
be the homomorphism induced by the inclusions. Since f; is an isomorphism, it
follows that, f, is an isomorphism of L,,-algebras for some t€S>. In the same way
now, the isomorphism u: Ag—a Cg lifts to an isomorphism v: A4,,, — o, Cgy
for some t'eS. It follows therefore that the L, -algebra A, is already invertible.

(4.9) Theorem. Ler A be a finitely presented K-algebra. If A,, is an invertible
K -algebra for all maximal ideals m of K then A is an invertible K-algebra.

The theorem follows from Quillen induction applied to the following proposi-
tion, where Le Loc(K).

P(L): L& A is an invertible [~ algebra.
Of the four conditions in (3.1) to be checked, 1 is immediate, 3 is our hypothesis,
and 2 was just verified in (4.8) above. For 4 it suffices to prove that P(K, ) and
P(K,,}imply P(K)if s4, s, €K generate the unit ideal. Let n=0 and the K -algebra
B;besuch that A, ®, B;~KI" (=0, 1). Tensoring one of the B; with a polynomial
algebra we can arrange that ng=n,; call this #, and put C;=B;®¢, K", so that

A, ®g, C;=KET  (i=0,1).

Writing & for ®k,,,,» We now have K -algebra isomorphisms

S0 81

Cos, =By, ® KW

S¢St

gBOM ®Asosl ®B150
=KW ®B,,,~C

180"

Use such an isomorphism u: Cy,, — Cy,, to form the K-algebra C in the fibre
product diagram.

cC —— Cl
| |
{

I |
| |

v
CO COS;" ™ C‘Isg
so that C,=C,(i=0,1). Put D=A®C. Then D, =K>™" (i=0, 1). It follows
therefore from Theorem (4.4) that D = S(P) for some finitely generated projective
To am;l;/‘];emma (1.10) we use the fact that a retract 4 of a finitely presented commutative K-
algebra C is finitely presented. We must show that the kernel J of the retraction C-»A4 is a finitely
gel?erated ideal. This follows since C is (obviously) a finitely generated A-algebra, hence generated by
a finite subset X of J, and then X clearly generates J as an ideal
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K-module P. We have P@Q=K" for some Q and m=0, so S(P)®, S(Q)=
S(P @ Q)= K. If follows that D, hence also A4, is invertible, thus proving Theorem
(4.9),

(4.10) Stable Isomorphism. Let A be a K-algebra with augmentation ¢; write
A=XKer(g) for the augmentation ideal, and let J4 denote the K-module AJA%.
If B is another augmented K-algebra then so also is A ®g B, and there is a
canonical isomorphism JA@® JB — J(A R B} of K-modules {c.f [C] or [W]).
We say 4 and B are stably isomorphic if A® K" and B® , K" are isomorphic
(augmented) K-algebras for some n>0. Analogously, K-modules M and N are
said to be stably isomorphic if M @ K"= N @ K" for some n=0.

(4.11) Corollary. Let 4 and B be invertible augmented K-algebras. Suppose
that JA and JB are stably isomorphic K-modules, and that A, and B, are stably
isomorphic augmented K -algebras for all maximal ideals m of K. Then A and B
are stably isomorphic augmented K-algebras.

Since A and B are finitely presented K-algebras, an isomorphism of 4 ® K™
with B® x K" over K, lifts to an isomorphism over K, for some s¢m, by Lemma
(1.15)(c). Since spec(K) is quasi-compact it follows that we can find a single
n=0 such that A'=A®, K" and B'=B®g K™ are isomorphic over K, for all
maximal ideals m of K. Choose a K-algebra B” so that B'® B’ =~ K™ for some
mz0. Then A" ®xB" is locally a polynomial algebra, hence (Theorem (4.4))
isomorphic to S(P) for some finitely generated projective module P. We have
PxJS(P)=JA®K'®JB", and K"=JK™>JB®K"® JB". Since JA and JB
are stably isomorphic it follows that P and K™ are likewise, say P@® K4~ K™*4,
Putting C=K"'®; B” ® x K9 we then have

ARy C=S(P)®y K92 K"+ ~B®, C.

Since C is invertible this proves that A4 and B are stably isomorphic, as claimed.

(4.12) Remark. With the K-theoretic notation of [BW], Corollary (4.11) is
equivalent to the injectivity of the canonical homomorphism

KA(K) - [] KAy(K,).

(4.13) Theorem. Let H=H,® H, ®-- be a graded K-algebra with H,=K. Let
&: H— K be the retraction with kernel H, =H, @ H,® ---. Let A be a finitely
presented H-algebra. Let Ay=K®y A=A/H, A and B=H®y Ay. If A,, and B,,
are isomorphic H, -algebras for all maximal ideals wm of K then A and B are iso-
morphic H-algebras.

The theorem follows from Quillen induction (3.1) applied to the following
proposition, where Le Loc(K).

P(L): L®gA and L®gB are isomorphic (L &y H)-algebras. Of the four
properties in (3.1) to be checked, 1 is immediate, and 3 is our hypothesis. Since A
and B are finitely presented H-algebras 2 follows from Lemma (1.10). For 4 it
suffices to prove that P(K, ) and P(K, ) imply P(K) if 54, s;€K generate the unit
ideal. Suppose then that we are given H_ -algebra isomorphismsu;: B, — A, (i=0,1}.
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We can canonically identify K ®u, A, with K, ®y, B, , and so identify
0. =1 K, ®HM u;

with an automorphism of K, @, B, . This gives an automorphism
lg, @, "u:  of H,® (K, ®y, B,)=8,.

Replacing u; by u;e (1, ®y, “u;)”', we can fthen arrange that °u; equals the
identity. For any K-algebra L let G(L) denote the group of (L ®, H)-algebra
automorphisms of L ® ¢ B, and let G{L) denote its subgroup consisting of auto-
morphisms inducing the identity modulo (L®xH_ ) (L®gB). We have the
element u=ug/ u;, €Gy(K,,,,) By Corollary (2.7) we can write u=uv,,, v\ with
v €Go(K ) (i=0,1). Put wi=u;v; By — A, . Then wol wi =vgsuvi =l .
Le. wy,, =wy,,. Thus w, and wy patch to form an H-algebra isomorphism w: B— 4
such that w, =w, (i=0, 1). This proves Theorem (4.13).

(4.14) Theorem. Let H be uas in Theorem (4.13). Let A be a (not necessarily com-
mutative) K-algebra. Let M be a finitely presented left (H @y A)-module. Let M,
denote the A-module K @y,M=M/H M, and N the (H®y A)-module H®y M, .
If M, and N, are isomorphic (H,, ®¢ A)-modules for all maximal ideals m of K,
then M and N are isomorphic (H @ A)-modules.

For Lel oc(K) consider the proposition,
P(L): L®g M and L ®g N are isomorphic (L ®x H ® A)-modules.

This is proved by Quillen induction, exactly following the lines of the proof of
Theorem (4.13). In verifying (3.1)2 (finiteness) one uses the fact that, for § a multi-
plicative set in K,

Lm} Homy g 4 (M, N) — Homy g , (M, N)

se§
is bijective, because M is finitely presented, and similarly with M and N reversed.
In verifying 4 one considers the functor G attaching to each K-algebra L the group
G (L) of (L ®y A)-automorphisms of L ®; M,. Then G satisfies axiom Q (Corollary
{1.7)) so we can apply Corollary (2.7) to the group G(L ®¢ H) of (L®y H®y A)-
automorphisms of L ®; H®x M, =L® N, to conclude that, with the notation
of (2.7),

G(LS()Sl ®H+):G(LS()®H+ )Sx ’ G(LM ®H+)

S0

whenever Ls,+ Ls; = L. This is precisely the information necessary to carry out
the patching argument in verifying the sheaf condition 4 of (3.1).

(4.15) Remarks. 1. Theorems (4.13) and (4.14) are of particular interest when H
is the graded polynomial algebra, K [ T]. For example (4.13) then says that if 4
and A, [T7] are isomorphic algebras over K,, [ T] for all maximal ideals m of K
then they are isomorphic over K [ T]. Here 4 is finitely presented K { T]-algebra
and A,=A/TA.

2. If A=K in Theorem (4.14) then Theorem (4.14) follows by applying Theorem
(4.13) to the symmetric algebra S{(M) over H. {One uses Lemma (4.6) for this.)
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3. In case A=K, and H=K[T] then Theorem (4.14) becomes Quillen’s
localization theorem ([Q] Th. 1), which was the inspiration of everything above.

4. The analogue of Theorem (4.14) for modules equipped with some quadratic
structure (e.g. a hermitian form when A is equipped with an involution) is also
valid. The proof is similar. One uses Remark (1.8) to verify axiom Q for the functor
G that intervenes.

5. The weary reader will have noted an evident repetitiveness in the proofs
above. One method of axiomatizing them goes as follows. Let @ (L) denote a
category attached to a K-algebra L, with base change functors 4+ L ®,; 4 from
% (L) to (L) for each K-algebra homomorphism L— L. We require that 4 be
“localizable” in the sense that it satisfies properties (F) and (S h) below.

(F). If S is a multiplicative set in a K-algebra L, and if 4, Be% (L), then the
canonical map

1_“2 Homyg ., (4, By} — Homg (., (A, Bs)

seS
is bijective.

(Sh). If L is a K-algebra, s,, $,€ L generate the unit ideal, and 4, Be% (L), then
the square

By,

51

Homy,(4,B) ——— Homg, (4

| |
i |
Homg (A

B,))———— Homg (A4 B

50° S0 81 % sosl)

is cartesian.
Now let L—%,(L) be a second such category, and suppose we are given
functors

(L) e=——=%(L)

v

that commute with base change and such that yo¢ is naturally isomorphic to
the identity functor of ,,.

Let Ac%(K), and put B=¢7y 4. We wish to prove that A= B in € (K) provided
that 4,,= B,, in ¥(K,,) for all maximal ideals m of K. We apply Quillen induction

to the following proposition, where Le Loc (K).
P(L): L®xA=L®@Bin%(L)

Of the four conditions in (3.1) to be verified, 1 is clear, 3 is our hypothesis, and
2 follows, as in the proofs above, from property (F) of €. Condition (S h) on ¥ is
used in trying to establish 4. For any K-algebra L, put

G(L)= AUt‘ﬁ(L) (L ® B),
and

Go(L)=Ker (G(L)—— Autg, , (7 (L ® B))).
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Then, as in the proofs above, condition 4 of (3.1) can be established, so com-

pleting the proof, provided we know that: With L, 54, 5, as in (S h) above, we have
G() (L ): GO (Lsn)31 ) GO (le)

5081 S0 °

The example corresponding to Theorem (4.1) is where % (L) is the category
of finitely presented L-algebras 4 with absolutely separating filtrations of finite
type such that y A =gr(A) is also finitely presented, where %,(L) is the category
of finitely presented graded L-algebras B=B,® B, ® -, and where ¢Be%(L)
is B equipped with the filtration by the B,,=B,® B, ,® --- for n=0.

In Theorems (4.13) and (4.14) we have 6 (L)=%,(L ®xH), and ¢ and y are
induced by the inclusion L— L ®,H and the augmentation L ®x H — L, respec-
tively. In (4.13) 6,(L) is the category of finitely presented L-algebras. In (4.14)
%,(L) is the category of finitely presented left (L ®, 4)-modules.
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