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Introduction 

We fix th roughout  a commutat ive  ring K. Let A be a finitely presented K-algebra. 
Suppose that, for each maximal ideal m of K, the K,,,-algebra A,,, is isomorphic 
to a polynomial  K,,-algebra. Then A is isomorphic  to the symmetric algebra 
S ( P )  of a finitely generated projective K-module  P. This result, to which the title 
refers, is contained in Theorem (4.4) below. Geometrical ly it asserts that every 
locally trivial fibre space over spec(K) with affine space fibres arises from a vector 
bundle. The theorem is trivial if A is locally a polynomial  algebra in one variable? 
The only other case previously known to us is the case, treated in [W],  when K 
is a principal ideal domain.  The theorem solves a problem posed in [ E H ]  p. 67, 
and in [W],  w 6.2 

The paper [ES] contains many results on locally polynomial  algebras, but 
without our finite presentability assumption. The example (3.15) of [ES] furnishes 
a N-algebra A which is a noetherian U F D ,  locally a polynomial  ring in one variable 
over Z, yet not  finitely generated over ~, and, in particular, not the symmetric 
algebra of any 7Z-module. 

The above result is one of several " local izat ion theorems"  we prove here, 
by methods inspired by the proof  of  Quillen's localization theorem ([Q], Th. 1). 
The latter, a long with a theorem of Horrocks,  was the basis for Quillen's p roof  of  
Serre's conjecture in [Q].  We also use a technique developed in [BW].  

Roughly  speaking, these localization theorems say that two objects A and B 
over K which are locally isomorphic  (i.e. A,, ~ B,, over K,, for all maximal ideals 
m of K) are isomorphic  over K. For  example, in Theorem (4.1) A is a finitely 
presented (not necessarily commutative) K-algebra equipped with a "nicely 

* Partially supported by NSF Grants M PS 75-08545, MCS 75-05265. and 76-06307. respectively 
** To whom offprint requests should be sent 

One can easily reduce to the case when K is reduced (see [W],  kemma 6.7}. Then A admits an 
ascending filtration K = A o ~ A~ ~ A 2 c . . .  such that locally A,, consists of the polynomials of degree 
<n for m2y choice of the variable. The K-module P = A ~ / K  is then finitely generated and projective, 
so we obtain a homomorphism S ( P ) ~  A which must be an isomorphism since it is one locally 
2 The authors have recently learned from A. Suslin that he has also proved this result 
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behaved"  filtration, and B is the associated graded algebra gr(A). In a par t icular  
case of Theo rem (4.13), A is a finitely presented K [ T]-a lgebra ,  and B = (A/TA) [ T]. 
In a part icular  case of Theo rem (4.14), A is a finitely presented left E[-T]-module ,  
where E is any K-algebra ,  and B = ( A / T A ) I T ] .  The special case of this when 
E = K is just Quillen's localization theorem. 

Another  useful result obta ined (from Theo rem (4.14)) is the following. Call a 
K-a lgebra  A invertible if A is a tensor factor of some polynomial  algebra 
K [X~ . . . . .  3;,]. Theo rem (4.9) asserts that a finitely presented K-a lgebra  which is 
locally invertible is invertible. 

These results were announced  in [BCW].  
The proofs systematical ly use an a rgument  from [Q],  which we have formalized 

in w 3, and christened "Quil len induction." Using the finite presentabil i ty assump-  
tions, this permits  one to pass from local i somorphisms to i somorphisms on a 
finite open covering of spec(K), but more  important ly ,  to a covering by two 
principal aMne open sets. In other  words one is reduced to the case where one has 
So, sl ~ K such that  K s o + K s 1 = K, and i somorphisms  ui: B~, --, A~, over  

K~ , ( i -0 ,  1). 

To  get an i somorphism B ~ A  over  K we wish to have Uos,=u~s o. We are only 
at liberty to modify  u i by an a u t o m o r p h i s m  of B , .  For  any K-a lgebra  L let G(L) 
denote the group  of a u t o m o r p h i s m s  of L | B over  L. For  example  we have 
UoJ , ul so~ G(K . . . .  ). The p rob lem we pose requires more  or less that  

G(K ...... ) =  G(KJ~ ,  �9 G(K,,)~o. 

This is unreasonable  to expect in general. However ,  in all the examples  treated, B 
admits  a grading, B = B o | 1 7 4  ..., relative to which we can define a natural  action 
of the scalars in L on G(L), and, in terms of this, a certain subgroup  Go(L) of G(L). 
The i somorph i sms  u i above can be normal ized so that  UoJ ~ u 1 ~o belongs to Go(K ..... ). 
Then, under  a certain mild condit ion on G, which we call " A x i o m  Q", it can be 
shown that  

(*) Go(K ....... )=Go(K,o)~"  Go(K~,)~o. 

The paper  is organized as follows: 
In w 1 we establish Axiom Q for the group functors of interest to us. They  

include all classical groups,  as well as the a u t o m o r p h i s m  groups of po lynomia l  
algebras. In w 2 we define scalar opera t ions  on a group functor G and prove (.), 
assuming Ax iom Q. In the brief w 3 we formulate  Quillen induction abstractly.  
In w 4 the localization theorems are proved.  

We gratefully acknowledge the hospital i ty of the Universi ty of Miami  dur ing 
an essential stage of this research. 

Notational Conventions. All rings and algebras will be understood to be commu- 
tative (with unit) unless the contrary is indicated. If L is a ring and S is a mult ipl ica-  
tive set in L we write L s for the cor responding  ring of fractions. If S={s"ln>O} 
for some s e L  we also write L~ in place of  L s. 

Let G be a functor  f rom K-a lgebras  to groups.  Let L be a K-a lgebra  and S 
a mult ipl icat ive set in L. The h o m o m o r p h i s m  G(L)~G(Ls )  will be denoted 
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u--~ us for ueG(L). Its image is thus denoted G(L)s(C G(Ls) ). When S consists of 
powers of some s~L we also use s in the subscripts in place of S. 

Let T be an indeterminate, let /2 be an L-algebra, and let f be the L-algebra 
homomorphism L [ T] ~ / 2  sending T to an element t c/2. An element u of G(L [ T]) 
will often be denoted also u(T), and its image under G(f):  G(L[T])~  G(/2) will 
then be denoted u(t). W h e n / 2 = L [ T ]  this defines u(s T) for any seL; take t=s T. 
When/2 = L  and t = 0  we denote the kernel of G(f) by 

G(TL[ T]) = {u(T)s G(L[T])Iu(O)= 1 }. 

w 1. Axiom Q 

(1.1) Axiom Q. Let G be a functor from K-algebras to groups. We say that G 
satisfies axiom Q if, given a K-algebra L, an element s of L and an element u(T) 
of G(TL~[T]) then there is an integer r > 0  and an element t,(T) in G(TL[T]) 
such that u(s r T)=v(T)~. 

The applications of this axiom will be made in w 2 and w 4. The balance of this 
section is devoted to verifying axiom Q for the examples of interest to us. 

(1.2) Remark. Let K' be a K-algebra. For any K-algebra L put E=K' |  
If s~L then we can identify (L~)' with L, where s ' =  1 |  Moreover we can 
identify L[T]' with /2[T]. Let G' denote the functor on K-algebras L defined by 
G'(L)=G(E). Then if G satisfies axiom Q so also does G'. For suppose s~L and 
u(T)eG'{TL,[T])=G(TE,,[T]). Then there is an r > 0  and a 

c( T)c G( T/2 [ T])= G'( TL [ T]) 

such that v(T).,( = t,(T)~,) equals u(s r T ) ( =  u(s 'r T)). 

(1.3) Remark. Let H be a subgroup functor of a functor G satisfying axiom Q. 
To deduce axiom Q for H it clearly suffices to have the following condition: 
Given vIT)sG(TL[T]) such that r(T)~sH(TL~[T]) there is an m > 0  such that 
v(s" T)eH(TL[T]). 

(1.4) Remark. Let H be a m~rmal subgroup functor of G, and define G ' =  G/H by 
G'(L)= G(L)/H(L) for all K-algebras L. If G satisfies axiom Q one sees easily that 
G' does likewise. If, on the other hand, G' and H satisfy axiom Q then so also 
does G. In fact, suppose given u(T)sG(TL~[T]) as in (1.1). Applying axiom Q to 
the image u'~ (T) of u(T) in G'(TL,[T]), we obtain an q > 0  and a r;(T) in G'(TL(T]) 

" (T)~=u'~(s ~' T). The decomposition of G(L[T])  into the semi-direct such that 2 1 
product of G(L) with G(TL[T])  is canonical, so the surjectivity of 

G(L[T])  ~ G' (L[T])  

implies that of G(TL[T])-,G'ITL[T]),  whence a lifting of r'~(T) to some 
q(T)sG(TL[T]). Let u~(T)=u(s ~ T)q(T)~-1. its image in G'(TL,[T])is trivial, 
so it lies in H(TL,[T]). By axiom Q for H we obtain an r 2 > 0 a n d  a v2(T)sH(TL[T ]) 
such that t~2(T),=ul(s  ~2 T )=U(S  ~'+r2 T)/ ' l (S  ~2 T) -1. Putting r = q  + r  2 and 

v( T)= v2( T) vl (s ~ T) 

we thus verify axiom Q for G. 
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(1.5) For  any not necessarily commuta t ive  ring E we denote its group of units 
by E ~. If J is a two sided ideal we put 

(1 + J ) •  = K e r ( E  • ~ (E/J)~). 

L e m m a  (Quillen, [Q]).  Let E be a not necessarily commutative ring, let s be a 
central element of E, and let T be an indeterminant. Given u(T) in (1 + TEs[T]) • 
there is an r>O and a v(T) in (1 + TE[T]) • such that u(s r T)=v(T)s.  

Write u(T)= 1 + Tu x (T) and u(T)-1 = 1 + Tu' 1 (T). For  r 1 sufficiently large the 
elements sr'ul(s ~' T) and sr'u'l(s r' T) lift back to elements wl(T) and w'l(T), 
respectively, in EFT]. Putt ing w ( T ) =  1 + TwI(T) and w ' ( T ) =  1 + Tw'I(T) we then 
have w(T)s=u(s ~' T) and w'(T)=u(s ~' T) -1. Hence w(T )w ' (T )= I  + Tx(T)  and 
w'(T)w(T)= 1 + Ty(T) with x(T)s=y(T)~=O. We can thus choose r 2 > 0  so that  
s ~2 annihilates x(T) and y(T), hence also x(s ~2 T) and y(s r2 T ), clearly. Put  

v(T)=w(s ~2 T) and v'(T)=w'(s ~ T). 

We have v ( 0 ) = v ' ( 0 ) = l  and v(T)~=w(s ~ T)s=u(s ~l ~ T). The lemma will be 
proved if we show that  v(T) is invertible. But v(T)v ' (T)= 1 +s ~ Tx(s ~ T ) =  1 and 
v'(T) v ( T ) =  1 +s ~ Ty(s ~ T ) =  1. 

(1.6) Proposition. Let E be a not necessarily commutative K-algebra. Let G be 
the Junctor attaching to each K-algebra L the group G(L)=(L@K E) • of units of 
L |  E. Then G satisfies axiom Q. 

This is immedia te  from L e m m a  (1.5). 

(1.7) Corollary (Quillen, [Q]). Let A be a not necessarily commutative K-algebra, 
and let M be a .finitely presented left A-module. Let GL M denote the .[unctor attaching 
to each K-algebra L the group GLM(L) of (L| automorphisms of  
L | M. Then GLM satisJies axiom Q. 

Let E = End A (M). For  each K-a lgebra  L there is a canonical  L-a lgebra  homo-  
morph i sm L | E - ~  EndL| (L @K M) which, since M is finitely presented, is an 
i somorphism when L is flat. Thus  we can identify GL M with the functor  G of 
Proposi t ion  (1.6) on the category of flat K-algebras.  This verifies ax iom Q in the 
special case L = K  in (1.1). The case of an arbi t rary  K-a lgebra  L follows similarly, 
once we replace K by L and GLM by GLL| 

(1.8) Remark. Suppose,  in (1.7), that  M is equipped with a form h ' M  x M - - , A  
which is sesquilinear relative to some an t i au tomorph i sm a ~--,~ of A, i.e. h is hi- 
additive and h (a x, b y) = a h (x, y) b for a, b e A, x, y E M. This induces a similar form 
h L on the (L |  L|  and we may  consider the subgroup  U(L) of  
GLM(L) formed by those elements u leaving h L invariant:  hL(UX, u y)=h1.(x,y ) 
for x, T e L  | Then U(L) likewise satisfies ax iom Q. In view of (1.3) it suffices 
to show that  if u(T)~GLM(TL[T] )  and if u(T)~ preserves hL, tTr then u(s ~ T) 
preserves hL[T] for some m > 0 .  For  x, y e L [ T ] | 1 7 4  put 
dx,y(T)=h1.tT~ (ux, uy)--hLrwl(X, y). This lies in T(L[T]  |  since u (0)=  1, and 
it is annihi lated by some s" (m depending on x, y), so that  d~, r (sm T) = 0. In view 
of the sesquilinearity of hLLT~ it suffices, for our purposes,  to make  d~,y (T) vanish 
when x, y run th rough  a finite set of genera tors  of M. Hence there is an m > 0 such 
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that d~.~,(s" T ) = 0  for all x , y ~ L [ T ]  | M, and so u(s" T) preserves hL~rl, as 
required. Similarly, if A is commutative and Q is a quadratic form on M, then the 
orthogonal group 0 (M, Q) satisfies axiom Q. 

(1.9) Finitely Presented Algebras. Let A be a (not necessarily commutative) 
finitely presented K-algebra, and let x = (x I . . . . .  xp)~ A p be a sequence of elements 
generating A as K-algebra. Then A is the quotient of the free K-algebra on non 
commuting indeterminants X~ . . . . .  Xp by a two sided ideal generated by some 
finite set .ll . . . . .  L ,  where . ~ = f j ( X ) = t ) ( X  ~ . . . . .  Xp). Let B be a K-algebra and 
let u:A--~B be a K-algebra homomorphism. Then u is determined by u(x)= 
(u(x 0 . . . . .  u(xp))~ B p, and we thus obtain a bijection u ~ u(x) from HomK_,lg(A, B) 
to 

U(A, B)= {yeBPtJi(y)=0, i =  1 . . . . .  q}. 

For later use we record the following lemma here. 

(1.10) Lemma. Let A and B be K-algebras as above with A finitely presented. 
Let S be a multiplicative set in K, which we order by divisibility. The cano~ical map 

(*) lira HomK~_a,, (A~, B~) -+ HomK,(A s, Bs) 
) 

s~S 

ix b(jective. I f  B is also .finitely presented then (*) is b(jective also with lsom (the 
set ~ff isomorphisms) in place of Horn. 

We can identify Homa~_~g (A s, B s) with HomK_alg(A, Bs), and so, as in (1.9), 
with H(A, Bs). To show injectivity of (*), let seS  and y, y 'eH(A,  B~) be such that 
ys=y)  in H(A, Bs). Then clearly yt=yl in H(A,B,,)  for some t~S, whence the 
injectivity of (*). To show its surjectivity, given yeH(A ,  Bs), we must find s~S 
and zeH(A,  B 3 such that z s =y. First there is clearly a t eS  and a w~B~, ' such that 
Ws=y in B~. The finitely many elements j)(w) in B, vanish on passage to B s, 
hence already in B~, where s = t t' for some t'~S. Then z = w,, belongs to H(A, B~) 
and z s = y, as required. To prove the last assertion it suffices to show that an iso- 
morphism u: A s ~ B s can be lifted to an isomorphism ,,: A,--* B~ for some s~_S. 
By what has been proved we can find a t6S  and homomorphism w: A,-~ Bt and 
w': B, ~ A, such that Ws=U and ws=u- ~. Then ww' and w'w become the identities 
after S-localization, hence already over K~, where s = t  t' for some t'~S. Then 
~'=w,, is the required isomorphism lifting u. 

(1.11) Lemma. Let A be a (not necessarily commutatit,e) finitely preseuted K- 
algebra, let s~K, and let T be an indeterminate. Let u(T) be a K;[T]-algebra 
automorphism of A~ [ TJ such that u (0) is the identity automorphism ~?] A~ ( = A~ [ T]/  
TAHITI). Then there is an r>O and an automorphism t~(T) of the K [T]-atgebra 
A [T]  such that v(0)= 1A and u(s ~ T)=v(T)~.  

(u(s ~ T) denotes the automorphism obtained from u(T) via the base change 
K~ IT]  --, K~ I T ]  sending T to s ~ T.) 

With the notation of (1.9) we can identify u(T) with the element y (T)= u(T)(x) 
in H(A, A, [ T ] ) c  A, IT]  p. The condition u(0)= la~ means that y (T )=  x~ + Ty I (T) 
for some y~ (T)~A~ I T ]  p. Choose q large enough so that s r' Yl ( s~' T)=w~ (T)~ for 
some w I (T)~A I-T] v, and put w(T) =x  + Tw I (T) in A [T] p, so that w(T)s=y(s ~ T). 
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Now .[) (w (T)) =.f~. (x + Tw 1 (T)) =.1)(x) + TJj  (w (T)) = T f j  (w(T)). Since .fi(w( T)).~ 
= 0  there is an r 2 >0  such that s r2 .()'(w(T))=0, and so also s r: ,fi'(w(s ~ T))=0. 
We can choose one r 2 to work for all j =  1 . . . . .  q. Replacing w(T) by w(s r2 T) we 
then obtain J}(w(T))=O for all j, i.e. w(T)eH(A ,A  IT]). Putting r ' = q + l ~  we 
also have w( T)~=y(s ~' T). Similarly we can find w'( T)= x + Tw' 1 ( T) in H ( A, A IT]) 
such that w'(T).~=y'(g" T), where y ' (T )=u(T)=u(T)  -1 (x). We can then adjust 
choices so that r" =r ' .  The endomorphisms of A IT] corresponding to w(T) and 
w'(T) have composites corresponding in turn to elements of H(A, A IT]), which 
we shall denote w(T)ow ' (T )=x+Tz (T ) ,  and w' (T)ow(T)=x+Tz ' (T ) .  On 
localizing to A~[T], w(T) and w'(T) correspond to inverse automorphisms, so 
z(T)~=z'(T)~=O. Choose m__>0 so that s m z(s m T)=s"z ' ( s  m T)=0.  Then, with 
the notational conventions above, w(s m T)ow' (s ~ T)= x=w'  (s m T)ow(s" T). It 
follows that w(s "~ T) defines an automorphism v(T) of A IT],  and we clearly have 
V(0)=] A and v(T)~=u(gT)  where r=m+r' ,  This proves Lemma (1.I1), from 
which the next result is now immediate. 

(1.12) Proposition. Let A be a (not necessarily commutative) finitely presented 
K-algebra. Let G de~zote the functor attaching to each K-algebra L the group G(L) 
of' L-algebra automorphisms o] L @~ A. Then G satisfies axiom Q. 

The preceeding proposition and lemmas are valid for nonassociative algebras, 
e.g. Lie algebras, as well. One need only interprete the "free algebra" in (1.9) in 
the sense appropriate to the category of algebras being considered. 

The results are valid also for graded algebras and graded algebra homomor- 
phisms. One need only take care to use homogeneous elements throughout. 

The results also have analogues for filtered algebras, but these extensions of 
the results are not so straightforward. This setting, which is significant for our 
main applications, is treated next. 

(1.13) Filtered Algebras. Let A be a (not necessarily commutative) K-algebra 
equipped with a (descending) filtration, 

A = A o ~ A I ~ . . . ;  AeAq~Ap+ q. 

For a~A put q)(a)=sup {n]a~A,,}. We call the filtration separating if ('] A,=O, 
n 

i.e. if tp (a) < ~J for all a 4= 0. We call it absolutely separating if, for all K-algebras L, 
the filtration of the L-algebra L | A given by the images of the L | A, is separating. 

For each n > 0  let A', (~A,)  denote the sum of all the ideals At, ... Ae,., where 
p~ + ,--+pr but p~<n for each i. We say the filtration is of finite type of there 
is a .finite subset X of A such thal 

A.=A;,+ ~ A x A  
XE~(~A~2 

for all n>0.  Note then that, for any K-algebra L, the filtration induced (as above) 
on the L-algebra L | A is still of finite type; one uses 1 | X to see this, 

(1.14) Examples. l. Suppose A is a K-algebra with a two sided ideal A~ generated 
by a finite set X. Then the filtration defined by A,=  A~ is clearly of finite type. 

2. Suppose/ t  = / t  o @ A~ @ -'. is a graded K-algebra, with filtration defined by 
A(, ~ = A, @ A,+ 1 @-.. (n => 0), This filtration is visibly absolutely separating. If X 
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is a finite set of homogeneous generators of A as K-algebra then this X serves to 
show that the filtration (Ar 0 is also of finite type. 

3. In order that a filtration of a K-algebra A be (absolutely) separating it 
suffices that, for each maximal ideal m of K, the induced filtration of the K.,- 
algebra A,,, be (absolutely) separating. This is the case, for example, if A is locally 
isomorphic to a filtered algebra as in example 2 above. 

(1.15) Lemma. Let A be a (not necessarily commutatire) K-algebra equipped 
with a .[iltration of finite type, and let X be as in the &~[~nition (1.13). Let B be a 
(not necessarily eommutatire) filtered K-algebra, and let u" A -~ B be a K-algebra 
homomorphism. 

(a) In order that u preserve filtrations, i.e. that u (A,) ~ B, Jbr all n, it is ( necessary 
and) sUfJ~cient that u(x)~B,p~ for all x e X .  (We put B~ = r 

(b) Suppose the filtration q[ A is separating. Let S be a multiplieatire .set in 
K, and suppose that Us: A s ~  B s preserces j)ltrations. Then there is an s~S such 
that u,: A~--~ B~ preserves .[~ltrations. 

(c) Keep the assumptions of (b) and suppose A is a finitely presented K-algebra. 
777e canonical map 

(*) lira Homs (A,, B~) ~ H o m ~ _ ~  (As, Bs) 
. s~S 

is bli/ectit,e. (The superscript f designates that the algebra homomorphisms are 
filtration preserving.) Suppose the filtered K-algebra B satisfies all the assumptions 
made on A. Then (.) remains b(jectit'e with lsom (the set q[" isomorphisms) in place 
~?f Horn. 

The necessity in (a) is obvious. For sufficiency we prove u(A,,)c B,, by induction 
on n, the case u = 0  being trivial. For n > 0  we have u(A,,)~ u(A',)+ ~ Bu(x) B. 

~tEX t~ A n  

We have u(x)~B, for x~Xc3 A,, by hypothesis, and u(A',)~B,, by the induction 
hypothesis, whence (a). 

To prove (b), consider x4:0  in X. Then ~p(x)=n< ~c, and u(x) lands in (Bs) . 
=(B~) s. Hence su(x)~B~ for some soS. Since X is finite we can choose one s to 
work for all x # 0  in X. Then the composite homomorplfism A ",B--+B, 
preserves filtrations, by (a), and consequently, by localization, u~: A , - , B ,  does 
likewise. In view of (b), assertion (c) results immediately from Lemma (1.10). 

(1.16) Lemma. In the setting q[ [,emma (1.I I), suppose A is equipped with a 
separating filtration of finite type. Let u(T) be a filtration preserting auto- 
morphism (?J A~[T] such that u(0)= 1.4,. Then there is an r>O and a .[)'ltration 
preserving automorphism c(T) of A [T] such that t ' (0)=lA and u(s ~ T)=c(T).~. 

Lemma (l.11) furnishes an r ' > 0  and a r ' (T) such that v'(0)= 1A and u(s ~' T) 
,t =t. (T).~. Let X be as in the definition of finite type filtration (1.13). Let x + 0  be 

an element of X, and let n = r (x)< ~,. We have r ' (T)(x)= x + Ty (T) since r'(0) 
-- 1 a. Since v'(T), preserves filtration it fol lows that y (T) lands in A~ [ T] ,  = (A ,)~ [- T]. 
Therefore there is an m > 0 such that s m y (T)e A, [ T], and so also s ' y  (s" T)cA,  [ T]. 
Since X is finite a single m will accomplish this for all x + 0  in X. Then if v(T) 
=v ' ( s"  T) we have V(0)=IA and r(T).,=u(s ~ T) where r = m + r ' .  Further if x#:0 
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in X we have v(T)(x)=x+s" Ty(s m TieA [ T ] ~  I, so it follows from Lemma 
(1.15) (a) that v(T) preserves filtrations. 

Now, just as Proposi t ion (1.12) was derived from k e m m a  (1.11), we obtain:  

(1.17) Proposition. Let A be a finitely presented K-algebra with an absolutely 
separating filtration of finite type (see (1.13)). Let G denote the ,[mwtor attaching 
to each K-algebra L the group G(L) (ff" automorphisms of the filtered L-algebra 
L | A. Then G satisfies axiom Q. 

w 2. Scalar Operations on Group Functors 

(2.1) Let G be a functor from K-algebras to groups. A scalar operation on G 
consists of an action L x G(L)-~ G(L), denoted (s, u)~---,~u, for each K-algebra L. 
Thus 

lu=u; ~('u)='~'u; and "(uv)=~u.'~ 

for s, teL, u, vcG(L). Further  these actions are to be natural,  in the sense that if 
f :  L ~  E is a K-algebra hom om orph i sm  and if G ( f ) :  G(L)--, G(E) sends u~G(L) 
to u'6G(E) then it sends ~u t o / ~ u '  for s~L. 

The action of  L on G(L) amounts  to a multiplicative monoid  h o m o m o r p h i s m  
L-~End(G(L)). In particular u~--,~ is an idempotent endomorphism of G(L), 
whose image we denote  ~ and whose kernel we denote  

Go(L )= {u~G(L)[ ~ 1}. 

Thus G(L) is the semi-direct product  G~(L) ~ ~ and this decomposi t ion is 
functorial in L. 

(2.2) Example. Let G be any functor from K-algebras to groups, and let T be an 
indeterminate. Define a new functor G' by G'(L)=G(L[T]). If u=u(T)6G'(L) 
and if s ~ L we can define 'u = u (s T). This is easily seen to provide a scalar operat ion 
on G'. We then have ~  so ~ and G'o(L)=G(TL[T]). 

More generally, let H =  H 0 | H 1 0  ".- be any graded K-algebra. If seK  define 
c~: H - ~ H  by c~(a)=s" a for aeH,,. Then Cl = ln ,  c~o~:t=c~, and c~ is a K-algebra 
endomorphism of H. Similarly, if L is any K-algebra then H | L is a graded L- 
algebra equipped with an endomorph i sm c~ for each seL. If , f : L ~ E  is a K- 
algebra homomorph i sm  sending s to s' then (1H | f)oc~ =c~, o(ln | f ) :  H |  L ~  
H|  Given G as above we can define G' now by G'(L)=G(H| Then G' 
admits the scalar operat ions such that seL acts on G'(L) as G(c,). When H = K [ T ]  
this is just the example above. 

(2.3) Example (c.f. [BW]).  We consider graded (not necessarily commutat ive)  
K-algebras A = A o | 1 7 4  and equip them with the descending filtration 
At, ~ = A, | A,+ t O ' "  (n =0 ,  1, 2 . . . .  ). Let B = B o �9 B1 G"" be another  such graded 
K-algebra, and let u: A---, B be a filtration preserving algebra h o m o m o r p h i s m :  
u(A~,~)c Bt, ~ for all n. As a linear map u can be decomposed into homogeneous  
components ,  u=uo+u~ + u  2 + . - . ,  where u, is a K-linear map A - - , B  such that 
u,(Ap)cBp+, for all n, p > 0 ,  and for a given aeA, u , ( a ) = 0  for all but finitely 
many n. The fact that u is an algebra h o m o m o r p h i s m  is expressed by the fact that 
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u(1)= 1 and 

(*) u , ( ab )=  ~ upta) uq(b) 
p + q = n  

for all n>O, a, beA.  It suffices to know (*) for homogeneous elements of A. 
Let scK.  Define "u by (~u),, = s" u,, in other words 

s U = U 0  -}-S U 1 -}-S 2 U 2 -}- " "  

Then ~u(1)=l, and (~u),(ab)=s'u,,(ab)=s". y. u~,{a)uqIb)= ~ ('~u)p(a) 
p + q = n  p + q = n  

(~U)q(b), so ~u is again a filtered algebra homomorphism from A to B. Visibly we 
have lu=u and ~(h0=t~'u, for s, teK.  Moreover ~)u=u 0, which is just the homo- 
morphism of associated graded algebras induced by u. Suppose r: B--~ C is a 
second filtration preserving homomorphism of graded algebras. Then (r u), 
= ~ CpUq, so s'(~,u),= ~ (sPt'p)(squq), whence ' ( ru)=h'~u.  It follows from 

p + q = n  p + q = n  

this that if u is an isomorphism am/ i f  u -~ is also filtration preserving, then the 
same properties hold for ~u. 

Let L be a K-algebra. Then L | and L |  are graded L-algebras, so the 
scalars s ~ L operate as above on the filtration preserving L-algebra homomorphisms 
u: L | L@KB. If f "  L ~  E is a K-algebra homomorphism then one sees 
easily that, for s~ L, the following diagram is commutative.  

L |  ~" ~ L@KB 
I 

,f |  1 A ] f |  1B 
+ 

E @K A -~(~(1~, | ' E @K B. 

Now for a fixed graded algebra A as above, denote by G a the functor attaching 
to each K-algebra L the group GA(L) of automorphisms of the filtered L-algebra 
L |  K A. The discussion above shows then that the maps u ~ u ( s ~ L ,  u~GA(L)) 
define a scalar operation on the functor G A. Thus G A (L) is the semi-direct product. 

G A (L) = G(~ (L) x ~ (L) 

where ~ is the group of automorphisms of the graded L-algebra L@KA , 
~ 0  and such that u u is the projection on the second factor with kernel the first 

factor. 

(2.4) Theorem. Let G be a Jhnetor fi'om K-algebras to groups which sati,~fies 
axiom Q (see (l .1)). Let G be equipped with a scalar operation (as in (2.1)). For any 
K-algebra L let G o(L)={u~G(L) l~  Suppose so, s tEL and L = L s  o + L s  1. 
Then 

G o (L ..... )=  Go (L.,o)~, " Go (L~,).,o- 

We first prove a lemma, modeled after its analogue, Lemma 1 of [Q]. 

(2.5) Lemma. Let G be as in Theorem (2.4). Let L be a K-algebra, s~L, and u~G(L.O. 
There is an integer r>=O sueh that, !J" a ,b~L sati,?fy a - b  mod Ls ~ then there is a 
v in G o (L) such that v~ = Cu) (bu)- 1 
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Let Y, T be indeterminates  and put w=w(Y,  T)=(Y+r)u)(Yu)-leG(L,[Y, T]) 
(where we identify G(L~) with a subgroup  of G(L s[Y, T])). Clearly ~  1 and 
w(Y, 0 ) = l .  Applying ax iom Q to w e G ( T L , [ Y ,  T]) and seL[Y]  we obtain  an 
r > 0  and a v(Y, T ) e G ( T L [ Y ,  T]) such that  v(Y, T )s=w(Y ,s  r T). Replacing v 
by v . (%) -1 ,  if necessary, which doesn ' t  affect the above  conditions, we can 
further arrange that % =  1. N o w  suppose a, beL and a = b + s r t  for some t eL .  
Then we have v(b,t)eGo(L) and v(b,t).,=w(b,s~t)=(fb+~''u)(bu)-l=("U)(bU) -1, 
whence the lemma.  

(2.6) Proof of Theorem (2.4). Given ueGo(L ..... ), we apply  L e m m a  (2.5) to the 
localizations L ~ L  .... ( i=0 ,  1) to obtain an r > 0  such that  if a, beL~, satisfy, 
a - b  rood L~,..l_i,sr then there is a v in Go(LO such that  ("u)(~u)-~=t~,_ .  To 
apply this use the condi t ion Lso +Ls~ = L to obtain acLs~o such that b =  1 - a  
lies in Ls~, and write 

u = [~u. (~ ~] [-"u. (~ 1]. 

Since 1 - a  m o d  LSrl there is a v 0 in Go(L~o ) such that  Vo~=lu("u) -1. Similarly, 
since a - 0  m o d  Ls~o there is a vleGo(L,)  such that  V~so=~ut~ ~ . Thus u=vo~ , 
�9 vl~oeGo(Lj~ ~ �9 Go(L~) .... as was to be shown. 

(2.7) Corollary. Let G be a functor from K-algebras to groups satisfying axiom 
Q ((1.1)). Let H = H o | H l @...  be a graded K-algebra with H o = K, and let ~:: H - ,  K 
be the retraction with kernel H+ =Ht @ H2@... .  For any K-algebra L put 

G(H , | L) = K e r(G(H | L) __~o~c~!o G(L)), 

where | denotes | U so, Sl EL generate the unit ideal of L then 

G(H+ |  ...... ) = G ( H +  | L,,,)~- G(H+ | 

In particular, !f H is the graded polynomial algebra K [ T ] ,  we have 

G( TL .... [ T ] )  = G( TL~o[ T]),, . G( TL~, [ T]),o. 

The functor G'(L) = G(H| satisfies axiom t2 (Remark  (1.2)), and it admits  the 
scalar opera t ions  of Example  (2.2) such that G'o(L)= G(H+ | Thus  the corol lary 
is a special case of  Theo rem (2.4). 

Corol lary  (2.7) applies notably  to the functor G = GL M of (1.7), to the functor G 
of( l .12) ,  and to the functor  G of(1.17). 

(2.8) Corollary. Let A = Ao @ A l 0 " "  be a (not necessarily commutatir, e) graded 
and finitely presented K-algebra. For each K-algebra L let GA(L) denote the group 
of L-algebra automorphisms of L | A preserving the filtration 

L| A~,)=A,(~A,+j @...(n>O).  

Let GA(L) denote the subgroup consisting of those automorphisms inducing the 
identity associated graded automorphism. Let L be a K-algebra and let so, s~ eL 
generate the unit ideal. Then 

G~(L.~os,) = G~(Lj.~, - GAo(Ls,).~o . 
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According to Example  (1.14)2, the filtration of A is absolutely separat ing and 
of finite type, so Proposi t ion (1.17) implies that the functor L~--~ GA(L) satisfies 
axiom Q. On the other  hand Example  (2.3) shows that G A admits  a scalar opera t ion 
such that  GoA(L)= {ueG(L)l~ 1}. Theretbre Corol la ry  (2.8) is a special case of  
Theorem (2.4). 

For  the appl icat ions to locally polynomial  algebras we shall need a technical 
e laborat ion of Theo rem (2.4), given in Proposi t ion (2.10) below 

(2.9) Lemma.  Let GA be a Junctor .[kom K-algebras to groups which satLsfies 
axiom Q. Let G be a subgroup fimctor of GA which admits scalar operations. Let L 
be a K-algebra, s~L, w~GA(L.~), and u~G(Ls) be such that ~  There is an 
r>=O such that ([a~Ls r then w -1 auw=G for some veGA(L). 

Let T be an indeterminate  and put u'(T)=(w ~)(3"u)w~GA(L,[T]). Since 
~  we have u'(T)eGA(TL,[T]) ,  so axiom Q furnishes an r > 0  and a 

r ' (T)eGA(TL[T])  

such that  v'(T)~ = u'(s ~ T). Suppose  a = S t  with te  L. Then with r = r '( t)c GA(L) we 
have G = d(t), = u'(s ~ t) = u'(a) = w-  1 ~u w, whence the lemma.  

(2.10) Proposition. Let GA be a jhnctor fi'om K-algebras to groups which satisfies 
axiom Q. Let G and H be subgroup.[mwtors of GA such that G satLsfies axiom Q and 
admits scalar operations, and such that GA(L) = Go(L). H(L) jor any K-algebra L, 
where Go(L)= {u~ G( L )l~ = 1}. Let L be a K-algebra and let so, sl eL  generate the 
unit ideal. Then 

GA(L ..... ) =  Go(L~,,)., . H(L ...... ). GA(L~,).~o. 

By assumpt ion  an element of GA(L,o~,) can be written as a product  uw with 
u~Go(L,o~,,) and weH(L  . . . .  ). Let a~L and write 

u w = l u ( ~ u ) - l . w . w  lauw. 

Let r be a large positive integer. If a e L s; then k e m m a  (2.9), applied to the localiza- 
tion L,,---, L . . . .  , permits  us to write w - t % w = t ' ~ ,  for some t '~GA(L~).  If, on 
the other  hand, a -  1 m o d  L s~ then L e m m a  (2.5), applied to G and the localization 
L.~o ~ L, o ~, permits  us to write 1 u("u)--~ = v0 ~ for some voe Go(L,o). Since 

Lso + Ls ~ = L 

we can s imul taneously  solve the above  congruences  for a, and so write 

b/W ~-/)()s~ W V 1 so 

as required. 

(2.11) Example. Let A = Ao �9 Aa @..-  be a (not necessarily commuta t ive)  graded 
K-algebra.  In addi t ion to the descending filtration (A~,~=A, GA,+ 1 0 " - ' )~o ,  it 
admits  the ascending filtration (A ~ = A o 0 . - .  @ A,,), ~ o. For  any K-a lgebra  L the 
group GA(L) of all L-a lgebra  au tomorph i sms  of L |  K A contains the subgroups  
G(L) and H(L) preserving the descending and ascending filtrations, respectively, 
of L |  A. The functor G admits  scalar opera t ions  (Example (2.3)). If the K- 
algebra A is finitely presented then GA and G satisfy axiom Q (proposi t ions  (1.12) 
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and (1.17); see Example (1.14)2). Thus we can apply Proposition (2.10) above 
provided that 

(*) GA(L)=Go(L).  H(L) 

for all K-algebras L. We claim that (.) holds if A is the symmetric (or tensor) 
algebra of the K-module M = A  1. For in this case we can identify the group of 
graded algebra automorphisms of A with GLM(K), the group of linear automor- 
phisms of M, and we have an embedding of M* = HomK(M, K) into H(K) sending 
t ~ M* to the automorphism 7 of A determined by t(x) = t(x) + x ~ K | M = A o | A 1 
for xe  M. We then have semi-direct product decompositions 

G(K) = Go(K) >~ GLM(K) 

(c.f. Example (2.3)), and H(K)=GLM(K) >~ M*. Except for the presence of M*. 
in place of M, the latter is just the affine group of M, so we shall write Af~I(K) in 
place of H(K). Now let u be any automorphism of A, i.e. ueGA(K) .  For x e M  
write u(x) = t(x) + u l(x) with t ( x )eK and u l(x) eA(l ) .  Then te M* and if v = u o ( -  t) 
we have, for x e M ,  v ( x ) = u ( - t ( x ) + x ) = - t ( x ) + t ( x ) + u l ( x ) = u l ( x ) ,  so veG(K). 
Thus u = v o 7e G(K). M* = Go(K). GLM(K). M* = Go(K). AiM(K). This proves (.) 
for L = K .  For any K-algebra L, the L-algebra L |  inherits all the hypotheses 
made on A over K, so (.) follows for all L. 

(2.12) To apply the above discussion we now codify our notation a bit, to bring 
it more into conformity with that of [BW]. Let M be a K-module, and let A denote 
the symmetric algebra S(M) or the tensor algebra T(M), with the usual grading: 
A o = K ,  A1 = M  . . . .  For any K-algebra L let GAM(L ) denote the group of all 
L-algebra automorphisms of L | A. Let GA~ denote its subgroup consisting 
of automorphisms preserving the descending filtration (L| o, where 
AI,I = A, if)A,+t | ..., and let GA'A~(L) denote its subgroup consisting of elements 
whose associated graded automorphism is the identity. Let A IM(L) denote the 
group of automorphisms of L |  K A preserving the ascending filtration 

(L| 0, where AI"~=Ao@ ... |  

As in (2.11) above we canonically identify Afx~(L) with the semi-direct product 
GLM(L) x (L | K M)*, where (L | M)* = HomL(L | M, L). 

Now, by virtue of the discussion in Example (2.11), we obtain the following 
Corollary directly from Proposition (2.10). 

Corollary. Let M be a.finitely presented K-module, and let A be the symmetric or 
the tensor algebra of M. For any K-algebra L the group GAM(L ) of L-algebra 
automorphisms of  L | K A is the produet 

GAM(L) = GA'M(L). ArM(L), 

where As is isomorphic to GLM(L) ~(L|  M)*, as above. Suppose s o, s l~L  
generate the unit ideal. Then 

GAM(L ..... )=  GAM(L~o),, " ArM( L ....  )" GAM(L~,),o. 
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w 3. Quillen Induction 

Let Loc(K) denote the set of K-algebras of the form Ks, where S is a multiplicative 
set in K. By "Quillen induction" we refer to the following proposition (see the 
proof of Theorem 1 in [Q]). 

(3.1) Proposition. Let P(L) be a property d~J~ned.~r K-algebras L~Loc(K). In 
order that P(L) hold for all L~Loc(K) (in particular jor L= K) it su['[k'es that P 
sati.~fy the following conditions. 

1) Specialization. P(L) implies P(E) whenet'er there is a K-algebra homomor- 
phism L --~ 12. 

2) Finiteness. I f  S is a multiplicative set in K then P(Ks) implies P(K~) for some 
s~S. 

3) Local wdidity. P(K,,,) holds J~)r all maximal ideals m of K. 
4) Sheaf condition. U L e L o c ( K )  and i['s~, s l~L generate the unit ideal then 

P(L~o ) together with P(L,,) implies P(L). 

Let S denote the set of s~K such that P(K,) holds. By specialization, it suffices 
to prove that 1 eS. By finiteness and local validity, S is contained in no maximal 
ideal of K. Thus it suffices to show that S is an ideal, or that, given so, s~ ~S and 
s ~ K s o + K s  ~ then s~S. Let L=K~, and let t~ denote the imgage of s~ in L. Then 
we have L = L t o + L g.  Further L,. = K~. is a localization of K~,, so P(L,,) follows 
from P (K0  by specialization (recall that s~S). Now the sheaf condition gives 
P(L), in the presence of P(Lt,) (i = O, 1). 

Remark. This proposition is used typically in constructing global data on spec(K) 
from given local data over the various Km. Finiteness permits passage to a finite 
open covering of spec (K) = U~ w---w U,, where we may take each U~ to be affine, say 
spec(K,,). It is technically useful to be able to reduce to the case n=2.  This can 
be done by arguing inductively on the open sets Xi = Ul w.. .  u Ui( l < i < n). However 
the X~ need no longer be affine, and this is troublesome if the construction being 
performed is not valid in general on non-affine schemes. It is for bypassing this 
difficulty that Quillen induction is useful. 

w 4. Localization Theorems 

(4.1) Theorem. Let A be a (not necessarily commutative) K-algebra with an 
absolutely separating.filtration offinite type (see (1.13)). Suppose that A and its 
associated graded algebra gr(A) are finitely presented K-algebras. UA,,, and gr(A),,, 
are isomorphic filtered K,,-algebras Jbr all maximal ideals m of K, then A and gr(A) 
are isomorphie filtered K-algebras. 

Let B=gr(A). The theorem follows from Quillen induction (Proposition (3.1)) 
applied to the following proposition, where L E Loc (K) (see (3.1)). 

P(L): L|  A and L | B are isomorphic filtered L-algebras. 
Of the four properties in (3.1) to be verified, 1 (specialization) is trivial, and 3 

(local validity) is our hypothesis. To verify 2 (finiteness) suppose P(Ks) holds for 
some multiplicative set S in K, i.e. there is an isomorphism u: A s ~ B s of filtered 
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Ks-algebras.  The filtration of B, like that  of A, is absolutely separat ing of finite 
type, (Example(l .14)2),  and both algebras are assumed finitely presented. It 
follows therefore f rom L e m m a  (1.15)(c) that  u lifts to an i somorphism v: A~ ~ B~ 
of filtered K~-algebras for some seS .  

Finally we verify 4 (the sheaf condition). If L e L o c ( K )  then L is K-flat so we 
can identify L |  gr(A) and g r (L |  Therefore,  up to a change of notat ion,  
it suffices to prove  4 for L = K .  We are given so, s ~ K  such that  K s o + K s  ~ = K ,  
and i somorphisms  ui: B~--~ A,. of filtered K~-algebras  ( i=0 ,  1). Mult iplying by 
gr(ui) -1, if necessary, we can assume gr(ul)= l m ,  where we identify 

gr(A) = gr(B) = B. 

For  any K-a lgebra  L let G(L) denote  the group of au tomorph i sms  of the filtered 
L-algebra  L Q K  B, and let Go(L) denote  the subgroup  of all u such that g r (u)=  lu. 
The i somorphisms  u~ above  furnish two i somorphisms  

u O  s l 

B ..... - -  ~ A . . . .  
Ulso 

of filtered K ..... -algebras, hence an element u =uff  1, u I ~o~ Go(K . . . .  ). By Corol lary  
,-1 with vi~Go(K~,)(i=O, 1). Put wi=uiv i :  B~ -+ As . (2.8) we can write U=Vo~ , v 1 . . . . . .  

Then Wo) , Wl~o=VO~ ' uv I ~o = 1B . . . .  , i.e. Wo~ ' = w l s  o. Thus w o and % patch to form 
an i somorph ism w: A--+ B of filtered K-algebras  such that  w~, =wi( i=O,  1). 

(The last step of the a rgument  derives from the s tandard  fact that, for any 
K-modu le  M, the localization square 

M ) MsI  
! 

, I 

is cartesian. Thus if N is another  K-module ,  HomK(M,  N) canonically identifies 
with the fibre p roduc t  of  the HomK,.(M~., N~,) (i = 0, 1) over  Horn  K ..... (M S ...... Nso.~l).) 

(4.2) Remark. In Theo rem (4.1) the finite generat ion of gr(A) follows from the 
other assumpt ions  on A, but not its finite presentabili ty.  For  example  suppose 
a I . . . . .  aq generate an ideal in K that is not finitely presented as a K-module .  In 
the polynomia l  ring S = K [X,  Y1 . . . . .  Yq] let J be the ideal generated by 

J ) = a j X  + Yi2(j = 1 . . . . .  q) 

and put A = S/J. Give A the H-adic  filtration, where H is the ideal generated by 
the images of X, Y1 . . . . .  Yq. Then A is a finitely presented K-algebra ,  but gr(A) 
is not. 

(4.3) Corollary. Let A be a finitely presented (not necessarily commutative)  
K-algebra equipped with an augmentation ~:: A -~ K; l e t / [ =  Ker(c). The K-module 
M = A / A  2 is.finitely presented. Let B =  U(M), where U = S  (symmetric algebra), 
or T (tensor algebra) or A (exterior  algebra); give B the augmentation vanishing 
on M. U" A,.  and Bm are isomorphic as augmented K,,-algebras fi)r all maximal 
ideals m of  K then A and B are isomorphic as augmented K-algebras. 
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Choose generators x I . . . . .  xpE/i, of the K-algebra A. Let Tbe the free K-algebra 
on generators X t . . . . .  Xp. Mapping Xi to xi we represent A in the form T/I, and 
A =  7=/I, where 7 = is the ideal generated by the Xi's. Then M is isomorphic to 
T / T  2 + I ~- T1/R, where T~ = ~ K X~ and R is the module of linear parts of elements 

of I. Finite presentability of A implies that I is a finitely generated ideal, from 
which one sees easily that R is a finitely generated K-module, Thus M is finitely 
presented, and so B =  U(M) is a finitely presented K-algebra. The local isomor- 
phisms A,, ~ B m plus the universal property ofB = U(M)imply that gr(A) = @ A/A" 

n_>0 
admits a graded algebra homomorphism f :  B ~ gr(A) inducing the identity on M 
in degree one. The local isomorphisms then further imply that f i s  an isomorphism, 
so permitting us to identify B with gr(A). Thus the corollary will follow from 
Theorem (4.1) once we confirm that the ,4-adic filtration on A is absolutely 
separating of finite type. Since the ideal/1 is generated by the finite set x 1 . . . . .  xp, 
these properties follow from Examples (1.14) 1 and 3. 

Remark. Lemma(4.6) below shows that, when U =S  or T, any algebra isomorphism 
A -~ U(M) can be modified to be compatible with the augmentations. 

(4.4) Theorem. Let A be a finitely presented K-algebra. Suppose that. Jot all 
maximal ideaf.s m of K, the K,,,-afgebra A,,, is isomorphic to the .symmetric" algebra 
of some K,,-module. Then A is isomorphic to the symmetric algebra S(M) of a finitely 
presented K-module M. 

(4.5) Remarks. I. Theorem (4.4) contains the result that finitely presented locally 
polynomial algebras are symmetric algebras. 

2. Theorem (4.4) has a non-commutative analogue in which the symmetric 
algebra is replaced by the tensor algebra. The proof completely parallels that 
given below for Theorem (4.4). 

3. The module M in Theorem (4.4) is uniquely determined up to isomorphism 
by A, as the next (well known) lemma shows. 

(4.6) Lemma. Let M and N be K-modules, and let U = S  (./or symmetric) or T 
(for tensor). I f  U(M) and U(N) are isomorphic K-algebras then M and N are 
isomorphic K-modules. 

Let u: U(M)--, U(N) be an isomorphism. For x ~ M  write u(x )=r (x ) - t ( x )  
with t ( x ) sK and v(x) in the augmentation ideal U+ (N). Let 7 be the automor- 
phism of U(M) defined by t(x) = x + t(x) for x e M, and put w = u- t. Then w(x) = v(x) 
for x e M  so w is an isomorphism of augmented K-algebras. We thus have K- 
module isomorphisms, 

M ~- U+(M)/U§ 2 ~ U+(N)/U+(N) 2 ~ N. 

(4.7) Proof oJ" Theorem (4.4). The theorem follows from Quillen induction 
(Proposition (3.1)) applied to the following proposition, where L e Loc (K). 

P(L): The L-algebra L | 1 6 2  is isomorphic to the symmetric algebra S(M) of 
some finitely presented L-module M. 

Of the four properties in (3.1) to be verified, 1, 2, and 3 follow just as in the proof 
of Theorem (4.1), where for 2 one appeals to Lemma (1.10) in place of Lemma 
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(1.15). One also uses the easily verified fact that every finitely presented Ks-module 
is the localization of one over Ks for some seS. To verify 4, moreover, it suffices, 
as in the proof of Theorem (4.1), to establish the implication: P(K~0) and P(K~) 
imply P(K) whenever so, s~ e K generate the unit ideal. Assume therefore that we 
are given a finitely presented Ks-module M~ and a Ks-algebra isomorphism from 
As, to S(Mi)(i=0, 1). Then the K ..... -algebras S(M0,~) and S(MI~,o ) are isomorphic, 
so kemma (4.6) tells us that the K .... -modules M0~ ' and M~s o are isomorphic. 
Using such an isomorphism J': Mo.~,--, M~ .... the cartesian square 

M , M a 

] 

Mo 
4. 

M0 s l ~ M1 ,to 

furnishes a finitely presented K-module M such that M ~ M ~  over K~,(i=O, 1). 
Let B=S(M). For any K-aIgebra L let GA~(L) denote the group of L-algebra 
automorphisms of L |  K B = S(L | M). Write 

GAM(L ) = GA'~t(L ) �9 A fM(L) 

as in Corollary (2.12). By assumption we have isomorphisms of K~-algebras 
ui: B , ~  A~,(i=O, 1), whence an element u=uo2 ' Ul~oeGAM(K ..... ). According to 
Corollary (2.12) we can write U=Vo~, w v;~ with voeGAi~t(K,o), weAJM(K ...... ), 
and vl eGAM(K~,). Let wi=u~1)i: B~,-~ A~,(i=0, 1). Then 

WOJ,  W1 so = Uo.ll U 1) 1 so = W E A fM(K .... )" 

Now Ale(L) is the group of automorphisms of S(L | M) preserving the ascending 
filtration of this graded algebra, it follows that A admits an ascending filtration, 
K=A(~ so that w 0 and w~ are isomorphisms of K~-algebras with 
ascending filtrations. Put N = A (1)/A(~ s The sequence 

0--~ K - *  A (1~--~ N--~ 0 

splits over K~,(i=0, 1), so we can identify A a~ with K@N. Let t: S(N)-~A be 
the K-algebra homomorphism induced by the inclusion of N in A. Then it is clear 
that w/-~ o t~, is an isomorphism (i=0, 1), whence t is an isomorphism. This proves 
Theorem (4.4). 

(4.8) Invertible Algebras (see [BW] and [CJ). For any K-algebra L and integer 
n > 0  le t / !  "~ denote the polynomial algebra L[X~ . . . .  , X,] in n variables. Call an 
L-algebra A invertible if A | B~/J'~ for some L-algebra B and some n > 0. Note 
then that the augmentation L~")~L (sending X,. to 0) induces augmentations 
of A and of B. By augmenting B in A | B we see then that A is a retract of/3 "1, 
and that A is a finitely presented L-algebra and a projective K-module. If A is the 
augmentation ideal of A, one sees easily that the ei-adic filtration on A is abso- 
lutely separating and of finite type, in the sense of (1.13). 

Consider an L-algebra C with augmentation e,: C ~ L. By a tensor decomposi- 
tion of C we understand a pair (c~, fl) of endomorphisms of the augmented L- 
algebra C such that cd =~, [;2 =[3, ~fi=l~c(=e (viewing ~ as an endomorphism of 
C), and such that the homomorphism c~ C| C induced by the inclusions 
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of  ~ C and fi C in C is an isomorphism. Thus, to say that an L-algebra A is invertible 
is to say that A ~ c~ C for some tensor decomposi t ion (c~, 18) of some C =/~,1. 

Suppose S is a multiplicative set in L and that A is a finitely presented L- 
algebra such that A s is an invertible Ls-algebra. Thus there is an n >0 ,  a tensor 
decomposi t ion (~,18) of Cs, where C = / ~  "~, and an Ls-algebra isomorphism 
u: A s ~ e C  s. Let e denote the s tandard augmenta t ion  of C. By Lemma(1.10) 
there is an seS and endomorphisms  c(, fl' of  the augmented Ls-algebra C S such 
that ' - ~ s - e  and ffs=18 . Replacing s by ss' for some s'sS, if necessary, we can 
further achieve that  c(2 = cr fl' 2 = fl,, and c(/3' = fl' cr = e,s. Let f :  cf C~ | t8' Cs --* Cs 
be the homomorph i sm induced by the inclusions. Since fs is an isomorphism, it 
follows that, f, is an isomorphism of Lst-algebras for some t eS  3. In the same way 
now, the isomorphism u:As~cr C s lifts to an isomorphism v: A s t t , ~ t ,  C~,, 
for some t'eS. It follows therefore that the Ls, ,-algebra As,, is already invertible. 

(4.9) Theorem. Let A be a finitely presented K-algebra. If  A~ is an invertible 
K~-atgebra for all maximal ideals m of K then A is an invertible K-algebra. 

The theorem follows from Quillen induction applied to the following proposi- 
tion, where LE koc(K).  

P(L): L |  A is an invertible L- algebra. 

Of the four condit ions in (3.1) to be checked, 1 is immediate, 3 is our  hypothesis, 
and 2 was just verified in (4.8) above. For  4 it suffices to prove that P(Kso) and 
P(K~) imply P(K) if s0, s 1 ~K generate the unit ideal. Let n > 0  and the K~-algebra 
B~ be such that As, | B~ ~ K~" '~ (i = 0, 1). Tensoring one of the B~ with a polynomial  

algebra we can arrange that n0=n~;  call this n, and put C~=B~| K ~"1 so that 

As | C~- Kt2"l ( i=0 ,  1). 

Writ ing | for |  ..... , we now have K . . . .  -algebra isomorphisms 

Co~, ~Bos, | K t'q 

~ Bo,~, @ A~o~ , @ Bl~o 
~--K [nl | ~ C 1  

~ - s o  s I s o  �9 

Use such an i somorphism u: C0s ~ - .  Cl~ o to form the K-algebra C in the fibre 
product  diagram. 

C - - ~  C 1 
] 

i i 4. 

so that C~_C~(i=O, 1). Put D = A |  Then D~K~a" l ( i=O,  1). It follows 
therefore from Theorem (4.4) that D ~ S(P) for some finitely generated projective 

; ~-- ~i~apply-i~emma (l.10l we use the fact that a retract A of a finitely presented commutative K- 
algebra C is finitely presented. We must show that the kernel J of the retraction C ,A is a finitely 
generated ideal. This follows since C is (obviously) a finitely generated A-algebra, hence generated by 
a finite subset X of J, and then X clearly generates J as an ideal 
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K-module P. We have P |  m for some Q and m>0,  so S(P)| 
S(P | Q) ~- K M. If follows that D, hence also A, is invertible, thus proving Theorem 
(4.9). 

(4.10) Stable Isomorphism. Let A be a K-algebra with augmentation e; write 
/ i -Ker(e , )  for the augmentation ideal, and let JA denote the K-module ,~//~2. 
If B is another augmented K-algebra then so also is A|162 B, and there is a 
canonical isomorphism J A @ J B ~ J ( A |  K-modules (c.f. [C] or [W]). 
We say A and B are stably isomorphic if A | KL"I and B |162 K t"l are isomorphic 
(augmented) K-algebras for some n>0.  Analogously, K-modules M and N are 
said to be stably isomorphic if M @ K" ~ N | Kn for some n > 0. 

(4.11) Corollary. Let A and B be invertible augmented K-algebras. Suppose 
that JA and JB are stably isomorphic K-modules, and that A,, and B,, are stably 
isomorphic augmented K,,-algebras for all maximal ideals m of K. Then A and B 
are stably isomorphic augmented K-algebras. 

Since A and B are finitely presented K-algebras, an isomorphism of A | KE< 
with B |  ~"j over K,~ lifts to an isomorphism over K, for some sere, by Lemma 
(1.15)(c). Since spec(K) is quasi-compact it follows that we can find a single 
n > 0  such that A' =A  | K ~< and B' =B  |162 K t"~ are isomorphic over K,,, for all 
maximal ideals m of K. Choose a K-algebra B" so that B' | B"~  K ~"1 for some 
m>0.  Then A'| is locally a polynomial algebra, hence (Theorem(4.4)) 
isomorphic to S(P) for some finitely generated projective module P. We have 
p . . ,  ~ K n K ~  =JS(P)=JA@ @JB", and J K l m l ~ J B @ K n @ J B  ''. Since JA and JB 
are stably isomorphic it follows that P and K" are likewise, say P |  Kq~ K m+q. 
Putting C = K t"~ | B" | K~qJ we then have 

A | K C ~ S ( P )  | K Ktq~ ~- Kt'n + ql ~ B | K C.  

Since C is invertible this proves that A and B are stably isomorphic, as claimed. 

(4.12) Remark. With the K-theoretic notation of [BW], Corollary (4.11) is 
equivalent to the injectivity of the canonical homomorphism 

KA'o(K)--~ 1~ KA'o(K,,). 
n l  

(4.13) Theorem. Let H=Ho | H 1 |  be a graded K-algebra with Ho=K. Let 
c.: H - ~  K be the retraction with kernel H+ =HI | H 2 @.. . .  Let A be a finitely 
presented H-algebra. Let A o = K  |  + A and B = H  | A o. IRA,, and B,, 
are isomorphic Hm-algebras Jot all maximal ideals m r K then A and B are iso- 
morphic H-algebras. 

The theorem follows from Quillen induction (3.1) applied to the following 
proposition, where L ~ Loc (K). 

P(L) :L |  and L |  are isomorphic (L | H)-algebras. Of the four 
properties in (3.1) to be checked, 1 is immediate, and 3 is our hypothesis. Since A 
and B are finitely presented H-algebras 2 follows from Lemma (1.10). For 4 it 
suffices to prove that P(K~o ) and P(K~,) imply P(K) if So, s~ ~K generate the unit 
ideal. Suppose then that we are given H~ -algebra isomorphisms u~: B,. ~ A.,, (i = 0, 1). 
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We can canonically identify K,, | A~, with K,, | B~,, and so identify 

%;'=1~, | ui 

with an automorphism of K~, @m B~. This gives an automorphism 

1Hs | Oui of H,, @K~ (K~, @n~ B~,)=B~ ' . 

Replacing u i by uio(lm, @K~ ~ ~, we can ~hen arrange that ~ i equals the 
identity. For any K-algebra L let G(L) denote the group of (L | H)-algebra 
automorphisms of L | K B, and let Go(L) denote its subgroup consisting of auto- 
morphisms inducing the identity modulo (L |  + ) . (L |  ). We have the 
element U=Uo] , ul,,,eGo(K .... ). By Corollary (2.7) we can write u=t,o~, t,l~lo with 
vi~Go(K,,)(i=O, 1 ). Put wi=uilfli; B~-* A, .  Then wol wl~o=t,o)~UVa~o=ln ...... , 
i.e. w 0 ~, = w~.,o. Thus w o and w~ patch to form an H-algebra isomorphism w: B - ,  A 
such that w~, =w i (i=0, 1). This proves Theorem (4.13). 

(4.14) Theorem. Let H be as in Theorem (4.13). Let A be a (not necessarily com- 
mutatice) K-algebra. Let M be a .finitely presented left (H @K A)-module. Let M o 
denote the A-module K | = M/H+ M, and N the (H | H| 
I f  M,, and N,,, are isomorphic (H,, @K A)-modules .fbr all maximal ideals m of K, 
then M and N are isomorphic (H | A)-modules. 

For Lckoc(K)  consider the proposition, 

P(L)" L | M and L @K N are isomorphic (L | H | A)-modules. 

This is proved by Quillen induction, exactly following the lines of the proof of 
Theorem (4.13). In verifying (3.1)2 (finiteness) one uses the fact that, for S a multi- 
plicative set in K, 

lira Homm| A (Ms, N~) --~ Homn~| (Ms, N~) 
s ~ S  

is bijective, because M is finitely presented, and similarly with M and N reversed. 
In verifying 4 one considers the functor G attaching to each K-algebra L the group 
G (L) of (L | A)-automorphisms of L | M0. Then G satisfies axiom Q (Corollary 
(1.7)) so we can apply Corollary (2.7) to the group G(L| of (L| H| 
automorphisms of L | H| M0 = L| N, to conclude that, with the notation 
of (2.7), 

G(L ..... |174 , �9 G(L~, @ H+).~,, 

whenever Lso + Ls~ = L. This is precisely the information necessary to carry out 
the patching argument in verifying the sheaf condition 4 of (3.1). 

(4.15) Remarks. 1. Theorems (4.13) and (4.14) are of particular interest when H 
is the graded polynomial algebra, K IT]. For example (4.13) then says that if A 
and A o [T] are isomorphic algebras over K,, [T] for all maximal ideals m of K 
then they are isomorphic over K IT]. Here A is finitely presented K [T]-algebra 
and Ao=A/TA.  

2. IfA = K  in Theorem (4.14) then Theorem (4.14) follows by applying Theorem 
(4.13) to the symmetric algebra S(M) over H. (One uses Lemma (4.6) for this.) 
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3. In case A=K, and H=K[T]  then Theorem (4.14) becomes Quillen's 
localization theorem ([-Q] Th. 1), which was the inspiration of everything above. 

4. The analogue of Theorem (4.14) for modules equipped with some quadratic 
structure (e.g. a hermitian form when A is equipped with an involution) is also 
valid. The proof is similar. One uses Remark (1.8) to verify axiom Q for the functor 
G that intervenes. 

5. The weary reader will have noted an evident repetitiveness in the proofs 
above. One method of axiomatizing them goes as follows. Let Cg(L) denote a 
category attached to a K-algebra L, with base change functors A ~-~E | A from 
c6(L) to Cg(E) for each K-algebra homomorphism L-~ E. We require that (g be 
"localizable" in the sense that it satisfies properties (F) and (S h) below. 

(F). If S is a multiplicative set in a K-algebra L, and if A, B~Cg(L), then the 
canonical map 

lim Hom~ IL~) (As, Bs) -~ Hom~, ~L~t (As, Bs) 
s ~ S  

is bijective. 
(Sh). If L is a K-algebra, so, sI~L generate the unit ideal, and A, B~g'(L), then 

the square 

Hom(~ iL~ (A, B) -~ Hom~ ~Ls,> (As~, B~,) 
i I 

r r 

Hom~(Lso~ (Aso' B,~o) - ~ H~162 L .... ~ (Asosl, B . . . .  ) 

is cartesian. 
Now let L~--~o(L ) be a second such category, and suppose we are given 

functors 

~o(L)~- ': ,~ (L)  
7 

that commute with base change and such that 7oe is naturally isomorphic to 
the identity functor of c~ o . 

Let A~W(K), and put B = e 7  A. We wish to prove that A~-B in ~(K)  provided 
that A., ~_ Bm in W (Kin) for all maximal ideals m of K. We apply Quillen induction 
to the following proposition, where L ~ Loc (K). 

P(L): L| ~-L| in ~(L). 

Of the four conditions in (3.1) to be verified, 1 is clear, 3 is our hypothesis, and 
2 follows, as in the proofs above, from property (F) of c~. Condition (S h) on ~ is 
used in trying to establish 4. For  any K-algebra L, put 

G(L) = Aut,(L~ (L | B), 

and 

Go (L) = Ker (G (L) ~ ' Aut,o (L! (7 (L | U))). 
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Then, as in the proofs above, condition 4 of (3.1) can be established, so com- 
pleting the proof, provided we know that: With L, so, sl as in (S h) above, we have 

Go(L .. . .  )= G0(Lso)~, " Go(L~,)~o " 

The example corresponding to Theorem (4.1) is where off(L) is the category 
of finitely presented L-algebras A with absolutely separating filtrations of finite 
type such that y A =gr(A) is also finitely presented, where ~o(L) is the category 
of finitely presented graded L-algebras B = B  o @ B 1 (~ .,., and where ~ B e ~ ( L )  
is B equipped with the filtration by the B~,,=B, GB,,+I �9 ... for n=>0. 

In Theorems (4.13) and (4.14) we have C~(L)=C~o(L| and ~ and ? are 
induced by the inclusion L--~ L | H and the augmentation L | H ~ L, respec- 
tively. In (4.13) ~0(L) is the category of finitely presented L-algebras. In (4,14) 
~o(L) is the category of finitely presented left (L | A)-modules. 
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