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O. Introduction 

0.1. The purpose of this paper is to prove a certain strong uniqueness proper- 
ty of the spectral asymmetry local invariants. The results were motivated by 
the following question. Let A be an elliptic pseudo-differential operator (ODO) 
of positive order on a closed manifold X. Assume that there are two cuttings 
in the spectral plane Arg2=0 ' ,  A r g 2 = 0 "  (0<0 '<0"<2~z)  whose conical neigh- 
bourhoods contain no eigenvalues of A. This allows us to define: 

p(s; A) = ~0"(s; A ) -  {0"(s; A) = Tr AO :~- Tr A~: ? 
d i m X \  

Res > o ~ -  ) . (1) 

Here Ao s (0=0' ,0")  denotes the complex powers of A with respect to the 
cutting A r g 2 = 0  (see e.g. [8, 11]). It is known that p(s;A) analytically con- 
tinues to the whole complex plane as a meromorphic function. Moreover, 
p(s; A) is regular at all integral points. Since Ao*=A -~ does not depend on 0 
for leZ, we must have p(l;A)=O at least when A -t has a finite trace (i.e. 
when l>dimX/ordA). Assume for a moment that A has a very special form: 

A= A' O A" : cg~~ E' O E")--+cg~(X, E' • E"), (2) 

where SpecA'c{O'<Arg2<O"}, SpecA"c{O"<Arg2<O'+2rc}. Later, after 
making precise basic notions connected with spectral asymmetry, it will be 
reasonable to say that such operators have the trivial spectral asymmetry (cf. 
1.9). 

Of course we have: 

p(s; A)= p(s; A')+ p(s; A")= (1 - e -  2~,~)Co,(S; A') 

(the asymmetry between A' and A" is caused by our choice 0 < 0 '<  0"<  2n). 
In particular, p(l;A)=27ti Ress= l~0,(s;A'). Thus the residue of ~(s) is an ob- 
vious obstruction to the vanishing of p(s). It appears that this is the only 
obstruction. More precisely, for l<dimX/ordA Ress=t~(s;A)-O in two cases: 
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1 ~ l .ordAr 2 ~ /=0.  The vanishing (even microlocally) of p(l) in the first 
case has been proved in [11]. For the second case see 1.24 of the present paper 
(it is closely related to the regularity of the eta-function of Atiyah-Patodi- 
Singer, see e.g. [4, 5, 11]). 

Actually the described phenomenon proves to have a more general nature. 
Out of all properties of p(l) the following are essential: 

(a) p(l) is local, i.e. p(1) is an integral of some 1-density written down 
locally in terms of the complete symbol of an operator; 

(b) p(1) is spectral, i.e. p(l) is constant on classes of iso-spectral operators; 

(c) p(1) is additive, i.e. p(1;AQB)=p( l ;A)+p( l ;B) ,  where A,B  are any 
elliptic 0 DOs admitting of the same cuttings 0', 0". 

We prove in this paper that: 

any spectral asymmetry invariant satisfying the conditions (a)-(c) is uniquely 
determined by its restriction to operators with trivial spectral asymmetry, in case: 

(A) X is an even-dimensional closed manifold, or 

(B) X =IJ x Y, where ~ is an odd-dimensional rational homology sphere, and 
Y is an arbitrary closed manifold. 

For the precise meaning of the word "local invariant of the spectral 
asymmetry" and for more detailed (and more general) statements we refer to 
Sect. 1. 

Of course it is equivalent to prove the corresponding vanishing properties 
for invariants, whose restriction to trivial asymmetry operators is zero. And we 
deal only with this case further on. 

0.2. A few words about the contents of the paper. Section 1 contains basic 
definitions and statements. Besides, in Sect. 1 we prove that the adjoint action 
orbits of the group of invertable ~, DOs of order zero which intersect the set of 
operators with trivial spectral asymmetry generate, in some sense, all topologi- 
cally trivial operators (for the definition see 1.13). "In some sense" means the 
following: for any topologically trivial ODO A there exist operators D, T (D - 
with trivial spectral asymmetry, T -  smoothing) such that A �9 D + T lies on one 
of the orbits mentioned above. Any spectral invariant must be constant along 
the adjoint action orbits. On the other hand topologically trivial operators 
define the equivalence relation on the class of elliptic ODOs with "fixed" 
spectral asymmetry (see 1.17), and the corresponding set of equivalence classes 
with the additive structure induced by the direct sum G is naturally isomor- 
phic to K(S*X) /~*K(X)~-KI(T*X) ,  where S*X ~ , X  is the co-sphere 
bundle. Therefore our invariants must factor through K-theory. We end Sect. 1 
with the corrigenda to the preceding paper [11]. In Sect. 2 we introduce certain 
K-theoretical classes which turn out to provide a sort of generators for our 
invariants. The corresponding "reductions" are the object of Sects. 5 and 6. 
Part of these reductions is much in spirit of the Gilkey's paper [5]. Localness 
of the invariants is essential. Section 3 contains auxiliary technical construc- 
tions connected with simultaneous modifications of ~ D O s  together with vec- 
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tor bundles on the co-sphere bundle, and of a base manifold itself. This 
material applies repeatedly later on. In Sect. 4 we prove the vanishing of our 
invariants on the generators introduced in Sect. 2. The essential ingredients of 
the proof are as follows: 

- spectral invariants are constant on the ad jo in t  action orbits in 
K(S*X)/~z*K(X) of the group of diffeomorphisms of a base manifold; 

- by performing surgery one can provide any oriented odd-dimensional ma- 
nifold with an orientation reversing diffeomorphism; 

- the generators of Sect. 2 behave well with respect to surgery; 

- invariants under the consideration are assumed to be local. 

At last in Sect. 7, which is independent of the preceding, we deal again with 
the original question of the coincidence at the origin of zeta-functions defined 
by various cuttings in the spectral plane. We prove that this is equivalent to 
the vanishing of the "non-commutat ive  residue" for any pseudo-differential 
projector. This "non-commutat ive  residue" is a higher-dimensional analogue of 
the one-dimensional non-commutat ive residue in the Adler-Lebiediev-Manin 
scheme in the integrable systems theory. Recently it has become clear that this 
(higher-dimensional) residue is an obstruction to representing a ~ DO as a finite 
sum of commutators  (up to smoothing operators). Moreover,  this turns to be 
the only obstruction. Since the coincidence of the zero values of the zeta- 
functions is actually proved, we obtain this way that any pseudo-differential 
projector (on a closed manifold) must be a finite sum of commutators  up to a 
smoothing operator. 

0.3. It is likely that the italicized statement of 0.1 remains true for an arbitrary 
odd-dimensional manifold, at least under certain additional assumptions on the 
invariant. Indeed, K(S* X)/z* K(X)| for an oriented odd-dimensional X is 
generated by special differential operators A~ of order one. They are the 
boundary components of the signature with coefficients operators (cf. [2, p. 83]), 
and they depend on a connection on the vector bundle E and on the rieman- 
nian metric. Let A E be the laplacian (with respect to the same data) acting on 

m - - 1  

sections of E. Let B(A m) =A~(1 + A E)~--. B~ ") also generate K(S* X)/rc* K(X)@ Q, 
and their order equals m. Let R be the considered invariant. By the localness 
assumption it is of the form R=~R(x)IdxL, where R(x)ldxl is a 1-density. If one 
requires in addition that R(x; B([ ")) is a smooth function of finite jets of the 
connection and of the metric then one obtains, a smooth invariant (in the sense 
of Gilkey) and by applying the results of [-3] one ought to have ~ R(x)Idx[-0. 

0.4. Notation. If X is any compact  space then by K(X) we denote its (ordinary) 
K-group, by H*(X) - its rational cohomology, and by 0kx - the canonical 
trivial bundle with the total space X x Ir k. Below we usually distinguish be- 
tween trivializable and trivial vector bundles. 

I would like to thank F.A. Bogomolov, O.R. Musin and A.N. Tyurin for stimulating con- 
versations. I wish also to acknowledge the invaluable support of Yu.I. Manin. 
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1. Basic  s tatements  

1.1. Recall the definition of a morphism of vector bundles. If E ~ X ,  F-- ,Y are 
two vector bundles then by a morphism q~: F---,E we mean a pair ~o=(f,r), 
where f :  Y ~ X  is a smooth mapping, r e H o m ( f ' E ,  F). 

Any such morphism induces the natural mapping ~o*: cg~(X, E)~Cg ~ (Y, F): 

for u ~ ( X ,  E) (q~* u)(y)= rru(f(y)). 

1.2. In case f is an open embedding (in particular - diffeomorphism), and 
r : f ' E  ~ >F an isomorphism one can define also the arrow in opposite side 
q2: : ( ~  (Y, F)+ ~ (X, E): 

for v e ~ ( Y , F )  (~p~v)(x)=~rilv(y) if x = f ( y ) f o r  some y e Y  
to  otherwise. 

1.3. In this case one can define also the natural mapping 

(p# : 5~(X, E)--, =L,o(Y, F), 

where ~w(X,E) denotes the space of all linear continuous operators 
A: (g~ (X, E)---lg~ (X, E), and analogously L~(Y, F). Namely, 
(p# A: ~ ( Y ,  F)~cK~(Y, F) is given by the commutativity of the diagram 

(ego(y, F) . . . . .  +ceoo(y, F) 

(e~ (x ,  F) > (e ~ (X, F) 

In other words, the correspondence (X, E),,,,, ZP, (X,E) establishes the contra- 
variant functor ~ :  "/S, d o ~ d o .  Here and further on ~Uecg o stands for the 
category of (smooth) vector bundles with morphisms as in 1.2. In case Y is an 
open piece of X, i: Y~--~X is a tautological embedding, F=i 'E ,  and r = i d  we 
shall write briefly AIr. 

Let Jg: q/**go--*~do be any subfunctor of the functor ~ ,  i.e. in particular, 
J I (X,  E) ~ s E) for every (X, E) ~ Ob ~i/'eeg o. Suppose, in addition, there is 
given a family of mappings 

~x,E: ~ ' ( x ,  E)--->(e~176 I A I), 

where l/xl denotes a linear bundle of 1-densities. 

1.4. Definition. The family {~x.e} will be called a local invariant of the functor 
~ ' ,  if for an arbitrary ~p = (f, r)~ Hom~,,to(F, E) the following diagram: 

~[(Y,F) ~'~ > cr176176 I ̂  l) 

r ~*[ (1) 
J[(X,  E) a#~.~ ,cg~(X, I ̂  1) 

is commutative. 



Local invariants of spectral asymmetry 147 

For any local invariant ~ by ~ ~ will be denoted the family of functionals 
~ x , E :  JCl(X,E)~II2 obtained by integration of 1-densities over closed ma- 
x 
nifolds X. 

1.5. Remark. The correspondence (X, E)~X,~Cg~176 ]/x I) establishes the con- 
travariant functor ~/;~c/0--*SPJ~. The condition of commutativity of the dia- 
gram (1) says then that local invariants are exactly natural transformations 
~ :  j { ~ o o ( . ,  I/x I) of the corresponding functors. 

In the language of Grothendieck topologies this could be said equivalently 
as: by local invariants we mean (arbitrary) morphisms ~ :  J#~p ' [ /x [  of (pre-) 
sheaves on the category ~ e g  o. Here 

a) [A[ is the sheaf of 1-densities on the category J / a ~  o of (smooth) ma- 
nifolds with open embeddings as morphisms; 

b) p: ~eCto~#/la~ o is the forgetting functor. 

1.6. Remark. This notion of a local invariant admits natural generalization to 
the case of manifolds and vector bundles with extra structure. 

1.7. Spectral asymmetry. Let ~ ' , 9 "  be two open (non-empty) sectors in the 
complex plane such that ~ ' c ~ J " =  {0}. By Ell~, ~,,(X E) we denote the set of 
all classical elliptic ~ DOs of order m, for which the spectrum of a principal 
symbol lies in ~ ' u ~ " .  This is clearly invariant with respect to changing 
coordinates on base and in a fibre, so we have the contravariant functor 
Ell~,~,,: "t4eC/o~SPer It will be useful also to consider its restriction to 
~U~Clo/X denoted by Ell~,,e,,(X). 

1.8. Let ~: T * X - ~ X  be the natural projection ( T ~ ' X = T * X \ X ) .  If 
a: ~'E--.rEE is a principal symbol of AeEll~,~,,(X,E) then the so called 
sectorial splitting is uniquely defined as: 

n 'E=g '  Og",  where g',g" c n ' E .  (2) 

This is characterized by two properties: 
a) a(N')___N', a(8")~_g"; 

b) Speca(x, ~)l~.c~' ,  Speca(x, ~)[r for large I~l. In view of invariance 
of the splitting (2) with respect to the action of ~ +  on T ' X ,  g' and ~" can be 

• seen as vector bundles on S ' X , =  T o X/]R+. 
For arbitrary operators AeEII~,e,,(X,E), BeEll~,e,,(X,F) their direct 

sum A ~) B belongs to Ell~, e,,(X, E �9 F), and moreover, 

~ L ~  = ~ @ ~ ,  ~ = ~ @ ~ -  

1.9. It is natural to introduce two subfunctors EII~,, EII~., of the functor 
Ell~,e,, defined as 

Ell~,(X, E) = Ell~,, ~,,(X, E) ~ {A' I Spec a' c ~'} 

and analogously for Ell~,,(X,E). It would be reasonable to say that operators 
representable in the form A'(~A" (A'eEll"~,, A"eEll~,,) have the trivial spec- 
tral asymmetry. 
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1.10. K-condition. All local invariants under the consideration in this paper are 
assumed to satisfy the following condition: 

for an arbitrary closed manifold X: 

a) AeEll~, e,,(X,E), ReCL~ • "~ ~ S ~ ( R _ ,  A R ) = S  ~I(A); 
(i.e. R is invertible ~DO of order 0) ~ x x 

b) A - A ' O A " 6 L  -~ where ~ ~ S,~(A)=O; 
A'~EII~,(X,E'), A"~EII~,,(X,E")J x 

c) A,6EII~,,~,,(X, E,) (i = I, 2) ~ ~ ~ ( A , ) +  ~ ~(A2)= ~ ~I(A, �9 A2). 
X X X 

Now we are ready to formulate our main result. 

1.11. Theorem. Let ~t" Ell~, ~,,--.p" I A[ be a local K-invariant whose integrai is 
invariant with respect to the adjoint action of the group of diffeomorphisms, i.e. 

~ ( f ~  A)= S ~(A), (3) 
X X 

where X is a closed manifold, and f~Di f fX  (and this holds for all X and f ) .  
Then 

~ ~ 1 - 0  
X 

in case: 

(A) X is a (closed) even-dimensional manifold, or 

(B) X =  Zt x Y, where Z t is a rational homology odd-dimensional sphere (i.e. a 
closed odd-dimensional orientable manifold with /~"v(Z;Q)=0), and Y is an 
arbitrary (closed) manifold. 

Vanishing of ~ in the cases (A), (B) will be called further Theorem A and, 
X 

respectively, Theorem B. It will be convenient to separate the case when 2 t is a 
standard sphere into the independent Theorem B 0. Proofs consist of two parts: a 
chain of reductions (Sects. 5, 6) and establishing that S ~ vanishes on operators 
with some special sectorial splittings, which turn to be, in some sense, "gene- 
rators ' .  

1.12. We would like at last to emphasize that any spectral invariant R (i.e. R is 
constant on the class of iso-spectral operators) automatically satisfies con- 
ditions (1.10a) and (3). As a corollary of Theorem 1.11 we obtain, thus, the 
italicized statement of the introduction. 

For brevity, any invariant of spectral asymmetry satisfying (3) will be called 
further admissible. 

1.13. Recall that A~Ell~,~, , (X,E) is called topologically trivial (cf. 4.1 of 
[11]), if its sectorial splitting r t ' E = g ' O S "  is isomorphic to a direct sum n 'E '  
G n 'E"  for some vector bundles E', E" on X. Applying results of the preceding 
paper [11] we shall prove now the following assertion. 
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1.14. Proposition. For an arbitrary topologically trivial operator 
AeEII~, ~,,(X,E) on a closed manifold X there exist a vector bundle F with the 
property: 

for any DeEll~,,(X, F) there exist: 
! m ! r n.l t t  t t t  a) operators B eEll~,(X,G), B eEll~,,(X,G ), where G, G are subbundles 

of EOF,  and E O F = G ' O G " ;  
b) an invertable operator of order zero PeCL~ • such that 

p - I ( A O D )  P - B ' O B " e L - ~ .  

Proof. According to the definition of topological triviality (1.13) there exist 
vector bundles E', E" and a suitable isomorphism q~: ~ 'E  ~ , n ' (E 'O E" ) .  Put 
F = E' �9 E", G' = E', G" = E" �9 E. Obviously 

0) 
defines an automorphism of ~ ' ( E O F )  such that 01~.G,: ~'G'  ~ ,N', 
01~.G,,: ~'G" - , g " O ~ ' F .  Let S o be any 0 D O  of order zero whose principal 
symbol is ~. Observe that index So--0. Indeed, if 

QI: cg~(X,E)~Cg~(X,E'OE"), Q2: c~(X,E'OE")-*cg~(X,  E) 

be any qJ DOs of order zero with principal symbols q~ and ~0-1 respectively, 
then by multiplicativity of index we obtain: 

index Q 1 + index Q2 = index Q 1 Q 2 = index (I + compact) = 0. (4) 

On the other hand the homotopy invariance of the index implies 

index o indexI(  0 
in view of (4). 

Therefore, there exists an isomorphism of finite dimensional subspaces in 
L2(X, EOF)  (it is assumed that a positive 1-density d/~ and an hermitian 
metric on E are chosen): 

KerS  O ~ , ( ImSo)  • 

This is, of course, an operator with smooth kernal. By adding any such 
isomorphism to S o we obtain an invertible 0 D O  S of order zero such that for 
an arbitrary DeEII~,(X,F) S-~(A 01))S has the form 

( ~  ~ , ) + W : ~ ( X , G ' O G " ) ~ c K o ~  , 

where 

1) C'eEll~,(X, G'), C" eEll~,,(X,G"); 
2) ordT,  o r d U < m - 1 ;  

3) We L- ~ (X, G' �9 G"). 
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Proposition 4 of the paper [11] asserts existence of operators 

r t  ~ o o  t K : ~ e ~ ( X , 6  ) ~e (x ,G) ,  u + .  ~ ( x ,  6 ' ) - - , ~ ( x ,  6") 

such that 

-=(; (L 
is an invertible CDO of order zero, a n d H _ l  (Cu' T )  (B' O )  C" H -  , ~ L - ~ f o r  

some B'eEll~,(X,G'), B" eEll~,,(X, G"). Putting P = S H  provides the required 
operator. [] 

1.15. Remark. As it is seen from the proof one could take for F any vector 
bundle admitting of action of a 0DO with index equal to -indexqx For 
example, this is the case when F admits a 0DO with index + 1. 

1.16. Corollary. Let X be a closed manifold. Then an arbitrary K-invariant (not 
necessarily local) vanishes on topologically trivial operators. 

Proof. This is immediately implied by Proposition 1.14 and the K- 
condition. [] 

1.17. From now up to the end of this section X is assumed to be closed. We 
say that operators A1 and A 2 are stable equivalent iff there exist such topologi- 
cally trivial operators B1,B z that A t ( ~ B I = A z ( ~ B  2 (equality involves an 
identification of vector bundles E~OFt and E2@F2). The simple reasoning 
(similar to that of [11, Sect. 5.1]) shows that the O-additive correspondence 

Ell~, ~,, (X) ~ A ~ [ G ]  e K (S* x)/~* K (X) 

induces an isomorphism of abelian monoids: 

stable equivalence) 
---Ell~ ~ (X)/Ell~ ~ ,(X)to- triv ~ K(S* X)/Tc* K(X) .  

classes on X J ~"~" ~',~" v. �9 

According to Corollary l.16, therefore, any K-invariant factors through 
K(S*X) /n*K(X)~-KI(T*X) .  In particular, for a local K-invariant one has the 
commutative diagram: 

A Ell~,, ~,, (X) ~x " , ~ ( X , l ^ l )  

[gA] K(S*X)/r~*K(X) . . . . .  + 112. 

The dashed arrow will often be denoted by a letter R. By linearity this 
extends uniquely to the ll~-linear mapping K(S*X)/n*K(X)|  denoted 
by the same letter R. Instead of R([g]]) we shall occasionally write simply 
R(A). 

Hereby, the problem reduces to examination of some topological invariants 
K(S* X)/n* K (X)--, r 
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1.18. Action of diffeomorphisms. Now, we are going to consider an action of 
diffeomorphisms of a closed manifold in the context of spectral asymmetry. 

Let AEEII~,,2,,(X,E), n ' E = g ' |  its sectorial splitting, and 
f E  DiffX. Then, by the definition 

f ~  A: c(~(X,f 'E)-- .cg~(X,f 'E) .  

Its exact properties are described by the following lemma. 

1.19. Lemma (on the diffeomorphism), f~AEEII~,~, ,(X,f 'E) and its sectorial 
splitting is 

n "f" E = (S'f)" g' �9 (S'f)" o ~'', 

where S ' f :  S*X--*S*X is induced by the cotangent map 

T ' f :  (x, ~)~-+ ( f  (x), ( f*)-  1(~)). 

Proof. By the standard formula for change of variables we have 

ai .  a(X, ~)=a(f  (x), ( f*)-  1 ~) 

for a principal symbol of f *  A. The assertion follows. [] 

1.20. The embedding DiffX~--~DiffS*X given by f~-+S*f is a group homo- 
morphism and defines an action of DiffX on K(S*X). If we take K(X) with its 
standard DiffX-action then the natural arrow n*: K(X)~K(S*X)  turns to be 
DiffX-equivariant. This gives rise to the action of DiffX on K(S*X)/z~*K(X). 
Lemma 1.19 and results of 1.17 together imply the following corollary. 

1.21. Corollary. Any admissible K-invariant determines the unique DiffX- 
invariant homomorphism 

R: K ( S * X ) / n * K ( X ) ~ r  [] 

In particular, such homomorphism must kill those elements 
e~K(S*X)/n*K(X),  for which one can find a diffeomorphism f :  X - * X  with 
property ( S ' f ) * e = - e .  This will be one of crucial arguments in proof of 
Theorems A and B. 

1.22. Values of zeta-functions at integral points. Let 0 < 0  <0  _ 2 n  be two 
cuttings in the spectral plane separating the sectors ~ ' , ~ " .  As a corollary of 
Theorem 1.11 we obtain" 

1.23. Theorem. Let #t: EII~,,~,, p[A] (m >0) be a local invariant such that for 
any closed manifold one has: 

a) A6Ell~,,~,,(X, E), RE CL~ • ~ ~ ~ ( R -  'AR)= ~ ~(A); 
X X 

b) A~Ell~,~,,(X, E), f 6 D i f f X  ~ ~ ~ ( f # A ) =  ~ ~(A); 
X X 

c) Ai~ Ell~,,2,,(X, E~) (i = 1, 2) ~ ~ ~ (A,  OA 2) -- ~ ~(A t) + ~ ~(A 2); 
X X X 
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d) A--A ' |  -~176 where ] r . . . .  
, m ,, m =~ J ~'t ~) A eElle,(X, EO, A eEll~,,(X, E2); x 

=~' ReSs=k~(S;A')+a" Ress= ~ ~(s;A"), 1 

where ~', ~" are some constants. 
Then 

I It 

f e ( A ) = 2 ~ i  ~. p(k;A)+c('ReS,=kr 
X 

if X is: (1) even-dimensional or (2) X = X x  Y, where Z is an odd-dimensional 
rational homology sphere. Here, as usual, 

p(k; A): =lim {(o,(s; A) - ~o,,(s; A)}, 
s ~ k  

Proof. At first, one ought to show that both p(k;A) and ReS~_k~(S; A) satisfy 
properties a)-c), but this is obvious in view of the fact that they depend only 
on SpecA. p(k; A) and ReS~=k~(S; A) are both local: 

p(k;A)=~pk(X;A)[dxl, ReS~=k~(S;A)=~Tk(x;a)[dx[, 
X X 

and for A - A ' |  

p(k; A)= p(k; A' | A")-- 2 ~zi . ReS,=k ((s; A'). 

o (  - -  o (  ' 
- - - -  k 'A  " Therefore the difference R 2rci P( " ) - a  ReSs=k~(S;A) satisfies the 

assumptions of Theorem 1.11. Hence the assertion results. [] 

1.24. Note that ~ = 0  satisfies the conditions a)-d) when k=0 .  Therefore we 
must have 0=Spo(X; A)[dxl for X even-dimensional or z~ Y. In fact this 

X 

implies that 0=  S po(x; A)ldxl for any closed X. Indeed, let A be a self-adjoint 
X 

elliptic differential operator on (X, E), B - be any elliptic differential operator 
on S I x S  1 with o r d B = o r d A .  Then, by an observation of Atiyah et al. [2, 
p. 84] we have 

[ [ a |  1 | B* '~'~ indexB.po(a)" (5) 
Po \ \ I |  - A |  = 

Here \I(A|174 - A |  | ] is a differential operator on S l x S l x  X, and p0:=~T(0) 

-(+(0). Taking for B the 8-operator with coefficients in a line bundle of degree 
d + 0  we have indexB=d4:0.  Thus, applying Theorem 1.23 to X'=S~x  Y, 
where Y = S  1 x X ,  we obtain in case o r d A = l  

( ( A |  1 |  '~'~ 
P~ ~ p~ \ \ l  | B - A |  =0" 

Recall that the residues of ~e(s; A) at integral points do not depend (even locally) on the 
cutting 0 



Local invariants of spectral asymmetry 153 

Since K(S*X)/Tt*K(X)| for oriented odd-dimensional X, as is well 
known (see [2, Prop. 4.4]), is generated by self-adjoint first order differential 
operators, the assertion results. 

1.25. Corrigenda to [11]. Unfortunately, an error crept into the statement of 
the main result of my previous paper [11, p. 117]. " / =  - 1 ,  - 2  . . . .  " ought to be 
deleted from the last sentence of the statement of the theorem. This error was 
caused by my uncritical relying on the assertion from [8, p.290] on the 
vanishing of residues of ~(s) at non-positive integers. And this is not quite 
correct 2. If so the method of proof of the main theorem clearly exhibits that 
pl(A) = lim {~0,(s; A ) -  ~o,,(s"; A)} cannot be identically zero when 

s~t ( d imX]  
l~T t<Z(1 /ordA)m ~ - o e ,  o ~ -  ] and 1 , 0 .  

In view of this one ought to make the following changes in the text of [11]: 
- delete " / =  1, 2 . . . .  " from p. 117 (lines 4 top, 1 bottom), p. 120 (line 1 top), 
p. 128 (lines 6, 10 top), p. 129 (lines 2, 5, 6 top), p. 130 (line 7 top); 

- in the statement of Prop. 5 to write p(1;A)=2rci. Res~:t~(s;A' ) (le7Z) in- 
stead of p(l;A)=O ( /=0,  - 1, - 2  . . . .  ); 

- to rewrite (5.1) and the preceding formula as 

( c - t _  1) p (I;A) = 27zi Res,=/{{(s; A'c) - ((s; A'I)}, 

where cAOD (cell2*) is conjugated m o d L  -~176 to A'r174 c' (Speca'~<~', 
Spec a'~' c ~"). 

In the light of the changes made the argument of 5.2 does not give the 
vanishing of p(0; A) automatically 3. The gap which arises is filled in 1.24 of the 
present paper. Except for 5.2 no proofs are affected by the above changes. 

In addition, a few omissions and misprints occur in [11]. This is their list: 
- add "order A=  1" on p. 117 (line 6 bottom), p. 132 (line 7 bottom); 

- the line 14 top on p. 126 read: - ~ j ( a - 2 )  ld2";  

- add "and to be regular at all negative integers" on p. 132 (line 11 top). 
My thanks are due to Howard D. Fegan and Peter B. Gilkey for alerting 

me to incorrect statement of the vanishing of p(l). 

2 .  T h e  c a n o n i c a l  ( Q ,  e ) - c l a s s  

2.1. Let X d be a compact orientable manifold, which we temporarily assume to 
be connected. The standard Gysin exact sequence of the vector bundle 

2 Nevertheless, an analytic continuation of ~(s) to the whole complex plane for general ~b DOs is 
not in danger. The correct formulae for the residues at integral points are given by 

1 
Ress=t~(s ;A)=--  .[ ~" at-dt~mx(X, ~)d~'dx (m=ordA), (6) 

m x 1~1-i 

where a<-~ ~) ~ ~ a~-l~ j(x, 4) is the complete symbol of A -~ (cf. 7.19 of the present paper) 
j - 0  

3 However, the method of relating the behaviour of ~(s) at different integer points by means of 
its dependence on the spectral shift proves to be very fruitful 
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n: S* X s--~ X has the form: 

... ___, Hi+a- ,(X)~e_~ Hi+d- 1 (S* X) ~ , H J ( X ) |  d- '(S) z , n~+a(X)__~...(1) 

Here the arrow )~ must vanish for j#:0, by dimensional argument. 4 By the 
symbol I x we denote the canonical generator of the group H~ A choice of 
a generator o) s in H a- '(S) is equivalent to choosing orientation of X. Then, for 
a closed X: H ~ 1 7 4  a- l ( S ) ~  Ha(X) is defined as l x| e x, where e x is the 
Euler class of the manifold X orientated by the class ~o s. Therefore, for 
manifolds with non-empty boundary or with vanishing Euler characteristics, (1) 
breaks up into a set of short exact sequences: 

O--~HJ+d-'(X) n*,HJ+d-I(S*X) ~ ,HJ(X)| (2) 

2.2. In any case 6 induces an isomorphism 

~: H r (S* X)/n* Hev (X) ~ H'  (X) | H a- x (S), 
where 

(even, if d = odd; 

e = < (odd,  if d = even. 

2.3. Notice that the Gysin sequence in the form (1) is equivariant with respect 
to automorphisms of the fibre bundle S ' X ,  i.e. pairs of diffeomorphisms q~: 
S * X ~ S * X ,  f :  X - ~ X  such that the diagram: 

S*X q' *S*X 

X J ' ~  X 

is commutative. In particular, (1) is DiffX-equivariant (cf. 1.20). 

2.4. Let us fix: 

a) a connected oriented closed manifold Qq, 

b) "integral" cohomology class e~HP(Q;~)  (i.e. lying in the image of 
Hp(Q; 7l)), where p = q (mod2). 

Let N" be an arbitrary odd-dimensional oriented compact  manifold (even- 
tually with boundary or not connected). We are going to define a certain 
functorial element 2 (N; Q, e)e/((S* (Q x N))/Tors. 

Since the Euler characteristics of Q x N is zero (in case N closed) we know 
that for all N under consideration the Gysin sequence breaks up into short 
exact sequences (2), in particular, the following sequence is exact: 

0 , H P + q + " - I ( Q x N )  '~" ,HP+q+"-I (S*(QxN))  

HP(Q x N ) |  q+"- 1(S) ,0. (3) 

2.5. Lemma.  The sequence (3) has a canonical splitting. 

4 If X has a non-empty boundary the same holds also for j=0 
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Proof Consider at any point (s,x)eQ x N a mirror reflection of T~*~)(Q x N) 
with respect to "the mirror" T~*Qc T~s,~)(Q* x N). The induced automorphism of 
S*(Q x N) we denote by z. Since Q is of odd co-dimension in Q x N, then z 
must reverse orientation and, moreover, it possesses the following properties: 

a) z 2 = l ;  

b) z = l  on Hr+q+"-l(QxN); 
c) z =  - 1  on HP(Q x N)| 

So, having in mind (2.3), the decomposition of HP+q+"-I(S*(Q x N)) into +_l- 
eigenspaces carries out the splitting of the sequence (3): 

Hp+q+.-1 (S* (Q x N)), -y---*-I H p+q+"- 1 (Q x N), 

Hp+q+n-,(S,(QxN))_, ~-,Hp(Q•174 [] 

Thus, we may think of HP(QxN)| as of a linear subspace in 
HP+q+"-I(S*(Q x N)). Remark that this embedding does not depend on orien- 
tation of Q x N. 

Put ~N= ~ 1N~H~ The rational Chern character provides an iSO- 
[N,]EnoN 

morphism chQ: K(')| - ,H~ on the category of compact CW-complexes. 
Now, we are ready to give the following definition. 

2.6. Definition. 
1 

2(N; Q,e):- [ (p+q  +n  - 1)/2]! ch~ ~(e|174 x N))| ~ .  

In fact the element 2(N;Q,e) lies in the 7/-submodule 

Is (S*(Q x N))/Tors ~ R (S*(Q x N ) ) |  

The factor [(p+q+n-1)/2]! is chosen in order to avoid superfluous integral 
multiplicities. This element of I((S*(Q x N))/Tors will be called the (Q,e)-class 
of N. 

The following properties of the (Q,e)-class arise immediately from the 
definition: 

2.7. 2(-N;Q,e)=-2(N;Q,~).  

2.8. 2 ( N ; - Q , e ) = 2 ( N ; Q , - e ) = - 2 ( N ; Q , e ) .  

2.9. (Functoriality). Let j:  No~---,N be an oriented embedding of a compact co- 
dimension 0 submanifold (1' could be eventually a diffeomorphism) and l: S*(Q 
x No)~---~S*(Q x N) an induced embedding of co-spheres. Then 

I*2(N;Q,~)=2(No;Q,e) in Is174 

One of crucial points in proof of Theorems A and B is establishing the 
following assertion. 
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2.10. Proposit ion A. Let ~t be an admissible local K-invariant (cf 1.10, 1.12). 
Then 

S ~{A(N;Q,e)}=O, (4) 
O •  

for any closed oriented odd-dimensional manifold N. 
We pos tpone  a p roof  to Sect. 4. The  rest of  the p roo f  of Theorems  A and B 

consists of  a sequence of reduct ions leading at length to some (Q, e)-classes 
associated with special manifolds  Q. 

2.11. M a k e  once more  remark.  Proposi t ion  2.10 in case Q =product of standard 
spheres we shall call Propos i t ion  A o. This will be p roved  in Sect. 4 equally as 
the impl icat ion 

Theo rems  A and B o = Propos i t ion  A. (5) 

In Sect. 5 we prove  the implicat ion 

Proposi t ion A 0 =~ Theo rem A. (6) 

In Sect. 6 we prove  the implicat ions 

Proposi t ion A o =~ T h e o r e m  B o, (7) 

Proposi t ion A ~ Theo rem B, (8) 

and this will end the p roo f  of  Theo rems  A, B and, s imultaneously,  of  Proposi-  
t ion A. 

2.12. At the end of this section we prove  the vanishing of any admissible K-  
invar iant  R on the manifold  X - - S  k' x ... • S kr. This fact serves as an ingredient 
of  the p roof  of  Proposi t ion  A o. 

2.13. L e m m a  (on the spheres). Let R: Ell~,.~,,(Sklx ... • be an ad- 
missible K-invariant (not necessarily local). Then R =-0. 

Proof Put X = S k' • ... x S kr, d = ~ k~, all k v > 1. K(S* X)/~* K(X) is generated 
v = l  

over Q by elements which cor respond  via the i somorph i sm 60chQ to the 
classes 

el | ... |174174 H a- 1 (S), 

where e = ~ d e g e ~ ,  e + d - 1  = even, and  each e~ is lsk~ or ~sk~. The condi t ion of 
pair i ty of  e + d - 1  implies existence of  at least one e , = I s k  .. Let  f , :  Sk '~S  k" be 
any or ienta t ion reversing dif feomorphism,  f~: sk~sk~(v  + I~) be identical maps ,  
and  f." = f l  x . . .  x f,. Then  

(S* f ) * (eu  | " "  |174176 = el |  | |  C~ = - e l  |  | 174  ~~ 

since f reverses the or ienta t ion of X, and  e , =  lsk .. In view of R e m a r k  2.3 
o ch~ is DiffX-equivar iant ,  therefore, letting 2 = c h~ ~ o 6 -  a (e~ @. . .  | e~| ~Os), 

we obtain  
R ((S' f)* 2) = R ( - 2) = - R (2). 
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On the other hand R((S*f)*2)=R(2), due to Corollary 1.21. Hence R(2)=0. 
The lemma has been proven. [ ]  

3. Lemmas on gluing together 

3.1. Let us fix basic notions and notation. In this section X will stand for a 
closed manifold represented as a sum of two compact submanifolds X and 
X+ glued together along their common boundary Z: 

X =  X w z X  +. 

In particular, a tubular neighbourhood of Z in X is diffeomorphic to Z x [0,1], 
so we can assume X to be represented in the form 

X=~#ouZ  • [0, 1] ~ ~//1, (1) 

where ~//o u Z x [0, 1/2] = X ,  Z x [1/2, 1] u q-/1 = X+. We fix any such decom- 
position further on. Restrictions of the co-sphere bundles to X ,  X+ or Z will 
be denoted by S*X , S 'X+ and S*, respectively. S*X , S 'X+ are compact 
manifolds with common boundary S*. 

3.2. Let Y be a manifold with a boundary 8K and f :  8Y-~OY be a diffeomor- 
phism. Glue two copies of Y together along their boundaries with the aid of f 
Then one obtains the closed manifold D:Y. If Y is oriented then putting 

:(Y u : - Y  if f preserves orientation, 

D : Y = [ y w : y  if f reverses orientation, 

equips D:Y with induced orientation. For f = i d  we shall briefly write DY and 
call it the double of Y 

3.3. Decomposition (1) determines an involution of S* induced by a reflection 

a: (z,O;(,z)~--~(z,O;~, --z) ((z,t;(,z)GT*(Z x [0, 1])). 

If one forms the doubles D X  and DX+ then one can easily check that 
S*(DX•177 If, moreover, there is given a vector bundle g on S*X 
such that there exists an isomorphism r g l s , ~ a ' ( g l s , ) ,  then one can 
naturally form "doubles" of g• x~ denoted by DeN• (since they depend 

g on ~o). These are vector bundles on S (DX+). In case gls* is trivial (recall, this 
. . . .  - -  z . . . 

means: with chosen tnvlahzatlon), then one has a canonical isomorphism 
g l s , ~ - ~ ' ( g l s , ) ,  and DCg• will be denoted simply by D~o• 

3.4. Lemma (on the double). Let ~ be a vector bundle on S*X such that its 
restriction to S'ell is trivial (here ql c X denotes some neighbourhood of X ). 
Then there exist ~ DOs AGEll~,.e,,(X), B • GEII~, e,,(DX+) acting on sections of 
trivial vector bundles such that 

(a) 8~ -- g, ~ -- D~• 
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(b) /f n v  __y( l ) ,  ,V(2) ,1,, + -- ~, + ,_, ~, + then 

B_lx,_,,=Alx_, B+lx,:,--Ab,+ (i--1,2) 

(exact  equality o f  operators). In particular, for  every local invariant 

~ ( A ) = � 8 9  ~ ~(B+). (2) 
X DX+ 

Proof. We can safely assume 8 to be trivial on S*(q/owZ• 1]). In the 
course of the proof we shall use the following convenient notation: 

al l ~ q l o w Z x [ O , t ] ,  if t < l / 2 ;  
t = ~ Z  x [t, 1] wq/1, if t >1/2. 

We are going to construct operators A, B e satisfying required conditions in 
an explicit form. 

Step 1. Choose some complement ~ for 8: 

~| 

such that ~[s.(z• is also trivial. Liftings of ~ and ~ onto T~'X will be 
denoted by the same letters ~ and J~. 

Choose a section 

S*X~--*T*X such that S* (Z  x [0, 1])~---*To*(Z x [0, 1]) 

does not depend on t~[0,1]. (3) 

For (x, O ~ S * X  we put 

where d'~N' ,  d " e N "  are fixed complex numbers, and extend this by homo- 
geneity of degree m to the whole T ~ X ,  using the chosen embedding (3). 

This would be an (unsmoothed) principal symbol of the operator A. 

Step 2. Choose any locally finite covering by coordinate charts {Z ~} of the 
manifold Z. Put X ~ = Z  ~ x(1/4,3/4). In this manner we get covering by charts 
{X ~} of the (open) manifold Z x (1/4, 3/4). 

Let {X~}, {X ~} be such locally finite families of charts, that 

q/~/4 c ~) X a ~ ~ / a ,  

{X~}, {Xa}, {X"} together form a certain covering {X ~} of the whole X. 
Let {~0~;~k ~} be a subordinated partition of unity together with cut-off 

functions, i.e. 
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(a) q~, ~9*~%~(X~); 
(b) 0 ~ 0 " ~ 1 ;  0 < ~ < 1 ;  

(c) Z 0 -l; 
v 

(d) r ~ ~- 1 on supp q~. 
We require in addition, that: 
(e) ~o K, ~ are invariant with respect to symmetry t~--~l-t (t~[0, 1]); 

(f) supp ~/~ ~ ~//2/5, supp~bU = ~//3/5. 
Small changes in the ordinary construction of a partition of unity always 

allow to fulfil these additional conditions. 

Step 3. Let ~(r be the standard smoothing function in lR": 

co(~)= {01 for ,~,-<_�89 
for [~1>1. 

By A ~ we denote an operator cg~(X*,r176 with a kernel which in 
local coordinates looks like 

~e i(x Y~'r176 (x, yEXV). (5) 

Let q~, 7 s~ be operators of multiplication by q~ and ~0 ~, respectively. Put, at 
last, 

a= Z q~a~7 ~. (6) 
v 

Obviously, A ~Ell~, ~,,(X, O~x). 

Step 4. Form a covering {X "} of the manifold D X  by taking the covering 
{X K} and "twice" the covering {X~} �9 

= {x  

This is a covering of D X  by coordinate charts. Due to condition (e) (see 
Step 2) the family of functions 

is automatically a partition of unity subordinated to {X'}, equipped with the 
corresponding family of cut-off functions {~'}. Put, as before, 

B = E ~ ' A "  V'. (7) 
a 

Remember that q~, 6" are invariant with respect to symmetry t~--~ 1 -  t. 
Moreover, A" by its definition and the requirement on the embedding S*X 

~-.T*X (see (3)) is also invariant with respect to t~--~l-t. Hence restrictions of 
B to X(_ ~) or X (2)_ are equal. 

On the other hand, by comparing (6) and (7), we get 

A[x_ = ~ q~A~ 7jz + ~(q)~ A~ 7'~)]z • (o, 1/2)= B_ Ix?', 
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i.e. Alx =B [x~_,=B_lx(~). If one defines (in exactly the same manner) the 
operator  B+ in terms of the covering {Xa}.'= {X~2)} w {X ~} w {X~I)}, then one 
obtains 

Alx + = B+ ,~,,= B ..,~, ~ +  + A +  " 

Furthermore,  by the very definition, 

g~_ = D g ,  o~ + = D6~+. 

Step. 5. For  any local invariant # / w e  can write: 

~ ( A ) =  ~ ~(A)+ ~ ~(A)= ~ ~(B_)+ ~ ~(B+) 
X X -  X+ X X§ 

=�89 ~ ~(B )+ ~ ~(B+)}. 
D X -  D X +  

By the assumption, C~_ = D S _  has to be trivial, so ~ N ( B _ ) = 0  (see Corol- 
lary 1.16). Therefore we obtain finally ox_ 

~(A)= �89  ~ ~(B+). 
X D X +  

The lemma has been proven. []  

3.4. And now, let us consider the more general situation. Assume that there 
are given two manifolds each represented as a sum of its submanifolds glued 
together along a common boundary: 

X = X  uX+,  Y=Y_uY+.  

We assume, moreover, •X_ and OY_ to be diffeomorphic to the same closed 
manifold Z, and so X, Y can be cut and glued anew into another pair of 
manifolds: 

U = X  uY+, V=Y wX+. 5 

To fix smooth structures on U, V let us choose open neighbourhoods 
X •  Y + c ~ + c Y s u c h  that 2 n 2 +  and Y ~Y+ are diffeomorphic 
to 2 : = Z  x(O, 1) and induced diffeomorphisms carry a X ,  (~Y onto Z • {�89 
This uniquely determines embeddings: 

5 If X, Y are oriented, then all identifications and submanifolds are considered in the oriented 
category. In particular, then, U and V have natural orientations 
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which are agreed one with another, i.e. the following diagram of embeddings is 
commutative:  

x ~- 2-" Y 

X ~ 

V 

(8) 

Solid arrows denote the canonical embeddings. Already, the diagram of this 
kind uniquely determines smooth structures on U and V. An analogous dia- 
gram of co-sphere bundles hangs over that. 

3.5. Let us suppose, in addition, that there are given vector bundles 6ox, 6or on 
the corresponding co-sphere bundles, which coincide on S*Z. 

3.6. Remark. For our purposes we are forced to make precise the notions 
"given" and "coincide". We will say below (in this and the following sections), 
that a vector bundle of rank r on a space W is given iff one exhibits a (~ech 1- 
cocycle 6O~ZI({w~}, GLr(~)), where {W ~} is some locally finite covering of W. 

By a restriction of 6O to a subspace W o c W  we mean an element 
6olwoEZl({w~Wo}, ~L,(r 

By coincidence of two vector bundles 6 ~ and .~- we mean that lm~ coincide 
the corresponding coverings, 2"a~ coincide 1-cocycles themselves. Such coinci- 
dence will sometimes be called coincidence in the narrow sense. 

3.7. Return to our bundles 6Ox~S*X, gr~S*Y.  Thanks to their coincidence on 
S*Z they can be uniquely glued as new bundles 6Ov~S*U, 6Ov--*S*V. In this 
situation the following analogue of the Lemma on the double holds. 

3.8. Lemma (on the cutting and gluing). Let gx, 6or and 6or, 6ov be the vector 
bundles defined above. Then there exist operators A x, A r and A v, A v acting on 
sections of trivial vector-bundles such that 

(a) Ax~EII~,,~,,(X), Ar~EII~, ~,,(Y); 

(a') Av6EII~,,~,,(U), Av~Ell~,,e,,(V); 

(b) Wax=6o x, 6o;y=6or; 

(b') 6O;~=6Ou, G ~ = e v ;  

(c) Ax[x_ = Avlx_, Axlx+ = Avlx + , Arlr_ =Avl r  , Arlr+ =Avlr+.  

In particular, for any local invariant 9~ 

+ t t + 
3.9. Remark. As a matter  of fact, out of arbitrary qJ DOs A x, A r agreeing on 
some neighbourhood ~ = Z  x {�89 one can always construct their "re-glues" Av, 
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A v satisfying the condition (c). This requires more subtle means than "coarse" 
partitions of unity, and exceeds the limits of this paper. For our purposes it is 
quite enough if there exist operators A x, A r which could be glued anew into 
another pair of operators, and could have required sector splittings. 

Proof. First of all, look for embeddings into the trivial bundles k gx~Os,x, gy 
~---~0~, r (k ~ 0) such that the following diagram 

J (9) 

SyIs.~C'-"~'OS,~ 
commutes. 

For a vector bundle on a compact space S-~W given as a 1-cocycle 
g e Z  1 ({ W~}, GLr(C)) there is a standard way how to construct an epimorphism 
O~---~S(k~O). To do this it is sufficient to choose only a partition of unity 
subordinated to the covering {W ~} (for details we refer for example to [6, 
Theorem 1.6.5]). Moreover, when there are given two vector bundles #~W1, 
~ - ~ W  2, coinciding on some subspace Wo~W~(i--I,2 ), then, by properly 
choosing partitions of unity, one can achieve the coincidence of the epi- 
morphisms 0~v --~g, 0~ - ~ , ~  on Wo, i.e. commutativity of the diagram dual 
to the diagram of the type (9). Applying all this to S---g*, W = r  and 
dualizing the picture we obtain the required embeddings gXC-"')Os,x,k gyC_.~Os, y .k  
Furthermore, it costs nothing to provide splittings 

oks,x=~x@~x, Os, =Sr |  (10) 

which coincide on S*Z (this can be done, for example, using canonical metrics 
in k k Os, x, Os, y). 

The splittings (10) will serve as sector splittings of the operators A x, At, 
that we have to construct. The operators A x, Ay, At:, A v themselves one 
constructs exactly by the same scheme as in the proof of Lemma on the double 
(steps 1-4). Besides, requirements on the embeddings S*X~--~T~X, S*Y~-~T*Y 
and on partitions of unity can be weakened (for example, "flatness" of S * X  
~---~T*X or invariance of partitions of unity with respect to t~--~l-t on Z - - Z  
x (0,1) are unnecessary). 

Details are left to the reader as a routine exercise. [] 

4. The proof of Proposition A 

Our aim in this section is to prove Proposition A 0 and the implication 

Theorem A and Theorem B o ~ Proposition A. 

Everywhere in this section N stands for a closed oriented manifold of odd 
dimension, all K-groups are tacitly considered to have rational coefficients, and 
R--~5~ is a (fixed) admissible local K-invariant (see 1.3). As we know (cf. 1.17) 
any such invariant gives rise to a Q-linear mapping K ( S * X ) / n * K ( X ) ~ ,  
where X is a closed manifold. For another notation we refer to Sect. 2. 
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4.1. Assume N, for a moment, to admit of a diffeomorphism f :  N-~N revers- 
ing orientation. Let 0 = S* (idQ x f )  be the induced automorphism of S* (Q x N). 
Obviously tp*(e|174174174174174 s. In view of the 
DiffX-equivariance of the isomorphism 6 o ch~ (cf. 2.3) this implies that 

O*2(N; Q, e)= - 2 ( N ;  Q, e). (1) 

Put 2=)~(N; Q, e). Due to (1) R(O*2)= -R(2),  on the other hand, in view of 
Corollary 1.21, R(O*2)=R(2). Hence, R(2) must be zero. 

So, we have proved the following assertion (making no use of the localness 
of R), 

4.2. Lemma. I f  N admits an orientation reversing diffeomorphism, then for any 
admissible invariant R: K(S*(Q x N))~C 

R(2(N;Q,e))=0.  [] 

4.3. Remark. We used the same argument with an orientation reversing diffeo- 
morphism in the proof of the Lemma on the spheres (see 2.13). This will be 
used many times in this and the following sections. 

4.4. In the general case, undoubtedly, N may lack such an orientation revers- 
ing diffeomorphism. Still, when dealing with local invariants it is permitted to 
apply surgery. 

Thus, let N = N  t3N+, M =  M uM+ be two closed manifolds each repre- 
sented as a sum of its proper submanifolds glued together along a common 
boundary. 

Assume that: 
a) an oriented identification of normal neighbourhoods v ( ~ N ) ~ N  and 

v ( O M ) c M  is fixed such that the diagram: 

v(c~N)~N_ ~--~v(dN ) *.--'v(c3N )~N+ 

v(OM )c~M ~v(OM )* --~v(0M )c~M+ 

is commutative; 

b) there are given vector bundles gu, gM on S*(Q • N), S*(Q x M), and 
their restrictions to S*(Q • N){~Iou )• and resp. to S*(Q • M)]~t~M_~• coincide 
(in the sense of 3.6, and with respect to identifications fixed at point a)); 

c) [r in I((S*(Q• and [gM]=s2(M;Q,e) in I((S*(Q 
• N)), where s is some positive integer. 

Then, N and M can be glued anew into a pair of oriented manifolds 

N':=N_wM+, M".=M ~N+. 

Moreover, the bundles gN, r glue anew into the bundles gN,, gM,: 

gN':=gu-U~ on S*(QxN'),  

gM':=gM Wgu+ on S*(Q• 



164 M. Wodzicki 

4.5. Remark. To ensure a fulfilment of the conditions b) and c) above one may 
proceed in the following way. 

Denote for brevity Q xv(~?N)~-Q x v (OM)  by Z o. We can assume, that a 
bit larger normal neighbourhoods have been identified: 

v l ( a N ) ~ v l ( o m )  

U U 
v(ON ) ~- v(om ) 

and by 5f I we denote Q xvl(ON_)~- Q X Vl(~M ). ,~0,.~r are closed subsets of 
Q x M .  

Let 8~ be any vector bundle such that [8~]=2(N;Q,e) in Is 
and Z - be its restriction to S*Z  1. It would be sufficient to know that the 
given bundle Z on S*Y'I could be extended on the whole S*(Q x M) to some 
bundle 8 M such that [O~M]=2(M; Q,e) in K(S*(Q x M)). One may attempt to 
provide such an extension in the following way. Let 8 ~ be any vector bundle 
representing the class 2(M; Q, s) and with the same rank as g~. Put 

Y[+_ =Q x [M+_ c~(vl(OM )\v(~M_))]= Q x M+ r (Zl\Y'o) 

(see Fig. 1). In view of the functoriality of the (Q, 8)-class (cf. 2.9) the rational 
classes [ 8 ~  and [ZIs.~r,] are equal. Hereupon, for some s l e N  (sl=#O), 
we have an equality of the integral classes s~ [o~~ and s I [~ l s*z , ] .  And 
so, adding, if necessary, from the very beginning to each g o  and g~ the trivial 
vector bundle we may assume the existence od isomorphisms 

Here we have put g~t=(8~ ~=~, 8~=(0~)  *=~, f q = Z * = ' = g ~ l s ,  z .  Pasting 
g~tls*r and f# with the aid of the isomorphisms ~o+ we obtain some 
new bundle gM z . In view of the Mayer-Vietoris exact sequence in K-theory with 
rational coefficients: 

...--, K -  '(S* Y'_)O K -  1(S* f + ) ~ , K(S*(Q x M)) --* 

--* K(S*(Q x M_ \ fo) )OK(S*(Q x M+ \Yfo))OK(S*Y'o) --*... 

the difference [8~t]-s~ 2(M; Q, ~) must lie in the range of A, i.e. there exist 

QxM_ QxM. 
^ ^ 

r i 

d t t  
Fig. 1. 
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1) mappings 7+_: S*Yf+---,GLk(• ), where k is a sufficiently large integer, 

2) a positive integer s2, such that 

s2([6 ~ - s ,  2(M; Q, e))=A [y_] +A [7+], 

where [7_+] are the corresponding classes in K I(S*Y'+). 
Put eg~_t~2~s2_w~, , g~=(g~t) ms2. Add to g3 u a bundle obtained by pasting 

three trivial bundles: 0sk.(e• 0sk,~r, with the aid of the mappings 7+ 1. 
Denote the obtained bundle by gM. Of course 

[gM] = [d~M 3 ] -- A [7- ] -- A [7 + ] = S l sz J,(M; Q, e). 

Add to g3 the trivial bundle O~,(a • m and denote the obtained bundle by gN. In 
view of all of the above guls*eo and gMls*~ro coincide (in the narrow sense). 
Moreover, the condition 4.4c is satisfied with s, =sa s 2. 

4.6. Return to the bundles gu,=d~ ~NM+, gM,=g~_ u g u+. Using again the 
functoriality of the (Q,e)-class and the Mayer-Vietoris argument we conclude 
that 

t ([ocu,] - s 2 ( N ' ;  Q, e))= A [~51], t([d~M,] - sX(M' ;  Q, e))= A [62], 

where 61,6 a are some mappings s ~ stands for S*(Q 
x N)[a• - ~-S*(Q x M)IQ• and t is some positive integer. 

Embed ~ x [0, 1] into S*(Q x N) so that 

a) ~ x  {�89 goes into ~ c S * ( Q x N ) ;  
b) ~e x {0} c S*(Q x [N_\v(~?N)]), o~f x {1} =S*(Q x [N+\v(c~N_)]). 

Let us consider a bundle ~ on S*(Q x N) obtained by pasting three trivial 
bundles with the aid of the mappings: 

611:~x{O}~GL~(II2), 6~ : ~e x {1} ~ GL,(II2). 

Of course, ~ is trivializable. Replace the initial gN, 8M by 

gN" = (~N)*' O YF and ~ :  = (6~) *t �9 OZs,~a• ~t), 

respectively. Surely, our "new" gu,~f M also satisfy the conditions 4.4b-c, but 
with another g.. = st. Furthermore, 

[gu,]=~-2(N'; Q,~) in I((S*(Q x N')), 

[NM, ] = ~-2 (M'; Q, e) + A [6 23 + A [6 i- 13 (2) 

= ~-2 (M'; Q, e) + A [6] in /((S* (Q x M')), 

where 6 = 02 6 i- 1 : ~f _., GLt(IE). 

4.7. If we put X + = Q x N + ,  Y + = Q x M + ,  gx=~u,  gy=~g,  then we land in a 
situation covered by Lemma on the cutting and gluing (cf. 3.8), and therefore 

R (gN) + R (gM) = R (gu,) + R (gM,), 
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i.e. for some b: _~GLt(tI2 ) and integer ~-4=0: 

R(2(N)) + R (2 (M)) = R(2 (N')) + R(2(M') + ~-- 1 Z] [-I~]). (3) 

Here, for brevity, we omit letters Q and e. 

4.8. Let us specialize the procedure of cutting and gluing anew, described 
above, to an important particular case of the surgery N . ~ N '  done on a sphere 
S~--,N (O<j<n) embedded with a trivial normal bundle. The corresponding 
decompositions are: 

N = N _  sJ • - 1SjXDn-j '  M=DJ+' xsn-j-lsJxS~n-jn- , Dj+I x S n - J - "  

and 

N ' = N  s~• J-~ DJ+I xSn-J - l '  M'=DJ+I xS"-J-1 sJ• s~,-~-, S~xD~-J" 

Observe that M is diffeomorphic to S j+ 1 x S n- j -  1, and M' to S n. In particular, 
M admits of an orientation reversing diffeomorphism, so we have R(2(M; Q, e)) 
= 0, in view of Lemma 4.2. Thus (3) transforms into 

R (2(N; Q, e)) = R (2 (N'; Q, e)) + R (e), (4) 

for some eeI~(S*(Q x S')). As a matter of fact R(e) must be zero. 

4.9. Lemma. Let N , ~ N '  denote the surgery, as above. Then 

R(2(N; Q, e)) = R(2(N'; Q, e.)). (5) 

Proof. If Q is a product of spheres one can apply the Lemma on the spheres 
(cf. 2.13) to ensure that R(e)=0.  

In the general case one must appeal to part of the statements of Theorems 
A and B. 

If dim Q = odd, then according to Theorem A 

R(2(N; Q, e))= R(2(N' ; Q, e))=0. 

If dim Q = even, then according to Theorem B o R -  0 for manifolds of the form 
QeV x S ~ so, in particular, R(e )=0  and the equality (5) holds. [] 

4.10. The last step consists in modifying N so as to obtain a manifold admit- 
ting of an orientation reversing diffeomorphism, and afterwards, of applying 
Lemma 4.2. 

As is commonly known, the group of odd-dimensional oriented bordisms 
Ooa d consists entirely of torsion (cf. [10, p. 42]). Hence, some multiplicity of our 
manifold is bordant to the standard sphere kN ~ S n. By the Morse theory such 
a bordism can be factored into a sequence of traces of surgeries 

k N = N o , ~  N , , ~ . . . , ~  N =S ~, 

such as in 4.8. In view of Lemma4.9 R(2(kN;Q,e))=R(,?.(S';Q,e)). But S" 
admits of an orientation reversing diffeomorphism, hence R(2(S'; Q, e))= 0, 
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according to Lemma 4.2. On the other hand 

R(2(k N ; Q, e))= k R().(N ; Q, ~)) 

due to localness of R. As a result R().(N; Q, e))=0. 
Summarizing, we have proved Proposition A0, and the implication 

Theorem A and Theorem B 0 ~ Proposition A. 

5. The proof of Theorem A 

In this section we prove Theorem A making use of Proposition A o (cf. 2.12). 
The proof consists of a series of reductions, which reduce the question of local 
K-invariants of spectral asymmetry to the case of (Q, coq)-classes, where Q =S  k 
(standard odd-dimensional sphere). Everywhere in this section X d stands for a 
closed even-dimensional orientable manifold. 

5.1. If N c X  is a closed submanifold, then its normal neighbourhood will be 
denoted by ~ It can be considered as a submanifold with a boundary. We 
say that a vector bundle g on S* X is twisted along N, if the restriction of d ~ to 
S*(X\  A/) is trivializable. 

The following proposition holds. 

5.2. Proposition. K(S*X)/rc*K(X)| is spanned by vector bundles twisted 
along odd-dimensional submanifolds N ~ X with trivial normal bundles. 

Proof. Step. 1. The cohomological Gysin sequence of the fibre bundle 
7t: S* X ~ X, as we already observed in 2.2, determines the isomorphism 

6: Hev(s* x)fiz* Hev(x) , H~174 Ha- I(S) (1) 

(d= dim X). Examine the group H~ in more detail. 
Let [a]eHk(X) be represented by a map ct: X~K(Q,k )  (k=odd).  The 

embedding Sk~--,K(Z,k) onto a cell of lowest dimension, for k=odd ,  is a 
rational homotopy equivalence, i.e. induces a homotopy equivalence 
Sk |  ~K(Q,k) .  A standard model of the rational sphere has the form of an 
infinite telescope of a sequence of mappings 

s k  ll s k  t2 s k  ) ) . , , ,  

where l~: sk--,S k is a mapping of degree l~. Since X is compact, any continuous 
map X~Sk@ Q must factor through a telescope of some finite sequence 

s k  Ii ) s k  12 ) . . .  lv ) sk" 

Denote this telescope by T~ (l:= [I li). The natural retraction onto the "last" 
i = 1  

sphere T t~S  k is a homotopy equivalence, and Sk~TI~-'-~sk| induces a ho- 
m o m o r p h i s m / t ,  (S k, Z) ~ / 1 ,  (S k, ;~) of Z-modules: 

z - , z  (1/ l )~Q 

1~--, l fl. 
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Applying the above to the map e: X-- ,K(Q,  k)~Sk| we get that e factors 
through some finite telescope T~, and therefore, there is a commutative diagram 

x " , K ( Q ,  k) 

xxx l 
"",~, l / l  

~S k 

Of course [[l]'.=fl*COs~=le*tk=l[e], where t keHk(K(Q,k) )  is a fundamen- 
tal class. So, we have showed, that for any [e]eH~ its certain integral 
multiplicity is induced by a mapfl:  X ~ S  ~ In establishing this we have 
required of X only that it be a compact CW-complex. 

Step. 2. Performing smooth approximation, if necessary, we may assume 
fl: X--*S k to be smooth. Put Np=fl-J(s)  - preimage of some regular value of ft. 
Orientation of X (and the standard one of S k) uniquely determines orientation 
of the general fibre N 0. Besides [Nt3]eH d k(X) and [ f l ]eHk(X)  are mutually 
Poincar6-dual. Indeed, [No]=fl~ [lsk], where fl: is a homological transfer. Now, 
the assertion results from the relation between the transfer and the Poincar6- 
duality. 

Step 3. The normal neighbourhood can be chosen in the form fl-l(D), where 
D c S k  is a sufficiently small (closed) disc containing the point s. In particular 

then, ~g" is diffeomorphic to N 0 x D. Restrictions of [fl] to A/~ or to X\.A r are 
easily seen to be zero. In fact, [fl] eHk(X)  comes from Hk-J(0 A/). 

Moreover, 

- 1 (I-/~] | c o ~ ) l s , ( x - - C ~  ~ ~* H ~ * d- ~ (X)ls,(x. .  ~) �9 (2) 

Indeed, we have the commutative diagram (by J//we denote X \  A/): 

H k+e-1 (X)----*~* Hk+d- l ( s kx )  - ~ ' Hk(X)@ H e- 1(S) ~ 0  

"1 < 
Hk+d 1 ~* Hk+d-l(S,~ll  ) (~u)----~ , i4k(~u)|  H d-  I(S) 

H k (X,  ~U) | H d-  1 (S) o %  t_i ~ + d(X, ~ ) - ~  H k § d (S* X,  S* ~U) 

whose columns are exact cohomological sequences of the pairs (X,~),  
(S*X ,S*q i )  and rows are the corresponding absolute or relative Gysin se- 
quences (for the relative Gysin sequence see e.g. [9, Theorem9.5.2, p.499]). 
The arrows j*, t* are induced by the embeddings j: ql~--~X, t: S*ql~-*S*X. 
The commutativity of the top right square follows from the functoriality 
properties of the Gysin sequence (ibid., p. 498). The arrow 
Hk(X, ql)| must be zero for all k by the dimensional 
argument and the observation that H~ ~//)=0. 
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Now, let ,~,e6-1([fl]| Since we have (3z*)e 
=j*[[3]| there exists 7oeHk+d-J(~) such that **e=Tr*70. In fact, 70 
must belong to Ira j*. Indeed, (n*0)7o=(07r*)7o=(0t*)e=0,  but the lowest 
arrow ~r*: Hk+d(x, ql)~Hk+a(S*X, S*ql) is mono, hence 07o=0  and therefore 
7o= j*y  for some 7EHk+d-I(X). By observing that (z*n*)~,=n*~,o=t*e we 
obtain the required ~nclusion (2). Therefore, let tleHk+a-~(S*X) be a such 
element that: 1 ~ \ r/~ 6-1 ([fi] | ~Os), 2 ~ z ' r /=0 ;  and put b 
= c h ~ t ( t l ) e K ( S * X ) |  In view of the above h i s , e=0  and we know that such 
classes generate K(S*X)/r~*K(X)|  Q-linearly. Because some integral mul- 
tiplicity of b can be represented in the form [ g ] - [ 0 ~ , x ] ,  where g is some 
vector-bundle trivial on S ' q / ( e v e n  on its neighbourhood in S ' X )  the proposi- 
tion holds. []  

5.3. Let g be any vector bundle on S*X which is trivial on a neighbourhood 
of S*~.  We already know that such vector bundles generate 
K(S*X)/Tr*K(X)| Cut the manifolds X =  yV'wq/, - X = - q / w - y V  along 
0W,,' -0/V,,  and form two doubles DA/~= y V w - y V  and D~#=-a#wql .  Tri- 
viality of g on S*Xloy guarantees that gls*~ and gls*(-~) glue together to give 
the bundle on S*(D yV). The same holds for gls,ou and g[s*t-~). Denote these 
new vector bundles by g~  and &u. Clearly, we can apply Lemma on the 
double (see 3.4) to obtain R( [g] )= �89  

Since yV is diffeomorphic to Sk• (d=k+n;  k , n - o d d )  we reduce the 
question of local K-invariants of spectral asymmetry on even-dimensional 
manifolds to the case of product-manifolds: 

X = S k x N ~ (k, n = odd). 

Below, we can assume N to be connected. 

5.4. Recall once more that 

6: Hev(s * X)/r~* HeY(X) - ~ , H~ | H a- 1 (S), 

if d = even. In case X = S a x N", as above, H~ breaks into two pieces 

H ~ (S k • N) = lsk | H~ (N) @ ~Osk | H ~v (N). 

Any reversing orientation automorphism of S k acts on lsk|176 a- I(S) 
as multiplication by - 1 .  Repeating argumentat ion from 4.1 and applying 
Corollary 1.21 we derive that any admissible invariant R: K(S*X)/Tr*K(X)-~C 
vanishes on that piece of K(S*X)/Tr*K(X), which corresponds to ls~QH~ 
| H d- 1 (S). 

5.5. A proof of the fact: 

if R is, in addition, local, then R vanishes also on that piece of 
K (S* X)fiz* K (X) which corresponds to tOsk | Hr (N) | H "+ k- 1 (S), 

we are going to carry out by induction on n = d i m N  with fixed k + n = d  
= dim X, and n - odd. 
n = 1. In this ease N obviously admits of an orientation reversing diffeomor- 
phism. Its action on ~Osk | H ~v (N) | H a- 1 (S) = ~Osk | H ~ (N) | H a- 1 (S) is, clear- 
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ly, multiplication by - 1 .  The standard argument (cf. the proof of the Lem- 
ma 2.13) shows that R must kill chg) j o 6-z(OJsk|174 

Suppose we have proved the assertion for n <v(v odd). Let dim N =  v+2,  e 
is an arbitrary element of K(S*X)/rt* K(X).  

It is sufficient to consider only two cases. 

5.6. (5 o c h~ (e) ~ O)s~ | H ~ (N) | H d-  1 (S). 

In  this case  e is a m u l t i p l e  o f  2 ( N ;  S k, ~Osk ) (we a s s u m e  N to  be c o n n e c t e d  !). 

I n  v iew of  P r o p o s i t i o n  A o (cf. 2.11) we c o n c l u d e  R ( e ) = 0 .  

5.7. 6 o ch~(e) ~ OOsk |  | H a- 1 (S) (k' even a n d  > 0). 

In  this case  s o m e  m u l t i p l e  o f  6 o ch~(e) is i n d u c e d  by a m a p  into  a sphere  
Skx  N - - , S  k+k'. A c t i n g  as in the  p r o o f  o f  P r o p o s i t i o n  5.2 we c a n  find s o m e  new 

m a n i f o l d  N ' ~ S k x  N a n d  an e l e m e n t  e '~K(S*(Sk+k 'x  N')) such tha t  

R(e')= 2 R(e). 

Besides  dim N ' = d i m N - k ' < = v ,  a n d  the re fo re  R(e)=�89 by  the i n d u c t i v e  

asser t ion .  
T h e o r e m  A has b e e n  p r o v e n  for  o r i e n t a b l e  man i fo lds .  B e c a u s e  R is local ,  the  

n o n - o r i e n t a b l e  case  r educes  to  the  o r i e n t a b l e  o n e  by  passage  to a t w o - f o l d  
cover ing .  

5.8. It  w o u l d  be d e m o n s t r a t i v e  to  env i s ion  a r u n  of  r e d u c t i o n s  in the  f o r m  of  
t he  f o l l o w i n g  f low-cha r t :  

X~V 

0S k 

lsk |176174 5.4 = 

5.4 / 

double / 
~ 1 ,  X= SkxN" 

5.3 k, n = odd ~ C~ 

l 5-5 x ' x ~  k ' = O ~  r 
I . ,  / 5 . 6  
I cosk | 7K | ~ 5 7 

n ' < n  I 5.5 , k'>O \ 
I ~[Nn'c : sk• N 
I 

double 
X = S k+k' • N n' t ~ 5 . 3  N"' ~'  COsk| "yk'eHk+k'(sk X N) 

n' = n - k '  

end end 

Prop. Ao 

| 1 N | ~ ~,(N ;S k , co s k) 

Fig. 2. a Solid arrows correspond to possible images in even-dimensional cohomology of gene- 
rators of K(S*X)/n*K(X)| b The arrow with the symbol ~0 S k indicates the argument with 
an orientation reversing diffeomorphism (cf. the proof of Lemma 2.13 or 4.1). e The symbol 
N,,~,(Os~ | yk, means that some multiple of the odd-dimensional class COs~ | yk" is represented by a 
vector bundle on S*X twisted along a submanifold N"'; the symbol N ' c  :S k • N means the normal 
neighbourhood of N"' is trivial. In this situation the argument of 5.3 applies, d The symbol 
OJSk | 1N| s ~ 2 (N  ; S g, COsk ) means that the cohomology class COsk | 1N | corresponds to the 
K-theory class 2 via the construction of Sect. 2. e Waved arrows with the word "double" indicate 
passage to the double - the procedure described in 5.3. f The step of induction is indicated by 
the dashed arrow. The convenience of representing the proof in the form of flow-chart will be 
apparent in the next section 
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6. The proof of Theorem B 

6.1. First, we are going to prove the implication 

Proposition A o ~ Theorem B o. 

Recall that in the case B o X = U x Y, where IJ is a standard odd-dimensional 
sphere, and Y can be assumed to be orientable even-dimensional. The proof 
uses the same technique as the proof of TheoremA in the preceding section, 
and can be envisioned in the form of the following flow-chart: 

/ 
xodd : = ~ l  X Y~ '  

\ 

l~|174176 ..!..0.~. end 

0 

~ o d . ~  l~s~:o~ .L0~.. end 
| \ / 

?IN n ~ r 

N x N C : Z x Y  ~ X : ; Z x S k x N  n ~ ~Z|174174 
double 

..... 1 / ~ <  n 

X : = SH'x Skx N n' o~Z|174 7r~o~s (1 '= even) 

d o u b l e ~  / ' > 0  x ~ = 0  

~N n' ~ coS| 7reHl+l'(~ x N) ~0Z|174174 ~S ~)~(N; COY, X s k) 

N n' x s k c  : E l x S k x N n 

Fig. 3. 

~0s k_ 

i Prop. Ao 
! 

end 

For explanations see 5.8. Recommendation to the reader: first to examine in 
parallel both proofs of TheoremA:  "verbal", and in the form of flow-chart. 
Then the reconstruction of the "verbal" proof of Theorem B o will offer no 
difficulties. 

6.2. The proof of the implication 

Proposition A ~ Theorem B 

is obtained, if at three places marked by the dotted arrows one applies 
Proposition A to the following classes: 

O ,~(Z; y, flov), 

(~) 2(Z; S k x N, COs~| y~ 

(~) 2(N; Z • S k, oJr• 

(recall that Z, N are odd-dimensional). 
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7. Spectral asymmetry and pseudodifferential projectors 

This section is independent of the rest of the paper and is devoted to the 
invariant setting of the question of coincidence of ~0(0) for various cuttings 0. 

7.1. ~0(0) for operators o f  order zero. If Q is an elliptic 0 D O  of order zero 
whose principal symbol has no eigenvalues on a ray {Arg2=0} then as usual, 
one can define the complex powers Qo s. Because the order of Qo s is zero for 
every complex s, T rQo  s does not exist for any s, and therefore the standard 
way of defining the zeta-function does not work. 

For an operator of order m a > 0 we put 

Z~ = m A �9 ~0(0; A). (1) 

It turns out, after all, that ZOo(A) can be defined correctly also when m A = O. 

7.2. The important  point in the following is to consider sections of the infinite- 
dimensional fibre bundle "of  the order":  

ord: C L ( X ,  E) • ~f f ; ,  (2) 

where C L ( X , E )  • denotes the group of all invertible (classical) 0 DOs acting 
on sections of a fixed vector bundle E ~ X .  In fact, (2) can be seen as a 
principal CL~215 If A E is the Laplace operator with respect to 
some riemannian metric on X and a connection on E then (1 + A~) ~/z provides 
a global section of (2). There is a convenient topology on CL(X,E) •  
respect to which one can define what sections of (2) are holomorphic. For  our 
purposes this is superfluous; thus, in order not to overburden the paper, we 
pass these questions over in silence. Despite that, the following weak version of 
the holomorphicity of sections proves to be useful. 

7.3. Definition. We say that a local section ~b: q l ~ C L ( X , E )  • ( : l l c C  open) is 
holomorphic (in a weak sense) if for every coordinate chart X o c R "  and for 
every multiindices ~, fl the mappings 

So x {IR"\0} x:e~(x, ~,z)~O~4~z_j(x, 4; z) (j~N) 

are smooth, and with respect to z also holomorphic. Here qSz_ J is a ( z - j ) - th  
homogeneous component  of a complete symbol of ~(z) in a given coordinate 
chart X o. For brevity, the sentence "in a weak sense" we shall usually omit. 

7.4. Let Q be an operator of order zero as in 7.1. One can assume it to be 
invertible. Suppose that over some neighbourhood of zero q /oCC there is 
given a holomorphic section ~ of (2) with the properties: 

a) ~ (0 )=  Q, 

b) there exists a conical neighbourhood of the ray {Arg2=O} containing 
no eigenvalues of operators 4~(z) (z~q/o). An example of such a section is 
provided by z~--, Q(1 + A E) ~/z. 
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7.5. Let ~boS(z) be the complex powers defined for Ze~oC~(0, oo ). For any 
(fixed) Z~oC~(0,  oo ) the operators 4~oS(Z) are nuclear in the half-space 

d imX 
R e s >  Let q~oS(X,y;z)ldy[ be the Schwartz kernel of CboS(z). For 

z 
d imX 

Re s>  , this is a continuous section of the vector bundle ~f~m(pEE, 
Z 

p~E)| where pi: X x X ~ X  ( i=1,2)  are natural projections. Recall 
that for every x+-y s~--~oS(X,y;z)[dy[ is an entire function. When x=y  one 

d imX 
has a meromorphic continuation of s~-~oS(X,X;z)ldx[ from R e s >  to 

z 
the whole complex plane. This continued function takes its values in smooth 
sections of g ~ E |  p~E)| and will be denoted 
by ~o-S)(x; z)ldxl. In particular it is regular at s=O. 

7.6. Lemma. Let aRo~zF--*~(z ) be a local holomorphic section of (2) (as in 7.4). 
Then 

a) the correspondence 
% n (0, oo) ~ z ~  ~o ~ z)Idxl (3) 

defines a real-analytic function with values in C~(X, d#~ E|  ]A[), 

b) the function (3) continues analytically to a meromorphic function in ~tlo, 
c) its only singularity is a simple pole at z = 0  with the residue: 

~3e io 

Q~ ~ ~ r_dimx(X,~,2)d2d{'dx, (4) 
I~l= 1 o 

where r(x, ~, 2)-,, ~ r j(x, ~, 2) is the complete symbol of ( Q - 2 )  -a in any coor- 
j=o 

dinate chart containing a point x e X, d ~' is the volume element of the unit sphere 
in IR~ i~x, divided by (2n) dimx. 

In particular, the right hand side of (4) is a 1-density with values in #~a(E. 

7.7. Remark. It would be more correct to write Id~'l Idxl instead of d~'dx. But 
for ~-coordinates associated with those on the base this is the same, and we are 
dealing only with such coordinate systems on T* X. 

7.8. Remark. The expression (4) indicates, in particular, that the residue de- 
pends only on ~(0)= Q, and not on the choice of a local section cb(z). 

Proof. Let 0(x, ~, 2; z)~ ~ ~b~_j(x, ~, 2; z) be the standard complete symbol 
j = o  

with parameter of ( ~ ( z ) - 2 ) - a  in any coordinate chart X o (ze~#o). Recall that 
the components O_z_ j are determined by the following recurrent formula: 

0 _z (x, ~, ,~; z ) :  (4~ (x, ~; z) - ,~)- ~, 

O_z_~(x,~,~;z)=-r Y 0 ~ _ ~ ( x , ~ ; z )  
l ~ l + k + I = j  

l < j  

�9 D]~_z_~(x, ~,2; z)/{x!, (5) 
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oo 
where q~(x, 4; z)--~ ~ ~bz_k(x , 4; z) is the complete symbol of ~(z) in the same 

k=O 
chart. In particular, any component ~b~_j expresses elementarily in terms of 
(qS~(x, ~ z) - 2)- 1 and ~ p ; O~D~q5 z_k(x, ~;z) ([ el + [ill + k <j). 

By the assumption on q0(z) the expression 

ooe io 

- -  ~ ~ I J t z _ d i m X ( X  , ~,  ~ ;  z ) d X d ~ '  (6) 
Ir a o 

depends smoothly on (x, z)eX o x ~//o, and holomorphically on z e~ '  o. On the 
other hand, for Z e r o S ( 0  , ~) ,  (6) divided by z equals to the value at s = 0  of 
the analytic continuation (with resp. to s) of the diagonal part of kernal of 
4o ' ( z  ). In another chart X 1 we can write an analogous expression (6)1 using its 
own complete symbol of q~(z). This will depend holomorphically on z too. By 
the remark just made, for ze~//on(0, ~ )  (6) transforms as a 1-density with 
respect to change of coordinates. Due to an analytic continuation (with resp. to z) 
this must hold for every z e ~o. Thus, we have shown that the correspondence 

~llo~Z~"*--- ~ O_z_dlmx(X,~,)t;z)d)~d~' dx 
z Ir 1 o 

is a meromorphic function with values in cg~176174 providing an 
analytic continuation of (3) to the whole q/o. Clearly, its only singularity is a 
simple pole at z = 0 with residue given by 

ooe io 

Q~ ~ ~ ~_z_dimx(X,~,,~;O)d,~d~'dx. (7) 
I~[=1 o 

Since the operator of multiplication by 2 has order zero, then, for z=O, the 
symbol with parameter ~b(x, 4, 2; 0) coincides with the ordinary classical symbol 
of ( ~ ( 0 ) - 2 ) - 1 = ( Q - 2 )  -1. Therefore (7) and (4) are the same (up to change of 
notation). The Lemma has been proven. [] 

Put Z~176 By the Lemma we know that this is a 
(scalar) 1-density. Its integral 

Z~ -- I Z~ Q)Idx[ 
X 

is equal to o rdQ.  ~0(0; Q), when ordQE(0,  oo). 

7.9. Pseudodifferential projectors. Let P -  P + be a ~bD projector 
cg~176176176 Its order must be equal to 0 or - o o .  We would be 
interested only in the first case. Let P - = I - P  + be the complementary pro- 
jector. Put Q = P + - P - ,  and let Q(z) be any local section of the type 7.4. The 
complex powers can be defined by cuttings in the upper or lower half-planes. 
The corresponding Z~ will be denoted by Z* o and Z0 ~ respectively. Let 
Ro(Q(z))=ZTo(Q(z))-Z~o(Q(z)). We know that Ro(Q(z)) is a holomorphic func- 
tion on a neighbourhood of the origin. On the other hand, its restriction to the 
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positive half-axis is constant (see the first argument of [11, Sect. 5.2]). Hence 
Ro(Q(z))=const. In particular Ro(Q(z))=-Ro(Q), where Q=Q(0). 

Besides 

(Q-A) -a =(P+-P--2)-' ={(I-2)P +-(l+2)P-}- 

- - ( 1 - 2 ) - 1 P  + - ( l + 2 ) - ' P - ,  (2:4: +_1), 

due to mutual orthogonality of P+ and P - .  In particular, the complete symbol 
of (Q - 2)- 1 looks like 

p+ (x, ~) p- (x, ~) 
r(x, ~, 2)= 

1 - 2  1 + 2  

Hence, applying Lemma 7.6, we get 

Ro(Q(z))= - ~  ~ - trr_dimx(X, ~ ,2 )d2d~ 'dx  
x I~1 = x 

= - 2 n i ~  ~ t rResz=_t r  dlmx(X,~,2)d~'dx 
x I~1= 1 

=2z:i~ ~ trpSdimx(X,~)d~'dx. (8) 
x 1r 1 

7.10. Conversely, let A be any elliptic ~ D O  of positive order admitting of two 
cuttings 0' ,0" in the spectral plane. Because ordA.{~o,(O;A)-~o,,(O;A)} de- 
pends only on the class [ ~ ]  e K(S*X)/z~*K(X) (ibid.), where dAGN'~=~'E  is 
the sectorial splitting for A, we can find an invertible operator B=f lB  o (lfll = 1) 
with the properties: 

a) B admits of the same cuttings 0',0", and [ g ~ ] = [ # ] ]  in 
K (S* X)/n* K (X); 

b) B o is self-adjoint with respect to some volume density on X and her- 
mitian metric on E, and ord B o = m > O. 

Obviously, then, ordA.{~o.(O;A)-~o,.(O;A)} coincides, up to sign, with 
Ro(B ). Denoting by P+, P--or thogonal  projectors onto positive (resp. negative) 
eigenvalues of B 0 we have B o = (P + - P - )  [Bol, and 4)(z) = (P + - P - )  ]B o[z/m is a 
section of (2) holomorphic in the sense of 7.4. Therefore the argument of 7.9 
applies and we obtain 

ordA.{~o,(O;A)-~o,,(O;A)}=+_2zci ~ ~ trpZdimx(X,~)d~'dx. (9) 
x [~l = 1 

We have shown, hereby, the following proposition. 

7.11. Proposition. 1) For any pseudodifferential projector P on a closed manifold 
X the expression 

tr P_dimX(X, ~)d'(' dx (10) 
[~1=1 

defines a 1-density. 

2) The following assertions are equivalent." 

a) the value of the zeta-function of an elliptic ODO at zero does not depend 
on a choice of cuttings in the spectral plane; 



176 M. Wodzicki 

b) for any pseudodifferential projector the density (10) is a complete differen- 
tial, i.e. 

~ trp_di~x(X,~)d~'dx=O. [] 
x I~1 = i 

Because the assertion 2a) has been proven earlier (cf. 1.24) we obtain:  

7.12. Corollary. For an arbitrary pseudodifferential projector P on a closed 
manifold X 

~ trp-dimx(X,~)d~dx=O. [] 
x I~t = i 

7.13. Final remarks. In fact, the first assertion of  7.11 holds for any (classical) 
O D O  B: cg~(X,E)~Cg~176 This could be proven by a constant  use of holo- 
morphic  (in a stronger sense) sections of  the fibre bundle LI CL~( X, E) ora , IE. 

z ~ C  

The theory of completely integrable systems (the Adler-Lebiediev-Manin 
scheme, see [1, 7, 12]) prompts  to introduce the following nota t ion:  

r e s B : = S  S trb-almx(X,~)d~'dx,  (11) 
x Ir = 1 

and to call it the (higher) non-commutative residue of B 6. If  o r d B ~ Z  it is 
unders tood that b_dlmX--0. The non-commuta t ive  residue has some remark-  
able properties analogous to those of the ordinary finite-dimensional trace: 

(1) r e s ( 2 B + #  C ) = 2  r e s B + / l  res C ( o r d B - o r d  C e Z ) ;  

(2) res([B, C ] ) = 0 ;  

(3) r e s B = 0  ( d i m X > l ) ~  ~ Ci,D i ( i = l , . . . , k = k ( X , E ) ) :  

k 

B -  ~ [Ci, DI ]eL -~ ;  
i = 1  

(4) the "Kil l ing fo rm"  (B, C>'.= res(B C) is 112-linear, symmetric,  ad-in- 
variant  and non-degenerated (on CL(X, E)mod  L - ~ ( X ,  E)); 

res (B~176 In 
(5) if B admits of complex powers Bo s, then Ress=~o(0(s; B ) =  o r d B  

part icular  this could be non-zero  only when s o �9 o r d B  r ~ ( - o e ,  d im X] ,  and 

6 When dimX= 1 this slightly differs from the original ALM non-commutative residue. In fact, 
the algebra of Z-graduated 1-dimensional formal @DOs CL*(X,E)/L -~ has a 2-dimensional 
center IE(I, S>, where S is a formal ~0DO with its complete symbol s(x, ~)= sign~. Then, one can 
define 

reSALM(B): = res {�89 + S) B}. 

Note that res(.) and res(S.) are two different functionals C L(X,E)--*IE satisfying conditions 
(1), (2), (4) below. The condition (3) for dimX= l can be formulated as: 

resB=0, res(SB)=0~ 3Ci, D i (i=1 ..... k=k(E)): B -  ~ [Ci, DiJ~L -~176 (3)1 
i = 1  

At last, any functional 7: CL(X,E)/L-~IE, in the 1-dimensional case, must be equal to 
cl res (.) + c 2 res (B.) for some constants cl, c2 depending on E 
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res (B l) 
for S o = - l e Z  we h a v e  Ress=_t~(s;B ) -  o r d B  no t  d e p e n d i n g  on  0. U s i n g  

(3) it is eas i ly  seen tha t  any  m a p  7: C L ( X , E ) / L - ~  sat isfying (1) and  (2) 
mus t  co inc ide  wi th  r e s ( - )  up  to  s o m e  m u l t i p l i c a t i v e  c o n s t a n t  c=c(X,E). If, 

m o r e o v e r ,  7 is local  t hen  c d e p e n d s  on ly  on  d i m X .  
P roo f s  will  be pub l i shed  in a s u b s e q u e n t  p a p e r  (to a p p e a r  in F u n c t ,  Ana l .  

and  its Appl.) .  C o r o l l a r y  7.12 and  7.13(3) i m p l y  tha t  any pseudod i f f e ren t i a l  
p r o j e c t o r  on  a c losed  m a n i f o l d  d e c o m p o s e s  in to  a f ini te  s u m  of  c o m m u t a t o r s  

plus  a s m o o t h i n g  ope ra to r .  P r o v i n g  this i n d e p e n d e n t l y  w o u l d  give a n o t h e r  

p r o o f  of  c o i n c i d e n c e  of  the  ze ro  va lue  o f  ze t a - func t ions  def ined  by dif ferent  

cu t t ings  in t he  spec t ra l  p lane.  
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Oblatum 1-IX-1983 

Note added in proof 

Since HJ(x2n+I;II~), for j>n, is generated by spherical classes, the argument of Sect. 5 and Prop. 
A 0 (for Q =pt or S 4) apply, and it is easily seen that Theorem 1.10 remains valid for general 3- and 
7-manifolds. In this last case one must in addition assume that S ~ is invariant with respect to the 
natural Gal(IE/R)-action on Ell~,e,,(X) (here we are allowed to suppose that z (~ ' )=~ ' ,  r(@") 
= ~ " ;  ~ complex conjugation). This condition is satisfied e.g. by any spectral K-invariant. In proof 
the induced action on K(S* X)/n* K(X) is used. 


