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Introduction

We present some examples of eigenvalues of Hecke operators on Siegel cusp forms
of degree two together with some generalizations of the Ramanujan conjecture.
We obtain examples of eigenvalues for ten cusp forms which are denoted by
X10> 12> Laas 2365 Xi6h XU85 205% 150, 150, 150 Our examples, which are listed
in the last section, suggest that the above cusp forms are divided into two classes.
The first class consists of the former nine cusp forms. It follows from our examples
that an analogue of the Ramanujan conjecture formulated in this paper does not
hold for the cusp forms in this class. Instead, it appears that for each such cusp
form (of weight k) there exists an elliptic cusp form (of weight 2k —2) with an
explicit relation between the eigenvalues of Hecke operators for these two cusp
forms. This relation is stated as Conjecture 1. The second class consists of the tenth
cusp form x%). It seems that the analogue of the Ramanujan conjecture holds for
%59 (Conjecture 3). Our examples for ¥$3) support this.

In [3], Langlands gives an interpretation of our Conjecture 1 (for y,,) in a
representation-theoretical formulation. This interpretation is deduced from his
general philosophy containing the principle of functoriality. A general formulation
of the *Ramanujan conjecture” is given in [3a]. (In [3], the * Ramanujan con-
jecture” is restricted to the case of GL(n).) Our examples suggest that the auto-
morphic representations attached to the former nine cusp forms are counter-
examples to this “Ramanujan conjecture”, and that these automorphic repre-
sentations are “anomalous” in the sense of [3]. It seems that the automorphic
representation attached to x5} satisfies the *Ramanujan conjecture”. We remark
that Howe and Piatetski-Shapiro [2] have given counter-examples to the * general-
ized Ramanujan conjecture” (in a representation-theoretical formulation) by
using Weil representations called oscillator representations.

The author would like to express his hearty thanks to Professors R.P. Langlands,
H. Maass, and J.-P. Serre for their interests and encouragements.
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Notations. For Siegel modular forms, we follow the notations in Andrianov [ 1],
Maass [4], or Resnikoff-Saldafia {5] in general. For each integer n2 1, I denotes
the Siegel modular group of degree n, and M, (1) (resp. S, (1)) denotes the vector
space over the complex number field C consisting of all Siegel modular (resp.
cusp) forms of degree n and weight k for a positive integer k. For each integer
mz1, T(m): M, (I})— M, (I,) denotes the Hecke operator with the usual normal-
ization. If fe M (I} is an eigenfunction of T(m) for an integer m= 1, then we
denote by A(m)=A(m, f) the eigenvalue: T(m) f=A(m) f. If feM, () is an
eigenfunction of all Hecke operators on M, (I) (see [1] Chap.1 for the precise
meaning), then we call f an eigen modular form (or “eigen cusp form™ if f is
a cusp form) and we denote by L(s H H,(p~*, f)~" the Euler product defined

in [1] (Chap. 1), where p runs over all prime numbers and H (T, f)el+T-C[T]
is a polynomial of degree 2" in an indeterminate T for each p. For n=1 or 2,
H,(T, f)=1=2(p) T+p*~ T2 or H,(T, f)=1—A(p) T +(i(p)’ — A(p*)—p**~*) T?
—pz" 3SAp) T3 +p*-oT* respectlvely, where A{(m)=A(m, f). In this paper we
say f satisfies Ramanujan conjecture if the absolute values of the zeros of H (T, f)
are equal to p~"2*="= 1'% for all p. We say a basis of M, (I) over C is an eigen basis
if the basis is consisting of eigen modular forms. It is known that M, (I)) has an
eigen basis ([1] Theorem 1.3.4). If feM (I,), then f has the Fourier expansion:
f(Z)=Y a(T)e*™*™ where Z is a variable on the Siegel upper half space of
T

degree n, T runs over all nxn symmetric semi-integral positive semi-definite
matrices, and ¢(TZ) is the trace of TZ. We call a(T)=a(T, f) the Fourier co-
efficient of f at T. We denote by a(m; T)=a(m; T, f) the Fourier coefficient of

T(m) f at T for each feM,(I;) and m= 1. For each matrix T= (;/12 tt/2> with
2
1,15, integers, we put e(T)=gcd(t,t,, ) the greatest common divisor, A(T)
2, (b2
=det(2T)=4t,t,—t*, and <T>—(t/2 1,
(t,,t,, t) the above matrix T, and we denote by a{t,, t,, t) the Fourier coefficient
of feM,(I;)at T if T is positive semi-definite.

For special elements in M, (I;) we use the following notation. For each even
integer k =4, the Eisenstein series of weight k is denoted by ¢,. We denote by y,
the normalized cusp form of weight k=10 or 12, and we put y;,=¥,0 - ®,. The
Fourier coefficient of ¢, (resp. x,) at T is denoted by a,(T) (resp. ¢, (T)).

For special elements in M, (J;) we use the following notation. For each even

2k &
integer k=4, the Eisenstein series of weight k is denoted by E —1~%— Z

). For simplicity we denote by

o, _;(n) q" (g=e*""%) where B, is the k-th Bernoutli number and ¢, _,( Z d" 1

We denote by 4, the normalized cusp form of weight k=12, 16, 18, 20, 22 or 26.
For simplicity, 4, is denoted by 4 also.

§ 1. Examples for Weights 10, 12 and 14

1.1. Eigenvalues. We obtain the following eigenvalues of Hecke operators for
X10> X12 and Yy4.
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Tio: A(2)=240, 1(3)=21960, i(4)= 135424
v, A(2)=2784.
yia: A(2)=12240, A(3)=1929960.

The calculation is as follows. Put F=y,,,D=3and N=(1, 1, 1)in Theorem 2.4.1
of Andrianov [ 1], then we have:

lo=n (5—8) X crolmmmym™=co(1,1,1){(25—16) ). i(m)m ",
m=1

m=1
where ((s) (resp. (¢, -3,(s) is the zeta function of the rational number field Q
. . . — . -3
(resp. the imaginary quadratic field Q(]/—3)). Since (T)z —1, we have the
following identity by comparing the 2 (-power)-factors:

Y €o2,202) TV =cy0(1,1,1) Y. AQ") T with T=2""%

v=0 v=0
From Table IV in Resnikoff-Saldafia [5], we have: ¢, (1,1, )= —1/4, ¢,,(2,2,2)
= —240/4, and c,,(4,4,4)= —135424/4. Hence we have: 4(2)=240 and 4(4)
=135424. The other values are also calculated in the similar manner. For the
calculation of A(m, y,,), we use the following values: ¢, (1, 1,1)= —1/4, ¢,4(2,2,2)
= —12240/4,and ¢, ,(3,3,3)= — 1398519/4. These values are obtained from Tables
I-1V in [5] with using y,,=yx,, @,. We remark the following general fact: if
Siti=1,...,r; r21) are Siegel modular forms of degree n and weights k; (k;>0
integers), then f=f, ... f, is a Siegel modular form of degree n and weight k=k,
+---+k,, and the Fourier coefficient a(7, f) of f at an nxn symmetric semi-
integral positive semi-definite matrix T is given by a(T, f)=Y. a(Ty, f}) ... a(T,, f})
where T; runs over all n x n symmetric semi-integral positive semi-definite matrices
such that T, + ---+ T,=T. Thus, ¢;,(1, 1, 1)=c;,(1, 1, 1} a,(0, 0, 0),
€14(2,2,2)=co(1,1,0) a, (1, 1,2) +c;o(L, 1, Day(l, 1, 1)+ 2c,4(1,2,2)a,(1,0,0)
+¢,0(2,2,2)a,(0,0,0), and ¢,,(3,3,3)=c,0(1,1,0) a,(2,2,3)
e, L, =1 a,(2,2,4)+c (1, 1, 1)a,2,2,2)+2¢,4(1,2, 1) a,(2, 1, 2)
+2¢,0(1,2,2)a,(2,1, )+ ¢,4(2,2,2) a, (1, 1, 1) +¢,4(2,2,.3) a,(1, 1,0)
+¢10(2,2, D a1, 1,2)+2¢,4(1,3,3) 1, (2,0,0)+2¢,4(2, 3, 3) a,(1,0,0)
+¢,6(3,3,3)a,(0,0,0). (We note here that 4¢,4(3,3,3)=-15399 in Table IV
in [5].)

1.2. An Euler Factor. We obtain the following Euler factor of L(s, 7,0): H,(T, x10)
=(1-28T)(1-2°T)(1+528 T+2'7"T?).

In fact H,(T,1,0)=1-4Q2) T+(AQR)>—A(4)—2'0) T2 -2"7.22) T3 +2>*T*
with 2(2)=240 and A(4)=135424. In particular, y,, does not satisfy Ramanujan.
conjecture.

§2. A Conjecture and Remarks

2.1. A Conjecture. From the examples in § 1, we pose the following Conjecture 1.

Conjecture 1. L(s, x)=0(s—k+2){(s—k+1)L(s,4,,_,) for k=10, 12 and 14,
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We can check that the examples in §1 are compatible with Conjecture 1.
In fact:

Ayg=A-Eq=q—528-q*—4284 . ¢* + -,
AZZ':A E4E6=q—288q2+’
Aye=A-E2-Eg=q—48-¢>—195804 . ¢°+ ---.

Hence it is easy to check A(p, z,)=p* "2 +p* "'+ i(p, 4,, ,) for the following cases:
(k, py=(10, 2), (10, 3}, (12,2), (14,2) and (14, 3). Moreover, since H,(T, 4,5)=1
+ 528 T+2'7T?, the following equality holds:

Ho(T, 110)=(1—=28T)(1=2°T) H,(T, 4,4).

We extend the above Conjecture 1 for each even integer k = 10 in the following
form.

Conjecture 1. Let k=10 be an even integer. Then there exists an injective C-linear
mapping a,:S,,_,(I1) = S;(I,) such that the following holds: if feS,, (I} is
an eigen cusp form, then a,(f)eS, ;) is an eigen cusp form and L(s,0,(f))
={(s—k+2){(s—k+1)L(s, f).

Conjectural examples: 0,(4,,_,)=yx, for k=10,12 and 14.

Numerical examples for weights k=16, 18 and 20 with further examples for weights
k=10, 12 and 14 will be given in §3, §5 and §7. These examples also support
Conjecture 1.

2.2. Remarks. We remark the following facts on Conjecture 1. In the remarks (2),
(3) and (4), let k=10 be an even integer.

(1) Ifkisan odd positive integer, then for each eigen cusp form feS,(I;)(k=35,..)),
L(s, f)is holomorphic on C; see Theorem 3.1.1 (IV)in [1].

(2) For each eigen cusp form feSZk , (1), put L( fio)=0{(s—k+2)
-{(s=k+1)L(s, f) and A(s, f,o0)=1c(s) Ic(s—k+2) L(s, f,0,) with I¢(s)
=2(27n)"* I'(s). Then A(s, f, 0,) is holomorphic on C except for two simple poles
at s=k—2 and k, and A(s, f,0,) satisfies the following functional equation:

A(s, f,0)=AQRk—2~s5, f, o'k) This is compatible with Conjecture 1;see Theorem
3.1.1 (II), (IV) in [1]. In fact, A(s, f)=1I¢(s) L(s, f) is holomorphic on C and
A, f)= —A(2k—2—s f), s0 A(k—1, f)=0. Hence if we remark that A(s, f, 0,)
=Q2n) - (s—k+1) - Ls—k+ D{(s—k+ 1) I(s—k+2) {(s—k+2)- A(s, f) with
I (s)=n"%? I'(s/2), we have the desired results. (Remark that Ig(s) Ig(s+ 1) =1(5).)
L(s, f,a,) is holomorphic on C except for a simple pole at s=k with the residue
{(2) L(k, f) which is a positive real number. We note also that L(k—1, f,a,)

=—L(k—1, f)/2 where L(s, f)=%L(s, 1)

(3) Let feS,(;), then by using a generalization of Rankin’s method (*“Rankin
convolution™) we can prove that a(T, f)= O(A( )"“3/””/2) as A(T)—> . In
particular, if f€S,(I;)is an eigen cusp form, then A(m, /)=0(m"">*'*®)as m — 0.
(4) Tt is easy to see from Igusa’s dimension formula for S,{[;) that: dim¢ S,(f3)
>dim¢ S,,_,(7). (For a proof, see §4.)
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(5) For each even integer k=4, the following equalities hold:
L(s, 0)={(s—k+2){(s—k+1)L(s,E,,_,)
={(8){(s—k+2){(s—k+1){(s—2k+3).

See § 3.2 of [1]. Hence, the mapping E,, _,— ¢, may be considered as an analogue
of o, for the spaces of Eisenstein series.

§ 3. Examples for Weights 16 and 18

For k=16 or 18, dim¢ S, (I;)=dim¢S,, ,([})=2 and an eigen basis of S,(I3)
(resp. S,,_,(I})) over C is given by the following {y\"), xi '} (resp. {45 5, 453 L)
k=16 1% =185.f+(—128+1/51349).¢

with f=4.y,4" ¢4 an’(yivvg7=12-112-(p4,

A2, ¥5)=53472+961/51 349,

A = A +(5856+961/51349) - B

with 4=4-E} and B—A2 E,,

k=18 ,(‘1?:2590-]'-1—(1149i]/23562(5f)-g
with f=4-7,,-¢; and 5—12 L12 " Pe>
22, 745 = 135768 +721/2356 201,
A58 = A +(— 59544+ 721/2356201)- B
with 4=A4-E}-E, and B=4%-E,-E,,
A2, A55))= — 60840+ 72}/2356201.

From these values, it is easy to check the following equality for k=16 and 18:
A2, =412, 43 ,)+2¥ 2+ 251 Hence, these examples support the Con-
jecture 1; for k=16 and 18, it takes the following form:

L(s, 73 =0(s—k+2) {(s—k+ 1) L(s, 45 ,).

We note here that 51349 is a prime number and that 2356201 is the product of two
prime numbers 479 and 4919.

For the calculation about S,(I;), we use the following values of Fourier
coefficients.

k a(1,1,0) a(l,1,1) a(2,2,0) a(2,2,2) a(1,4,0) a(1,3,0)
16 S/ 2 -1 280192 —47616 214656 — 14848
g i0 1 283520 23424 —44160 —9344
18 f 2 -1 263008 —24240 864 106832
g i0 1 1902560 32016 591840 —-99056
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The values of a(1, 4,0) and a(l, 3, 0) are given for later use in §4. These values in
the above table are calculated from Tables 1-V in [ 5] and the following two values:
12¢,,{1,4,0)= —2880 and 12¢,,(2,2,0)=17600. The value of 12¢,,(1,4,0)
is calculated in Maass [4] (p. 174), and the value of 12¢,,(2, 2, 0) is deduced from
12¢,,(1,1,0)=10 and A(2, x,,)=2784 with using Theorem 2.4.1 in [1] as in 1.1,
or with using ¢,,(2;(1, 1,0)=¢,,(2,2,00+2'%¢,,(1, 1,00=4(2, x,,) ¢,»(1, 1,0)
cf. [1] (the formula (2.1.11)). The method of calculation is similar to the calculation
of ¢, ,(T)in 1.1,

To determine x\*’, we use the method in Ribet [6] (§ 8). We obtain the following
results concerning the action of T(2) on S, ([3).

Sio(l): T(Q)f=65760-f+18144 g,

TR g=17760-f+41184-¢,
the characteristic polynomial of T(2) is

X2 106944 X +2386022400.
Sis(y): T(2) f=53040-f+28800 g,
T(2) g=186480- f+218496 - g,

the characteristic polynomial of T'(2) is
X?—-271536 X +6218403840.

In this calculation we use the following fact: a(2;(1,1,1), f)=a((2,2,2), /) and
a(2;(1,1,0), fH=a((2,2,0), /)+2*"2 a((1,1,0), f) for each feS, (I3); see (2.1.11)
m[l] The calculation is as follows. Let k=16, then wecan write T(2) f=a - f+ f-¢
with a, feC. By comparing the Fourier coefficients at (1,1,0) in the both sides,
we have a(2;(1,1,0), f)=a-a((1,1,0), f)+ - a((1,1,0), g). From the above table,
we have
a(2;(1,1,0), f)=a((2,2,0), f)+2"* a((1,1,0) f)
=280192+2'*.2=312960, a((1,1,0), /)=2,

and a((1,1,0), g)=10. Hence we have: 2o+ 10=312960. Similarly, by comparing
the Fourier coefficients at (1,1,1), we have: —ua+ = —47616. Thus we have
a=065760 and f=18144. Other CdbeS are similar.

For the determination of 4% ,, we use the following Fourier coefficients.

Syo(ly): A=q—1536-g*+ +q>—95571968 - g* +---,
B=q*+ xq>+ 8640 - q* + -

Sya(l}): A=q—1296-g*+ +q*>+80803072-¢*+ -,
B=q*+ %q>— 121680 - ¢* + -

The action of T(2) on S,, ,(I;) is as follows.

Si0(l}): T(2Q) A= —1536-A4+438939648 - B,
T(2)B=A+10176-B,
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the characteristic polynomial of T(2) is
X% —8640 X —454569984.

Si4U7): T2)A=—1296-4+8669058048 - B,
T(2yB=A4-120384-B,
the characteristic polynomial of T(2) is
X2+ 121680 X — 8513040384,
The calculation is easier than the case of S,(I}), and it is sufficient to note that:
a(2;1, f)=a(2,f) and a(2;2, f)=a(@, [)+2** 3 a(l,f) for each feS,, ,(I).

Remark. From the above procedure, it would be easy to see that we can obtain
further examples with some efforts. Such examples will be given in §5 and §7.

§ 4. Supplementary Conjectures

In § 4 we assume Conjecture [, and we pose two conjectures.
Let k=10 be an even integer. Put

0 aT.f)= T d'a (<¢11 T>,f’) for all T}.

dle(T)

Si(G)={f65k(D)

Here T runs over all 2 x 2 symmetric semi-integral positive semi-definite matrices.
S;(I3) is a sub vector space (over C) of S,(I;). The above equation (+) appeared in
Maass [4] (the Eq. (19)). We pose the following Conjecture 2.

Conjecture 2. Let k=10 be an even integer. Then
SUL)2 0S5, 2 (1))

There exist some theoretical supports to Conjecture 2, and actually we may
conjecture moreover that S (5)=0,(S,,_,(I7)). At the same time, it is conjectured
also that for each feo,(S,,_,({7)) the Fourier coefficients a(T, f) depend only on
e(Tyand A(T).

If Conjecture 2 is valid, then S}(I;)=S,(I3) for k=10, 12, 14, 16 and 18. For
these k, it is easy to check that the above equation () holds for all feS, () at
T=(2,2,0)and (2, 2, 2) by using the values in [5] and the values in § 3. For example,
let k=16 and f=4y,, - ®,. Then a((2,2,0), /)=280192, a((l,1,0), f)=2, and
a((1,4,0), f)=214656 by the table in §3. Hence the following equality holds:
af(2,2,0), =2 a((1,1,0), H+a((1,4,0), f), which is the equation (x) at
T=(2,2,0). Similarly, (%) holds for f=12-y,,- ¢, at T=(2,2,0). Thus () holds
for all feS () at T=(2,2,0). Other cases are similarly checked. For the checking
at T=(2,2,2), we remark that (1,4, 2) is unimodularly equivalent to (1, 3,0),
. L1 1 0y /L 0y /1 1 . -
in fact (1 4)— (1 1) (0 3) (0 1). We remark that the Fourier coefficients
at T=(1,3,0)and (1, 4, 0) are calculated also by the method of Maass [4] (Satz 3).
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We note that SL(I;) S S, (I3) for each even integer k=20 (cf. Maass [4] p. 167).
In fact, for example, let f=yi, 0% 2% if k=0 mod 4, and let f=y,0 %,
%~ 22%if k=2 mod 4. Then it is easy to see that: a((2, 2, 1), f)= — 1/4(resp. — 1/6)
if k=0 mod 4 (resp. k=2 mod 4), but a((1, 4, 1), f)=0 (obviously). We remark also
that e(2,2, )=e(1,4,1)=1 and 4(2,2,1)=4(1,4,1)=15. Hence this example
shows also that a(7, f) is not necessarily determined only by e(T) and 4(T).

Let k=10 be an even integer, and put r=dim. S, ([;) and d=dim.S,, ,(I7).
Then r=d as is remarked in § 2. This inequality is proved as follows. Put I, =
{(a,b,c,d)|a,b,c,d=0 integers, 10a+12b+4c+6d=k and a+b21}, [,=
{ta, b, 2 d)elkla—!-b—l} dnd IZ={{a,b,c,d)el, |a+b=2}. Put f(a b,c,d)=
Ao 20, 0% @f and Sp(L)={{f(a,b,c,d)|(a,b,c,d)el}}> for i=1 or 2, where
{ }> denotes the Vector space over C spanned by the elements in { }. Then,
by Igusa’s structure theorem for S,([;), we see that

Sk(‘l})z <{f(a’ b’ c, d) l (a5 ba C> d)eIk}>

and dim S, (5;)=dim¢ S;(I3) + dim¢ S7(13). On the other hand, an easy calculation
shows that dim¢ S}(;)=dim¢ S,, ,(I}). Hence r —d =dim_ SZ( 3)20. Moreover,
if k=20 is an even integer, then the above f which is used to show Si(5) S S, (I3)
is a non-zero element in S7(I;), hence it holds that r—d = 1.

Let {9 |j=1,...,r} (resp. {44} ,li=1,...,d}) be an eigen basis of S,(I[})
(resp. S,;_, (7)) over C. Then, by Conjecturel we may assume that o, (44, )
=y and L(s, 1) ={(s—k+2) {(s—k+1) L(s, 4%, ) fori=1,...,d. Asa supple-
ment to Conjecture 1, we pose the following Conjecture 3.

Conjecture 3. Let k> 20 be an even integer. Then y\ satisfies Ramanujan conjecture
for j=d+1,.

We note here that if y{ satisfies Ramanujan conjecture, then the Euler product
defining L(s, x{’) converges absolutely in Re(s)>k—3, hence L(s, z\) is holo-
morphic on C. In fact, the possible simple pole of L(s, x") exists only at s=k (see
Theorem 3.1.1 (IV) in [1]), hence it does not occur for such L(s, ).

We note also the following point: since r=k>/8640 + O(k?) and d =k/6 +O(1)
as k— 20, it follows from Conjecture 3 that the large part of Siegel eigen cusp
forms of degree two will satisfy Ramanujan conjecture.

Since r=3 and d=2 for k=20, the "first” example which should be checked
is ¥$). It will be interesting to determine the Euler factors of L(s, 53). The Euler
factors at primes 2 and 3 will be determined in § 5 and § 7. It turns out that these
two Euler factors fit Conjecture 3.

§ 5. Examples for Weight 20

5.1. An Eigen Basis of SZO(F) We give an eigen basis of S,,(/3) over C. In this
case, dim¢ S, (/3)=3 and an eigen basis of S, ([3) over C is given by the followmg
{x‘zlc?,x‘zz&x(f&} Put f=4-y, @, @, §=12 1,5 @ and h=48. 23, For
simplicity, we put D=63737521in§ 5. We note that D is the product of the following
three primes 181, 349 and 1009. Then:
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7oA =460 f—(7699+1/D) g —345600(8021 +1/D) h,
A2, 19)=689232+481/D,

70 =460 f —(7699—1/D) g —345600(8021 —1/D) h
A2, 72)=689232—-4871/D,

A =f—g+595200 h,

A2, 75 = —840960.

In the determination of x4, x% and x%), we use the following values of
Fourier coefficients.

a(l, 1, 1) a(l,1,0) a(2,2,2) a(2,2,0) a(t, 3,0) a(4,4,4)
f -1 2 —-59616 — 187328 —261088 —309027859456
g 1 10 440064 1701440 556576 439982666752
h

0 0 3 18 0 424224

For the calculation of these Fourier coefficients, we refer to § 6.

For each feS,(;), k being a positive integer, the following equalities hold
(see the equation (2.1.11) in [11): a(2:(1,1,1), f)=a((2,2,2), f), a(2;:(1,1,0), )
=a((2,2,0), /)+2*2-a((1,1,0), f), and a(2;(2,2,2), f)=a((4,4,4), f)+3-2¢2
a((1,3,0), f)+2253.4((1,1,1), ). Hence, from the above table, we obtain the
following values of a(2; T) for T=(1,1,1), (1,1,0) and (2, 2, 2).

a(2; (1,1, 1) ’;[2; (1, 1,0y a{2:(2,2,2))

! — 59616 336960 —651794770944
g 440064 4322880 1015130797056
h 3 18 424224

Using these values of a(2; T), we can determine the action of T'(2) on S,,(I3).
The result is as follows:

T2y f=77760 f + 18144 g—215986 176000 h,

T(2)g=323520 f+ 367 584 g -+ 339406 848000 h,

T2yh=—f+2g+92160h.
For example, we can write T(2) f=a- f+f - g+y - h with a, §, yeC. By comparing
the Fourier coefficients at T=(1,1,1), (1,1,0) and (2, 2, 2), we have:

—a+f=—-59616,

2-0+10-=336960,

—59616-a+44064-p+3-y=—651794770944.

Hence we have: a=77760, $=18144, and y= —215986176000. Other cases are
similar.
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Since the action of T(2) on §,,{[3) is determined as above, we can calculate
the characteristic polynomial of T(2) on S,,(I3). It is given by:

X?—537504 X2 831043584000 X + 275994243 130982400
=(X +840960) (X > — 1378464 X + 328189501 440).

Hence we can determine eigenvalues and eigenfunctions of T(2) on S,,(/3). Thus
we obtain the eigen basis of S, (I} stated previously.

5.2. An Eigen Basis of S,5(I;). We give an eigen basis of S38( 1) over C. In this case,
dim¢ §;4(J7)=2 and an elgen basis of S;4(I;) over C is given by the following
{42, 49)}. Put A=A -E}-Ef and B=4%-E4- E2. Then:

A{) = A+(—96144+481/D) B,

A2, 4$9)= —97200+ 481/D,

AY=A+(—96144—481/D) B

A2, 43)= —97200—4871/D.

In the determination of 44 and 4%}, we use the following Fourier coefficients:

A=qg—1056-q*+*q>+169741312 . g*+ -,

B=q%+%q*>—194400 - g*+ ---

Then, the action of T(2) on S;4([;) is determined by the same method as in
§ 3. It is given by:

T(2)A=—1056 A+ 137607579648 B,

T(2yB=A-193344 B.

The characteristic polynomial of T(2) on S;4(I7) is: X%+ 194400 X — 137403408384,
Thus we obtain the above eigen basis of S;5 ().

5.3. Euler Factors at the Prime 2. We determine Euler factors at 2 of L(s, x3}) for
j=1,2 and 3. Before going into this process, we remark the following point which
gives a suggestion. From the results in 5.1 and 5.2, it is easy to check that the
following equalities hold: 4(2, x)=24(2, A9%)+28+2' for i=1 and 2. Hence,
by Conjecture 1 in § 2, it would be that

020(45) =236 and  L(s, x35)={(s—18) {(s—19) L(s, 4%3)

for i=1 and 2. In particular, it will be that H,(T, %) =(1-2*T)(1-2'°T)
- H,(T, 45}) for i=1 and 2. In fact, we prove below that the last equalities hold.
We first study the case of y4). From the values of Fourier coefficients in 5.1,

we have: a((1,1,1), x$))= —(8159 +1/D) and

a((4, 4, 4), 1) = —(4705552729975808 + 586 594481152 1/D)
= —219(4595266337867 + 572846173 1/D).
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Hence we have:
A4, 1S =a((4,4,4), xS - a((1, 1, 1), 75~ 1 =2°(692843 369 + 55503 ]/l-)).
Thus we have:

H (T, 7)) =1—-2%(43077+31/D) T+2**(47311+9}/D)- T*
— 2414307743/ D) T + 274 T*=(1-2"2T)(1 =21 T)
(1-2%(—6075+31/D) T+2% T?).

Since H,(T, 4%9)=1-2%(—6075+3)/D) T+23" T2, we have the required result:
H,(T, Xm) (1=2"°T)(1-2"° T) H,(T, 45)).
The calculation for %3 is the same as for ¥4, and the results for ¥ are obtained
from the results for y1) by changing the signs of }/D. Hence H,(T, &) =(1 —2'%T)
A(L=21T)H, (T, AQ) and H,(T, 42)=1—2*(—6075— 31ﬁ) T+237 72,

Next, we study the case of ¥§¥). In this case we have: a((1,1,1), 15))= —2 and
a((4, 4, 4), 7)) = — 496512401408, Hence we have (4, 732) = 248 256200704 = 216
3788089 Thus we have H, (T, y$0)=1-+2%-3285- T+22¢.5815- T%+2%%.3285

+274T* We prove that this Euler factor H,(T, z53) of L(s, ¥)) fits Conjec-
ture 3 in §4. Put T=2"3"2.¢ then H,(T, x“))— l+at+bt2+at>+t* with

=27212.3285=22684... and b=2""'1.5815=2.8393 .... We denote by B(1)

the above polynomial in r. What we should prove is the absolute values of zeros
of P(¢) are 1. Put a=(—a+}/a*—4b+8)/4 and f=(—a—1/a*—4b+8)/4. Then,
by a simple calculation, we see that the requirement is satisfied if (and only if)
—1Za=sland —-1< =<1, and that if these conditions are satisfied then the four
zeros of P(t) are given by exp(+i0,) and exp(+i0,) with 0, =arccos(«) and
), =arccos(f)(0=6,<w and 0=<0,<7) and i:]/—‘l. In this case, the numerical
values are a=—0.2327... and f=-09014.... Hence the requirements are
satisfied, and the four zeros of H,(T,y}}) are given by 2737?.exp(+if,) and
27372 . exp(+i0,) with 0,=1.805... and 0,=2.693.... Thus the Euler factor
H, (T, 53 of L(s, x5 fits Conjecture 3.In§ 7, we obtain the Euler factor H,(T, x5,
and we see that this also fits Conjecture 3.

§ 6. A Table of Fourier Coefficients

Let fie=4 %0 s and g,,=12-%,,  @,. Then we obtain the following table
of Fourier coefficients of y,,, fi¢ and g,4.

We remark here that Fourier coefficients of Siegel modular forms of degree
two can be calculated in the following four steps (1), (2), (3) and (4) in principle.
(1) The Fourier coefficients of Siegel modular forms of degree two can be calcu-
lated from the Fourier coefficients of ¢,, @4, x;, and y,, as in the calculation of
¢14(T) in § 1. (2) The Fourier coefficients of ¢, and ¢4 can be calculated by the
method of Maass [4] (see Satz 1 and the equation (19) in [4]). (3) The Fourier
coefficients of x,, can be calculated from the Fourier coefficients of ¢, by the
method of Resnikoff-Saldafia [5] (see the first equation in Theorem 3 in [5]).
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T A(T) e(T) 12¢,,(T) a(T, fie) a(T, g,o)

TR 3 1 1 —1 1
(1, 1,0) 4 1 10 2 10
(1,2,1) 7 1 —88 520 152
(1,2,0) 8 1 —132 — 1044 2268
(1,3,1) i 1 1275 8469 — 17685
(1,3,0) 12 1 736 — 14848 —9344
2,2,2) 12 2 2784 — 47616 23424
(1,4,1) 15 1 — 8040 —93000 114600
(1,4,0) 16 1 — 2880 214656 — 44160
(2,2,0) 16 2 17600 280192 283520
(1,5,1) 19 1 24035 90973 274595
(1,5,0) 20 1 13080 — 628200 199800
(1,6,1) 23 1 —14136 1104552 ~ 4555656
(1,6,0) 24 1 —54120 ~764616 — 200040
(1,7, 1) 27 1 — 128844 — 748692 14102676
(3,3,3) 27 3 48303 — 15097599 28451583
(1,7,0) 28 1 115456 2874368 5533696
(2,4,2) 28 2 — 64768 19913728 10514432
(1,8, 1) 31 1 389520 ~ 16100016 ~7096080
(1,8,0) 32 1 38016 23811840 — 36612864
(2,4,0) 32 2 —232320 — 10397952 37704960
(1,9,1) 35 I — 256410 32117850 — 32117850
(1,9,0) 36 1 —697950 109122534 71214210
(3,3,0) 36 3 1073520 ~ 80424720 214703280
(1,10,1) 39 1 — 806520 54300264 — 826440
(1,10,0) 40 1 963160 143559800 8656600
(1,11, 1) 43 1 1892363 — 157908251 140385563
(1,11,0) 44 1 938400 — 41467392 1572480
(2,6,2) 44 2 3549600 236044800 — 577929600
(1,12,1) 47 1 — 1227600 —98103312 124508880
(1,12,0) 48 1 —~2309120 120737792 ~726118400
(2,6,0) 48 2 —801792 ~ 365801472 — 1032302592
(4,4,4) 48 4 3392512 — 1439543296 41439232

(4) The Fourier coefficients of x,, can be calculated from the Fourier coefficients
of x,o by the method of Resnikoff-Saldafia [5] (see the equation in § 5 of [5] which
gives a relation between the Fourier coefficients of y,, and yx,,).

In the above table, the values of 12¢,,(T) for e(T)=1 were calculated by the
method of Maass [4] (Satz 2), and the values of 12¢,(T) for e(T)> 1 were calcu-
lated by the above method (4). The values of a(T, f,,) (resp. a(T, g,¢)) were calcu-
lated by the above method (1) from the Fourier coefficients of x,, and ¢ (resp.
X1, and @,). We note here that 4¢,,(3,3,3)= —15399 and 4¢,,(2, 6,0)=126720
in Table IV of [S]. The Fourier coefficients of f (resp. g) in § 5 were calculated by
the above method (1) from the Fourier coefficients of f;4 and ¢, (resp. g, and ¢,).
The Fourier coefficients of h in § 5 were calculated by the method (1) from the Fourier
coefficients of y,,. Actually, in our calculation with using the method (1), we need
Fourier coefficients at several T which are not unimodularly equivalent to any T
listed in the above table. For example, we need Fourier coefficients at T=(2,2,1).
To calculate these Fourier coefficients, the methods (2), (3), (4) and (1) were used
in this order. In the step (2), we can simplify our calculation by using Tabies I-111
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and V in [5]. As a result, it turns out that for y,,, %12, f1¢ and g, the equation
() in §4 hold at these T. For example, the Fourier coefficients of y,q, %12, fi6
and g, at T=(2, 2, 1) are equal to the Fourier coefficients at T=(1, 4, 1), the latter
values are listed in the above table or in Table IV in [5]. We note that, in the above
table, the values of a(T, f,,) and a(T, g,,) at T with e(T)=1 are also calculated
by the method of Maass [4] (Satz 3).

It may be noted that we can calculate some of the Fourier coefficients in the
above table in a simpler way with using the method in the next section. For example,
since 12¢,,(1,1,1)=1, 12¢,,(2,2,2)=2784 and 12c¢,(1,3,0)=736, we have
by this method that A(2,y,,)=2784 and A(4, x,,)=3392512. Hence we have
12¢,,4,4,4)=12¢,,(1,1,1)- A(4, x,,)=3392512. This method applies also for f4
and g,,, but in this case we must first apply this method to x{%’ and 3.

§ 7. Further Examples

We give here further examples. We formulate our method used in this section
as follows. Let k= 10 be an even integer. Let feS,(I,) be an eigen cusp form, and
suppose that we know the values of the following five Fourier coefficients of f:
a(l, ,1), a(2,2,2), a(1,3,0}, a(3,3,3) and a(1,7,1). Suppose moreover that
a(l,1,1)#+0. Then we can determine the four eigenvalues 1(2), A1(4), A(3) and 4(9),
and the two Euler factors H, (T, f) and H4(T, f). They are given by:

H,y(T, )=1—=AQ2) T+(A(2* —A(4) =22 =) T? - 22k=3 .}y T> + 24+ -6 T*
with

A2)=a(2,2,2)-a(1,1,1)" !
and

AA) =42 =3-22.a(1,3,0)-a(1,1,1)~ L —=22k-3,
and

H (T, f)=1-203) T+(A(3)> = A(9) =32k~ #) T2 -32k=3. ) (3) T3 4 340 %
with

A(3)=a(3,3,3)-a(l,1,1)" 1 432
and

M9)=A(3)2 =32 A(3)=3 L. q(1,7,1)-a(1,1,1)~ L —32k-3,

These formulas are obtained by simple calculations from the following equalities
(see (2.1.11) in [1]):

A2)a(l, 1, h)=a(2;(1,1,1)=a(2,2,2),
Adya(l, 1, )=a(4;(1, 1, 1))=a(4,4,4),
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A2 a2,2,)=a(2;(2,2,2)=a(d,4,4)+3- 252 . a(1,3,0)+ 22 3. q(1, 1, 1),
AB3)a(l, 1, )=a(B3;(1, 1, 1)=a(3,3,3)+3*2.a(l, 1, 1),
A9)a(l, 1, 1)=a(9;(1, 1, 1)=a(9,9,9)+ 3* 2. 4(3,3,3),

and

23)a(3,3,3)=a(3;(3,3,3)=a09,9,9)+3*2.4(3,3,3)+ 3 L.a(l,7,1)
$326-3 (1,1, 1),

In our applications of this method, we use the following values of Fourier
coefficients. We refer to § 6 for the calculation of these Fourier coefficients. In the
following table, f and g for k=16 or 18 are as in § 3, and f, g and h for k=20 are
asin§ 5.

k all,,1)  a2,2,2) a(1,3,0) a(3,3,3) a(l,7,1)
10 4750 -1 —240 272 — 15399 4284
12 12345 1 2784 736 48303 128844
14 4.5,, —1 ~ 12240 — 4048 — 1398519 195804
16 ! -1 —47616 — 14848 ~ 15097599 — 748692
2 1 23424 —9344 28451583 14102676
18 f —1 —24240 106832 — 182896839  —53756676
¢ t 32016 —~99056 180470727 51330564
20 f ~1 ~59616 ~261088  — 674624079 73332
g 1 44064 556576 444330063 21201804
h 0 3 0 2016 0

For reader’s convenience, we list below the eigenvalues and Euler factors
obtained by the above method with using the values of Fourier coefficients in the
above table, although some of them have appeared in the previous sections. To
simplify the expression, we give attention to the 2-power (resp. 3-power) factors of
A(2) or A(4) (resp. A(3) or 4(9)), and we express Euler factors in simpler forms.
k=10 (on 7,0)

2(2)=2%-15 A(4)=28.529,

H,(T)=(1-28T)(1-2°T)(1 +2*-33- T+2'"T?,

A(3)=3%-2440, Ai(9)=3*-3621529,

H (T)=(1-3*T)(1-3°T)(1+3%-476 - T+3'"T?).

k=12 (on x,,)
A(2)=2%-87, Ai(4)=219.3313,
H,y(T)=(1=2"°T)(1 =2 T)(1+2%.9. T+22'T?),
A(3)=3%-3976, A(9)=3°-24073249,
H(T)=(1-3""T)(1=3"T)(1+3%-4772- T+3%'T?),
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k=14 (on y,,)

A(2)=2%.765, A(4)=2% 259849,
H,(T)=(1=2"2T)(1 -2 T)(1+2% 3. T+235T?),
A(3)=33-71480, i(9)=3°-2968411441,
Hy(T)=(1—3'2T)(1—3'3T)(1+3% 7252 T+325T2),

k=16 We put D=51349 in this case, and we describe about y§". The results for

74 are obtained by changing the signs of }/D.
a(1,1,1)= —=313+y/D, a(2,2,2)=2"(-92244+1831/D)
=25(1671+3y/D)a(1,1,1), a(1,3,0)=2"(~12116—73/D)
=25(647+31/D)a(l, 1, 1), a(3,3,3)=32(—714984271+31612871/D)
=3%(1318343-58881/D)a(l, 1, 1), a(l,7,1)=3%(-215961172
+156696471/D)=3%(—275980—58881/D) a(l,1,1), A(2)=2%(1671+31/D),
A(4)=21(868 151+27091/D), H,(T)=(1-2'*T)(1-2'°T)
S(1-2%(1354+3Y/D) T+22°T?), 1(3)=3%(1849784—58887/D),
A(9)=3*(3811557505865—92665579521/D),
Hy(T)=(1=3"T)(1 =3 T)(1+32(275980 + 5888 /D) T +32° T?).

k=18 We put D=2356201 in this case, and we describe about (%" The results
for 73 are obtained by changing the signs of ]/D.

a(l,1,1)= — 1441 +1/D, a(2,2,2)=2*(—1624701+2001}/D)
=23(16971+91/D)a(1,1,1), a(1,3,00=2*(10179971 —6191/D)
=23(587+9y/D)a(l, 1,1), a(3, 3,3)=3%(—9864516581 +66841011/D)
=33(5485189—8321/D) a(1,1,1), a(l,7, 1)=3%(—2972258252+ 1901132}/D)
=33(702220—8321/D) a(l L 1), A2)=2%(16971+97/D),
A(4)=27(165111641+421471/D), H,(T)=(1-2'°T)(1-2'"T)
((1-23(=7605+91/D) T+2>T?), A4(3)=3%(7079512—8321/D),
4(9)=3°(29479186252625 —6474401024/D),
Hy(T)=(1-3"T)(1-3'7T)(1 —3%(702220—8321/D) T+3** T?).

k=20 We put D=63737521 in this case, and we describe about x4 and »%;.
The results for y'3) are obtained from the results for ¥4 by changing the signs

of |/ D.
w0 a(l,1,1)=—8159—1/D, a(2,2,2)=25(~271338903—33777/D)
=24(43077+3y/D)a(l,1,1), a(1,3,0)=2%(—137661847—17393}/D)
=2%4(10309+31/D) a(l1,1,1), a(3,3,3)=3%(~ 345173790851 — 42261469}/ D)
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=33(43305821 —1281/D) a(1,1,1), a(l,7, 1)=3%(6044 405788 + 7852521/D)
=33(259100—128/D)a(l, 1,1), 1(2)=2*(43077+37/D),
4(4)=2°(692843369 +555031/D), H,(T)=(1-2'8T)(1-2'°T)
((1=2%(=6075+31/D) T+2%7T?), 4(3)=33(57654728 —128/D),
4(9)=3°(1869002804420705 — 18818834867201/D),
H,(T)=(1-3"T)(1-3""T)(1 -3%(259100— 1289/D) T+33" T?).

1 a1, )=—=2, a(2,2,2)=2°-3285=2%(—3285)a(l, 1, 1),
a(1,3,0)=2°(—1597)=28-1597 - a(1,1,1), a(3, 3,3)=3°-333206
=3%(—166603)a(1,1,1), a(1,7,1)=3%-782536=33(—391268) a(1,1, 1),
4(2)=28(—3285), 1(4)=2'°.3788089, H,(T)=1+2%-3285-T
+2%6.5815- T?42%%.3285- T*+27*T*, 1(3)=3"-1427720,
A(9)=3"%(~7655524062959), H,(T)=1-3%.1427720-T
+322.13457830- T2 —3%2.1427720- T3>+ 374 T*.
On the other hand, the eigenvalues for eigen cusp forms in S,, ,(I]) are
given as below. In these cases, Euler factors are given by H, (T)=1-4(p) T
+ p?¥=3 T2 We use the notations in the previous sections. In each of the cases

for k=16, 18 or 20, the number D is as above, and we describe about the eigen
cusp form which corresponds to the above eigen cusp form in S,([;). The results

for another eigen cusp form are obtained by changing the signs of ]/ D.
k=10 (2k-2=18)
AM2)=—-2*.33, A(3)=-—3%-476.
k=12 (2k—2=22)
M2)=-2%-9, Ai(3)=-3%-4772.
k=14 (2k—2=26)
A2)=-2*.3, Ji(3)=-3%.7252.

k=16 (2k—2=30)
A(2)=2%(135+31/D), A(3)=3%(—275980—5888)/D).
k=18 (2k—2=34)
A(2)=23(=7605+91/D), A(3)=3%(702220—832)/D).

k=20 2k—2=38)

A(2)=2%(—6075+31/D), A(3)=3%(259100—1281/D).

Thus, the above examples for yyq, %12, Z1as 2165 X1es 2155 113 159 and ¥5)
fit Conjecture 1.
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As is proved in § 5, the Euler factor H,(T, %)) fits Conjecture 3. The corre-
sponding fact for H,(T, z5}) is proved as follows. Put T=3737/2 . ¢, then H,(T, %)
=1—ct+dt? —ct3++* with c=3"272.1427720=0.5170... and

d=3717.13457830=0.9378 ....

We denote by P, (1) the above polynomial in t. Put v=(c+]/c_é:ﬂ+78)/4 and
5:(6—]/62—4d+8)/4. Then y=0.6605... and 6= —0.4020..., hence we sce
as in § 5 that the absolute values of the four zeros of P, (t) are 1, and these zeros
are given by exp(+i0;) and exp(+ifl,) with 6;=arccos(y) and 0, =arccos(8)
(0=0;=mand 0 <0, <m). Hence, the absolute values of the four zeros of H,(T, x5}
are 37 *"/2, and these zeros are given by 37*7/? - exp(+i0,)and 37372 . exp(+i0,)
with 0,=0.849 ... and 0,=1.984 .... Thus the Euler factor H,(T, 5} also fits
Conjecture 3.

Lastly, we remark that the above examples fit Conjecture?2 in §4. In fact,
from the above values, it is easy to see that for f=y,0, 112, Y14, X'E 2565 245>
x5 159 and x4 the following equalities hold: a((2,2,2), f)=2""1-a((1,1,1), f)
+a((1,3,0), f) and a((3,3.3), /)=3""1-a((1,1,1), f)+a((1,7,1), f). (Note that
(1,9, 3) is unimodularly equivalent to {1, 7, 1).) It is remarked that these equalities
do not hold for f=%%).
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Proc. Japan Acad., 54 A, 163-166 (1978). (2) We have analogues for “Siegel wave forms” of results
in Andrianov [1] and conjectures in this paper.



