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Introduction 

We present some examples of eigenvalues of Hecke operators on Siegel cusp forms 
of degree two together with some generalizations of the Ramanujan conjecture. 
We obtain examples of eigenvalues for ten cusp forms which are denoted by 

,,(+~ )~6 ), Z~sl, )(1~), ,,~1) ~2~ ~(2~. Our examples, which are listed )~10, ~12, g14, 1~16,  / . 2 0 ,  /~20~ 
in the last section, suggest that the above cusp forms are divided into two classes. 
The first class consists of the former nine cusp forms. It follows from our examples 
that an analogue of the Ramanujan conjecture formulated in this paper does not 
hold for the cusp forms in this class. Instead, it appears that for each such cusp 
form (of weight k) there exists an elliptic cusp form (of weight 2k-2) with an 
explicit relation between the eigenvalues of Hecke operators for these two cusp 
forms. This relation is stated as Conjecture 1. The second class consists of the tenth 
cusp form ~2o"(3}. It seems that the analogue of the Ramanujan conjecture holds for 
Xc3j (Conjecture 3). Our examples for ~20 20 .~,(3) support this. 

In [3-1, Langlands gives an interpretation of our Conjecture 1 (for ~1o) in a 
representation-theoretical formulation. This interpretation is deduced from his 
general philosophy containing the principle of functoriality. A general formulation 
of the "'Ramanujan conjecture" is given in [3a]. (In [3], the "Ramanujan con- 
jecture" is restricted to the case of GL(n).) Our examples suggest that the auto- 
morphic representations attached to the former nine cusp forms are counter- 
examples to this "'Ramanujan conjecture", and that these automorphic repre- 
sentations are "'anomalous" in the sense of [3]. It seems that the automorphic 
representation attached to Z(2~ satisfies the "'Ramanujan conjecture". We remark 
that Howe and Piatetski-Shapiro [2] have given counter-examples to the "'general- 
ized Ramanujan conjecture" (in a representation-theoretical formulation) by 
using Weil representations called oscillator representations. 

The author would like to express his hearty thanks to Professors R.P. Langlands, 
H. Maass, and J.-P. Serre for their interests and encouragements. 
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Notations. For Siegel modular forms, we follow the notations in Andrianov [1], 
Maass [43, or Resnikoff-Saldafia [5] in general. For each integer n > 1, F~ denotes 
the Siegel modular group of degree n, and Mk(F,) (resp. Sk(F~) ) denotes the vector 
space over the complex number field C consisting of all Siegel modular (resp. 
cusp) forms of degree n and weight k for a positive integer k. For each integer 
m>  1, T(m): Mk(F,)-,Mk(F,) denotes the Hecke operator with the usual normal- 
ization. If f e M k ( F  ~) is an eigenfunction of T(m) for an integer m> 1, then we 
denote by 2(m)=2(m, f )  the eigenvalue: T ( m ) f = 2 ( m ) f .  If feMk(F~) is an 
eigenfunction of all Hecke operators on Mk(F~) (see [1] Chap. 1 for the precise 
meaning), then we call f an eigen modular form (or "eigen cusp form" if f is 
a cusp form) and we denote by L(s, f ) = l J  Hp(p-S,f)  -~ the Euler product defined 

p 

in [1] (Chap. 1), where p runs over all prime numbers and Hp(T, .J')E l + T. C [T]  
is a polynomial of degree 2" in an indeterminate T for each p. For n =  1 or 2, 
H p( T, f ) =  1 - 2 ( p )  T + p k- 1 T 2 or H p( T, f ) =  1 -) ,(p) T + ()~(p) 2 - )L(p2)- p 2k- 4) T 2 
--p2k-32(p) T3-I-p '~k-6 T 4 respectively, where ).(m)=2(m, f).  In this paper we 
say f satisfies Ramanujan conjecture if the absolute values of the zeros of Hp(T, f )  
are equal to p-"~2k-" 1)/~ for all p. We say a basis of Mk(F,) over C is an eigen basis 
if the basis is consisting of eigen modular forms. It is known that Mk(F,) has an 
eigen basis ([1] Theorem 1.3.4). If feMdF,) ,  then f has the Fourier expansion: 
f ( Z ) = ~ a ( T ) e  2~i~lrz~ where Z is a variable on the Siegel upper half space of 

T 
degree n, T runs over all n x n symmetric semi-integral positive semi-definite 
matrices, and a(TZ)  is the trace of TZ. We call a(T)=a(T,  f )  the Fourier co- 
efficient of f at T. We denote by a(m; T)=a(m; T, f )  the Fourier coefficient of 

( t, t/2t with T(m) f at T for each feMk(F~) and m> 1. For each matrix T =  t/2 t 2 ] 

tl, t2, t integers, we put e(T)=gcd(t l ,  t2, t) the greatest common divisor, A(T) 

1 t /2]  For simplicity we denote by = d e t ( 2 T ) = 4 t  l t a - t  2, and ( T ) =  t/2 t 1t2!" 

(tl, t2, t) the above matrix T, and we denote by a(t~, t2, t) the Fourier coefficient 
of f~Mk(F2) at T if T is positive semi-definite. 

For special elements in Mr(F2) we use the following notation. For each even 
integer k>4 ,  the Eisenstein series of weight k is denoted by %. We denote by Zk 
the normalized cusp form of weight k=  10 or 12, and we put Z14=ZlO-q~. The 
Fourier coefficient of Ok (resp. Zt) at T is denoted by ak(T ) (resp. Ck(T)). 

For special elements in Mk(F 0 we use the following notation. For each even 

integer k>4,  the Eisenstein series of weight k is denoted by E k = l - - 2 k  ~. 
- -  B k  n :  1 

at-  1 (n) q" (q = e 2 ~ i~) where B k is the k-th Bernoulli number and a t_ 1 (n) = ~ d k 1. 
din 

We denote by A k the normalized cusp form of weight k =  12, 16, 18, 20, 22 or 26. 
For  simplicity, A t 2 is denoted by A also. 

w Examples for Weights 10, 12 and 14 

1.1. Eigenvalues. We obtain the following eigenvalues of Hecke operators for 
ZlO, Z12 and Z14. 
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gxo" 2(2)=240, 2(3)=21960, 2(4)=135424. 

Z12" 2(2)=2784. 

Z14: 2(2)= 12240, 2(3)= 1929960. 

The calculation is as follows. Put F = Z 1 o, D = 3 and N = (1, 1, 1) in Theorem 2.4.1 
of Andrianov El], then we have: 

~o~v--s)(s-8) ~ Cto(m ,m,m) m -s=clo(1,1,1)~(2s-16) ~ 2(m) m s, 
m= 1 m= 1 

where ~(s) (resp. (~o~v~-31(s)) is the zeta function of the rational number field Q 

the imaginary quadratic field Q(I/L3)). Since ( 7 ) = - 1 ,  we have the (resp. 
~ F 

following identity by comparing the 2 (-power)-factors: 

Cto(Z~',Z",ZV) T~=clo(1,1,1) ~ 2(2")T ~' with T = 2  -S. 
v=O v=O 

From Table IV in Resnikoff-Saldafia [5], we have: Clo(1, 1, 1)= -1/4,  Clo(2,2,2 ) 
= - 2 4 0 / 4 ,  and clo(4,4,4)=-135424/4.  Hence we have: 2(2)=240 and 2(4) 
= 135424. The other values are also calculated in the similar manner. For the 
calculation of 2(m, )~14), we use the following values: C14(1 , 1, 1)= - 1/4, ca,,(2,2, 2 ) 
= - 12 240/4, and c 14 (3, 3, 3) = - 1398 519/4. These values are obtained from Tables 
I-IV in [5] with using Z14=7~lo.Cp4. We remark the following general fact: if 
f (i= 1 . . . . .  r; r >  1) are Siegel modular forms of degree n and weights k i (ki>0 
integers), then f = f l  ... s is a Siegel modular form of degree n and weight k=  k~ 
+ - - . + k  r, and the Fourier coefficient a(T,f) of f at an n• symmetric semi- 
integral positive semi-definite matrix T is given by a (T, f ) =  ~ a (T 1, f 0 . . .  a(T~, s 
where T/runs over all n • n symmetric semi-integral positive semi-definite matrices 
such that T 1 +-.- + T~ = T. Thus, q4(1, 1, 1)= qo(1, 1, 1) a4(0, 0, 0), 
C14(2 , 2, 2)=qo(1,  1,0) a,~(1, 1, 2) + q o ( l ,  1, 1) a4(1, 1, 1)+2clo(1, 2,2) a4(1,0,0) 
+ qo(2, 2, 2) a4(0, 0, 0), and q4(3, 3, 3)=qo(1,  1, 0) a4(2, 2, 3) 
+Clo(1 , 1, - 1) a,~(2, 2,4)+Clo(1, 1, 1) a4(2 ,2 ,2)+2clo(1,2,  1) a4(2 , 1,2) 
+2Clo(1,2,2)a4(2 , 1, 1)+Clo(2 ,2,2) a,~(1, 1, 1)+Clo(2 ,2, 3) a4(1 , 1,0) 
+Cao(2,2, 1)a4(1, 1,2)+ 2qo(1,3,3)a4(2,0, O)+ 2clo(2,3,3)a4(1,O,O) 
+C~o(3, 3, 3) a4(0, 0, 0). (We note here that 4qo(3, 3, 3)= - 15399 in Table IV 
in [5].) 

1.2. An Euler Factor. We obtain the following Euler factor of L(s, Zlo): H2(T, ZIo) 
= ( I - 2 8 T ) ( 1 - 2 9 T ) ( l  +528 T+21VT2). 

In fact H2(T, ZIO)=I-2(2)T+(2(2) 2-2(4) -216  )T  z - 2  lv-2(2) T 3+234T4 
with 2(2)=240 and 2(4)= 135424. In particular, Zlo does not satisfy Ramanujar~ 
conjecture. 

w 2. A Conjecture and Remarks 

2.1. A Conjecture. From the examples in w 1, we pose the following Conjecture 1. 

Conjecture 1. L(s,)~k)=~(s-k+2) (~(s-k+ 1) L(s, A2k_2 ) for k :  10, 12 and 14. 
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We can check that the examples in w l are compatible with Conjecture 1. 
In fact: 

d i s =  A . E 6 = q _ 5 2 8 . q 2  4 2 8 4 . q 3 + . . . ,  

"/]22 = A  �9 E 4 �9 E 6 = q  - 2 8 8 -  q2 + . . . ,  

A 2 6 =  A . E 2 " E 6 = q _ 4 8  . q 2  1 9 5 8 0 4 .  q 3 +  . . . .  

Hence it is easy to check 2 (p, Zk) = pk- 2 + pk- 1 + 2 (p, A 2 k - 2) for the following cases' 
(k, p)=(10,  2), (10, 3), (12, 2), (14, 2) and (14, 3). Moreover,  since H2(T, A as)= 1 
q-528  T +  2 J'7 T 2, the following equality holds: 

H 2 ( T  , Z10)=(1 - 28T)(I  - 2 9 T )  t f e (T  , A is)' 

We extend the above Conjecture  1 for each even integer k > 10 in the following 
form. 

Conjecture 1. Let k > 10 be an even integer. Then there exists an injective C-linear 
mapping Ok:g2k_2(l])-~Sk(F2) such that the Jbllowing holds: if" fES2k_2(I'I) is 
an eigen cusp form, then ak(f)~Sk(F2) is an eigen cusp form and L(S, ak(f) ) 
= ~(s -- k + 2) ~ ( s -  k + 1) L(s, f). 

Conjectural examples" ak(A2k_ 2)=Zk for k= 10, 12 and 14. 

Numerical  examples for weights k = 16, 18 and 20 with further examples for weights 
k =  10, 12 and 14 will be given in w w and w These examples also support  
Conjecture 1. 

2.2. Remarks. We remark the following facts on Conjecture 1. In the remarks (2), 
(3) and (4), let k > 10 be an even integer. 

(1) I lk is an odd positive integer, then for each eigen cusp form fsSk(Fe)(k = 35 . . . .  ), 
L(s, f )  is ho lomorphic  on C; see Theorem 3.1.1 (IV) in [1]. 

(2) For  each eigen cusp form f ~ S z k _ z ( F l )  , put  L(s , f ,~ rk )=~(s -k+2)  
�9 ~ ( s - k + l ) L ( s , f )  and A(s , f ,~rk)=Fc(S)Fc(s -k+2)L(s , f ,  ak) with Fc(s) 
= 2(27r) -s F(s). Then A(s, f ,  Ok) is ho lomorphic  on C except for two simple poles 
at s = k - 2  and k, and A(s, f ,  ak) satisfies the following functional equat ion:  
A (s, f ,  ak) = A (2 k - 2 - s, f ,  ak). This is compatible with Conjecture  1 ; see Theorem 
3.1.1 (II), (IV) in [1]. In fact, A(s, f )=Fc(s )L(s , f )  is holomorphic  on C and 
A(s, f ) =  - A ( 2 k - 2 - s ,  f ) ,  so A ( k -  1, f ) = 0 .  Hence if we remark that A(s, f, ak) 
=(2r t ) -  1 . ( s _ k +  1 ) . F ~ ( s - k +  1 ) ( ( s - k +  1 ) . ~ ( s - k + 2 )  ~ ( s - k + 2 ) . A ( s ,  f )  with 

(s) = ~z-s/2 F(s/2), we have the desired results. (Remark that F R (s) F~ (s + I )=  F c (s).) 
L(s, f ,  ak) is ho lomorphic  on C except for a simple pole at s=k with the residue 
r L(k, f )  which is a positive real number.  We note also that L ( k - 1 ,  f ,  C~k) 

�9 = - - E ( k -  1, f ) /2 where E(s, f ) = ~  L(s, f).  

(3) Let feSk(F2), then by using a generalization of Rankin 's  method ("Rankin  
convolut ion")  we can prove that a(T, f ) =  O(A (T) ~k- 3/16~/2) as A ( T ) ~ . ~ .  In 
particular, if feSk(F2) is an eigen cusp form, then 2(m, f )  = O(m k- 3/16) as m ~ ~ .  

(4) It is easy to see from Igusa's dimension formula for Sk(~) that:  dim c Sk(F2) 
> d i m  c Szk_ 2(F0. (For  a proof, see w 4.) 
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(5) For  each even integer k > 4, the following equalities hold: 

L(s, (Pk) = ~(S-- k + 2) ~ ( s -  k + 1) L(s, E2k_ 2) 

=~(s) ~ ( s - k + 2 )  ~ ( s - k +  1) ( ( s -  2 k +  3). 

See w 3.2 of [ 1]. Hence, the mapping E2k_ 2 ~ ~Pk may be considered as an analogue 
of a k for the spaces of Eisenstein series. 

w 3. Examples for Weights 16 and 18 

For  k = t 6  or 18, d imcSk(F2 )=d imcS2k_2(F0=2  and an eigen basis of Sk(F2) 
(resp. S2k_ 2 (/]1)) over C is given by the following ~+ I ~ (-)} {Zk 'Zk (resp. {A(2"k[2, A(2~_2}). 

k = 1 6  ;(]6) = 185 . .f  + ( -  128_+1/51349). g 

with f = 4 .  Zlo �9 (r and g =  12 �9 ;(12 "q)4, 

2(2, )]6 )) = 53 472 _ 96 ] /51349,  

A(3+-o'=A + (5 856_+ 961/51-349). B 
with A =A �9 E63 and B = A  2 . E6 ,  

2(2, A~-+))-4320+96]/~j349.30 - 

k = 1 8  Z ~ 8 1 = Z 5 9 0 . f + ( 1  149+l /235-62(Jf ) .g  

with f = 4 " Z l o ' q ~ ]  and g=12-Z t2 .q~6 ,  

).(2, Z]~ )) = 135 768 ___ 72 V'235626i, 
At-+~-A + ( -  59544+  721/2 35620i  ) �9 B 34 - -  

with A = A �9 E 3 - E 4 and B = A2 . E6 . E 4  ' 

2(2, J34A(• = _ 60840 _+ 721/235620i-. 

F rom these values, it is easy to check the following equality for k =  16 and 18: 
A(2, Z~-+))=2(2, A~-+~zk 2) + 2 k - 2 + 2 k - 1 .  Hence, these examples support  the Con- 
jecture 1 ; for k =  16 and 18, it takes the following form: 

L(s, Z~+))= ~ ( s - k  + 2 ) ~ ( s -  k +  1) L(s, A~2~)_ z). 

We note here that 51349 is a prime number  and that 2356201 is the product  of two 
prime numbers  479 and 4919. 

For  the calculation about  Sk(F2), we use the following values of Fourier  
coefficients. 

k a(1,1,0) a ( l , l , l )  a(2,2,0) a(2,2,2) a(1,4,0) a(1,3,0) 

16 f 2 - l  280192 - 4 7 6 1 6  214656 - 1 4 8 4 8  
g I0 1 283520 23424 - 4 4 1 6 0  - 9 3 4 4  

18 f 2 - i  263008 - 2 4 2 4 0  864 106832 
g 10 1 1902560 32016 591840 - 9 9 0 5 6  



154 N. Kurokawa 

The values of a(1,4, 0) and a(1, 3, 0) are given for later use in w These values in 
the above table are calculated from Tables I-V in [5] and the following two values: 
12c12(1 ,4 ,0 )=-2880  and 12ct2(2,2,0)=17600. The value of 12c12(1,4,0 ) 
is calculated in Maass [-4] (p. 174), and the value of 12c12(2, 2, 0) is deduced from 
12c12(1 , 1, 0)= 10 and 2(2, Z12)=2784 with using Theorem 2.4.1 in [1] as in 1.1, 
or with using C12(2;(1,1,0))=C12(2,2,0)+2a~ 
cf. [1] (the formula (2.1.11)). The method of calculation is similar to the calculation 
of c14(T ) in 1.1. 

To determine ;~-+), we use the method in Ribet [-6] (w 8). We obtain the following 
results concerning the action of T(2) on Sk(F2). 

St6(F2): T ( 2 ) / = 6 5 7 6 0 . f + 1 8 1 4 4 . g ,  

T(2) g=  1 7 7 6 0 . f + 4 1  184.g, 
the characteristic polynomial of T(2) is 

X 2 - 106944 X + 2386022400. 

S18(Fz): T ( 2 ) f = 5 3 0 4 0 - f + 2 8 8 0 0 . g ,  

T(2) g=  186480. f +  218496- g, 

the characteristic polynomial of T(2) is 

X 2 - 271536 X + 6218403840. 

In this calculation we use the following fact: a(2; (1, 1, 1), f )  = a((2, 2, 2), f )  and 
a (2; (1, 1,0), f )  = a ((2, 2, 0), f )  + 2 k- 2 a (( 1, 1,0), f )  for each f~  S k (Fz); see (2.1.11) 
in [1]. The calculation is as follows. Let k = 16, then we can write T(2) f =  c~-f+/3.g 
with c~,/~eC. By comparing the Fourier coefficients at (1, 1,0) in the both sides, 
we have a(2;(1, 1, 0), f ) =  c~ . a((l, 1 ,0) , f )+/~-a(( l ,  1,0),g). From the above table, 
we have 

a (2; (l, 1,0), f )  = a ((2, 2, 0), f )  + 214 a ((1, 1,0) f )  

=280192+214-  2=312960, a((1, 1,0), f ) = 2 ,  

and a((1, 1,0), g)= 10. Hence we have: 2c~+ 10/~= 312960. Similarly, by comparing 
the Fourier coefficients at (1, 1,1), we have: - c ~ + / 3 = - 4 7 6 1 6 .  Thus we have 
c~ = 65760 and/~ = 18144. Other cases are similar. 

For  the determination of A~2~{_2, we use the following Fourier coefficients. 

$3o(~1): A=q- 1 536. L/Z-• - ,q3 -95571968 .  q~+ ..., 

B = q2 + ,q3 + 8 640" q~ + ' . ' .  

S3,(q) :  A=q-1296"qZ+ *q3+80803072.q4+'", 
B=q2+ , q 3  121680.q4+. . . .  

The action of T(2) on S2k_ 2(Q) is as follows. 

S3o(q): T ( 2 ) A = - 1 5 3 6 . A + 4 3 8 9 3 9 6 4 8 . B ,  

T(2) B = A +  10176.B, 
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the characteristic polynomial of T(2) is 

X 2 _ 8 640 X - 454 569 984. 

$34(F1): T(2) A=-1296.A+8669058048.B, 
T(2) B = A -  120384. B, 

the characteristic polynomial of T(2) is 

X 2 + 121 680 X-8513040384. 

The calculation is easier than the case of Sk(F2), and it is sufficient to note that: 
a(2; l , f )=a(2,f)  and a(2;2,f)=a(4, f )+2 2k-3 a(1,f)  for each feS2k 2(/]). 

Remark. From the above procedure, it would be easy to see that we can obtain 
further examples with some efforts. Such examples will be given in w and w 7. 

w 4. Supplementary Conjectures 

In w 4 we assume Conjecture I, and we pose two conjectures. 
Let k>  l0 be an even integer. Put 

S~(F2'='feSk(F2)(*)a(T,f'= ~ d k - l a ( ( d T ) , f )  forallT. }. 
die(T) 

Here T runs over all 2 x 2 symmetric semi-integral positive semi-definite matrices. 
S~(F2) is a sub vector space Cover C) of Sk(F2). The above equation (,) appeared in 
Maass [4] (the Eq. (19)). We pose the following Conjecture 2. 

Conjecture 2. Let k >_= 10 be an even integer. Then 

S~(G) ~ ~ ( s ~ _  ~ (~)). 

There exist some theoretical supports to Conjecture 2, and actually we may 
conjecture moreover that S~ (F2)= ak(S2k_ 2 (F1))" At the same time, it is conjectured 
also that for each fSak(S2k _ 2(F0) the Fourier coefficients a(T, f) depend only on 
e(T) and A (r). 

If Conjecture 2 is valid, then S~(F2)=Sk(F2) for k=  10, 12, 14, 16 and 18. For 
these k, it is easy to check that the above equation (*) holds for all f~Sk(F2) at 
T= (2, 2, 0) and (2, 2, 2) by using the values in [5] and the values in w 3. For example, 
let k = 16 and f = 4. Z 1o" ~o6. Then a ((2, 2, 0), f )  = 280192, a((1, 1, 0), f )  = 2, and 
a((1, 4, 0), f )  = 214656 by the table in w 3. Hence the following equality holds: 
a((2,2,0),f)=21Sa((l,l,O),f)+a((l,4,0),f), which is the equation (,) at 
T=(2,2,0). Similarly, (,) holds for f=12-Z12 .  ~04 at T=(2,2,0). Thus (,) holds 
for all f6S16(F2) at T= (2, 2, 0). Other cases are similarly checked. For the checking 
at T=(2, 2, 2), we remark that (1,4, 2) is unimodularly equivalent to (1, 3,0), 

1 
in fact ( i  i )  = (i ~ ) ( ~  03)( ;  1)' We remark tha t the  Fourier coefficients 

at T=(1, 3, 0) and (1,4, 0) are calculated also by the method of Maass [4] (Satz 3). 
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We note that S / (Fz)~ Sk(F2) for each even integer k > 20 (cf. M aass [4] p. 167). 
In fact, for example, let f=z20"q)(~ -20)/4 if k = 0  rood4, and let f=Zlo'Z12 
�9 q ~ -  22)/4 if k -= 2 mod 4. Then it is easy to see that: a ((2, 2, 1), f ) =  - 1/4 (resp. - 1/6) 
i l k = 0  rood 4 (resp. k-=2 mod 4), but a((l, 4, 1 ) , f ) = 0  (obviously). We remark also 
that e (2 , 2 , 1 ) =e (1 , 4 , 1 )= l  and A(2,2 ,1)=A(1,4 ,1)=15.  Hence this example 
shows also that a ( T , f )  is not necessarily determined only by e(T)  and A(T).  

Let k>  10 be an even integer, and put r = d i m  c Sk(F2) and d=dimcSzk_z(F1) .  
Then r > d  as is remarked in w This inequality is proved as follows. Put Ik= 
{(a,b ,c ,d) la ,  b , c , d>O integers, l O a + 1 2 b + 4 c + 6 d = k  and a + b > l } ,  I~= 
{ ( a , b , c , d ) e l k [ a + b = l  } and I ~ = { ( a , b , c , d ) S l k [ a + b > 2  }. Put f ( a , b , e , d ) =  
~ c Z l O ' Z ~ 2  ' q04 q~d and S ~ ( F z ) = ( { f ( a , b , c , d ) l ( a , b , c ,  i . d)6lk} ) for i=  1 or 2, where 
({ }) denotes the vector space over C spanned by the elements in { }. Then, 
by Igusa's structure theorem for Sk(F2), we see that 

Sk (F2) = ( { f (a, b, c, d) [ (a, b, e, d)S lk} ) 

and dim c S k (F2)= dim c S~ (F2)+ dim c S~ (F2). On the other hand, an easy calculation 
shows that dim c S~ (Fz) = dim c S2k_ 2 (F1). Hence r -- d = dim c S 2 (,rE) > 0. Moreover, 
if k > 2 0  is an even integer, then the above f which is used to show S~(F2)~Sk(F2) 
is a non-zero element in $2(F2), hence it holds that r - d >  1. 

Let {Z~)lj= 1, ..., r} (resp. i.,~2k_2~A(i} l i=  1, ..., d}) be an eigen basis of Sk(F2) 
(resp. SZk_z(F0) over C. Then, by Conjecture 1, we may assume that crk(A~~_2) 
= Z[i) and L(s, z~i))= g, (s - k + 2) ~ (s - k + l ) L(s, a(i)~ 2k- 21~ f~ i = l, .. . , d. As a supple- 
ment to Conjecture 1, we pose the following Conjecture 3. 

Conjecture 3. Let k >= 20 be an even integer. Then X~ j) satisfies Ramanujan conjecture 
for j = d +  1 . . . . .  r. 

We note here that ifz~ ~ satisfies Ramanujan conjecture, then the Euler product 
defining L(s,z~ ~)) converges absolutely in Re ( s )>k- �89  hence L(s,z~ j)) is holo- 
morphic on C. In fact, the possible simple pole of L(s, "Z~ j)) exists only at s = k (see 
Theorem 3.1.1 (IV) in [1]), hence it does not occur for such L(s, Z~J)). 

We note also the following point: since r = k 3 / 8 6 4 0 + O ( k  2) and d = k / 6 + O ( 1 )  
as k ~ ~ ,  it follows from Conjecture 3 that the large part of Siegel eigen cusp 
forms of degree two will satisfy Ramanujan conjecture. 

Since r - -3  and d = 2  for k=20,  the "first" example which should be checked 
,,,13)~ The Euler is ,,(3) It will be interesting to determine the Euler factors of L(s, ,~20,. ,~2o. 

factors at primes 2 and 3 will be determined in w 5 and w 7. It turns out that these 
two Euler factors fit Conjecture 3. 

w 5. Examples for Weight 20 

5.1. An Eigen Basis o f  $20(F2). We give an eigen basis of $20(F2) over C. In this 
case, dim c $20 (F2)= 3 and an eigen basis of $20 (F2) over C is given by the following 
{,,m ,,(2),,(3)t Put f = 4 . Z l o . q ~ 4 . q )  6, g=12.X12.qo 2 and h=48 .Z2o  . For L20,  A20, ,<,20)" 
simplicity, we put D = 63 737 521 in w 5. We note that D is the product of the following 
three primes 181,349 and 1009. Then: 
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Z~I ) = 460 f -  (7 699 + I /D)  g - 345 600 (8 021 + I /D)  t7, 2O 

2(2, ,.~2 o} ~'(1)~= 689232 + 481/D , 

X(2) = 460 J - (7 699 - I /D) g - 345 600 (8 021 - I /D)  h, 2O 

(2) = 689 2 3 2 -  48 l /D,  '~(2, Z2O) 

,,13'~ 
,(20 = f - -  g -~- 595  200  h, 

2(2, ;((23o))= - 840960. 

In the de terminat ion  of ~,~1) 7J2~ and ~13) ,~2o, a2o, we use the following values of  
Four ier  coefficients. 

a(1,1,1) a(1,1,0) a(2,2,2) a(2,2,0) a ( l ,3 ,0)  a(4,4,4) 

f - 1  2 - 5 9 6 1 6  -187328  -261088  -309027859456 
g 1 10 44064 1701440 556576 439982666752 
h 0 0 3 18 0 424224 

For  the calculat ion of these Four ier  coefficients, we refer to w 6. 
For  each f~Sk(F2), k being a positive integer, the following equalities hold 

(see the equat ion (2.1.11)in [1]): a(2;(1,1,1),f)=a((2,2,2),f), a(2; (1,1, 0), f )  
= a ((2, 2, 0), f )  + 2 k 2. a ((1, 1,0), f ) ,  and a (2; (2, 2, 2), f )  = a ((4, 4, 4), f )  + 3 . 2  k- 2 
�9 a((1, 3, 0), f )  + 22k- 3 . a((1, 1, 1), f ) .  Hence, from the above  table, we obtain the 
following values of a(2; T) for T=(1 ,1 ,  1), (1, 1,0) and (2, 2, 2). 

a ( 2 ; ( l , l , l ) )  a (2 ; ( l , l , 0 ) )  a(2;(2,2,2)) 

f - 59616 336960 -651794770944 
g 44064 4322880 1015130797056 
h 3 18 424224 

Using these values of a(2; T), we can determine the action of T(2) o n  $ 2 0 ( ~ 2 ) .  

The  result is as follows: 

T(2) f=77760f+ 18144 g - 2 1 5 9 8 6  176000 h, 

T(2) g = 323 520 f + 367 584 g + 339 406 848 000 h, 

T(2) h =  - f + 2 g + 9 2  160 h. 

For  example,  we can write T ( 2 ) f = c ~ .  f+fl 'g+7" h with c~, fl, 7eC.  By compar ing  
the Four ier  coefficients at T=(1 ,  1, 1), (1, 1,0) and (2,2, 2), we have: 

- c ~ + f i = - 5 9 6 1 6 ,  

2-c~+ 1 0 - f l =  336960, 

- 5 9 6 1 6 .  c~ + 4 4 0 6 4 . / 3 + 3  - 7 =  -651794770944 �9  

Hence we have: a = 7 7 7 6 0 , / 3 =  18144, and 7 =  - 2 1 5 9 8 6  176000. Other  cases are 
similar. 
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Since the action of T(2) on $20(~2) is determined as above, we can calculate 
the characteristic polynomial  of  T(2) on S:o(F2). It is given by: 

X 3 - 537 504 X 2 -  831043 584000 X + 275 994243130982400 

= ( X +  840960) (X z - 1378464 X + 328189501440). 

Hence we can determine eigenvalues and eigenfunctions of T(2) on S2o(Fz). Thus 
we obtain the eigen basis of $2o(F2) stated previously�9 

5.2. An Eigen Basis of $38 (F1). We give an eigen basis of $38(ffl) over C. In this case, 
dim c $38(FI)=2 and an eigen basis of $38(F0 over C is given by the following 
{A(1) A(Z)~ Put A =A �9 E63. E ] and B=A 2. E 6 �9 E ] .  Then" ~ 3 8 ~  ~ 3 8 J "  

Am= A + ( - 9 6 1 4 4 +  4 8 1 ~ )  B, 3 8  

(1) ] / / ~ ,  2(2, A38)= - 9 7 2 0 0 + 4 8  

A(2) = A  + ( - 9 6 1 4 4 -  48 ~/D) B, 3 8  

2(2, A(3~) = - 97 200 - 48 ]/D. 

In the determinat ion of A(3~ and J3s,A(2) we use the following Fourier  coefficients: 

A = q _  l O56 . qZ + ,q3 +169 741312 .q4 +. . . ,  

B = q Z + , q 3 _ 1 9 4 4 0 0 . q 4 + . . . .  

Then, the action of T(2) on $38(F 0 is determined by the same method as in 
w 3. It is given by: 

T(2) A = - 1056A + 137607579648 B, 

T(2) B = A -  193344 B. 

The characteristic polynomial  of T(2) on S 38(F0 is: X 2 + 194400 X -  137403408384. 
Thus  we obtain the above eigen basis of  $38 (F 0. 

5.3. Euler Factors at the Prime 2. We determine Euler factors at 2 of L(s, ti) Z2o) for 
j = 1, 2 and 3. Before going into this process, we remark the following point  which 
gives a suggestion. F rom the results in 5.1 and 5.2, it is easy to check that the 
following equalities hold: 2(2, ,,(1) ~=2(2, A~)s)+218 +219 for i =  1 and 2. Hence, ,~2oJ 
by Conjecture  1 in w 2, it would be that 

o ~A(,~_.(1) a n d  Us~,(i)~-r(s-18)~(s-19)L(s,A(~)8) 2 0 t ~ 3 8 ! - - A 2 0  ~, , L 2 0 1  - -  

for i=1  and 2. In particular, it will be that H2(T,;(~)o)=(1-218 T ) ( 1 - 2 1 9 T )  
�9 H 2 ( T  ' a(~)~ for i =  i and 2. In fact, we prove below that the last equalities hold. ~ 3 8 1  

- (1) From the values of Fourier  coefficients in 5.l, We first study the case ol  Z2o. 

we have: a((1, 1, 1), Z:o!='(1)) - ( 8 1 5 9 + 1 / D )  and 

a ((4, 4, 4), )((2Xo )) --- - ( 4  705 552 729 975 808 + 586 594 481152 I /D) 

= - 2 ~~ (4 595 266 337 867 + 572846173 ]//D). 
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Hence we have:  

2(4, X~2~) = a((4, 4, 4), Z~)"  a((1, 1, 1 ),/~2o,'/1~- 1 = 29(692 843 369 + 55 503 l/D).  

Thus  we have: 

H 2,'T, ,~2o,-"tl)*-1 _ 24(43 077 + 3 ] / ~ )  T +  222(47 311 + 91 /~) .  r 2 

- 241(43077 + 3J/D)  T 3 + 274 T4 =(1 - 2  .8 T)(1 - 2 1 9  T) 

�9 (1 - 2 4 ( - 6 0 7 5 +  3 ]//D) T + 2 3 7  T2). 

Since H z ( T  , A(3~) = 1 - 24(--  6075 + 31/D) T+237 T 2, we have the required result: 
A(1)] H2(T, L20!~/1)~--( 1 -  - -2t8  T)(1 --219 T) H2(T , ~38f. 

(1) The calculation for Z~zZd~ is the same as for )~20, and the results for /~20"12) are obta ined 

from the results for X~ by changing the signs of I /D.  Hence H 2 (T, Zc220 )) = (1 - 2  ~8 T) 
-(1 - 2 1 9 T ) H z ( T ,  A(z)x38J and H z ( T  , ~38j--A~2~-- 1 - 2 4 ( -  6 0 7 5 -  3I /D)  T + 2 3 7  T 2. 

Next, we study the case of Z~23o ) . ~  In this case we have: a((1, 1, 1),~ ~3)~-/~2o,- - 2  and 
a((4, 4, 4), ,~2o~"(3)t _- _ 496 512 401408. Hence we have 2 (4,)(~) = 248 256200 704 = 216 
�9 3 7 8 8 0 8 9 . T h u s w e h a v e H z ( T ,  ,,(3)~- 1 + 2 8 -  3285- T + 2 2 6 -  5815 - T2+245  �9 3285 /~20!  - -  
�9 T 3 + 2 7 4 T  r We prove that  this Euler factor H2(T, ~3)~/~2oj of L(s, X~3o )) fits Conjec- 
tu re3  in w Put T= 2-  37/2 . t, then H 2 ( T , ~ , ~ 3 ) ~ - l + a t + b t 2 + a t 3 + t  4 with A.20/-- 
a = 2  -21/2- 3285=2.2684  ... and b = 2  -11. 5815=2.8393 .... We denote by Pz(t) 
the above polynomial  in t. What  we should prove is the absolute values of zeros 

of Pz(t)are 1. Put c ~ = ( - a + l / a  2 - 4 b + 8 ) / 4  a n d / ? = ( - a - 1 / a  2 - 4 b + 8 ) / 4 .  Then, 
by a simple calculation, we see that  the requirement  is satisfied if (and only if) 
- 1 < ~-< 1 and - 1 </? < I, and that  if these conditions are satisfied then the four 
zeros of Pz(t) are given by exp(_+i0 0 and e x p ( + i 0 2 )  with 01=arccos (g )  and 

02 = arccos(/?)(0 < 01 < n and 0 < 0 2 ~ 7~) and i = ~ -  1. In this case, the numerical  
values are c~=-0 .2327  ... and / ? = - 0 . 9 0 1 4  ....  Hence the requirements  are 
satisfied, and the four zeros of H iT, ,,~3)~ 2t z.2op are given by 2-37/2 .exp(+i01)  and 
2 -37/2. e x p ( + i 0 2 )  with 01=  1.805 ... and 02=2.693 ....  Thus the Euler factor 
H 2 (T, Z~23o )) ofL(s,  Z~23o )) fits Conjecture  3. In w 7, we obtain the Euler factor H iT. ~3)~ 3 ~, ,/~201~ 

and we see that  this also fits Conjecture  3. 

w 6. A Table of  Fourier Coefficients 

Let f16=4-Zlo-CP6 and g16 = 12.Z12.qo 4. Then  we obtain the following table 
of  Four ier  coefficients ofz l2 ,  J16 and g16. 

We remark  here that  Four ier  coefficients of  Siegel modula r  forms of degree 
two can be calculated in the following four steps (1), (2), (3) and (4) in principle. 
(1) The  Fourier  coefficients of Siegel modu la r  forms of degree two can be calcu- 
lated from the Four ier  coefficients of cp 4, q~6, )~1o and )(12 as in the calculation of 
c14(T ) in w 1. (2) The  Fourier  coefficients of cp4 and q06 can be calculated by the 
me thod  of Maass  [4] (see Satz 1 and the equat ion (19) in [4]). (3) The  Fourier  
coefficients of Zlo can be calculated from the Four ier  coefficients of (P4 by the 
me thod  of Resnikoff-Saldafia [5] (see the first equat ion in T h e o r e m  3 in [5]). 
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T A(T) e(T) 12c12(T) a(T, fx6) a (T ,  g l 6  ) 

(1, l ,  l )  3 1 1 - 1 1 
(1, 1, 0) 4 1 10 2 10 
(1,2,  1) 7 1 - 8 8  520 152 
(1, 2, 0) 8 1 - 132 - 1044  2268  
(1, 3, 1) I 1 1 1275 8 4 6 9  - 17685 
(1, 3, 0) 12 1 736 - 14848 - 9 3 4 4  
(2, 2, 2) 12 2 2 7 8 4  - 4 7 6 1 6  2 3 4 2 4  
(1,4,  1) 15 1 - 8 0 4 0  - 9 3 0 0 0  114600  
(1, 4, 0) 16 1 - 2 8 8 0  2 1 4 6 5 6  - 4 4  160 
(2, 2, 0) 16 2 17600 2 8 0 1 9 2  283 520 
(1, 5, 1) 19 1 2 4 0 3 5  9 0 9 7 3  2 7 4 5 9 5  
(1, 5, 0) 20 1 13080 - 628 200 199 800 
(1, 6, 1) 23 1 - 14136  1 104552  - 4 5 5 5 6 5 6  
(1, 6, 0) 24 1 - 5 4 1 2 0  - 764 616 - 200 040 
(1, 7, 1) 27 1 - 128 844 - 7 4 8 6 9 2  1 4 1 0 2 6 7 6  
(3, 3, 3) 27 3 48303  - 1 5 0 9 7 5 9 9  28451  583 
(1, 7, 0) 28 1 115456  2 8 7 4 3 6 8  5 5 3 3 6 9 6  
(2, 4, 2) 28 2 - 64768  19913 728 1 0 5 1 4 4 3 2  
(1, 8, 1) 31 1 3 8 9 5 2 0  - 1 6 1 0 0 0 1 6  - 7 0 9 6 0 8 0  
(1, 8, 0) 32 1 38016  23 811 840 - 3 6 6 1 2 8 6 4  
(2, 4, 0) 32 2 - 2 3 2 3 2 0  - 1 0 3 9 7 9 5 2  3 7 7 0 4 9 6 0  
(1,9,  1) 35 1 - 2 5 6 4 1 0  3 2 1 1 7 8 5 0  - 3 2 1 1 7 8 5 0  
(1, 9, 0) 36 1 - 6 9 7 9 5 0  - 109 122534  71 2 1 4 2 1 0  
(3, 3, 0) 36 3 1073 520 - 8 0 4 2 4 7 2 0  2 1 4 7 0 3  280 
(1, 10, 1) 39 1 - 806 520 54 300 264 - 826 440 
(1, 10, 0) 40  1 9 6 3 1 6 0  1 4 3 5 5 9 8 0 0  8 6 5 6 6 0 0  
(1, 11, 1) 43 1 1 892 363 - 1 5 7 9 0 8 2 5 1  140 385 563 
(1, 11,0)  44  1 9 3 8 4 0 0  - 4 1 4 6 7 3 9 2  1 5 7 2 4 8 0  
(2, 6, 2) 44  2 3 549 600 2 3 6 0 4 4  800 - 5 7 7 9 2 9  600 
(1, 12, 1) 47 1 - 1 2 2 7 6 0 0  - 9 8 1 0 3 3 1 2  1 2 4 5 0 8 8 8 0  
(1, 12, 0) 48 1 - 2 3 0 9  120 1 2 0 7 3 7 7 9 2  - 7 2 6 1 1 8 4 0 0  
(2, 6, 0) 48 2 - 8 0 1 7 9 2  - 365 8 0 1 4 7 2  - 1032  302 592 
(4, 4, 4) 48 4 3 392 512 - 1439 543 296 4 1 4 3 9  232 

(4) The Fourier coefficients of Xlz can be calculated from the Fourier coefficients 
of Z lo by the method of Resnikoff-Saldafia I-5] (see the equation in w 5 of 1-5] which 
gives a relation between the Fourier coefficients of Zlo and ZIz). 

In the above table, the values of 12c12(T ) for e (T)=  1 were calculated by the 
method of Maass [4] (Satz 2), and the values of 12clz(T ) for e (T)>  1 were calcu- 
lated by the above method (4). The values of a(T, f16) (resp. a(T, g16)) were  calcu- 
lated by the above method (l) from the Fourier coefficients of ~(~o and (P6 (resp. 
~(12 and ~o4). We note here that 4 c 1 o (3, 3, 3) = - 15 399 and 4 cl 0 (2, 6, 0) = 126 720 
in Table IV of [5]. The Fourier coefficients of f (resp. g) in w 5 were calculated by 
the above method (1) from the Fourier coefficients of f16 and ~o 4 (resp. g16 and ~04). 
The Fourier coefficients ofh in w 5 were calculated by the method (1) from the Fourier 
coefficients ofz~0. Actually, in our calculation with using the method (1), we need 
Fourier coefficients at several T which are not unimodularly equivalent to any T 
listed in the above table. For example, we need Fourier coefficients at T= (2, 2, 1). 
To calculate these Fourier coefficients, the methods (2), (3), (4) and (1) were used 
in this order. In the step (2), we can simplify our calculation by using Tables I-III 
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and V in [5]. As a result, it turns out that for Zlo, Z12,/16 and g16, the equation 
(.) in w hold at these T. For  example, the Fourier  coefficients of Zlo, ZlZ,fl6 
and g16 at T=(2 ,  2, 1) are equal to the Fourier  coefficients at T=(1 ,4 ,  1), the latter 
values are listed in the above table or in Table IV in [5]. We note that, in the above 
table, the values of a(T, f16) and a(T, g16) at T with e(T)= 1 are also calculated 
by the method of Maass [4] (Satz 3). 

It may be noted that we can calculate some of the Fourier  coefficients in the 
above table in a simpler way with using the method in the next section. For  example, 
since 12c12(1,1,1)=1,  12c12(2 ,2 ,2)=2784 and 12c12(1,3,0)=736,  we have 
by this method  that 2 ( 2 , ~ 2 ) = 2 7 8 4  and 2 ( 4 , ~ 2 ) = 3 3 9 2 5 1 2 .  Hence we have 
12 c ~ 2 (4, 4, 4) : 12 c 12 (1, 1, 1). 2 (4, Z 12) = 3 392 512. This method applies also for f l  6 
and g16, but in this case we must  first apply this method  to Z]~ ~ and ;((16 ~. 

w 7. Further Examples 

We give here further examples. We formulate our  method  used in this section 
as follows. Let k=> 10 be an even integer. Let f6Sk(F2) be an eigen cusp form, and 
suppose that we know the values of the following five Fourier  coefficients of f :  
a(1, 1, 1), a(2, 2, 2), a(1, 3,0), a(3, 3, 3) and a(1, 7, 1). Suppose moreover  that 
a(1, 1, 1)~=0. Then  we can determine the four eigenvalues 2(2), 2(4), 2(3) and 2(9), 
and the two Euler factors H2(T, f) and H3(T, f). They are given by: 

H2(T,f)= 1 - 2 ( 2 )  T + ( 2 ( 2 ) 2 - 2 ( 4 ) - 2  2k-4) T 2 - 2  2k-3.2(2)  T 3 + 2  4k-6 T 4 

with 

2(2)= a(2, 2, 2). a(1,1, 1)- 1 

and 

2 ( 4 ) = 2 ( 2 ) 2 _ 3 . 2 k  2 . a ( l , 3 , 0 ) . a ( 1 , 1 , 1 ) - l _ 2 z k  3, 

and 

H3(T,f)= 1 - 2 ( 3 )  T+(2(3 )  2 - 2 ( 9 ) - 3  2k-4) T ~ - 3  2k-3" 2(3) T 3 + 3  4k 6 T 4 

with 

2(3)=a(3 ,  3, 3). a(1, 1, i ) -  1 + 3 k 2 

and 

2(9) = 2(3) z - 3 k- z. 2(3) - 3 k- 1. a(1, 7, 1). a(1, 1, 1)- 1 _ 32k- 3. 

These formulas are obtained by simple calculations from the following equalities 
(see (2.1.11) in I-l]): 

2(2) a( l ,  1, 1)= a(2; (1, 1, 1))= a(2, 2, 2), 

2(4) a(1, 1, 1 )=a (4 ;  (1, 1, 1))=a(4, 4, 4), 
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2 (2) a (2, 2, 2) = a (2; (2, 2, 2)) = a (4, 4, 4) + 3 . 2  k- 2. a ( I, 3, 0) + 22 k- 3. a( 1,1,1), 

2(3) a(1, 1, 1) = a(3; (1, 1, 1)) = a(3, 3, 3) + 3 k- 2. a(1, 1, 1), 

2(9) a(1, 1, 1)=a(9;  (1, 1, 1))= a(9, 9, 9)+ 3 k- 2. a(3, 3, 3), 

and 

2(3) a(3, 3, 3) = a(3; (3, 3, 3)) = a(9, 9, 9) + 3 k- 2. a(3, 3, 3) + 3 ~- 1. a(1, 7, 1) 

+32k-3 �9 a( l ,  1, 1). 

In our applications of this method, we use the following values of Fourier 
coefficients. We refer to w 6 for the calculation of these Fourier coefficients. In the 
following table, f and g for k =  16 or 18 are as in w 3, and f , g  and h for k = 2 0  are 
as in w 5. 

k a(1, l ,  1) a(2 ,2 ,  2) a(1, 3,0) a(3, 3, 3) a(1,7,  1) 

10 4"Z~o - 1 - 2 4 0  272 - 15399 4284 

12 12.•12 l 2784 736 48303 - 128844 

14 4 .~14  - 1 - 12240 - 4 0 4 8  - 1398519 195804 

16 f - 1 - 4 7 6 1 6  - 14848 - 15097599 - 7 4 8 6 9 2  
g l 23424 - 9  344 28451583 14102676 

18 f - 1  - 2 4 2 4 0  106832 - 182896839 - 5 3 7 5 6 6 7 6  
g 1 32016 - 9 9 0 5 6  180470727 51330564 

20 f - 1 - 5 9 6 1 6  - 261088 - 674624079 - 7 3 3 3 2  
g ! 44064 556576 444330063 - 2 1 2 0 1 8 0 4  
h 0 3 0 2016 0 

For  reader's convenience, we list below the eigenvalues and Euler factors 
obtained by the above method with using the values of Fourier coefficients in the 
above table, al though some of them have appeared in the previous sections. To 
simplify the expression, we give attention to the 2-power (resp. 3-power) factors of 
2(2) or 2(4) (resp. 2(3) or 2(9)), and we express Euler factors in simpler forms. 

k=lO (on Zlo) 
2(2)=24.  15, 2(4)=28 �9 529, 

H z ( T ) = ( 1  - 2 8  T ) ( 1 - 2 9  T)(1 + 2 4 .  33. T +  217 T 2 ) ,  

2(3)=32.  2440, 2(9)=34.  3621529, 

H3(T)=(1  - 38 T)(1 - 39 T ) ( 1  + 3 2 .  476. T +  317 T2). 

k=12 (on Z12) 

2(2)=25 - 87, 2(4)=2 l~  3313, 

H2(T)=(1 - 2  x~ T)(1 --211T)(1 +25 �9 9- T+221T2),  

2(3)=33 �9 3976, 2(9)=36.  24073249, 

H 3 ( T ) = ( 1 - 3 1 ~  T)(1-31*T)(1 + 3 3 .  4772. T+321T2). 
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k=14  (on X14) 

2(2)=24. 765, 2(4)=28 �9 259849, 

H2(T)=(I  -2~2T)(1-213T)(1  +24.  3. T+  225T2), 

2(3)=33. 71480, ,~(9)= 36- 2968411441, 

H3 (T) =(!  - 312T)(I - 313T)(I + 33 - 7252. T+  325T2). 

k =  16 We put D=  51 349 in this case, and we describe about Z]~, t. The results for 
X~, I are obtained by changing the signs of ]/D. 

a(1, 1, 1)= - 3 1 3 + 1 / D  , a(2, 2, 2 ) = 2 7 ( - 9 2 2 4 4 +  183 1/D ) 

=25(1671+31/D ) a(1, 1, 1), a(1, 3, 0 ) = 2 7 ( -  12116-73l /D)  

=25(647+ 3l/D)a(1,  1, 1), a(3, 3, 3)=32(-714984271 +3 161287l/D) 

= 32 (1318 343 - 5 888 ]/D) a(1, 1, 1), a(1, 7, 1)=32(-215961172 

+ 1 566964l/D)= 32(-275980 - 5 8881/D)a(1, 1, 1), 2(2)=25(1671 + 3l/D), 

2(4)= 2n(868 151 + 2709l/D), H2(T)=(1-214  T)(1 - 2  ~5 T) 

�9 (1 --2s(135 +31/D) T+229 T2), 2(3)= 32(1849784- 58881/D), 

)~(9)=34(3811 557 505 865-  9 266 557 952 l/D), 

H 3 (T) = (1 - 31 ~ T) (1 - 315 T) (1 + 32 (275 980 + 5 888 I/D) T + 329 T2). 

k =  18 We put D=2356201 in this case, and we describe about Z~-~ ~. The results 
for 7~1~ I are obtained by changing the signs of l/f). 

a(1, 1, 1)= - 1441 + l /D,  a(2, 2, 2)=2~( - 1624701 +2001 ]~D) 

=23(16971+9l / [ ) )a(1 ,  1, 1), a( l ,3 ,0)=24(10179971-61911/D) 

=23(587+9 l/ /))a(1, 1, I), a(3, 3, 3)=33(-9864516581 +6684 101 l/))) 

= 33(5485189-832l/D) a(1, 1, 1), a(1,7, 1)=33(-2972258252+ 1901 132l/D) 

= 33(702220-832 l / / ) )a( l ,  1, 1), 2(2)=23(16971 + 9l/D), 

2(4)=27(165111641+42147l/D), H2(T)=(1 -216T) (1 -217T)  

�9 (1 -23 (  - 7605 +9 l /D)  T+233 T2), 2(3)= 33(7079512- 832l/D), 

,i (9) = 36 (29 479186 252 625 - 6 474 401 024 l//)), 

H3(T)=(I  -31~' T)(I -317 T)(1 - 33 (702220- 832]//)) T+333 T2). 

k = 2 0  We put D=63737521 in this case, and we describe about , ,~ and ,13~ A,20 ,(20 ' 

The results for Z~ are obtained from the results for /~2o "~J by changing the signs 
of l/D. 

Z~I)" a(1, 1, 1)= -8159-l /L-) ,  a(2, 2, 2 )=2s ( -271338903-33777 l /D)  2O 

=24(43077 + 3l/D) a(1, 1, 1), a(1,3, 0)=25( - 137661847- 17393l/D) 

=24(10309 + 3l/ /))a(1,  1, 1), a(3, 3, 3)=33(-345173790851 -42261469l/D) 
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=33(43305821 -- 128 I /D)a( l ,  l, 1), a(1, 7, 1)= 33(6044405788 + 785 2521/D) 

=33(259100 - 1281/D)a(1 , 1, 1), 2(2)=24(43077+ 3I/D), 

2(4)=29(692843 369+ 555031f/)), H2(T)=(I  - 2  TM T)(1-219  T) 
�9 (1 - 24( - 6075 + 3 I/D) T +  237 T2), .~(3) = 33(57654728 -- 1281/)9), 

2(9)=36(1869002804420705 -- 1881 883 486 7201/[)), 

H3(T)=(1 - 318 T)(1 - 319 T)(1 - 33(259100- 128 l/D) T +  337 T2). 

Z~3). a ( 1 , 1 , 1 ) = - 2 ,  a (2 ,2 ,2 )=29 .3285=28( -3285)a (1 ,1 ,1 ) ,  20 '  

a(1,3 ,0)=29(  - 1597)=28. 1597. a(1,1, 1), a(3,3, 3)=35.333206 

= 35 ( -  166603) a(1, 1, 1), a(1, 7, 1) = 33. 782 536 = 33 ( -  391268) a(1, 1, 1), 

2 (2)=28(-3285) ,  2(4)=216- 3788089, H2(T)=  1 +28 -3285 �9 T 

+226. 5815' T2+245" 3285'  T3 + 2 7 4 T  4, 2(3)=35.  1427720, 

2(9)=31~ H3(T)=  1 -3 5  �9 1427720- T 

+322. 13457830. T2 -3 4 2 -  1427720. T3+374T 4. 

On the other hand, the eigenvalues for eigen cusp forms in S2k_2(F0 are 
given as below. In these cases, Euler factors are given by Hp(T)=l-2(p)T 
+p2k-3T2.  We use the notations in the previous sections. In each of the cases 
for k = 16, 18 or 20, the number D is as above, and we describe about the eigen 
cusp form which corresponds to the above eigen cusp form in Sk(F2). The results 
for another eigen cusp form are obtained by changing the signs of I/D. 

k = l O  ( 2 k - 2 =  18) 

2(2) = - 24. 33, Z(3) = - 32. 476. 

k--12 ( 2 k - 2 = 2 2 )  

2(2)= -25  -9, Z(3)= - 33  .4772. 

k = 1 4  ( 2 k - 2 = 2 6 )  

2(2)= - 2 4 .  3, 2(3)= - 3 3 .  7252. 

k = 1 6  ( 2 k - 2 = 3 0 )  

2(2)=25(135 + 31/b), 2(3) = 32 ( -  275 9 8 0 -  5 888 lf/)). 

k = 1 8  ( 2 k - 2 = 3 4 )  

2 (2 )=23 ( -7605  + 91/D), 2(3) = 33 (702 2 2 0 -  832 b/D). 

k = 2 0  ( 2 k - 2 = 3 8 )  

2 (2) = 24 ( -  6 075 + 3 lfD), 2 (3) = 33 (259100- 128 ]f/)). 

Thus, the above examples for )~10, )~12, Z14, Z]~ ), )~]6 ), )(~)), Z]3 ), ,~20"(1) and ,~20x'(2) 
fit Conjecture 1. 
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As is proved in w 5, the Euler factor Hz(T, L20!~'(3)~ fits Conjecture 3. The  corre- 
sponding fact for H 3 ( T  , Z~2~) is proved as follows. Put  T =  3 37/2 . t, then H iT  ~3)~ 3 ~, ,A20! 
= 1 - c t + d t 2 - c t 3 + t 4  with c = 3  -27/2- 1427720=0.5170 . . .  and 

d = 3 -  15 . 13457830=0.9378 .... 

We denote  by P3(t) the above polynomia l  in t. Put 7=(c+1Sc-2-4d+8)/4 and 

3=(c-]/c~-~4-[t+-8)/4. Then 7=0.6605 ... and 6 = - 0 . 4 0 2 0 . . . ,  hence we see 
as in w 5 that the absolute values of the four zeros of P3(t) are 1, and these zeros 
are given by e x p ( + i 0 3 )  and e x p ( + i 0 4 )  with 03=arccos (7  ) and 04=  arccos (6 ) 
(0 < 03 < ~ and 0 < 0, < ~). Hence, the absolute  values of the four zeros of H3(T, Z~)  
are 3 37/2, and these zeros are given by 3-  37/2. exp( _+ i03) and 3-  37/2. exp(_+ i04) 
with 03=0.849 ... and 04=  1.984 .... Thus  the Euler factor H3(T,z~2~) also fits 
Conjecture  3. 

Lastly, we remark  that  the above examples  fit Conjecture  2 in w In fact, 

, z ~+~, z{,; ', z W ,  from the above values, it is easy to see that for f = Z l o ,  Z12 Z14, ~a6 
)~18 ), ,{20"(1) and ~,2o'(2) the following equalities hold: a((2, 2, 2), f ) = 2  k- 1 �9 a((1,1,1) , f)  
+ a ( ( l , 3 , 0 ) , f )  and a((3, 3, 3), f ) =  3 k - l . a ( ( l , l , 1 ) , f ) + a ( ( 1 , 7 , 1 ) , f ) .  (Note that 
(1, 9, 3) is un imodular ly  equivalent  to (1,7, 1).) It is r emarked  that these equalities 
do not hold for c-~13) J - -  A20' 
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Note Added in ProoL (1) Our Ramannjan conjecture formulated in Notations says that 
L(s+n(2k-n-l)/4, f) is "unitary"; cf. Kurokawa, N.: On the meromorphy of Euler products. 
Proc. Japan Acad., 54A, 163 166 (1978). (2) We have analogues for "Siegel wave forms" of results 
in Andrianov [1] and conjectures in this paper. 


