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Introduction

Let G be a connected reductive algebraic group defined over a finite field k. In
the present work we are concerned with the complex representation theory of
the finite group G(k) of rational points of G over k. Any parabolic k-subgroup P
of G has a Levi k-decomposition P=MU where U is its unipotent radical and
M is a Levi k-subgroup of P. A complex representation p of G(k) is called
cuspidal (or “discrete series™) if the intertwining number (p. Ind§%)(1))=0 for all
proper parabolic k-subgroups P=MU of G.

The Harish-Chandra principle for G(k) (see [9] or [22]) indicates that in
order to elucidate the representation theory of Gi(k), two problems must be
solved:

1. Construct the irreducible cuspidal representations of all G(k).
II. Decompose representations of the form Ind§()(D*), where D* is an
irreducible cuspidal representation of M(k), lifted to P(k) (P as above).

The methods of Deligne-Lusztig ([7]) have solved “most” of problem I,
although some work remains to be done (c.f. also [10] and [20]). The present
work is concerned with problem IL

Problem II has been the subject of an extensive literature in recent years (see,
e.g. [1, 5,10, 137 and their bibliographies) almost all of which deals with the case
when P=B, a Borel k-subgroup of G (the “principal series” case). One of the
main results of the present work is that the general case can “almost” be
reduced to the case P=B. More specifically, we show (Theorem (4.14)) that the
endomorphism algebra E(D)=Endg,, (Ind§{ (D*)) has generators and relations
which are very similar to the ones which occur when P=B. This means in
particular that known results on rationality {e.g. [1]) and generic degrees (e.g.
[10,12]) for “principal series” can be applied to the general situation. We intend
to do this in a forthcoming paper.
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Let P=MU be a parabolic k-subgroup of G and let A be the maximal k-split
torus in the centre of M. Let W{A) be the set of bijections: A — A induced by
conjugation by elements of G (and hence ,W). Let

W(D)={weW(A)lxpow=1p},

where w also denotes the automorphism of M induced by w, and yx, is the
character of D. This is the ramification group of D. Springer conjectured ([22],
4.14) that E(D)=C W(D),, the group algebra of W(D) twisted by a certain 2-
cocycle . In the present work we prove Springer’s conjecture (Corollary (5.4))
by a deformation argument due to Tits (c.f. [3] Chap. 1V exx), using a generic
algebra which arises from our presentation for E(D). We also show that
“generically” the cocycle y is trivial.

There are, as mentioned above, cases for which Springer’s conjecture has
been known. In particular, the case P=B and D=1 was the inspiration for the
conjecture, and it has been proved in varying degrees of generality for P=B, and
arbitrary D during the last fifteen years (c.f. [25, 27] and [12]). Apart from this,
the result has been known implicitly for G =GL(n) since the work of Green 8]
on the characters of GL(n, q), but in this case the theorem was derived from the
classification of the characters, whereas its philosophy is that the opposite
should occur. Similarly, it was also known for G =SL(n) (c.f. Lehrer [17]), post
factum, but nevertheless significantly, since in the latter case the ramification
groups W(D) are not necessarily reflection groups. In addition, the work of
Lusztig ([20]) on the characters of the ‘conformal’ classical groups also implies
Springer’s conjecture for the relevant cases post factum.

It might also be mentioned here that results of a similar nature exist for
representations of semisimple Lie groups, where certain integrals depending on
elements of W play an analogous role to our operators By, . (see §3). For
information on this, the reader is referred to Knapp ([14, 15]) or Knapp and
Zuckermann [16].

An important step in the study of the structure of the endomorphism algebra
E(D) is the recognition of a rather large reflection subgroup of W(D), together
with its root system (which is the projection of a subset of that of W). This is
treated in detail (including a classification for the simple groups) in [11], and the
main features are summarised in §2 below.

The basic strategy is to start with a known basis {B, |we W (D)} of E(D) (3.9),
and to decompose the elements B, as products, not of elements of E(D), but of
homomorphisms between various spaces of induced representations (c.f. (3.12)).
These decompositions are in analogy with the expression of elements of W (D) as
products of certain distinguished elements v{a, K) (see (2.17) below) of W, which
are not necessarily in W(D). Rules for the composition of these “elementary
homomorphisms” are derived (3.16), and used to produce the presentation of
E(D) (Theorem(4.14)).

We remark finally that some of the ideas of which we make use already
appear in Lusztig’s work ([19], §5) in which he treats the case where D is
unipotent.
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§ 1. Notation and Preliminaries

For any affine group H defined over k. the group H(k) of its k-points will be
denoted by H. Let B be a Borel k-subgroup of G, and choose a maximal k-split
torus T in B. The finite group G =G (k) has a BN-pair (Tits system) (B, N) where
B=B(k) and N = Ng(T) (k) with Weyl group W= W= N;(T)/Z¢(T) (c.f. [2], §5).
We denote by X the (relative) root system ,@ {=®(T, G) in the notation of [2])
of W. The Borel subgroup B determines a positive system X+ <X, and a
corresponding set ITc 2™* of simple roots and simple reflections in W. Let £(w)
be the associated length function on W, The standard parabolic subgroups of G
{=G(k)) are those which contain B (=B(k)). They are in bijective correspondence
with the subsets J of I1, and each parabolic subgroup P> B is of the form P
=P(k) for a unique parabolic k-subgroup P of G. Corresponding to a Levi k-
decomposition P=MU of P, the finite group P also has a “Levi decomposition”
P=MU. We define “root subgroups” of G as in Borel-Tits ([2], §5.2), i.e. (c.f
also Richen [21]) as the root subgroups of the split BN-pair (B, N) of G.

The standard Levi decomposition of the standard parabolic subgroup F;
(=BW,B, where W, is the subgroup of W generated by the reflections cor-
responding to J = IT) of G can then be expressed as follows:

M,=(T U,|aeZ,)
1 _ J a J
(1.1) P=M,U, where {(Lz(UalaEZ’f—Z,)

where X2 is the sub-root system of X spanned by J. In this decomposition we
have

(1.2) U4P and UnM,=1.

The pair (B M,, NnM,) provides a split BN-pair for M, and the standard
parabolic subgroups of M, are of the form M, ,=M,. M,nUy, for subsets
Hc<J. The unipotent radical M, Uy, is generated by the U, with aeX} — 2.
Thus Uy,=M,nU,. U,, and one verifies easily that

(1.3) the complex representation p of M, is cuspidal if and only if (p*, Indf7 (1))
=0for all H&J.

Here p* denotes the lift of p from M, to PB,.

For weW we define U =UnU" and U, =UnU"" (where w, is the
longest element in W), Write ind(w)=[U: U] (=|U; ). The following facts are
well known and easily proved (see, e.g. [21]).

(1.4) Let v,weW.
() U=UF-U, and U} nU,; =1.
(i) U} is the \product of the U, with a satisfying acX* and waeZ™*; U] is
the product of those U, with aeX* and waeX .
(iii) For aeZ, wUw™'=U,

wa*

(iv) If £(ow)=£¢(v)+£(w) then ind(vw)=ind v - ind w.

For any element weW, we define N(w)={acZ*|waeX~}. The following
assertions are then standard.
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(1.5) (1) For any weW, we have |N (w)|={(w).
(i) If w,weW are such that f(ww)=/{(w)+{ (W), then we have N{ww')
=NW)uw ' N(w).

For each element weW, we take w to be a fixed representative for w (e W

=N/BnN) in N. The results of Tits {[26]) and Borel-Tits ([2], Théoréme 7.2)
show that the w may be chosen so that they satisfy

(1.6) () If ¢ww)=/(W)+£ (W) then (ww) =ww.

(i) For any elements w,w'eW, the element h=(ww)w *vw~! of BAN' has
order at most 2. In other words, the group generated by the w (weW) is an
elementary abelian 2-group, extended by W.

We now fix a subset J<II and an irreducible cuspidal representation D of
M,;, whose character is y, (or y when there is no risk of confusion). The
ramification group W(D) is defined as above, i.e. as the group of automorphisms
of M; which fix y, and which are induced by automorphisms of A (the maximal
k-split torus in Z(M,)) which come from conjugations in G. When there is no
risk of confusion, we write M=M, and P=P,.

§ 2. The Structure of W(D)

(2.1) Proposition. With notation as above, we have W(A)= Ny (W,)/W,.
This is proved by Springer in ([23], Lemma 2.19).

(2.2) Lemma (Howlett [117). Let ¥ be a finite dimensional Euclidean space, and
let G GL(V) be a group satisfying G2 R, where R is a finite reflection group
with root system @ — V. Then R has a complement C in G, given by

C={geGlgp*=V™}
where @7 is a positive system in .

(2.3) Corollary. We have N(W,)=W,=S, (semi-direct product), where S,
={weW|wJ=J}. Thus W(A)=S,. Moreover

W(D)={weS,|xp(m*)=yxp(m) for all me M,}.

The group S, has a large reflection subgroup defined as follows. Let @
={aeX|w(Ju{a})<=Il for some weW}. For aeQ, if L=Ju{a}, let v(a,J)
=w; w; where wy is the longest element in W,.

(2.4) Lemma (Howlett, op.cit.). Let acIl—J and write v=uv(a,J), L=Ju {a}.
Then
() N@)=2f -Z,,

(i) vJ=KcL(<I),

(i) If {b}=L—vJ, then v(a,J)y ' =v(b, K)=v(b, vJ),

(iv) v¥P=1levJ=J<w0veSs,.

Let Q={aeQ|v(a,J)*=1}.
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(2.5) Lemma (Howlett, op.cit.). Q is the root system® of the group
R, =<v(a,J)]acQ).

This is best seen by projecting  to (J>*. The v(a, J) then become reflections

in {J)*, which generate a reflection group whose root system is the projection
of Q.

(2.6) Corollary. R; has a complement C, in S,, where
C,={weS,|lwQ*tcQ"}.

Thus S;=R,;>1C, is a decomposition of S, as a semi-direct product (here Q*
=0QnZ")

The purpose of the next Lemma is to show that W(D) has a decomposition
similar to the one of S, given in (2.6) (c.f. (2.3)).

Let I' be any subset of the root system  which satisfies

(i) If ael then v(a, J)e W(D).

(i1) If ael’ and we W(D) then waer.

2.7y Lemma. With I' as above, we have

(i) Rp(D)=<v(a.)ael'y is a normal reflection subgroup of W(D) whose root
system' is I, and I'mX*=I" is a positive system in . The set A
={ael't|N(v(a,J))nI'={a}} is the corresponding fundamental system.

(i1) W(D) is the semi-direct product W{D)= R (D)>aC (D) where

Cr(Dy={weWD)|wl* <I'"}.
This is a simple application of (2.2).

(2.8) Lemma. For acQnII write L=Ju{a}. Then indv(a, J)=|U,|/|U,| in the
notation of (1.1).

Proof. We have v(a, J)=w,w, and /(v(a, J))={(w;)—¢(w,). By (1.4) (iv) it follows
that ind v(a, J)=(ind w;) (ind w,)~'. But Un U*"=U, by (1.4) (ii), and the result
follows. O

(29) For weW such that wJ <1, define the group
U, ,=<U,JaeZ*-Z ;. w 'a<0)cU,,.

(210) Lemma. Suppose that aell is such that v(a,J)eS,. Then indv=|U,,|
where v=1v(a, J).

Proof. We have U, =(U,laeZ* —X,, va<0) since v’=1. But N(v)=X; — X}
where L=Ju{a}, by (24)(i), and so N(@nZX, is empty. Thus U,,
=<{U,laeN(v)) = U, and the result follows. [

Let #={KcIl|K=wJ for some we W}.

' 1t should be noted that € and I are not root systems in V. They only become root systems in the

usual sense when projected to (J)*
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Then for any K e # we may define the sets 3, and €, of roots corresponding
to Q and Q which were defined above for J. Of course QoI K.

(2.11) Lemma ([11], Lemma 5). (i) Suppose He ¢ and that wH=K cII. Then
for all aeIl — K, we have

W) +£(v(a, K)) if wlaeXt

J(U(a, K)W)z{[(w)_/(v(a, K)) if w™ 1an‘.

(i) If weW, Ke ¢ and wK c I] then there exist K, ¢ (i=1,2,....n+1) and
acll -K; (i=1,2,...,n) satisfying
(a’) K1=K$

(b) v(a;, K)K K, (@

2 2,..,m),
(c) w=v(a,, K)v(a,, 1 -

; U(ala ")
(d) £(w)= Z £(v(a;, K3)).

i=1

An expression as in (c) above shall be referred to as “a standard expression” for
weW, and written

w=uv(a,,d,_i,...,a;, K).

n

We conclude this section with two group-theoretic results concerning G,
which depend on properties of root systems, and which we shall require later.

(212) Lemma. Let weW and suppose H=wle ¢ (ie. cII). Then
wU,w='nB,cUy.

Proof. If veW, then Z(vw)=7/(v)+/(w) since w—'aeXZ™ for all aeZX};. Hence
BvBwcBvwB and so
wU,w 'nBvB=[wU,nBvBwlw™!
c[BwBnBowB]w™!

=@ unless v=1.
Thus
wUw 'nB=wU,w 'nB
=wUnw,Uw,)w~'nB

cUnww,Uw,w™!

where w; is the inversion element in W,.

But Unww,Uw,w~'=(U,JacZ* and w,w~ 'aeZ*)
(by (1.4) (i1)) c{UlaeZ* -2

=U, [

(2.13) Proposition. Let He ¢ and take acIl —H. Write v=v(a, H), L=Hu {a}
and K =vH (< L). Then we have

() vUyv ' nF=U,

(i) WynSpc{l,v}, where Sy={weWiw K=K} (cf (2.3)).
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Proof. (i) Since K=vH, we have from (2.12), with H replacing J, that
vUyv™ 'nFcUgc U. Moreover N(v™')= X, ((2.4)(i)) and vZ, =2, X,. Hence
ifaeZ* ~X;, v 'aeZ* —¥,. Thus v~ ' U v< Uy, whence U, cvUyv~'nU.

Conversely, we have Uy=UnwyUwy, so that vUyv 'nUcoUv™!
nw, Uw, nUc Uy (recall that v=w, wy). Thus vUyo~ ' nU=U,, and the result
follows.

(ii) Suppose te W, nSg. Since t K=K it follows that theX~, where {b}=L
~K, orelse t=1, since N(t)cX,.

By (2.11), £(tv(b, K)~)=/(v(b, K)t~")=/(t)— £ (v(h, K)). But since tZf <X
and N(O)ycXf, /(1) is at most |X] — 2|, which is £(v(b, K)) by (2.4). Hence ¢
=0v(b, K).

But v(b, K)=v(a, H)~! by (2.4). Hence t=v=v"'. []

§ 3. The Endomorphism Algebra E(D)-Basic Relations

We now fix a complex vector space V, and an irreducible cuspidal representation
D: M, - GL(V). Denote by E(D) the endomorphism (“commuting”) algebra

E(D)=End(Ind§, (D*))

where D* is the lift of D from M, to P, through the projection P, —» M, with
kernel U,.

For any we W such that wJ < II, define a representation wD of M, in V by
transport of structure:

(3.1) (WD) (x)=D(W™'xW) (xeM,,=wM,w ).

When we W(D), then by definition the representations D and wD of M, are
equivalent. Hence by Schur's Lemma there is a linear operator D(w) on V,
uniquely determined to within a scalar multiple, such that

(32 (WD) (x)=D(w)"'D(x)D(W) (xeM,).
By uniqueness, we have, for any two elements w,, w,e W(D),
(3.3) By = Aw,, wy) DOw,) DOw)

where A: W(D) x W(D)— € is a 2-cocycle.

Moreover by replacing A with an equivalent cocycle if necessary (i.e. replac-
ing the D(w) by appropriate scalar multiples). we may assume that (c.f. [6],
Theorem 63.7)

(3.4) For any u,v, we W(D), we have
(@) A, v) Auv, w)=A{u, vw) A(v, w),
(b) A(u, v) is a root of unity,
(©) Mu YLuy=Au H=Ai(l,u)=1,
(d) A~ tw Lwy=A"Yw Lw H=A(w,0v)
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Let M ={m, w|meM,, we W(D)); then M is an extension (possibly non-split)
of M; by W(D). Define the projective representation D of M on V by

(3.5) D(mw)=D(m)D(w) (meM,, weW(D)).

It is then trivially verified that for xeM,w and yeM,v (w,ve W(D)), we
have

(36) D(xy)=(w.v) B(x) D(y).

The representation R=1Ind§ (D*) is realised on the space F=F(M,, D) of
functions f: G — V satisfying

(3.7 fxy)=D*(x)}f(y) (xeB.yeG).

The group G acts by right translation on F(M,,D): for feF, geG, R(g) f(x)

=f(xg).
Define the following operators on F: for we W(D), feF

(3.8) (B, N)x)=IU, "' D(w) Y, f(w 'yx).
yelU;

(3.9) Proposition. (i) For each we W(D), B _eE(D).

(ii) The set {B,|weW (D)} forms a C-linear basis of E(D).

This is proved in ([23], pp. 635-636).

In order to study how the B, compose, we introduce the following maps.
Suppose weW is such that wJ<I]. The map By ,: F(M;,D)->F(M ,, wD) is
defined by

(3.10) Bpw N)=Ul™! Y fO8™1yx)

yveUws

wJ»

where feF(M,, D) and xeG.

(3.11) Lemma. Suppose w< W is such that wJ < II.
(i) Bp, ; is a G-equivariant map from F(M,,D) to F(M,,;,wD).
(i) We have (Bp ;, /) (x)=IU,,I=" Y fOb~'yx) for feF(M,,D) and xeG,
where U, ,=U,,nU, .. N yeUw, s
(iii) If we W(D), then B,,=D(w) Bp, ;.
(iv) For any he BAN, we have By, ,,=D(h™ ") By, ;.

Proof. (i) If meM,,, (=wM,w~') and feF(M,, D), then

(Bp, /) mx)=|U,, 1"t Y f(w~'ymx).
But yelns
wlymx=w'mm 'ym)yx=w" 'mw)w = '(m~ ' ym)x.
Hence
(Bpw N(mx)=|U,, |~ ' D™ 'mw) Y f(w™'zx)

zeUwys

=(WD)(m)(BD,wf)(x)-



Induced Cuspidal Representations and Generalised Hecke Rings 45

Moreover if ueU,,, clearly (B ,, f)(ux)=(Bp , f)(x). Hence for any aeR”, we
have (Bp y; f)(ax)=(WD)*(a)(Bp,, f(x), and so By, feF(M,,;,wD). It is trivial
that By, , is G-equivariant.

(ii) This follows from the fact that each element y of U, has a unique

expression (c.f. (1.4)) y=y,y, where y,eU} ;=U,,n U}, and y,eU, ,, together
with the remark that for ueU, ;, D(W™'uw)=1id,.
(iii) and (iv) are simple observations. []

Remarks 1. Note that from (iv) above, and (3.5), it follows that B, =D(w V) Bp,
independent of the representative w of w, given the choice of the pI’O_]CCthC
representation D of M. This justifies the notation.

2. For any meM we could equally well define operators
By, ... F(M,;, D) > F(M,, mD) just as in (3.10). This will be implicit in some of the
statements  which  follow. Similarly, for any neN, we have
B, ,: F(M;,D) - F(M,,,nD), whenever nJ < II.

We now derive the basic relations for composing the Bp ;.

(3.12) Proposition. Let w, and w, be elements of W such that w,J<ll,
wow,J<II, and £ (w,w,)=C,(w,)+{(w,). Then we have

By (w,w,y =By, p, v, Bp.w,-

Proof. Take feF(M,, D). Then we have

(Bi,p,w, Bp.w, N)=U; ., ;1 Y (Bpy, /)by 'yx)

EUv_vlwz,J
_IUuthJl ! 2 ll]z.l| z f(WEIZWTIyx)
yeUw wy, J zelUy,
— . . . '*1
=|U, w,.4l IUZ.I] ! Z SOy oy Wy 2wy ) yx).
veUsywsy, J
zeU@z.J

But Uy, ,=<(U,lae(Z*—ZX, )" N(w;")>. Hence

w, U, jwi '=<U,lae(w, 2+ =X yow, N(w; ).

wiwyJ
Moreover since £ (w3 'wi ')=¢(w; ") +£(w; ') we have
Nw;'wi H=Nw; Huw, N(w; ) (1.5(ii).

Thus w, U, ,wi'c(Ulae(Z* =Z,, ,)0NW; 'wi )=
Hence the summand on the right hand side above is independent of z, and the
whole expression may be written

Upwnal 2 SO0 97 yx)=(By 0, /) ().
yeUwiwy, J
The result follows since w, w, =(w, w,)’ by (1.6)(i). [

(3.13) Lemma. Let L be a subset of Il which contains J. Denote by F,
=F,(M,, D) the linear subspace of F=F(M,, D) consisting of { feF|supp f<P,}.
Then we have

W1W7 J
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(i) Any element Be E(D) is determined by its action on Fy.
() The space E,(D)=Endp, (F,) has linear basis {Res, (B,)lweW, nW(D)},
where Res, denotes restriction to F,.

Proof. (1) is trivial, because F is a sum of G-translates of F,, and the action of B
on any translate is determined by its action on F,.

(ii) The representation of F, on F, is Ind} (D*) [Ind}x . (D*)]* where the
*’s denote the lift through the appropriate umpotent radical. Thus

End;, (F,)=End,,, (F)=End,, (Ind}x ,, (D*)).

Since Res;, is injective ((i) above), the set {Res; (B,)lweW nW(D)} is
linearly independent. But by (3.9)(if) and the above remarks, dimgE; (D)
={W,n W(D)|, whence the result follows. []

{3.14) Proposition. Let acIl —J, and write v=v(a,J), L=Ju{a}. Then we have
B;p . B, ;=(indv)”'id+ B,

where BeC, and B=0 unless ve W(D). Moreover when ve W(D), (indv) f§ is an
algebraic integer.

Proof. By (3.11)(i), B=B;, , : B, ;€E(D). Moreover, since veW,, B fixes the
subspace F;. Hence by (3.13), B is a linear combination of {B, |weW,n W(D)}.
But from (2.13)(i1), we see that W, n W(D)c {1, v}, whence

B=oid+8B,, and f=0 unless ve W(D).
To find o, § observe that
BAHX)=IU 0 UL Y [ zyx)

yeUy-1 40
zeUy, g

=af )+ DU Y S yx). (3.14.1)

veUs, g

Now take eeV and let f=f, be the unique element of F,— F such that f,(1)=e
Then f,(t)=0 for ¢¢B, and v~ 'zoyxeP (above)«v~'zveP. But U],
={UJaex*—%,,, v'a<0), so that v~ 'U, ;o=CUlaev” ' 2T =X)nZ ).
Thus 6~ ' zée P, only when z=1. Hence

BRIM=IU= W7 U Y W)

yeUJ-1
={U; 1" e

=(ind v)~ ' e.

L vJ

But
(xidp+BB,) f)(V)=ae+ D@ U, I~ Y f@E'y)

yels
=qe.

Hence a=(ind v)~*.
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To determine f5, take f=/, and x=4¢ in 3.14.1. We obtain, using the same
argument as above, together with the fact that U, ;= U,

Blindv)e=Dw)~" ¥ f(5~ zoyi)

LzeU;
=D@)~' Y fw. (3.14.2)
ﬁu~{:5JfU’
Since f(t)=D*(t)e, and (3.14.2) holds for each ecV, we have
B(ind v) D(v) = Y D(m) (3.14.3)
tePy t=mU
‘it el ¢l

or equivalently,

Bndv)id,= Y D@ 'm).
tePy,1=mU
it el fUS
From this last equation it follows that f(ind v} is an algebraic integer, since
the (projective) representation D of M is equivalent to a representation over
some ring of algebraic integers. [J

Note that Eq. (3.14.2) provides, in principle at least, a practical method for
determining . We give an example of the computations in (4.15)
An easy calculation proves the following

(3.15) Lemma. (i) Let m, neM. The map f—D(m)f is an isomorphism from
F(M,,nD) onto F(M,;,nm~'D).

(i) Let meM and neN. Then we have (assuming nJ < IT)

B, ,D(m)=D(m)B

mD.n"

(3.16) Corollary. With notation as in (3.14), we have
(i) If v¢ W(D), then
Bip -y Bp c=0D((v™?) " o~ H)(ind v) !
=D ") (v ")~ ") (ind v)~!
(i) If ve W(D), then
=(ind v)~ ' id+ B B,.
Proof. (i) Since (v=1)'=5"'[B(v—1)"], this follows from (3.11)(iv) and (3.14).
(ii) From (3.11)(iii) we have B, =D(5)Bp ;-
Hence B2 =D(1) B;p ; Bp ; (using (3.15)). But 6=5""(¢) (recall v*=1) and so
B2=D(5)*D((5)*)((ind v)"*id+$B,)  (from (3.14)).

Moreover D()>=A(v, v) D(1?)=D(5?) since A(v,v)=1 by (3.4)(c). The result
follows. [
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We remark that the statements (3.13), (3.14), (3.15) and (3.16) all hold with J
replaced by any element K of #, and D by an appropriate representation of M.
We shall freely make use of the statements in their more general form.

(3.17) Corollary. For any we W such that wJ = I1, the map Bp ; is invertible.

Proof. From (2.77)(ii), w has an expression

w=uv(a,, K)v(a,_ ,, K,_,)...v(a;, K,)

such that K, =J, v, K, =K, , (v;=0(g;, K})), and {(w)= Z I(v,).
i=1
Hence by (3.12), we have

w=Bs , _spys, B

v, D, v,

By ;-

However, it follows from (3.16) that if uJ=K<II, and aell—K, then
Bip, i k) 1s invertible. Hence Bp ; is invertible, since each factor on the right
hand side above is of this form and hence invertible. [

We now obtain more specific information concerning the f of (3.14).

(3.18) Theorem. Let acIl —J, L=Ju{a} and assume that v(a, Jye W(D).

(i) The representation Indp>(D*) is the sum of two inequivalent irreducible
components, which have degree d and p°d, where p° is an integral power of the
characteristic of k.

(i) The number B appearing in (3.14) and (3.16) satisfies

B*=(p*—1)*/p*ind v.

Proof. (i) As we observed in (3.13)(ii), Indpz(D*) = (Ind,,mMI (D*))*. Hence for
the purposes of the theorem, we may as well take L=II, so that P,=G
(effectively we are replacing M, by G).

By (3.9)(ii), End, (Ind§,(D*)) has dimension 2, and has basis id and B,. It
follows that Ind§ (D*) has two inequivalent irreducible components, whose
characters we shall denote by £, &, with &{1)=¢&(1). Writing R for the repre-
sentation of G on F(M,, D)=F, the projection p, of F onto its -isotypic
component is given by

1
ps= |é| PR

It is a non-zero, non-identity element of E(D), hence a linear combination of
id and B,. Thus we have

pe=Aid,+uB, (4 ue0). (3.18.1)

Applying both sides to feF, and evaluating at xeG, we obtain

S 5 e 1) fen) =20 () +ind o) uB@) T F5 2x)

|G‘ yeG zsUu"J
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Now take f=f, and x=1 in the above equation:

480} 1
) D* =2
Gl };}&( (y)e=4e+0.
But §|~(Gl—| 2 E(y~ ') D*(y) is a scalar multiplication in V by Schur’s Lemma (V is
yePy
an irreducible P-module), and the scalar is given by
L) 4 _ s
dmV Gl }EZPJé( )W =g e ViG] [P, xpe)p,
=¢(1)- [dim VIGI/APBI]~ " since (€, xpo)p, = (& x50 =1
=&MW+ (1))

Hence A= E()/E(1)+ (1))

Now let 5, v be the eigenvalues of B, i.e. the roots of X?=a++ X, where a
=(ind v)~! and B are as in (3.14).

From (3.18.1), the eigenvalues of p, are then 41+ un and A+ pv respectively
and since these are 1 and 0 (p, is a projection on to a non-trivial subspace) we
have

A+un=1, A+uv=0. (3.18.2)
Hence

nvl=—(1—2) A= —EYED). (3.18.3)

. . X ¥V
Now (ind v)n and (ind v) v are algebraic integers, since they satisfy ( o v)
=a+p ( )é ) ie. X?=oa(ind v)? + B(ind v) X, and by (3.14) a(ind v) and B(ind v)

are integral.

Also nv=—a= —(ind v)" !, whence v~ =n?(nv)~ ' = —n?(ind v). Therefore
nv~!(ind v) is integral. But the same argument may be applied to vp~! to show
that vy~ !(ind v) is integral. Since (ind v) is a power of p (the characteristic), this
implies that yv~' = +p*, ceZ. Since &(1)=&(1) we have

1 1

E(y=p &), ¢=0, which proves (i).

(i) We deduce the value of B from the equation X?=a+BX, which has
roots 1, v. We have v~ '= —p¢ and nv= —(ind v)~'. Hence #*>=p°(ind v)~! and
vi=(p¢ind v)~!. Hence f2=n%+v?+2yv=(p°—1)*/p‘(indv). O

Suppose now that ae, v(a, J)e W(D) and that we W is such that wJ =K, wa
=b and Ku{b}=LcIl. Let H=Ju{a} and let M be the image of M, under
the map ad w~': x+—w~ ! xw. This map takes My to M,, v(b, K) to v(a,J), and
M; NPy to a parabolic subgroup P;, of My. The group B, has a Levi
component M,, and the representatlon IndM" (D% decomposes into irreducible
components in the same way as Ind}f- PK(WD*) (ad w “transports structure”),
viz. into two irreducible components of degree d' and p®d’ (¢'=0) by (3.18).
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(3.19) Definition. For aeX such that v(a, J)e W(D), define p,=p° where ¢’ is as
in the above preamble.
To justify this definition we have

(3.20) Lemma. The integer p, defined above is independent of w (and hence of
K).

Proof. First, notice that M;=(BnN, U,]aeZX;) is independent of w. Next, let Q
be any parabolic subgroup of M, such that Q has a Levi component equal to
M. Then it follows from Springer ([22], Theorem 4.7) that the equivalence class
of the representation IndgH(D*) is independent of Q; for if 0, and Q, are two
such parabolic subgroups, and the corresponding characters of the induced
representations are y; and x,, then we have for the intertwining numbers that

WD) Wyl =(x1, 20 =015 x2) =125 %2)-
Hence (x; — x5, x1 —%2)=0, i.e. x; =y,. The result follows. ]

(3.21) Definition. Write I''={aeZ|v(a,J)*=1 and v{a, J)e W(D)} and write I’
={ael'|p,+1}.

(3.22) Lemma. Let acI"” and we W(D). Then p,,,=p,.

Proof. Let H=Jula}, H=w(Ju{a})=Ju{wa}, and let Q' be a parabolic
subgroup of My which contains M; as a Levi component. Then the map
ad w=1: x>w~ ' xw defines an isomorphism from M, to M which takes M, to
M, and Q' to a parabolic subgroup Q of My, which also contains M; as a Levi
component. Moreover, composition with ad w—' takes the representation
Indy#(D*) of My to Indy#(wD*). But wD is equivalent to D, and hence
Indg#(wD*) is equivalent to IndZ/*'(D*). Thus Indy*#(D*) and Indy*"(D*) have
irreducible components of the same degree, and it follows from the definition
that p,,=p,. 0O

(3.23) Corollary. The set I" ((3.21)) is invariant under W(D).

§4. A Presentation for E(D)

In this section we use the basic relations among the B, (we W(D)) derived in §3
above to give a simple presentation for E(D)=Endg(Ind§ (D*)), which makes
the application of generic algebra methods possible.

(4.1) Lemma. Suppose weW is such that wJell and take acll —wJ. Write v
=uv(a, wJ), and assume that either

(i) wlaeZ* or

(ii) w—la¢r.

Then we have

B,p, ;s Bp, ,, =|(ind v)~ *(ind w)~ ' (ind vw)|*/? Bp 4.
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Proof. 1If w='aeZ* then £(vw)=/(v)+£(w) (by (2.11)) and the result is clear
from (3.12).

Thus we may assume that b=w~'aeX ~—T, by (ii). In this case Z(vw)=¢(w)
—{(v), and if w;=vw, we have w=v""w,, with £/(w)=¢(v"')+(w,). Further,
if L=wJul{a}, and {c}=L—vwJ=L—w,J, then v~ =v(c,w,J) (by (2.4)(iii)).
Hence from (3.12) we see that

Bp =By, p w1 Bp s
whence
Bwu,:s BD, W :BWD, v Bwlb, (= BD, (ow)’ (4.1.1)

To evaluate the product of the first two terms on the right above, we apply (3.16)
with D replaced by w, D, and v replaced by v—1!.
First suppose that v~ '¢ W(w, D). Then by (3.16)(i),

Byp s By p -1y =W, D((v™ ")~ 1o~ (ind v~ ) *
=DwWir w115~ )(ind v)~!
=Dw= ' (vw))(ind v)~! 4.1.2)
since w=(v"")"w,.
Combining with (4.1.1) and using (3.11)(iv), we see that
Byp, s B,y =(ind v)"! By 4y,
=[(ind v)~ ' (ind w)~ ' (ind ow)]'> By 4,

since ind w=(ind v~ ') ind w, =ind v ind vw.
Finally, if v~ *e W(w, D) then v* =1, and vwJ =wJ, whence

wlow=w"'v(a,wl)w=0(b,J)e W(D).

But by hypothesis b=w~1a¢l, whence p,=1. By the familiar “transport of
structure” argument (c.f. the proof of (3.22)) this implies that in the computation
of Byp, s By p, s, the parameter § of (3.14) is zero, by (3.18)(ii). Hence we again
obtain (4.1.2) and the proof proceeds as above. ]

(42) Main Lemma. Suppose ve W(D) and weW is such that wicll. If
v=taeX” for all acI'nN(w) (i.e. N(v= )N N (W)~ I =) then we have

By Bp, ;= [(ind w)~ ! (ind v)~ ! (ind wr)]/? By -

5D, W

Proof. This is by induction on #(w). The case £(w)=0 is trivial. If £{w)>0, there
is a set K< [T and aeIT — K such that

w=v(a, K)w,, w,J=K, and /(v(a, K)w,)=¢(v(a, K))+£(w,).
Write v, =v(a, K). Then by (3.12) we have

Bip, v =By, ip,s, Bip. v, 4.2.1)
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Moreover since N(w)>N(w,), we have N(v"")nN(w,)nI'=0, so that the
inductive hypothesis yields

BﬁD, W, BD, 5= [(lnd WI)_ t (lnd U)* ! (1nd wy U)] 172 BD, Wb (4.22)

Combining (4.2.1) and (4.2.2), we are left with the problem of evaluating
By, sp.s, Bp ;-

For this we use (4.1), and so we need to show that the hypotheses apply: if
v 'wi'a¢Z*, then since N(v~")nN(w)nI'=0, we have w; 'a¢'nN(w). But
wrlaeX* and wwila=v(a, K)acZ~. Hence wy'aeN(w), from which it fol-
lows that wi'a¢l. But veW(D), and I is W(D)-invariant ((3.23)), so that
v='wi 'a¢l Thus we may apply (4.1) (with w, 6 in place of W) to deduce that

By sp,s, Bp,w,s=[(ind v;)~ '(ind (w, v))~ ' (ind v, w, v)]'"? Bp s, 6-
Combining this with (4.2.1) and (4.2.2), using the fact that w=v,w, with
£(w)=¢(v,)+¢(w,), we obtain the required relation. []

We are now in a position to give a complete set of relations for the basis
{B, |we W(D)} of E(D). Recall first (c.f. (2.7)) that with I' as defined above ((3.21))
the ramification group W(D) has a semi-direct decomposition W(D)=R(D).
C(D) (R(D)sW(D)) where R(D)=R (D) and C(D)=C,(D) in the notation of
{2.7). In particular R(D) is a reflection group with root system (the projection to
{JY* of) T and fundamental system (the projection to <J)>* of) 4
={ael'" | N((a,J))nI={a}}.

{4.3) Proposition. With notation as above, let we W(D), te C(D), ac 4 and write v
=v(a, J). Then we have
(i) B, B,=[(ind w)~!(ind t)~ "(ind we)}*/2 A(w, 1) B,,,.

(ii) B,B,=[(ind t)~'(ind w)~*(ind tw)}*/% A(t,w) B,,,.

(iii) If wael'* then (i) holds, with v replacing t.

(iv) If w=Yaer' ™ then (ii) holds, with v replacing t.

(v) BZ=(ind v)~' id +¢,(p,— 1)/(p, ind v)'/? B,.

Proof. (i) We have
Bw Bz =E(W) BD,w Ij(f) BD, {
=Dw)D(®) Bip,, Bp; by (3.15)(ii)
=A(w, ) D(wi)|(ind w)~ *(ind t)~ ' (ind wt)|"2 B, ;¢
by (4.2), since N(t~)nI'=0.
But D(wi) By 4;=B,, (cf Remark 1 following (3.11)), and the statement

follows.
(ii) The proof is the same as (i), with (4.2) being applicable becanse N(£)nTI"

(ii1) The proof is again the same as (i), since

N HYnNw)nT' <{a}nNw)=0.
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(iv) Here N(w=")nN(@)nI'<{a}nN(w~')=§, so that again (4.2) applies,
and the proof is the same as in (i).

(v) There is an element ue W such that u(Ju{a})=Ku{ua}=Kui{b}<=Il,
and writing v, =v(b, K), we have v=u""'v, u. Moreover by ([11], Theorem 8), u
may be chosen so that Z(v)y=2¢(u)+£(v,).

Hence in particular N{u)= N(v). So N(u)nI' = N(v)n T ={a}. Moreover since
ua=beZ*, we have N(u)nI'=0. Hence from (4.2) we obtain that

Bp ; Bp s =|(ind w)~ ' (ind v)~ ' (ind uv)|'’* By, ;.
On the other hand
BuD, ¢, BD, [ BD‘ I :BD,(u1 u
Combining these two equations, we see {using (3.11)(iv)) that
Bip i Bp ;=7D(h) Byp s, Bp y (4.3.1)

where y=[(ind v,)(ind v)~']"? and h=0""4" ' (uv)"
Composing the two sides of (4.3.1) on the left with D(¢) and using (3.15)(ii),
we obtain

Bp B,=yD(i~* (uv)) Bip,s, Bpu- (43.2)
But (uv)' =10, i, whence 1~ '(uv)’=u~"' 0 u. Hence
D~ (uv)) =D~ 6,1)=iD®,),
where %D has the obvious meaning (observe that v, € W(uD)). Thus
D(i~ ' (uv)) Byp s, =uD(t,) Byp s, = B, €E(uD).
Substituting into (4.3.2), we see that
By i B,=7B,, Bp - (4.3.3)
Hence
Bp ;Bl=y*B. Bp; (applying (4.3.3) twice)

=y*[(ind v,)"" idp +(p, — VAP, ind v,)'* B, 1By, (by (3.18))
=By ;[7*(ind v,)" " idy £y(p,— 1)/p,(ind v;)'* B,].

Finally, note that p,=p, by definition and that Bp, ; is invertible by (3.17). The
result follows on substitution of the value of y (=[(ind v,)(ind v)~*3*/?). This
completes the proof of (4.3). [

We shall now modify the basis {B,,| we W(D)} of E(D) to produce a “norma-
lised basis” which has a particularly simply multiplication table.

(4.4)  Definition. If acA and v=v(a, J), define
T =¢,(p,indv)"'* B,, where g, is as in (4.3)(v).

It is then a simple consequence of (4.3)(v) that
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45) T=p,id+(@,~ 1T,

(4.6) Lemma. Let we W(D) and let a and b be elements of A such that wa=bh.
Write v=uv(a,J), u=v(b,J). Then B, T.=T,B,,.

Proof. Using (4.3)(ii), we have

B,T,=¢,p,[(ind w)~ ! (ind wo)]'/2 A(w, v) B, 4.6.1)
while from (4.3)(iv) we have

T, B, =¢, p,[(ind w)~ *(ind uw)]'/? A(u, w) B,,,. (4.6.2)

Moreover since a and b are in the same W(D) ~ orbit, we have p,=p,.
Now apply formula (3.4)(a) with v and w interchanged, recalling that uw
=wo, u=u"'and p=v"!

Alu, w) Auw, v)=A(u, wo) A(w, v). (4.6.3)
But
Auw, v)=A(ow 'u,uw) (by (3.4)(d))
=Aw ' uw)
=A(w luw,w™') (again using (3.4)(d))
=Ap, w1
=A"'(w,v) (again by (3.4)(d)).
Similarly, A(u, wo)=A"1{(u, w).
Hence from (4.6.3) we deduce that
Au, w)2 = A(w, v)?. 4.6.4)
It follows from (4.6.1) and (4.6.2) that
B,T,=¢T,B,, ¢=+1. (4.6.5)

Therefore
B,1}=¢T,B,T,=¢’ T} B,,=T}B,,.

Using (4.5), this implies that

B,(p,id+(p,— ) T)=(p,id +(p,— 1) T) B,,
and hence that
.~ 1)B,T,=(p,—1)eB,T,.

Since p,=p,*1 (since a, be 4 =I') we have that e=1, and the result follows. [

(4.7) Lemma. Let weR(D) and suppose that w=v,...v,=Uu, ... u, are two re-
duced expressions for w in R(D), where v,=v(a;,J), u,=v(b,,J) and a, b,eA(i
=1,2,...,n) Then

T, ..T, =T, .. T

vy Un uy” Un*
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Proof. This is by induction on n. The case n=1 is trivial. By the “exchange rule”
applied to R(D), if r is the greatest integer such that u, v, ... v, is reduced, then

U0y ...0,=0y...0,,, ((r=n—1).

By (4.3)(iii), T,, ... T, is a non-zero scalar multiple of B, , .Taking w=v,...0,
in (4.6), we have y;w=wv,, ,, and so

(7—;1 7:77‘) Tvr+1:7;41(Tvl vr)'
Thus
T, T, T, T, =T,..T, (4.7.1)

where ~ denotes a term omitted.

However since v, ...0,,,...v,=u,...u, are both reduced expressions in
R(D), we have by induction that

Drs 1

T,.T,.  ..T="T,..T,. 4.7.2)
Combining (4.7.1) and (4.7.2), the result follows. [

(4.8) Definition. (i) For weR(D), define T,=T,, ... T, , where w=v, ... v, is any
reduced expression for w in R(D).

(ii) For xe C(D), define T,=(ind x)'/*B..

(iii) If xe C(D) and weR(D), define T,,,=T,T,,.

The Definition (4.8)(i) is justified by (4.7).

(4.9) Definition. For any we W(D) we define
p,=IIp,, where the product is taken over {aeN(w)nTI}.
One verifies trivially that
(410) If weW(D) and w, w, with w,e C(D), w,eR(D), then p =p,,.
(4.11) Proposition. For each we W(D), we have
T,=¢,[p,(ind w)]'?B,,
where ¢, is a root of unity.

Proof. This is by induction on N=|N(w)nI|. If N=0 then we C(D), p,=1 and
the result is trivial.

If N >0, there is an element aed such that wael'~. Write v=v(a,J), u=wv.
For any element teW, write Ny(t)=N({)nTI. If t=t,t, with ¢t,€ C(D), t,eR(D)
then Np(t)= Np(t,).

Now by using (1.5)(ii), applied to the reflection group (R(D), I'), we have, if w
=w, w, with w,e C(D), w,eR(D) that

Np(w;)=Np(v)UvNp(w,),
so that
Ny (w)=Np()ovNr(u).
But

Ny(v)={a},
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and so
Nw)nI'=v(NwynT)u{a}. 4.11.1)

By the induction hypothesis applied to u, we have
1,=¢,(p,indu)'/? B,.

Now since |Np(w,)|=|Np(w,v)|+[Np(v)], it follows from (4.7) that T, =T, , T,
Hence by (4.8)(iii) we have

T,=T, T, =T, T,,, T,=T,T,.

wi w2 Wi WU TvU

Hence
T,=¢,(p,indu)'* ¢,(p, ind v)"/* B, B,
=8,8, Py Pa AU, v)(ind uv)'’* B,
=¢,p,(indw)'? B,
since it follows from (4.11.1) that p,=p, p,, and A{u,v) is a root of unity by
3.4 (). O
(4.12) Definition. For v, we W(D), define

u(o, wy=¢, e, e, Ao, w).

Clearly p is a 2-cocycle which is cohomologous to A.

(4.13) Lemma. If x, ye C(D) and v, we R(D), then

plxo, yw)=p(x, y)=A(x, y).

Proof. An easy computation using (4.11), and the fact that T,,=T, T, shows that
u(x, v)=p(v, x)=1 for any veR(D), xe C(D). Similarly one shows that for ¢
=v(a,J) with aed, if {(¢w)=/(w)+1 ({; denoting length in (R(D),I')) then
u(t,w)=1 (any weR(D)). Using (3.4)(a), it is easy to deduce that u(t, w)=1 holds
without the condition on tw, and hence (by induction on £(w)) that p(v, w)=1 for
all v, w in R(D). From (3.4)(a) we now have

p(x, v) plxv, wh=p(x, ow) (o, w).
Hence p(xv,w)=1, ie. u(y,w)=1 for all ye W(D), weR(D). Applying (3.4)(a)
again to the triple (x, y, v) we see that
u(x, yv)=p(x, y)=p(xw, y).

Finally, another application of (3.4)(a) to the triple (xw, y,v) proves the
lemma. [

Note that (4.13) shows that u is really a 2-cocycle of C(D).
We are now able to prove the main theorem of this paper.

(4.14) Theorem. Let P, be a parabolic subgroup of G, with Levi component M.
Suppose that D is an irreducible cuspidal representation of M;, and write E(D)
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=Endg(Ind§, (D*)). Then E(D) has a C-basis {T,|we W (D)} whose multiplication
table is given as follows. Let we W(D), xe C(D), v=0{qa, J) for some acA. Then
() T,T,=uw,x)T,

(i) T, T, =ulx,w)T,,,
T if wlael'*
iy T, wlaert
P.T+w,—OT, if wlael",
T i +
(v 0=y Yweelto
p.T,,+p,— )T, if wael
where y is a 2-cocycle of C(D), and the p, are powers of the characteristic, defined
in (3.19).

Proof. These relations are really restatements of (4.3), using the results (4.1) and
(4.11). We give proofs of (i} and (iii}; the proofs of (i1) and (iv) are similar.
(i) We have
T,T.=¢,¢.(p, ind w)*/*(ind x)'? B, B,
(by (4.3)(id)),
=u(w,x)T,, since p,.=p

(i) If w='ael?", then T, T, = u(v, w) T,,,, the computation being the same as
that in (i), since (4.3)(iv) applies. Since (v, w)=1 by (4.13), we have T, T, =1T,,,.

If w'a¢r™, then w'vael'". Hence by the first case just considered, we
have

we

ILT,,=T.,=T

w w*

Hence
T,T,=TT,,=(p,id+(p,—DT)T,

v vw

pﬂTUW—*—(pa‘—l)Tw' D
We conclude this section with two examples.

(4.15) Let G=GL(n,q), and let II={a,....,a,_,} be the set of simple roots
corresponding to the split torus of diagonal elements. Assume that n=dm (d, m
rational integers) and take P, to be the standard parabolic subgroup with M,
=GL(d, q) x GL{d, q) X ... x GL(d, q) (m times). This corresponds to J ={a;|d does
not divide i}<II. Take the representation D to be J’RJ"®...QJY (m
times) where ¢ is a sufficiently general character of IF}, (see [17]).

The following facts are easily verified.

(i) W(D)y=<v(a,J)la=a,;,j=1,2,...,m—1). Thus W(D) is isomorphic to
the symmetric group on m symbols, and the set {v(a,;, J)|j=1,2,...,m—1} is
the set of “Coxeter generators™ for W(D).

(i) For a=ay; (je{l, ..., m—1}) the parameter p, is computed by decompos-
ing
IndiGEe S ora, ar [T @I )],

and comparing the degrees of the two components, ie. by considering the
special case m=2.
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We actually compute p, by using (3.14.3) to evaluate

B=(p,—1)/(p, ind v)!2.
Note that in this case (m=2) if we write v=v(a,J) (a=a,ell) then U, =,

which is the set of matrices in GL(2d, g) of the form ((1) T), where all symbols

. 01
denote d x d matrices. Moreover, we may take 6= ( ) 0).

1 4 1B
Then (O 1) v (0 1)615313‘1 if and only if B=A"", and when this condition

( ) ' ( ) . ( ) ‘

Using (3.14.3) we therefore obtain

Y, JYA)@IY (A ") =(B ind v) D()). (4.15.1)

AeGL(d, q)

We now take traces of both sides, obtaining

Yl (A)?=|GL(d, g)|=B(ind v) trace D (v).

AeGL(, q)

But if V is the space of J<¥°, then D(s) is the map on V®V which takes v, ®v,
into v,®v;. Hence

trace (D(8))=dim V=(¢*~ ' —1)(g* >~ 1) ...(g—1).

Hence f=(q"—1)/g**“* Y =(q* — 1)/(¢" ind v)"/%. It follows that p,=g% and hence
in the general case (any m) that p,=¢* for all aeI'=I1—J. In particular, W(D)
=R(D) in this case.
(i) Using (4.14), we see that in this case E(D) has the following presentation.
E(D) has generators Ty, ..., T, , (T;=T,,,, ) and relations

_ )T, if JW(D)(WUJ-)={W(D)(W)+1
T,T,=q ;% ) .
! q vaj+(q - 1) Tw otherwise

wii

where we W(D)(=R(D)) and v;=v(a,;, J).

(4.16) Example. We include this example to show that it may happen that p,
=1 for some ael".

Take G=SL(2d, q) and take J={a,, ..., d4,, ..., a,,4_,} as in the above exam-
ple, with M the corresponding Levi subgroup of P. Then

M'=SL(d, q) x SL(d, g) = M.

For the background to the present example, we refer the reader to ([17], §4).
Let D, be an irreducible component of the restriction of J’®J¥> to M, and
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write JY|g, 0 =J%+...+J°" . Then (cf. [17], 4.14)
e—1 . o
Doly= Y. J@Jo~ (4.16.1)
i=0

where the superscripts are taken modulo e and i,e{0,...,e—1}.
The same computation as in example (4.15)(ii) shows that here (for a=a, and
v=v(a,J)) we again have

A 1 . s
Y D ( %1)= B(ind v) B (6). (4.16.2)
AeGLW. ¢) 0 4
Suppose d and q are such that Dy=Ind¥ (J°®J%). This can occur when gq—1
=d, e.g. when d=2, g=3. In this case e=g—1=d.

Then taking traces in {4.16.2), and using (4.16.1) we have

e—1
Bindvtrace(DE)= Y Y  2(A) x,_:(A) (4.16.3)
i=0 AeSL, q)
where y; is the character of J'.
But the inner sum is zero unless i=i,—i (mod e), i.e. i,=2i (mod e). Hence if
g is odd, it is possible to choose D, (e.g. i,=1) such that §=0, ie. p,=1.
The reader is referred to [17], §6 for an explicit discussion of W{(D) and E(D)
in this case.

§5. The Generic Algebra - Proof of Springer’s Conjecture

Let g be the largest power of p, such that for all we W(D), we have
(i) indw=g™

5.1
D Gy py=gn
Such a g always exists.

Let €[u] be the ring of polynomials in an indeterminate u over € and define
an algebra A{u) over C[u] as follows: for weW(D) let u =u" (m, as in
(5.1)(ii)), and let u be the 2-cocycle of (4.12).

for rational integers n,,, m,, = 0.

(5.2) Definition. A(u) is the associative algebra over €[u] which has basis
{a,,|we W(D)} and multiplication given by: for we W(D), xe C(D), v=v(a, J) for
acd.

a,a,=puw,xja
(i) a a,=p(x,w)a,,,
(i) o a ={avw if wlael*

° \u,a,,+w,—Da, if wlael™,

a,, if wael'"
u,a,,+w,—Da, if wael'".
For any ring F such that F o> Cu], write A(u)F=A(u)®m]E Iff: C{uj->Cisan
algebra homomorphism, and f(u)=beC, we write A(b)=Au)® ;C. The A(b)
are “specializations™ of A{u).

wx?

(lv) aW alZ =
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(5.3) Theorem. Let F=@(u) be the quotient field of C[u]. Then AW)" is a
separable F-algebra and for each beC such that A(b) is separable (and so
semisimple ), the algebras Aw)¥ and A(b) have the same numerical invariants.

Proof. Since A(g)=E(D) (see (4.14)) is semisimple, it follows from Tits' theorem
([3], p. 56 ex. 26; see also [25], p. 249) that 4(u)F is separable, and that for any
beC such that A(b) is semisimple, the algebras 4(u)' and A(b) have the same
munerical invariants. [

(54) Corollary (Springer’s Conjecture). Let CW(D), be the group algebra of
W(D), twisted by the 2-cocycle p, ie. the associative C-algebra with basis
{w]|weW(D)} and multiplication table given by [w][v]=pu(w, v)[wuv]. Then we
have

E(D)=Endg(Ind§ (D*))=CW(D),.

Proof. The algebras A(q) and A(l) are respectively isomorphic to E(D) and
CW(D), (by (4.14)) and since they are both semisimple, they have the same
numerical invariants (by (5.3)) and so are isomorphic. [

(5.5) Corollary. The irreducible components of Ind$(D*) are in bijective cor-
respondence with the irreducible representations of the algebra CW(D),.

The methods of Benson-Curtis ([1]) can also be applied to the algebra A4(u)
to produce information concerning the degrees and rationality of these irreduc-
ible components. Roughly speaking, “all the irrationality” is introduced by the
cuspidal respresentations - ie. their field of definition suffices for all repre-
sentations of G. The authors plan a sequel to this paper in which these
questions, as well as explicit determination of the W(D) and the parameters p,
will be addressed.

(5.6) Example. Applied to the example (4.15) introduced above, these results
show that (in view of (4.13), which shows that p is trivial in this case) the
irreducible components of Inng(D*) correspond bijectively to the irreducible
representations of the symmetric groups on m symbols, and hence may be
denoted J¥’(A), where 1 is a partition of m (cf. [17]).

Note also that E(D) is just the standard generic algebra H(G, B) for GL(m, ¢°)
in this case, so that “generic degrees” (cf. [5]) are available in the literature, and
the degree of J<*(1) can be written down explicitly.

§6. On the Nature of ¢ and Other Complements

(6.1) Theorem. We have
End (Ind¥ (D))= CW (D), =CW (D),
where M and A are the group and cocycle defined in (3.3) and (3.4).

Proof. Let X be the space of functions f: M —V (V being the space of D)
satisfying

fmm)=D(m) f(m) (meM,meM).
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M acts by right translation as Indﬁ(D) on X. Now define g,(we W(D)) by
o, f(x)=Dw) f(w!x). (6.1.1)

As noted in Remark 1 following (3.11), o, is independent of w. One verifics
easily that ¢,, is an M-equivariant linear transformation of X, i.e. is in End 5 (X).
We show that ¢, are linearly independent as elements of Endg(X). If

Y a,0,=0(x,eC) then Y o, 0, f=0 for each feX. Take f to be a function
weW (D) w
in X, whose support is Mu~"'. Then

Yoo, f()=Y o0, Dw) fw)=a, D) fu).

Hence «,=0 for each ue W(D), and the o, are linearly independent. Moreover
using Mackey’s formula one sees easily that dimg(Endg(X)=|W(D)|, so that
{0, |lwe W(D)} forms a basis of End 5 (X).

Next, observe that

(G, Gy /)X =D (w,) D(w,) f (w3 ' wy ' x)
=(A(wy, w,) 0w Hx).
Thus
o. 0

wi Wz—__)"(wliwz)a (6.12)

wywz’

1t follows from (6.1.2) and the definition, that End 5 (X)=CW(D),, and since
i is cohomologous to 4, the result follows. [J

(6.2) Corollary. The multiplicities of the irreducible components of Indz (D) are
the same as those of Ind§ (D*).

This is a consequence of (5.4) and (6.1), which show that the corresponding
endomorphism algebras are isomorphic.

To carry out computations in practice, it is important to determine when the
cocycle u is trivial.

(6.3 Conjecture. The cocycle u is always trivial.

We are at present unable to prove this in complete generality, but in this
section will give some sufficient conditions for the triviality of u. We begin with
the obvious remark that

(6.4) If W(D)=R(D), then p is trivial.

(6.5) Lemma. If either of the representations (i) Ind%(D) or (ii) Inng (D*) has an
irreducible constituent of multiplicity one, then p is trivial.

Proof. From (5.4) we have that EndG(Indg(D*));(EW(D),‘. Thus if Ind$ (D*) has
an irreducible constituent of multiplicity one, the endomorphism algebra
CW (D) has a representation of degree one, i.e. there is an algebra homomor-
phism {: CW(D),—C. This shows that u is cohomologous to the trivial 2-
cocycle, i.e. u=1. The other case follows by the same argument, since by (6.1).

Endg(Ind¥%(D))=CW(D),. O
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(6.6) Definition. We say that the linear character a of U (the unipotent radial of
B) is in general position if
(i) aly,*1 for aell, and (ii) |y, =1 for a¢Il.

Note that in most cases (e.g. if the characteristic is good for G), condition (ii)
is automatic for all linear characters o, since for a¢lIl, U,cU’ (the derived
group).

{6.7) Proposition. Let o be a linear character of U in general position, and let ¥
be the character of D on M,. Then the intertwining number

(Ind (*), Ind () = (&, Tnd¥x,, (@) =0 or 1
where v=wqwy, and (K, &)=v(J, ¥).
Proof. This is a formula of Rodier, and may be found in [24].

(6.8) Corollary. If the restriction y|y., contains a linear character of MU
which is in general position, then u is trivial.

Proof. In this case we may choose « so that a|y.,, is an appropriate general
position character which makes the multiplicity of (6.7) equal to 1. The corollary
then follows from (6.5). [

(6.9) Corollary. Suppose that (a) the degree of y is prime to p and (b) M contains
no component of type B,(2), C,(2), F,(2), G,(2), G,(3) or F,(2). Then u is trivial.

Proof. For such M, all linear characters of U ~M are trivial on non-fundamental
root subgroups, by a result of Howlett (Ph.D. Thesis, Adelaide University, 1974).
Since the degree of y is not divisible by p and UM is a p-group, the restriction
X}y contains a linear character, which must (c.f. [18]) be in general position
since x is cuspidal. The result now follows from (6.8). [

(6.10) Corollary. Suppose that all components of J are of type A, (for various ¢).
Then u is trivial.

Proof. For groups of type A, all irreducible cuspidal characters have degree
prime to p {c.f. [17]). Thus the result follows from (6.9). O

{(6.11) Corollary. Let B=TU be a Levi decomposition of the Borel subgroup B of
G, and let y be a (linear) character of T, whose centralizer in W=N(TYZ(T) is
W(x). Then

(i) Endg(Ind§ () = CW(x),

(i) x has an extension y to T={T,wlweW(y)>.

Proof. The first statement follows from the fact that the cocycle p is trivial in this
case, which in turn follows from (6.8) since the condition on y is vacuous.
Alternatively, one may apply (6.7) directly to the present situation, obtaining
(since J is empty)

(Indg (¢*), Indg (@)= (wo %, Indf;,(@) =1

since Ind[j, (%) is the regular representation of the abelian group T.
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The second statement now follows from the remark that u is trivial if and
only if in the general case D has an extension D from M to M; the implication
here is that y has an extension y to . [

The above special case of our result has been discussed by Steinberg and
Yokunuma (see [25] and [27]; c.f. also [12]).
The following result is proved by Lusztig in ([19], §5).

{6.12) Propesition (Lusztig). If D is a cuspidal unipotent representation, then p is
trivial.

We note in closing that Lusztig informs us that he is able to prove that p is
trivial whenever G is adjoint, by using his classification of the characters of G. It
would nevertheless be desirable to have a direct proof of (6.3).
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