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Introduction 

Let G be a connected reductive algebraic group defined over a finite field k. In 
the present work we are concerned with the complex representation theory of 
the finite group G(k) of rational points of G over k. Any parabolic k-subgroup P 
of G has a Levi k-decomposition P = M U  where U is its unipotent radical and 
M is a Levi k-subgroup of P. A complex representation p of G(k) is called 
cuspidal (or "discrete series") if the intertwining number (p, C~k~ _ Indu~k)(1))-- 0 for all 
proper parabolic k-subgroups P = MU of G. 

The Harish-Chandra principle for G(k) (see [9] or [22]) indicates that in 
order to elucidate the representation theory of G(k), two problems must be 
solved: 

I. Construct the irreducible cuspidal representations of all G(k). 
lI. Decompose representations of the form Indp~k)(DG(k) *), where D* is an 

irreducible cuspidal representation of M(k), lifted to P(k) (P as above). 

The methods of Deligne-Lusztig ([7]) have solved "most"  of problem I, 
although some work remains to be done (c.f. also [10] and [20]). The present 
work is concerned with problem II. 

Problem II has been the subject of an extensive literature in recent years (see, 
e.g. [1, 5, 10, 13] and their bibliographies) almost all of which deals with the case 
when P = B ,  a Borel k-subgroup of G (the "principal series" case). One of the 
main results of the present work is that the general case can "almost" be 
reduced to the case P =B. More specifically, we show (Theorem (4.14)) that the 
endomorphism algebra E(D)= I C~k~ D* EndG~kl (ndp(k) ( )) has generators and relations 
which are very similar to the ones which occur when P = B .  This means in 
particular that known results on rationality (e.g. [1]) and generic degrees (e.g. 
[10, 12]) for "principal series" can be applied to the general situation. We intend 
to do this in a forthcoming paper. 
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Let P = MU be a parabolic k-subgroup of G and let A be the maximal k-split 
torus in the centre of M. Let W(A) be the set of bijections: A ~ A  induced by 
conjugation by elements of G (and hence kW). Let 

w(o) = { w ~  W ( A )  I z o  o w = zo} ,  

where w also denotes the automorphism of M induced by w, and ZD is the 
character of D. This is the ramification group of D. Springer conjectured ([22], 
4.14) that E(D)~-IrW(D),, the group algebra of W(D) twisted by a certain 2- 
cocycle #. In the present work we prove Springer's conjecture (Corollary (5.4)) 
by a deformation argument due to Tits (c.f. [3] Chap. IV exx), using a generic 
algebra which arises from our presentation for E(D). We also show that 
"generically" the cocycle p is trivial. 

There are, as mentioned above, cases for which Springer's conjecture has 
been known. In particular, the case P = B  and D = 1 was the inspiration for the 
conjecture, and it has been proved in varying degrees of generality for P = B, and 
arbitrary D during the last fifteen years (c.f. [25, 27] and [12]). Apart from this, 
the result has been known implicitly for G = GL(n) since the work of Green [8] 
on the characters of GL(n, q), but in this case the theorem was derived from the 
classification of the characters, whereas its philosophy is that the opposite 
should occur. Similarly, it was also known for G =SL(n) (c.f. Lehrer [17]), post 
factum, but nevertheless significantly, since in the latter case the ramification 
groups W(D) are not necessarily reflection groups. In addition, the work of 
Lusztig ([20]) on the characters of the 'conformal '  classical groups also implies 
Springer's conjecture for the relevant cases post factum. 

It might also be mentioned here that results of a similar nature exist for 
representations of semisimple Lie groups, where certain integrals depending on 
elements of W play an analogous role to our operators BD, w (see w For 
information on this, the reader is referred to Knapp ([14, 15]) or Knapp and 
Zuckermann [16]. 

An important step in the study of the structure of the endomorphism algebra 
E(D) is the recognition of a rather large reflection subgroup of W(D), together 
with its root system (which is the projection of a subset of that of W). This is 
treated in detail (including a classification for the simple groups) in [11], and the 
main features are summarised in w 2 below. 

The basic strategy is to start with a known basis {Bw[wE W(D)} of E(D) (3.9), 
and to decompose the elements B~ as products, not of elements of E(D), but of 
homomorphisms between various spaces of induced representations (c.f. (3.12)). 
These decompositions are in analogy with the expression of elements of W(D) as 
products of certain distinguished elements v(a, K) (see (2.17) below) of W, which 
are not necessarily in W(D). Rules for the composition of these "elementary 
homomorphisms" are derived (3.16), and used to produce the presentation of 
E(D) (Theorem(4.14)). 

We remark finally that some of the ideas of which we make use already 
appear in Lusztig's work ([19], w in which he treats the case where D is 
unipotent. 
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w 1. Notation and Preliminaries 

For any affine group H defined over k, the group H(k) of its k-points will be 
denoted by H. Let B be a Borel k-subgroup of G, and choose a maximal k-split 
torus T in B. The finite group G =G(k) has a BN-pair (Tits system) (B, N) where 
B=B(k) and N=NG(T ) (k) with Weyl group W = k W = N c ( T ) / Z c ( T  ) (c.f. [2], w 5). 
We denote by Z the (relative) root system ~ (= 4~(T, G) in the notation of [2]) 
of W. The Borel subgroup B determines a positive system Z + c Z ,  and a 
corresponding s e t / - / c Z  + of simple roots and simple reflections in W. Let f(w) 
be the associated length function on W. The standard parabolic subgroups of G 
(= G(k)) are those which contain B (= B(k)). They are in bijective correspondence 
with the subsets J o f / / ,  and each parabolic subgroup P ~ B  is of the form P 
=P(k) for a unique parabolic k-subgroup P of 13. Corresponding to a Levi k- 
decomposition P = MU of P, the finite group P also has a "Levi decomposition" 
P = M U .  We define "root subgroups" of G as in Borel-Tits ([2-I, w i.e. (c.f. 
also Richen [21]) as the root subgroups of the split BN-pair (B, N) of G. 

The standard Levi decomposition of the standard parabolic subgroup Pj 
( = B W j B ,  where Wj is the subgroup of W generated by the reflections cor- 
responding to J c/7)  of G can then be expressed as follows: 

[M~=(Z U.lae2:~) 
(1.1) Pj=MsU s where [ Us=(U.pae2 +_xs)  

where Zj  is the sub-root system of Z spanned by J. In this decomposition we 
have 

(1.2) UjNP~ and Ujc~Mj=I.  

The pair (B c~ Mj, N c~ Mj) provides a split BN-pair for Mj, and the standard 
parabolic subgroups of Mj are of the form Mj. H = M  n. Mjc~ U n for subsets 
H c J .  The unipotent radical M j t ~ U  n is generated by the U, with a ~ Z f - X ,  n. 
Thus UH=Mjc~ U n. Uj, and one verifies easily that 

(1.3) the complex representation p of Mj is cuspidal if and only if (p*, India(I)) 
= 0 for all H ~J .  

Here p* denotes the lift of p from Mj to Pj. 
For w e W  we define U~*=Uc~U w and U , s  w~ (where w 0 is the 

longest element in W). Write ind(w)= [U: U~ +3 (=lU~TI). The following facts are 
well known and easily proved (see, e.g. [21]). 

(1.4) Let  v, weW.  

(i) U =  L~+ . U~ and U~+ c~ U(~ - =1. 
(ii) U~ + is the product o f  the U a with a satisfying a e Z  + and w a e Z  + ; U~ is 

the product o f  those U a with a e Z  + and w a e X - .  
(iii) For aeZ ,  w Uaw- 1 = Uw,. 
(iv) I f  f (v  w) = f(v)  + E(w) then ind (v w) = ind v- ind w. 

For any element w eW, we define N(w)={a~Z + l w a e Z - } .  The following 
assertions are then standard. 
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(1.5) (i) For any weW, we have IN(w)l:~(w), 
(ii) / f  w,w 'eW are such that ~(ww')=c~(w)+f,(w'), then we have N(ww') 

= N ( w ' ) w w ' - l  N(w). 

For each element woW, we take ~ to be a f ixed representative for w (eW 
=N/Bc~N) in N. The results of Tits ([-26]) and Borel-Tits ([2], Th6or~me 7.2) 
show that the w may be chosen so that they satisfy 

(1.6) (i) I f  ~(ww')=~(w)+~(w ') then ( w w ' ) ' = ~ , ' .  
(ii) For any elements w,w'~W, the element h=(ww')'~'  lw l of B ~ N '  has 

order at most 2. In other words, the group generated by the vO (w~W) is an 
elementary abelian 2-group, extended by W. 

We now fix a subset J c H  and an irreducible cuspidal representation D of 
M~, whose character is Xo (or Z when there is no risk of confusion). The 
ramification group W(D) is defined as above, i.e. as the group of automorphisms 
of Mj which fix Zo and which are induced by automorphisms of A (the maximal 
k-split torus in Z(M~)) which come from conjugations in G. When there is no 
risk of confusion, we write M = Mj and P = Pj. 

w 2. The  Structure  o f  W(D) 

(2.1) Proposition. With notation as above, we have W(A)~-Nw(Wj)/VV J. 

This is proved by Springer in ([-23], Lemma 2.19). 

(2.2) Lemma (Howlett [-11]). Let V he a finite dimensional Euclidean space, and 
let GcGL ( V )  be a group satisfying Gt>R, where R is a finite reflection group 
with root system 49 ~ V. Then R has a complement C in G, given by 

C:{gEG[g49 + ~ V +} 

where 49+ is a positive system in qg. 

(2.3) Corol lary .  We have N(I,V~)=VVjxSj (semi-direct product), where S~ 
= {we WI wJ =J}. Thus W(A_A_A_A_~Sj. Moreover 

W(D) = {weS~lzo(m w) =- zo(m) for all meMj}.  

The group Sj has a large reflection subgroup defined as follows. Let 
= { a e Z I w ( J u { a } ) ~ H  for some weW} .  For aef2, if L = J ~ { a } ,  let v(a,J) 
=wLw J where w K is the longest element in WK. 

(2.4) Lemma (Howlett, op.cit.). Let a E F I - J  and write v=v(a,J), L = J ~ { a } .  
Then 

(i) N (v) = 27~ - S j ,  
(ii) v J = K ~ L ( ~ H ) ,  

(iii) I f  { b } = L - v J ,  then v(a,J) l=v(b,K)=v(b,  v J), 
(iv) v 2 = l ~ v J = J ~ v ~ S j .  

Let f2 = {a~ff2lv(a, j)2 = 1 }. 
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(2.5) L e m m a  (Howlett ,  op.cit.), f2 is the root system l of the group 

R j = ( v ( a , J ) l a ~ ) .  

This is best seen by project ing Q to ( J ) •  The v(a, J) then become reflections 
in ( J ) •  which generate a reflection group whose root  system is the project ion 
of(2. 

(2.6) Corollary.  Rj has a complement Cj in S j, where 

C j=  {w~S~[w~ + c (2+}. 

Thus Sj = Rj ><1 Cj is a decomposi t ion  of Sj as a semi-direct product  (here Q+ 
=(2c~S+).  

The purpose  of the next L e m m a  is to show that  W(D) has a decompos i t ion  
similar to the one of Sj given in (2.6) (c.f. (2.3)). 

Let F be any subset of  the root  system f2 which satisfies 

(i) If  a~F then v(a, J)~ W(D). 
(ii) If  a~F and w~W(D) then waiF.  

(2.7) L emma .  With F as above, we have 

(i) Rr(D)=(v(a, J)[a6F) is a normal reflection subgroup of W(D) whose root 
system 1 is F, and Fc~Z+=F + is a positive system in F. The set A 
= {a ~F + ] N (v (a, J)) c~ F = {a} } is the corresponding fundamental system. 

(ii) W(D) is the semi-direct product W(D) = Rr(O ) >~ Cr(D ) where 

Cr(D)= {weW(D) lwr  + o r + } .  

This is a simple appl icat ion of (2.2). 

(2.8) L e m m a .  For  a~(2~H write L = J w { a } .  Then indv(a,J)=]Vjl/laLI in the 
notation of (1.1). 

Proof We have v(a, J ) =  wrw J and r~(v(a, J))=c~(wr)-{(wj). By (1.4) (iv) it follows 
that  ind v(a, J) =( ind  wr) (ind w j) 1. But Uc~ U "J = Uj by (1.4) (ii), and the result 
follows. [ ]  

(2.9) For  w e W  such that  w J c l I ,  define the group 

U ~ j = ( U ,  la~S + - S w j ,  w - l a < O ) c U w j .  

(2.10) L e m m a .  Suppose that aeH is such that v(a,J)eSj.  Then indv=lU~. j I  
where v = v(a, J). 

Proof We have  Uv~j=(U,,la~S + - S j ,  va<O) since v 2 = l .  But N ( v ) = S ~ - S ]  
where L = J w { a } ,  by (2.4)(i), and so N(v)c~Zj is empty.  Thus U,,,j 
=(U,  laeN(v) )= U~-, and the result follows. [ ]  

Let f = { K c I I I K = w J  for some w~W}. 

1 It should be noted that O and F are not root systems in V. They only become root systems in the 
usual sense when projected to (J)• 
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Then for any K % r  we may define the sets ~K and f2r~ of roots corresponding 
to ~ and (2 which were defined above for J. Of course ( 2 K = H - K ,  

(2.11) Lemma ([11], Lemma 5). (i) Suppose H e J  and that w H = K c H .  Then 
for all a s H - K ,  we have 

K)w)=~f(w)+g(v(a,, K)) if w- 1 aEZ+ 
E(v(a, 

~f(w) - Y(v(a, K)) if w- l as1;- .  

(ii) I f  wsW, Ksor  and w K c I I  then there exist Kie J ( i=1,2 . . . . .  n + l )  and 
aie H - K~ (i= 1, 2 . . . . .  n) satisfying 

(a) K ~ = K ,  
(b) v(a,, K,) K,=K,+ ~ (i= 1, 2 . . . . .  n), 
(c) w = v(a,, K,) v(a,_ 1, K,_  1)... v(al, Kt), 

(d) ((w)= ~ {(v(al, K,)). 
i = i  

An expression as in (c) above shall be referred to as "a standard expression" for 
w~ W,, and written 

w=v(a , ,a ,_  1 . . . . .  a~,K). 

We conclude this section with two group-theoretic results concerning G, 
which depend on properties of root systems, and which we shall require later. 

(2.12) Lemma. Let w s W  and suppose H = w J s ~  (i.e. c I I ) .  Then 

Proof If v s W  H then E(vw)=((v)+E(w) since w-lae,Y, + for all as2;~. Hence 
B v B w c B v w B  and so 

w U s w - I ~ B v B = [ w  U sc~BvBw] w- 1 

c [ B w B ~ B v w B ]  w-  1 

=0 unless v= 1. 
Thus 

w U j w -  l c~PH=wUjw- ' a B  

=w(U c~wsUws) w- l c~B 

c U c ~ w w j U w s w  - I  

where w s is the inversion element in Wj. 
But Uc~wwsUwsw-  l = ( U ,  lae,F, + and WsW- l asN + ) 

(by (1.4) (ii)) c ( U,[aeS, + - Zn )  

=u,,. [] 

(2.13) Proposition. Let H s J  and take a s I 1 - H .  Write v=v(a, H), L = H w  {a} 
and K = v H ( c L). Then we have 

(i) vUuv-  l nPK=UL 

(ii) WLraSKc {1, v}, where SK= { w s W I w K  =K} (c.f. (2.3)). 
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Proof. (i) Since K = v H ,  we have from (2.12), with H replacing J, that 
v U n v -  t c~ P~ c U r ~ U. Moreover N (v - ~) ~ 2 L ((2.4) (i)) and v 2 n = 2 x = S, L. Hence 
i f a ~ S  + - Z  L, v -  l ae  S + - S n. Thus v - 1 U L v ~ U n ,  whence UL c v Un v -  l c~ U. 

Conversely, we have U n = U c ~ w u U w u ,  so that v U n v - l n U ~ v U v  -~ 
r~wL U wL c~ U = U L (recall that v =  wL wn). Thus v Ui~v-~c~ U =  UL, and the result 
follows. 

(ii) Suppose t eWLc~S K. Since t K = K  it follows that t b 6 S , - ,  where {b}=L 
- K ,  or else t = l ,  since N ( t ) = Z  L. 

By (2.11), ( ( t v (b ,  K ) -  ~)={(v(b,  K)  t -  ~ ) = ( ( t ) - f ( v ( b ,  K)). But since t Z ~  = Z  + 
and N ( t ) = Z { ,  f ( t )  is at most [ Z { - S , ~ [ ,  which is #(v(b ,K))  by (2.4). Hence t 
= v (b, K). 

But v ( b , K ) = v ( a , H )  a by (2.4). H e n c e t = v = v  -1. [] 

w 3. The Endomorphism Algebra E(D)-Basie Relations 

We now fix a complex vector space V, and an irreducible cuspidal representation 
D : M  s --* GL(V).  Denote by E(D) the endomorphism ("commuting") algebra 

E(D) = End~(IndpG~ (D*)) 

where O* is the lift of D from M s to Pj through the projection Pj ~ M  s with 
kernel U s . 

For any w e W  such that w J c H ,  define a representation ~D of Mws in V by 
transport of structure: 

( 3 . 1 )  ( v ~ D ) ( x ) = D ( v C - ' x ~ )  ( x e M w s = ~ M s ~  ~). 

When w e W ( D ) ,  then by definition the representations D and wD of Mj are 
equivalent. Hence by Schur's Lemma there is a linear operator /50+) on V, 
uniquely determined to within a scalar multiple, such that 

(3.2) (#O) (x)=/)(#)-  10(x) D(#)  ( xeMs) .  

By uniqueness, we have, for any two elements wl, w2eW(O), 

(3.3) /5(~1 if2) = 2(w t, w2)/5 (if,)/5 (~'2) 

where 2: W ( D ) x  W ( D ) ~  is a 2-cocycle. 
Moreover by replacing 2 with an equivalent cocycle if necessary (i.e. replac- 

ing the /)(v~) by appropriate scalar multiples), we may assume that (c.f. [6], 
Theorem 63.7) 

(3.4) For any u, v, w e  W(D), we have 

(a) 2(u, v) 2(uv, w)= 2(u, vw) 2(v, w), 
(b))~(u, v) is a root o f  unity, 
(c) 2(u- 1, u)=2(u, 1)=2(1, u)= 1, 
(d) 2 ( v - l w - l , w ) = 2 - l ( v - l , w - l ) = 2 ( w , v ) .  
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Let I(/I = (m, ~[meMj, we W(D)); then M is an extension (possibly non-split) 
of Mj by W(D). Define the projective representation/5 of M on V by 

(3.5) D(m~4)=D(m) D(~) (meMj, weW(D)). 

But 

Hence 

It is then trivially verified that for xeMjw and yeMsv (w, veW(D)), we 
have 

(3.6) /5 (x y) = 2 (w, v) D (x) D (y). 

The representation R=Indp~j(D *) is realised on the space F=F(Mj,  D) of 
functions f :  G ~ V satisfying 

(3.7) f (xy)=D*(x) f (y)  (xePs, yeG). 

The group G acts by right translation on F(Mj,D): for f eF ,  geG, R(g)f(x) 
=f(xg) .  

Define the following operators on F: for weW(D), f e F  

(3.8) (Bwf)(x)=lUjI 11~(w) ~, f ( ~  'yx). 
yeUa 

(3.9) Proposition, (i) For each weW(D), BweE(D). 
(ii) The set {BwlWeW(D)} forms a l~-linear basis of E(D). 

This is proved in ([23], pp. 635-636). 
In order to study how the B w compose, we introduce the following maps. 

Suppose weW is such that wJcFl .  The map Bo, w: F(Mj, D)~F(Mwj ,~D ) is 
defined by 

(3.10) (BD.,f)(x)=lUwj[ -1 ~ f (~ , - ' y x )  
yEUwJ 

where f eF(Mj ,  D) and xeG. 

(3.11) Lemma. Suppose w c W is such that w J c II. 
(i) BD, ~, is a G-equivariant map from F(Mj, D) to F(Mwj, wD). 

(ii) We have (Bo,~f)(x)=lU~j1-1 ~ f( f f  - l y x )  for f eF(Mj ,  D) and xeG, 
where U ~ j =  Uwj~ U w 1. r~v~,~ 

(iii) I f  weW(D), then Bw=D(~)Bo, ~. 
(iv) For any heBc~N, we have Bo,~h =D(h-1)Bo,,,. 

Proof (i) If meMwj ( = ~ M j ~ - 1 )  and f eF(Mj ,  D), then 

(Bo,~f)(mx)=lUws[ -1 ~ f ( f f - l ymx) .  
yeU~j 

v~- l ym x = vr - l m(m - l ym) x =(~- lm~) if- l(m- l ym) x. 

(BD, w J) (mx)=tUwjl- l D(~r162 
z~UwJ 

= (~,D)(m)(BD,,f)(x). 

f ( ~ -  I zx) 



Induced Cuspidal Representations and Generalised Hecke Rings 45 

Moreover if ueUws, clearly (Bo, ~ f)(ux)=(Bo,,+ f ) (x) .  Hence for any aePws, we 
have (Bo, ~ f )  (a x) = (vr (a) (BD, ~, f (x) ,  and so Bo, ~ f e F ( m w s ,  ~ D). It is trivial 
that Bo, w is G-equivariant. 

(ii) This follows from the fact that each element y of Uws has a unique 
expression (c.f. (1.4)) y = yl Y2 where yl e U + s = Uws c~ U + , and Y2 e Us s, together 
with the remark that for ueU+s, D ( ~ - i  u~?)= id v. 

(iii) and (iv) are simple observations. [] 

Remarks 1. Note that from (iv) above, and (3.5), it follows that Bw=/)0+ ) Bo, ~ is 
independent of the representative ~ of w, given the choice of the projective 
representation/5 of ]~. This justifies the notation. 

2. For any me fT/ we could equally well define operators 
Bo, m: F(M s, D) ~ F ( M j ,  mD) just as in (3.10). This will be implicit in some of the 
statements which follow. Similarly, for any neN,  we have 
Bo,,: F(Ms, D) -*F(M,s ,  nD), whenever n J c I 1 .  

We now derive the basic relations for composing the BD, ~. 

(3.12) Proposition. Let w I and w 2 be elements of W such that w 2 J c H ,  
Wl W2J c FI, and ((Wl Wz)=((W1)-]-[r(W2). Then we have 

BD, (wl w2)" = Bw2D, ~', BD, ~2" 

Proof. Take f e F ( M  s, D). Then we have 

(B:r Bo.,+2f)(x)=IU./~w~,JI ~ (BD, g '2f)(Wlly x) 
YEU~,'I wz, J 

=lU~;~w2.s1-1 ~, IU~72,sl ~ f ( w z l z ~ l y x )  
YeUwl w2, J zEUS'2. J 

=]Uw~wz,J[ t I U~?2,JI- 1 2 f ( W z l W 1 ' ( w l z l + l  1)yX)" 
YEU~'lW2,J 

zEUS' 2, J 

But Uw~,s=(Ualae(X + - S w ) C ~ N ( w ]  1)). Hence 

~)1 Uw2,J W1 1 = ( U~lae(w 1 X+ - Z . . . .  j )  f-h W 1 S (w2 1)). 

Moreover since f (w]  1 w~ 1)=:(w 2 1) + ( (w  11) we have 

N(w]  i w~ l ) = N ( w t  1)wwl N(w 2 l) (1.5(ii)). 

Thus ~lU~-~,s~;' =<U~lae(S + - s  . . . . .  )r~N(w~ ~wl  ~)> = Uw . . . .  s. 

Hence the summand on the right hand side above is independent of z, and the 
whole expression may be written 

]Uw, w2,S[ ~ f(vr �9 
y E U w  I W2, S 

The result follows since ~ w2 =(wl w2)" by (1.6)(i). [] 

(3.13) Lemma. Let L be a subset of 17 which contains J. Denote by F~ 
---F~(M s, D) the linear subspace of F = F(M s, D) consisting of { f e F [ s u p p f c  P~}. 
Then we have 
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(i) Any element BeE(D) is determined by its action on F L. 
(i) The space EL (D)= EndpL (FL) has linear basis {ResrL (B,.)[W~ WL C~ W (D)}, 

where ResFL denotes restriction to F L. 

Proof. (i) is trivial, because F is a sum of G-translates of F L, and the action of B 
on any translate is determined by its action on F L. 

(ii) The representation of PL o n  F L is IndpjP~ (D*) = [indej~M ~ M ~  (D*)]* where the 
*'s denote the lift through the appropriate unipotent radical. Thus 

Endp~(FL) = EndML(FL) = EndM, (IndpM*LML (D*)). 

Since ReSFL is injective ((i) above), the set {ResF,(Bw)[W~WLC~W(D)} is 
linearly independent. But by (3.9)(ii) and the above remarks, dimcEL(D ) 
=IW Lc~ W(D)[, whence the result follows. [] 

(3.14) Proposition. Let a ~ l l - J ,  and write v=v(a,J), L=Jw{a} .  Then we have 

Bop., ~ ,BD, e=(indv) ' id+flS~ 

where titlE, and f l=0  unless yeW(D). Moreover when yeW(D), (indv)fl is an 
algebraic integer. 

Proof. By (3.11)(i), B=BeD, e ,Bo.,~eE(D ). Moreover, since yEW L, B fixes the 
subspace F L. Hence by (3.13), B is a linear combination of {Bw[ We WLr~ W(D)}. 
But from (2.13)(ii), we see that WLC~ W(D)c  {1, v}, whence 

B=c~id+flB~, and f l=0  unless yeW(D). 

To find ~, fl observe that 

( B f ) ( x ) = l U v - , v j l - l ] U v ,  ji 1 E f(iJ-~ziJY x) 
ysU~ 1,v J 

z~U~,d 

-=af(x)+flb(t))lU~,J] -1 E f(iJ-'yx). (3.14.1) 
yeU~,3 

Now take eeV and let f=f~ be the unique element of FjcF  such that f~(1)=e. 
Then f~(t)=0 for tq!Pj, and ig-lzi)yxePj (above)~=~t)-lz~ePj. But U~j 
=(Ua[aeZ+-Zvj ,  v-la<O), so t h a t  t)-l  Uv, jt ')--=(ga[ac(v-l X + - Z j ) ~ Z  ). 
Thus 6- 1 z6ePs only when z=  1. Hence 

But 

(Bfe)(1)=lU~,---~,~jl-' [U~.jI ~ ~ f~(y) 
y~U~ 1, ~a 

[U  v 1-1 , j  e 

= ( ind v ) -  ~ e. 

((~idF+flB~)f~)(1)=ae+flF)(v)[U~Tj] -~ ~ f ( ~ - ' Y )  
y~ U~. j 

~ e .  

Hence ~ = (ind v)- ~. 
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To determine fl, take . f=f ,  and x =  5 in 3.14.1. We obtain, using the same 
argument as above, together with the fact that U,,. ~, x = U~ 

fl(indv)e=/)(~) -~ ~ f ( i ) l z ~ y (  0 
Y, z ~ U  v 

=/ ) (v ) - '  2 f(t). (3.14.2) 
t ~ P a  

li~*: teL,', OU, 

Since f ( t )=D*(t)e ,  and (3.14.2) holds for each e~V, we have 

fl(ind v)/} (t))= ~ D(m) (3.14.3) 
t E P j ,  t = In U 

or equivalently, 

fl(ind v)idv = X /)(1) ~m). 
t ~ P 2 , t = m U  

~t~ ' e b ]  t!L] 

From this last equation it follows that fl(ind v) is an algebraic integer, since 
the (projective) representation /) of .~ is equivalent to a representation over 
some ring of algebraic integers. [] 

Note that Eq. (3.14.2) provides, in principle at least, a practical method for 
determining ft. We give an example of the computations in (4.15) 

An easy calculation proves the following 

(3.15) Lemma. (i) Let m, n~M. The mapf~--,D(m)f is an isomorphism from 
F(Mj,  nD) onto F(M~, nm 10). 

(ii) Let melt4 and n~N. Then we have (assuming nJ ~ H) 

BD. , D(m) = D(m) BraD" ,,. 

(3.16) Corollary. With notation as in (3.14), we have 

(i) I f  v(~ W(D), then 

B i ) D , ( v -  ~) " BD. l: = iJO((v- 1).- 1 O- 1)(ind v)- 1 
= D(li- 1)(v i) '-  1)(ind v)- 1 

(ii) I f  ve W(D), then 

B~ =(ind v)- l id + flB~,. 

Proof. (i) Since (v-1).=~ l[t~( v- 1).], this follows from (3.1 l)(iv) and (3.14). 

(ii) From (3.11)(iii) we have B,, =/)(5) BD,,~. 

Hence B~ z =/)(~)2 B~;D ' ~ BD" ~ (using (3.15)). But 5 = 5- 1 (~)2 (recall v2= 1)and so 

B~=b(iD2D((i~)2)((indv)-lid+flB~,) (from (3.14)). 

Moreover /~(b)z-=)~(V,V) /~(~2)=D(~2) since 2(v ,v)=l  by (3.4)(c). The result 
follows. [] 
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We remark that the statements (3.13), (3.14), (3.15) and (3.16) all hold with J 
replaced by any element K of J ,  and D by an appropriate representation of M K. 
We shall freely make use of the statements in their more general form. 

(3.17) Corollary. For any we W such that wJ c F1, the map BD, ~ is invertible. 

Proof From (2.77)(ii), w has an expression 

W=V(an, Kn) v(a,_ 1, Kn- 1)'--v(al, KI) 

such that K l =J,  v iKi=Ki+ 1 (vi=v(ai, Ki)), and t(w)= ~ I(vl). 
i=1 

Hence by (3.12), we have 

BD,~ ,=B~ ._~  ...~ID, f2 . . .  BS~D,O z BD, O~" 

However, it follows from (3.16) that if u J = K c H ,  and a ~ H - K ,  then 
Bao, e~a,K ) is invertible. Hence Bo, ~ is invertible, since each factor on the right 
hand side above is of this form and hence invertible. [] 

We now obtain more specific information concerning the fl of (3.14). 

(3.18) Theorem. Let a d I - J ,  L = J w { a }  and assume that v(a,J)6W(D). 

(i) The representation P~ * Inde~ (D ) is the sum of  two inequivatent irreducible 
components, which have degree d and p'd, where pC is an integral power of the 
characteristic of k. 

(ii) The number fl appearing in (3.14) and (3.16) satisfies 

f12 = (pC _ 1)2~pC ind v. 

Proof (i) As we observed in (3.13)(ii), Ind~,'y(D*)=(Ind~nML(D*))*. Hence for 
the purposes of the theorem, we may as well take L=I I ,  so that PL=G 
(effectively we are replacing M L by G). 

By (3.9)(ii), EndG(Inde~ (D*)) has dimension 2, and has basis id and B,,. It 
follows that IndeG (D *) has two inequivalent irreducible components, whose 
characters we shall denote by r r with r Writing R for the repre- 
sentation of G on F(Mj ,  D)=F, the projection p~ of F onto its ~-isotypic 
component is given by 

~(1) 
P r  ~ ~(Y-1)R(Y). 

y~G 

It is a non-zero, non-identity element of E(D), hence a linear combination of 
id and B~. Thus we have 

pr idr +/~B ~ (~,/~11~). (3.18.1) 

Applying both sides to f e F ,  and evaluating at xeG, we obtain 

r 
IGI Z ~ ( Y - 1 ) f ( x Y ) = 2 f ( x ) + ( i n d v ) - ~  PDff) ~ f f f  -~zx) .  

yeG zeUs, a 
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Now take f = f ~  and x = 1 in the above equation:  

~(1) ~ ~(y_l)D,(y)e=2e+O. 
IG[ y~v~ 

~(1) 
But ~ ~ ~(y- l) D*(y) is a scalar multiplication in V by Schufs  Lemma  (V is 

yePj 
an irreducible Ps-module), and the scalar is given by 

~(1) 
1 ~(1) ~ ~(y_~)zD,(y)__dimVLG[ [Psl(~,ZD*)pj dim V [G[ ~,~e~ 

= r [dim V[GI/IPs[]- 1 since (~, ZD*)Pj = (~, ;(Do*)= 1 

= r 0 ) / ( ~ ( 1 ) +  ~'(1)). 

Hence 2 = ~(1)/(~(1)+ ~'(1)). 
Now let r/, v be the eigenvatues of B~,, i.e. the roots of X 2 = ~ +  fiX, where 

=( ind  v) -1 and fl are as in (3.14). 
F rom (3.18.1), the eigenvalues of p~ are then 2 + p q  and 2+pv respectively 

and since these are 1 and 0 (p~ is a projection on to a non-trivial subspace) we 
have 

2 + p q = l ,  2 + p v = 0 .  (3.18.2) 
Hence 

r/v -1 = - ( 1  - 2 )  2-  ~ = - r162 (3.18.3) 

Now (ind v)r/ and (ind v)v are algebraic integers, since they satisfy ( ~ ) z  
\ l l l l d  U / 

= ~ + fl ( ~ ) ,  i.e. X z = ~(ind v) z + fl(ind v) X, and by (3.14) cr v) 
~ x  

and fl(ind O) 

are integral. 
Also r/v = - c~ = - (ind v)- 1, whence r/v- 1 = r/2 (?~ V) 1 = - -  ?] 2 (ind v). Therefore  

qv-l(ind v) is integral. But the same argument may be applied to vq-1 to show 
that vr/-~(ind v) is integral. Since (ind v) is a power of p (the characteristic), this 
implies that  qv-l= +p~, ce7Z. Since ~'(1)>r we have 

~'(1)=pr c > 0 ,  which proves (i). 

(ii) We deduce the value of fl from the equation X z = ~ + f l X ,  which has 
roots q, v. We have qv-  1 = _pC and r/v = - ( i n d  v)- 1. Hence ~/2 =p~(ind v)- a and 
vZ=(p~indv)-t. Hence fl2=q2+v2+2qv=(p~-l)Z/pC(indv). [] 

Suppose now that  aef2, v(a,J)eW(D) and that wEW is such that wJ=K, wa 
= b  and Kw{b}=L~H.  Let  H---Jw{a} and let M n be the image of M L under 
the map ad ~r x~__,~-lx~. This map takes M K to Ms, v(b, K) to v(a, J), and 
MLc~P K to a parabolic subgroup Pj,,+ of M~. The group Pj,~ has a Levi 
component  Ms, and the representat ion IndMfl,~ (D*) decomposes  into irreducible 

" M L  * ' components  m the same way as IndM~v, , (~D ) (ad ~ transports  structure ), 
viz. into two irreducible components  of degree d' and p~'d' (c'=> 0) by (3.18), 
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(3.19) Definition. For a ~ Z  such that v(a ,J )~W(D) ,  define pa=p C' where c' is as 
in the above preamble. 

To justify this definition we have 

(3.20) Lemma. The integer p, defined above is independent of  w (and hence of  
K ) .  

Proof  First, notice that M n = <B n N, Ua la~Xn)  is independent of w. Next, let Q 
be any parabolic subgroup of M n, such that Q has a Levi component equal to 
M s. Then it follows from Springer ([22], Theorem 4.7) that the equivalence class 
of the representation Ind~tH(D *) is independent of Q; for if Qt and Q2 are two 
such parabolic subgroups, and the corresponding characters of the induced 
representations are ~1 and g2, then we have for the intertwining numbers that 

I W(D) c~ Wnl--(Z1, ~I)=(Zl, Z2)=(Z2, Z2)- 

Hence (Z1-Z2, Z1-Z2) =0, i.e. Z1 =Z2. The result follows. [] 

(3.21) Definition. Write F ' =  {a~X ] v(a, d)Z = 1 and v(a, J)~ W(D)} and write F 
= { a ~ F ' [ P a + l  }. 

(3.22) Lemma. Let  a e F '  and w~W(D) .  Then pw,=po. 

Proof  Let H = J u { a } ,  H ' = w ( J w { a } ) = J u { w a } ,  and let Q' be a parabolic 
subgroup of M n, which contains Ms as a Levi component. Then the map 
ad ~ -  ' : x ~ - ~ -  ' x~  defines an isomorphism from Mu, to M n which takes Mj  to 
Ms, and Q' to a parabolic subgroup Q of M n, which also contains Mj  as a Levi 
component. Moreover, composition with a d ~  -1 takes the representation 
Ind~f~(D *) of M n to Ind~,H'(u?D*). But ~D is equivalent to D, and hence 
Ind~,~(wD *) is equivalent to Ind~,~'(D*). Thus Ind~'~(D *) and Ind~,'*(D*)have 
irreducible components of the same degree, and it follows from the definition 
that p~.= p~. [] 

(3.23) Corollary. The set F ((3.21)) is invariant under W(D). 

w A Presentation for E(D) 

In this section we use the basic relations among the Bw(w~W(D))  derived in w 
above to give a simple presentation for E(D)=EndG(Ind~j (D*)  ), which makes 
the application of generic algebra methods possible. 

(4.1) Lemma. Suppose w e W  is such that wJ~Fl  and take a ~ l T - w J .  Write v 
= v(a, w J), and assume that either 

(i) w -  1 a~S+ or 
(ii) w -  1 aCF. 

Then we have 

Bwn ' ~ BD,, = I(ind v)- 1 (ind w)- ' (ind vw)l ,/2 BD ' ~*. 
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Proof If w - l a ~ Z  + then ( ( v w ) = ( ( v ) + ( ( w )  (by (2.11)) and the result is clear 
from (3.12). 

Thus we may assume that b = w - l a ~ Z  - -F ,  by (ii). In this case ( (vw)=d(w)  
-((v),  and if Wl=VW, we have w = v - ~ w ~ ,  with { (w)=#(v-1)+(Wl) .  Further, 
if L = w J w { a } ,  and { c } = L - v w J = L - W l J  , then v -1=v(c ,w~J )  (by (2.4)(iii)). 
Hence from (3.12) we see that 

whence 
BD, ~ = B~ID,(v-1 ) . BD,~I, 

BwD, ~ BD, g~ = B~D, ~i Bw I D, (v- ~)" BD, (vw)" (4.1.1) 

To evaluate the product of the first two terms on the right above, we apply (3.16) 
with D replaced by wl D, and v replaced by v-1. 

First suppose that v - ~  W(~ 1D). Then by (3.16)(i), 

B~+D, ~ B,~,O,(v 1)" ~---W1 D((v- l).- a 15- 1)(in d v- 1)- 1 

_ DO4]- i(v- 1).- 1 5- l ~l)(in d v)- 1 

= D ( ~ -  1 ~- l(vw)-)(in d v)- 1 

since ~ = ( v -  1)'w 1. 
Combining with (4.1.1) and using (3.11)(iv), we see that 

B~D, (  ~ BD, ~ =(ind v)- 1 BD, e ~ 

= [(ind v)- 1 (ind w)- 1 (ind vw)] 1/2 BD,~w 

since ind w=(ind v- 1) ind w 1 =ind vind vw. 
Finally, if v-1 e W(~l D) then v2= 1, and v w J =  w J, whence 

(4.1.2) 

W - -  1 VW -~- W -  1 v(a ,  w J) w = v(b,  J ) e  W (D). 

But by hypothesis b = w - l a r  whence pb=l .  By the familiar "transport of 
structure" argument (c.f. the proof of (3.22)) this implies that in the computation 
of B~D, e B,,D,~, the parameter fl of (3.14) is zero, by (3.18)(ii). Hence we again 
obtain (4.1.2) and the proof proceeds as above. [] 

(4.2) Main Lemma. Suppose v~W(D)  and w e W  is such that w JoE1.  I f  
v -1 a ~ Z  + .for all a ~ F ~ N ( w )  (i.e. N ( v - 1 ) ~ N ( w ) c ~ F = O )  then we have 

B~D,~ BD, ~ = [(ind w)- 1 (ind v)- 1 (ind wv)] 1/2 Bo, w~. 

Proof This is by induction on ((w). The case E(w)=0 is trivial. If ((w)>0, there 
is a set K c I I  and a e l I - K  such that 

w = v ( a , K ) W l ,  w l J = K  , and ( ( v ( a , K ) w O = { ( v ( a , K ) ) + ( ( w  O. 

Write v 1 =v(a, K). Then by (3.12) we have 

Bi;D, ~ = Bg, j i~D, ~ B~D, g, ~. (4.2.1) 
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Moreover  since N ( w ) ~ N ( w O ,  we have N(v - l )nN(wl ) c~F=O,  so that  the 
inductive hypothesis yields 

Beo,~ ~ Bo ,~=[( indwO-l ( indv) - l ( indwlv)] l /2  Bo,~,e. (4.2.2) 

Combining (4.2.1) and (4.2.2), we are left with the problem of evaluating 

For this we use (4.1), and so we need to show that the hypotheses apply: if 
v -1 w ~ l a ~ Z  +, then since N ( v - 1 ) ~ N ( w ) ~ F = O ,  we have w~aaq~Fc~N(w). But 
w y l a e X  + and w w y l a = v ( a , K ) a e Z  -.  Hence wyaaeN(w) ,  from which it fol- 
lows that  wi -~ a~/:. But yeW(D), and F is W(D)-invariant ((3.23)), so that 
v- 1 w~- t a~E  Thus we may apply (4.1) (with wl 6 in place of w) to deduce that 

B~, ~D, ~ BD, w l ~ = [(ind v 1)- 1 (ind (w 1 v))- 1 (ind v 1 w 1 v)-I 1/2 BD ' ~, ~ ~. 

Combining this with (4.2.1) and (4.2.2), using the fact that w = v l w  1 with 
f (w)=~(v l )+[(wl ) ,  we obtain the required relation. [] 

We are now in a position to give a complete set of relations for the basis 
{B~ ] we W(D)} of E(D). Recall first (c.f. (2.7)) that  with F as defined above ((3.21)) 
the ramification group W(D) has a semi-direct decomposit ion W(D)=R(D).  
C(D) (R(D)~_W(D)) where R(D)=Rr(D ) and C(D)= Cr(D ) in the notat ion of 
(2.7). In particular R(D) is a reflection group with root system (the projection to 
( J ) •  of) F and fundamental  system (the projection to <J)~ of) A 
= { aeF+ I N(v(a, J))c~F = {a}}. 

(4.3) Proposition. With notation as above, let we W(D), te C(D), aeA and write v 
= v(a, J). Then we have 

(i) B w B, = [(ind w)- a (ind t)- 1 (ind w t)] ~/z 2 (w, t) Bw,. 
(ii) B t B w = [(ind t)- ~ (ind w)- 1 (ind t w)] ~/2 2(t, w) Btw. 

(iii) I f  w a i F  + then (i) holds, with v replacing t. 
(iv) I f  w-1 a~F+ then (ii) holds, with v replacing t. 
(v) B~ z =( ind v)- 1 i d + ~ , ( p , -  1)/(p~ ind v) lie B~. 

Proof (i) We have 

BwB,=fi (~)  BD,~ ff)(i) Bo, i 

=/)( i f ) / ) ( i )  BID,, BD, i by (3.15)(ii) 

= 2(w, t)/9 (~ i) I(ind w)- l(ind t)- 1 (ind w t)l 1/2 BD" ~i 

by (4.2), since N ( t -  ~ ) ~ F = 0 .  
But D(~i)BD, wt.=B~, (c.f. Remark 1 following (3.11)), and the statement 

follows. 
(ii) The proof is the same as (i), with {4.2) being applicable because N(t)c~F 

=0.  
(iii) The proof is again the same as (i), since 

N(v-  1 ) ~ N ( w ) ~ F ~  {a} ~N(w)=O.  
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(iv) Here N ( w - 1 ) c ~ N ( v ) c ~ F c { a } c ~ N ( w - t ) = O ,  so that again (4.2) applies, 
and the proof is the same as in (i). 

(v) There is an element u e W  such that u ( J w { a } ) = K w { u a } = K w { b } = F l ,  
and writing v 1 = v(b, K),  we have v = u - l v l  u. Moreover by ([11], Theorem 8), u 
may be chosen so that ( ( v ) = 2 ( ( u ) + r  

Hence in particular N(u)  ~ N(v).  So N(u)c~F c N(v)c~F = {a}. Moreover since 
u a = b E X  +, we have N(u)c~F=0. Hence from (4.2) we obtain that 

B~;D, a BD, ~ =](ind u)- X(ind v) l(ind uv)[ 1/2 BD, a~. 

On the other hand 

BaD. ,i, BD, a = BD, i~, a = BD, (v~ u)" . 

Combining these two equations, we see (using (3.11)(iv)) that 

B~;D, a BD, ~ = 7 D (h) BaD ̀  ~1 BD, a (4.3.1) 

where 7 = [(ind vi)(ind v)- 111/2 and h = 7)- 1 fi l (uv)'. 
Composing the two sides of (4.3.1) on the left with/)(t~) and using (3.15)(ii), 

we obtain 

BD, a B , = 7 [ (fi- 1 (u v)') BaD , § BD, u" (4.3.2) 

But (uv)'=~lfi, whence fi l (uv) '=t i - I  t~Lfi. Hence 

b(~- 1 (u v)')=/5(Li-' ~, ~)= ff5(~), 

where ziD has the obvious meaning (observe that v le  W(fiD)). Thus 

/~(t~ l (u[)  ~ BaD ,~: = ~'D(i~,) Ba~ ,~, = B~ sE(fiD).  

Substituting into (4.3.2), we see that 

BD, a B =yB~ BD, a. (4.3.3) 

Hence 

BD, ,i t~, -- _ 2 t~,,"2 BD ' a (applying (4.3.3) twice) 

= yz [(ind Vl)- 1 idaD +--(Pb-- l)/(Ph ind v:) 1/2 B,,,] BD. a (by (3.18)) 

= BD ' fi [-.~2 (ind va)- 1 idt) _+ y(p~ - 1)/ph(ind v~) a/2 B,]. 

Finally, note that P,=Pb by definition and that BD, a is invertible by (3.17). The 
result follows on substitution of the value of 7 (=  [(ind v0(ind v)-1]L/2). This 
completes the proof of (4.3). [] 

We shall now modify the basis {B~ ]we W(D)} of E(D) to produce a "norma- 
lised basis" which has a particularly simply multiplication table. 

(4.4) Definition. If a s A  and v=v(a ,  J), define 

T = e a ( p .  ind v) t/2 B~, where ~. is as in (4.3)(v). 

It is then a simple consequence of (4.3)(v) that 
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(4.5) To2=p~id+(p-1)  T~. 

(4.6) Lemma.  Let w~W(D) and let a and b be elements of A such that wa=b. 

B u t  

and hence that 

2(uw, v)= 2(vw- I u, uw) (by (3.4)(d)) 

=,~(w- ~, uw) 
= 2 (w- 1 u w, w- ~ ) (again using (3.4) (d)) 

= ;t(v, w -~) 

= 2-  ~ (w, v) (again by (3.4) (d)). 

Similarly, 2(u, w v)=  2-1 (u, w). 
Hence from (4.6.3) we deduce that 

2(u, w)2 = ;~(w, 0 2. 

It follows from (4.6.1) and (4.6.2) that 

BwTv=eT. Bw, e= +1. 
Therefore  

BwTo2=~T.B~ T~=e 2 T~Z B~= T.2 Bw. 

Using (4.5), this implies that  

Bw(Pa id + ( p , -  1) Tv)= (p b i d + ( p  b -  1) T,)B w, 

( p . -  I) Bw T~=(Pb-1)eBw T v. 

Since p. = p. ~ 1 (since a, b6 A c F) we have that e = l, and the result follows. [ ]  

(4.7) Lemma.  Let w~R(D) and suppose that w = v  1 . . . v .=u  1 . . .u.  are two re- 
duced expressions for w in R(D), where vi=v(ai, J), ui=v(bi, J ) and ai, bi6A(i 
= l, 2 . . . .  , n). Then 

T,,,...T~ =T. . . .T, , .  

(4.6.4) 

(4.6.5) 

Write v=v(a,J), u=v(b,J).  Then Bw T~= TuB w. 

Proof Using (4.3)(ii), we have 

B w T v = e, p, [(ind w)- 1 (ind w v)] x/2 2 (w, v) B wv (4.6.1) 

while from (4.3)(iv) we have 

T, B w = % Pb [(ind w)- ~ (ind uw)] ~/z 2(u, w) B.w. (4.6.2) 

Moreove r  since a and b are in the same W(D) - orbit, we have P,=Pb" 
NOW apply formula (3.4)(a) with v and w interchanged, recalling that uw 

=wv, u=u -1 and v = v - l :  

2(u, w) 2(uw, v)= 2(u, wv) 2(w, v). (4.6.3) 
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Proof. This is by induct ion on n. The case n = 1 is trivial. By the "exchange  rule"  
applied to R(D), if r is the greatest  integer such that  u 1 v I ... v r is reduced, then 

u l v  a . . . v r=v  1 ... vr+ 1 ( r < n -  1). 

By (4.3)(iii), To, ... Tot is a non-zero scalar multiple of B ....... . Tak ing  w = v  1 ... v r 
in (4.6), we have uiw=wvr+ 1, and so 

(T~I ... T j  T~,+ = T~,(T~, ... T J .  
Thus 

T,,, T , . . .  T,,+I "'" To, = Tv, "" To, (4.7.1) 

where ^ denotes  a term omitted.  
However  since v 1 . . .vr+l ... v , = u z  ... u, are both  reduced expressions in 

R(D), we have by induction that  

T , . . .  T,,+ ... Tv, = T , . . .  T , .  (4.7.2) 

Combin ing  (4.7.1) and (4.7.2), the result follows. [ ]  

(4.8) Definition. (i) For  weR(O) ,  define T~= T,~ ... To., where w = v  1 ... v, is any 
reduced expression for w in R(D). 

(ii) For  x e  C(D), define T~ = (ind x) ~/z B~. 
(iii) If  x e C ( D )  and weR(D) ,  define T ~ =  T~ T~. 
The  Definit ion (4.8)0) is justified by (4.7). 

(4.9) Definition. For  any w e W ( D )  we define 

p~=Flp , ,  where the product  is taken over  { a e N ( w ) m F } .  

One verifies trivially that  

(4.10) If  we  W(D) and w 1 w 2 with w 1 e C(D), wzER(D),  then p w = p w .  

(4.11) Proposition. For each we W(D) ,  we have 

T~ = e~ [pw(ind w)] 1/2 B~ 

where ~ is a root o f  unity. 

Proof. This is by induction on N=[N(w)c~FI.  If  N = 0  then weC(O) ,  p ~ =  1 and 
the result is trivial. 

If  N > 0 ,  there is an element aeA such that  w a e F - .  Write v=v(a ,J ) ,  u = w v .  
For any element t~W, write N r ( t ) = N ( t ) n F .  If  t = t  I t 2 with t l~C(D) ,  t z~R(D ) 

then Nr(t  ) = Nr(t2). 
N o w  by using (1.5)(ii), applied to the reflection group  (R(D), F), we have, if w 

=w I w 2 with w l e C ( D  ), wzER(D) that  

Nr(w 2) = g r ( o  • v Nr(w 2 O, 
so that  

Nr(w ) = Nr(v) w vNr(u). 
But 

Nr(v)={a} ,  
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and so 
N (w)~ F = v( N (u)n F)w {a}. (4,11.t) 

By the induction hypothesis applied to u, we have 

T~ = G(P. ind u) 1/2 B.. 

Now since INr(w2) I =[Nr(w2v)[ +lNr(v)[ , it follows from (4.7) that T~2= Tw~ . T~. 
Hence by (4.8)(iii) we have 

Hence 
Tw=G(p~ ind u) 1/2 G(Pa ind v) 1/2 BuB~ 

= q ~a P,, P. 2(u, v) ( ind u v) lj2 Buy 

= ~w pw(ind w) 1/2 B~ 

since it follows from (4.11.1) that pw=p~p~, and 2(u, v) is a root of unity by 
(3.4)(6). []  

(4.12) Definition. For v, weW(D), define 

~(v, w)=%E~ q d  ~(v, w). 

Clearly # is a 2-cocycle which is cohomologous to 2. 

(4.13) Lemma. I f  x, ye C(D) and v, weR(D), then 

#(xv, yw)=u(x, y)= ;~(x, y). 

Proof. An easy computation using (4.11), and the fact that Tx~= T~ T~ shows that 
#(x, v)=p(v,x)= l for any veR(D), xeC(D). Similarly one shows that for t 
=v(a, J) with a~A, if gr(tW)=~r(W)+ 1 (dr denoting length in (R(D), F)) then 
#(t, w)= 1 (any weR(D)). Using (3.4)(a), it is easy to deduce that #(t, w) = 1 holds 
without the condition on tw, and hence (by induction on t(w)) that #(v, w)= 1 for 
all v,w in R(D). From (3.4)(a) we now have 

#(x, v) #(xv, w) = #(x, vw) #(v, w). 

Hence #(xv, w)=l, i.e. # (y ,w)= l  for all yeW(D), weR(D). Applying (3.4)(a) 
again to the triple (x, y, v) we see that 

#(x, yv)=#(x, y)=#(xw, y). 

Finally, another application of (3.4)(a) to the triple (xw, y,v) proves the 
lemma. [ ]  

Note that (4.13) shows that # is really a 2-cocycle of C(D). 
We are now able to prove the main theorem of this paper. 

(4.14) Theorem. Let Ps be a parabolic subgroup of G, with Levi component Mj. 
Suppose that D is an irreducible cuspidal representation of Mj, and write E(D) 
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= Enda(Ind~(D*)). Then E(D) has a C-basis {Twlwe W(D)} whose multiplication 
table is given as follows. Let weW(D), x~C(D), v=v(a, J) for some a~A. Then 

(i) TwTx=#(w,x) Twx, 
(ii) T~ T~, = #(x, w) T~w, 

T~Tw=[T~,w) if w - l  aeF + (iii) 
p, ,T~,+(Pa-l)  T w if w-- la~F -, t. 

T.,T~= ~T'~. if waer  § (iv) 
(P, Tw~W(p,-1)T w if w a c F -  

where 12 is a 2-cocycle of C(D), and the p~ are powers of the characteristic, defined 
in (3.19). 

Proof. These relations are really restatements of (4.3), using the results (4.1) and 
(4.11). We give proofs of (i) and (iii); the proofs of (ii) and (iv) are similar. 

(i) We have 

T,~ T~ =ew ex(pw ind w)1/2 (ind x) 1/2 BwB ~ 

=ewexe;2 2(w, x)(p~ ind W X )  1/2 ew~Bwx 
(by (4.3)(ii)), 

=#(w,x) Tw~ since pw~=Pw. 

(iii) If w - l a e F  +, then T~ Tw=12(v, w)T~, w, the computation being the same as 
that in (i), since (4.3)(iv) applies. Since fl(v, w) = 1 by (4.13), we have T~ T~ = T~w. 

If w- ~ aCF +, then w ~ vaEF +. Hence by the first case just considered, we 
have 

L L . = L ~ = T w .  

Hence 
T~, Tw = 7~ 2 T,,. =(p aid + ( p . -  1)T~) Lw 

=p. T~w+(P.- 1) Tw. [] 

We conclude this section with two examples. 

(4.15) Let G=GL(n,q), and let l l = { a  I . . . .  ,an_l} be the set of simple roots 
corresponding to the split torus of diagonal elements. Assume that n =dm (d, m 
rational integers) and take Pj to be the standard parabolic subgroup with Mj 
= GL(d, q) x GL(d, q) x ... x GL(d, q) (m times). This corresponds to J = {ail d does 
not divide i } c l I .  Take the representation D to be j(o)@j<o)@...@j<o) (m 
times) where t) is a sufficiently general character of IFq*~ (see [17]). 

The following facts are easily verified. 
(i) W(D) = (v(a, J) l a =aej , j= 1, 2 . . . .  , m -  1). Thus W(D) is isomorphic to 

the symmetric group on m symbols, and the set {v(adj, J ) l j=  1, 2 . . . .  , m--1} is 
the set of"Coxeter  generators" for W(D). 

(ii) For a=aej (je{1 . . . .  , m -  1}) the parameter p, is computed by decompos- 
ing ing 

IndaL(2d' q) q)l* [(j(O> @j(0)),], 
"'~[GL(d, q) x GL(d, 

and comparing the degrees of the two components, i.e. by considering the 
special case m = 2. 
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We actually compute p, by using (3.14.3) to evaluate 

fl= (Pa- 1)/(Pa ind v) 1/2. 

Note that in this case (m=2) if we write v=v(a,J) (a=ad~H) then U~-= Uj, 

which is the set of matrices in GL(2d, q)of  the form ('O ~ ) '  where all 
~ x  

symbols 

deno tedxdmat r i ces .  Moreover, we may take ~= (01 10). 

] ~ P j ~ -  if and only if B--A- l ,  and when this condition 

is satisfied, we have 

Using (3.14.3) we therefore obtain 

~ j<~,>(A)| 1)=(flind v) l)(6). (4.15.1) 
AeGL(d, q) 

We now take traces of both sides, obtaining 

2 IZj<*> (A)[ 2 = IGg(d, q)[ = fl(ind v) trace/)(~). 
AeGL(d, q) 

But if V is the space of J<~>, then/)(~) is the map on V| V which takes v~ | 2 
into Vz| 1. Hence 

trace (/)(b))= dim V= (qd- 1 _ 1)(qn-2_ 1)... ( q -  1). 

Hence fl--(q~-1)/q ~ +  1~ =(qa_ 1)/(qa ind v) 1/2. It follows that Pa = qa, and hence 
in the general case (any m) that p=qa for all a ~ F = l T - J .  In particular, W(D) 
=R(D) in this case. 

(iii) Using (4.14), we see that in this case E(D) has the following presentation. 
E(D) has generators T 1 . . . .  , T,,_ 1 (T~= Tvt,,~, j)) and relations 

(T~v. if CW~D)(WVj)=Cw~o)(w) + 1 
TwTi=~qdTw~+(q"-l)T w otherwise 

where w~W(D)(=R(D)) and v j =  v(ad~, J). 

(4.16) Example. We include this example to show that it may happen that p~ 
= 1 for some a~F'. 

Take G=SL(2d, q) and take J = {al, ..., a~ . . . . .  a:d_ ~} as in the above exam- 
ple, with M the corresponding Levi subgroup of P. Then 

M' = SL(d, q) • SL(d, q) ~ M. 

For the background to the present example, we refer the reader to ([17], w 
Let D o be an irreducible component of the restriction of J<~>| to M, and 
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write J<O>lsL(a. q )= jo  + . . .  + j ~ -  ~. Then (cf. [17], 4.14) 

e - - 1  

DoIM ' = ~ j i@jio-i  
i=O 

(4.16.1) 

where the superscripts are taken modulo  e and ioe{0, . . . ,  e - 1 } .  
The  same computa t ion  as in example (4.15)(ii) shows that here (for a=a d and 

v=v(a,J)) we again have 

~. D ~ ( O  All)=/3(indv)bO)) .  (4.16.2) 
A~GL(d, q) 

Suppose d and q are such that  Do=Ind~,(J~174 This can occur when q - 1  
= d, e.g. when d = 2, q = 3. In this case e = q -  1 = d. 

Then taking traces in (4.16.2), and using (4.16.1) we have 

e - 1  

/3 ind v trace (b(~)))= ~ ~ Z~(A) Z~o-,(A) (4.16.3) 
i = 0  A~SL(d,q) 

where ~ is the character  of J~. 
But the inner sum is zero unless i - i  o -  i (rood e), i.e. io=-2i (mode).  Hence if 

q is odd, it is possible to choose D o (e.g. io= 1) such t ha t / 3=0 ,  i.e. p , = l .  
The  reader  is referred to [17], w for an explicit discussion of W(D) and E(D) 

in this case. 

w 5. The Generic Algebra - Proof of Springer's Conjecture 

Let q be the largest power of p, such that for all weW(D), we have 

(i) ind w = q  "'~ 
(5.1) for rat ional integers nw, m w > O. 

(ii) p =qm,~ 

Such a q always exists. 
Let  (E [u] be the ring of polynomials  in an indeterminate u over C and define 

an algebra A(u) over II~l-u] as follows: for weW(D) let u~=u "w (m,, as in 
(5.1)(ii)), and let # be the 2-cocycle of  (4.12). 

(5.2) Definition. A(u) is the associative algebra over ~ [ u ]  which has basis 
{a w [ we W(D)} and multiplication given by: for we W(D), xe  C(D), v = v(a, J) for 
aeA. 

(i) awax=l~(W,x)a~x , 
(ii) axa =#(x , w)axw , 

avaw=~aw.~ if w - l a e F  + (iii) 
~uvav~+(u~-l)a~ if w - l a e F  -, 

=~aw~ if waeF + 
(iv) awa,, (u~a~,,+(u~- 1)a w if waeF- .  

For  any ring F such that F ~ C [u], write A (u) F = A(u)| I f f :  ~ [u]  ~ C is an 
algebra homomorphism,  and f ( u ) = b e ~ ,  we write A(b)=A(u) |  The A(b) 
are "special izat ions" of A (u). 
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(5.3) Theorem. Let F=ll~(u) be the quotient field of 117[u]. Then A(u) v is a 
separable F-algebra and for each bsff2 such that A(b) is separable (and so 
semisimple), the algebras A(u) v and A(b) have the same numerical invariants. 

Proof Since A(q)=E(D) (see (4.14)) is semisimple, it follows from Tits' theorem 
([3], p. 56 ex. 26; see also [25], p. 249) that A(u) F is separable, and that for any 
beCE such that A(b) is semisimple, the algebras A(u) v and A(b) have the same 
munerical invariants. [] 

(5.4) Corollary (Springer's Conjecture). Let IEW(D), be the group algebra of 
W(D), twisted by the 2-cocycle It, i.e. the associative C-algebra with basis 
{[w]lw~W(D)} and multiplication table given by [w][v]=la(w, v)[wv]. Then we 
have 

E (D) = End G (Indp ~ (D*)) ~ tE W(D),. 

Proof The algebras A(q) and A(1) are respectively isomorphic to E(D) and 
II~W(D), (by (4.14)) and since they are both semisimple, they have the same 
numerical invariants (by (5.3)) and so are isomorphic. [] 

(5.5) Corollary. The irreducible components of Indp~(D *) are in bijective cor- 
respondence with the irreducible representations of the algebra I17 W(D),. 

The methods of Benson-Curtis ([1]) can also be applied to the algebra A(u) 
to produce information concerning the degrees and rationality of these irreduc- 
ible components. Roughly speaking, "all the irrationality" is introduced by the 
cuspidal respresentations - i.e. their field of definition suffices for all repre- 
sentations of G. The authors plan a sequel to this paper in which these 
questions, as well as explicit determination of the W(D) and the parameters p, 
will be addressed. 

(5.6) Example. Applied to the example (4.15) introduced above, these results 
show that (in view of (4.13), which shows that /~ is trivial in this case) the 
irreducible components of indp~j(D *) correspond bijectively to the irreducible 
representations of the symmetric groups on m symbols, and hence may be 
denoted d<*>(2), where 2 is a partition of m (cf. [17]). 

Note also that E(D) is just the standard generic algebra H(G, B) for GL(m, qd) 
in this case, so that "generic degrees" (cf. [5]) are available in the literature, and 
the degree of d<*>(2) can be written down explicitly. 

w 6. On the Nature of/1 and Other Complements 

(6.1) Theorem. We have 

End~t (Ind~ (D))_-__ r W(D)a ~ IIj W(D), 

where M and 2 are the group and cocycle defined in (3.3) and (3.4). 

Proof Let X be the space of functions f :  M ~ V  (V being the space of D) 
satisfying 

f(mfn)=D(m)f(~n) (m~M, fne]('I). 
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acts by right translation as Ind,(D) on X. Now define ~w(We W(D)) by 

awf(X ) =/)(w) f ( ~ -  1 x). (6.1.1) 

As noted in Remark t following (3.11), a w is independent of ~. One verifies 
easily that a w is an M-equivariant linear transformation of X, i.e. is in End~t(X). 

We show that a w are linearly independent as elements of End~t(X). If 
~waw=O (~wetF) then ~ w a w f = O  for each f e X .  Y a k e f  to be a function 

w ~ W ( D )  

in X, whose support is Mu -~f. Then 

~wawf (1 )=~  c%F)(w) f (w- l )=c t ,  fi(u) f (u  1). 
w w 

Hence c~,=O for each ueW(D), and the cr w are linearly independent. Moreover 
using Mackey's formula one sees easily that dimr so that 
{awl weW(D)} forms a basis of End~t(X ). 

Next, observe that 

(awl aw2 f ) x  =/)(Wl)/)(W2) f (w ~ 1 w? 1 x) 

= ().(w 1, we) a . . . .  f)(x). 
Thus 

aw, aw2 =2(wl, w2) o- . . . .  " (6.1.2) 

It follows from (6.1.2) and the definition, that End~(X)= �9 W(D)z, and since 
tt is cohomologous to 2, the result follows. [] 

(6.2) Corollary. The multiplicities of the irreducible components of Ind, (D)  are 
the same as those of Indp~ (D*). 

This is a consequence of (5.4) and (6.1), which show that the corresponding 
endomorphism algebras are isomorphic. 

To carry out computations in practice, it is important to determine when the 
cocycle tt is trivial. 

(6.3) Conjecture. The cocycle # is always trivial. 

We are at present unable to prove this in complete generality, but in this 
section will give some sufficient conditions for the triviality of #. We begin with 
the obvious remark that 

(6.4) I f  W(D)=R(D), then # is trivial. 

(6.5) Lemma. I f  either of the representations (i) Ind,(D) or (ii) IndeG (D *) has an 
irreducible constituent of multiplicity one, then p is trivial. 

Proof From (5.4) we have that EndG(Ind~(D*))~ �9 W(D),. Thus if Ind~ (D*) has 
an irreducible constituent of multiplicity one, the endomorphism algebra 

W(D) has a representation of degree one, i.e. there is an algebra homomor- 
phism (: ~W(D)u-~C. This shows that # is cohomologous to the trivial 2- 
cocycle, i.e. # =  1. The other case follows by the same argument, since by (6.1). 

EnO&(Ind~(D))=~W(D) u. [] 
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(6.6) Definition. We say that the linear character e of U (the unipotent radial of 
B) is in general position if 

(i) ~[v, 0:1 for a~Fl, and (ii) e[vo = 1 for aCFl. 

Note that in most cases (e.g. if the characteristic is good for G), condition (ii) 
is automatic for all linear characters ct, since for ar U ,c  U' (the derived 
group). 

(6.7) Proposition. Let ~ be a linear character of U in general position, and let Z 
be the character of D on M j. Then the intertwining number 

(Ind,(z*), Ind~(~))=(~, Ind~MK(a))=O or 1 

where V=WoWj, and (K, ~)= v(J, Z). 

Proof This is a formula of Rodier, and may be found in [24]. 

(6.8) Corollary. I f  the restriction ZIM~u contains a linear character of M ~ U  
which is in general position, then # is trivial. 

Proof In this case we may choose ~ so that :~fvnM,, is an appropriate general 
position character which makes the multiplicity of (6.7) equal to 1. The corollary 
then follows from (6.5). []  

(6.9) Corollary. Suppose that (a) the degree o f )  is prime to p and (b) M contains 
no component of type Bt(2), Ct(2), F,(2), G2(2), G2(3 ) or F~(2). Then # is trivial. 

Proof For such M, all linear characters of Uc~M are trivial on non-fundamental 
root subgroups, by a result of Howlett (Ph.D. Thesis, Adelaide University, 1974). 
Since the degree of Z is not divisible by p and Uc~M is a p-group, the restriction 
ZiM~v contains a linear character, which must (c.f. [18]) be in general position 
since Z is cuspidal. The result now follows from (6.8). [] 

(6.10) Corollary. Suppose that all components of J are of type A t (for various ~). 
Then I~ is trivial. 

Proof For groups of type At, all irreducible cuspidal characters have degree 
prime to p (c.f. [17]). Thus the result follows from (6.9). [] 

(6.11) Corollary. Let B = TU be a Levi decomposition of the Borel subgroup B of 
G, and let Z be a (linear) character of T, whose centralizer in W = N ( T ) / Z ( T )  is 
W (Z ). Then 

(i) EndG(IndG(z*))-- C W(X ), 
(ii) Z has an extension f( to 7"= (T, #[ we W(Z)~. 

Proof The first statement follows from the fact that the cocycle p is trivial in this 
case, which in turn follows from (6.8) since the condition on Z is vacuous. 
Alternatively, one may apply (6.7) directly to the present situation, obtaining 
(since J is empty) 

(Ind~ (Z*), Ind~ (~)) = (w o Z, I nd~  (~)) = 1 

since Ind~(~) is the regular representation of the abelian group T. 
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The  second  s t a t e m e n t  n o w  follows from the  r e m a r k  tha t  /~ is t r ivia l  if a n d  
only  if in  the genera l  case D has  an  ex tens ion  b f rom M to )~t; the  i m p l i c a t i o n  
here is tha t  X has  an  ex tens ion  ~ to T. [ ]  

The  above  special  case of o u r  resul t  has  been  discussed by  S te inberg  a n d  
Y o k u n u m a  (see [25]  a n d  [27] ;  c.f. also [12]). 

The  fo l lowing  resul t  is p roved  by Lusz t ig  in ([19],  w 

(6.12) Propos i t ion  (Lusztig). I f  D is a cuspidal unipotent representation, then # is 
trivial. 

W e  no te  in  c los ing tha t  Lusz t ig  in forms  us tha t  he is ab le  to prove  tha t  # is 
t r ivia l  wheneve r  G is ad jo in t ,  by  us ing  his c lassif icat ion of the  charac te r s  of G. It  
wou ld  never the less  be  des i rab le  to have  a direct  p roo f  of (6.3). 
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