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Summary. This paper deals with the numerical solution of Differential/Alge-
braic Equations (DAE) of index one. It begins with the development of
a general theory on the Taylor expansion for the exact solutions of these
problems, which extends the well-known theory of Butcher for first order
ordinary differential equations to DAFE’s of index one. As an application,
we obtain Butcher-type results for Rosenbrock methods applied to DAE’s
of index one, we characterize numerical methods as applications of certain
sets of trees. We derive convergent embedded methods of order 4(3) which
require 4 or 5 evaluations of the functions, 1 evaluation of the Jacobian
and 1 LU factorization per step.

Subject Classifications: AMS(MOS): 651.05; CR: G 1.7.

1. Introduction
We consider the system of differential/algebraic equations (DAE) of index one

V=2 yXe)=Yyo (1.1a)
0=g(y,2) zlxo)=2 (1.1b)

where y is in some space E and z in E’; we suppose that the initial values
are consistent, i.e. g{(yo, zo)=0. Moreover f and g are assumed to be sufficiently
differentiable. Since x can be added to the system as x'=1, it is of course no
restriction of generality to assume (1.1) independent of x. We also assume the
DAE system to be of index one; this means that (9g/dz) ! exists and is bounded
in a neighbourhood of the exact solution; index 0 systems are ordinary differen-
tial equations and systems of index greater than one are algebraically incomplete
which means that the existence and the uniqueness of the solutions are not
guaranteed (see [1]). Recently much interest in the numerical treatment of (1.1)
has appeared in the literature [2-9]. Among the many applications of DAE’s
in science see [10-12].
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In this paper, we consider numerical methods which avoid non-linear equa-
tions. The idea is to consider (1.1) as a limit case of the stiff singular perturbation

problem
V=fz) ylxo)=yo (12a)

1
Z'=—8(y,2) z(xo)=2o (1.2b)

where ¢ is a very small real number, and to study the application of known
classes of methods to the problem. In particular we apply the general Rosen-
brock method (see [137]), premultiply the second equation of the method by
¢ and set ¢ to 0. We then obtain the following formulae:

i—1

a;=yo+ Z a5l (1.3a)
i=1
i-1

bi=zo+ Z o k; (1.3b)
j=1

Li=hf(a;, b)+h Y, 7:;((D,f) i+(D.fokj) (1.3¢)

i=1
0=g(a;, b)+ Y 7:;(D,8)0 L+ (D)o k) i=1,...,s (1.3d)
j=1

Vi=Yo+ X, il (1.3¢)
i=1

21=20+ Z ﬂiki (13f)

i=1

where «;;, 7;; and p; are real parameters, s is the number of stages and (D,f)o,
(D.f)o, (D, 8)o, (D, g)o are the derivatives at the initial values (yg, zo).

For each i=1,..., s, (1.3¢) and (1.3d) form a linear system in /; and k; with
matrix

(I—h?ii(Dyf)o _hyii(sz)O)
—hy;(Dy8)o —hy;(D.g)o)

If we choose y,;=v for all i, all these matrices are equal and we only need
one LU-factorisation per step.

It happens that the limit process ¢ =0 destroys the order properties of the
Rosenbrock methods. For example the well known method of Kaps-Rentrop
(see [14]) which is of order 4 for ordinary differential equations is only of order 2
for the problem (1.1) as will be seen in Tables 1 and 2 below. Similar phenomena
have been observed by Verwer [15].

The aim of this article is to study the order conditions for method (1.3).
In Sect. 2 we develop a theory for the Taylor expansion of the exact solutions
of a DAE of index one with the help of a “tree model”. In Sect. 3, using this
tree model, we find Butcher-type results for the numerical solution. In Sect. 4
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Table 1. Order equation for the y-component

p() t

! . Tu=1 (4.11a)
2 / YuiB,=1 (4.11b)
3 v Zﬂi aij“ikZ% (4.11¢)
3 / Z#iﬁijﬁjk:% 4.114d)
4 \I/ 3 0 oty oty = (4.11e)
4 d Yoo Bu=4% 4.111)
4 Y Zﬂiﬁij“jkaﬂ:ilz 4.11g)
4 / Zﬂi Bi Bix Bu=21 (4.11h)
4 y Zﬂi Oty j Oy Wit % g = 4 (4.119)
Table 2. Order equation for the z-component

p() t

2 v Z#i Wi, 0 0= 1 (4.12a)
3 ;!( Z#i W, 0 O O = 1 (4.12b)
3 \/ Z.ui Wi 0y 8 frm=3% 4.12¢)
3 \}[ 3 W 0 Oy Wi Oy O =1 (4.12d)

47

the convergence and the order conditions of method (1.3) are studied. Solving
these conditions in Sect. 5, we give the methods with s stages s=1,..., 5 having

the highest possible order. In Sect. 6 numerical experiments are presented.
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2. Trees and Elementary Differentials

Notice first that differentiation of (1.1b) gives
0=D,g-y'+D.g-2
so we have
Z=(-D.g)"'D,gy 2.1)
Using the chain rule, y'=f, (2.1) and
((—ng)Al),:(—ng)_l'(Dyng'y’—*—ng'zl)'(_ng)_‘

a continued differentiation of (1.1a) and (2.1) gives:

y=f
y'=D,ff+D.f(=D,g)""-D,g-f
y"=D2f(f, f)+D.D, f-(—D.g) ' -D,g-f. N+D, D, f-f
+D,fD. f(—D,g)""-D,g-f+ ...
and

Z=(—-D,g)""-D,g-f

2'=(—D,g)"'[D,D.g-(f,(—D.g)""'-D,g-f)
+D}g-(—D.,g)”"'-D,g-f,(—D.g)”"'-D,g-f)+D.D,g-(—D,g)"'-D,g-£.f)
+D}g-(f, f)+D,g- D, f-f+D,g-D, f-(—D.g)""-Dyg- ]

We now identify f with a meagre vertex, any partial derivative of f with a
branch leaving a meagre vertex, (—D,g)” 'g with a fat vertex, and any partial
derivative of g with a branch leaving a fat vertex. The above expressions, which
very soon become complicated, can be written in terms of trees as follows:

/
v&x//“

and

JUL /]
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For a better understanding of the recursive construction of the trees, see Proposi-
tion (2.5) and the example that follows it.
Now let 7, and 7, be the following trees:

. d

T, T,

Definition (2.1 ). We denote by DAT, DAT, and DAT, the sets of the trees defined
recursively by:

a) JeDAT,NDAT,,1,eDAT,, 1,eDAT,.

b) Ift,,..., t,e DAT, UDAT,, then [t,,..., t,],e DAT,

o) If t,....t,eDAT, UDAT,, m>1, or m=1 and t,e€DAT, then
[ty,---, tm],€DAT,

d) DAT=DAT,uDAT,

where t=[t,,..., t,], is the tree obtained by connecting the roots of ¢,..., ¢,
by n arcs to a new meagre vertex which becomes the root of ¢, and [t,,..., t,],
is the tree obtained in the same manner, but with a new fat root.

Examples:

t t t
L4151, ENAN [t.8,,85],

Notice that [t,t,],=[t,,t],
Remark. DAT, and DAT, can be seen as the sets of all the connected graphs
with two different kinds of vertices, meagre vertices and fat vertices, which satisfy:

a) The end vertices of the graph are meagre.
b) A graph isin DAT, if its root is meagre, and in DAT, if its root is fat.
c) If a fat vertex has no ramification, then the above vertex is meagre.

Example:

A

DAT

€ DAT v and
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Definition (2.2 ). The number of meagre vertices of a tree ¢ is called the order
of t, denoted by p(1).

Labelling

We now introduce the concept of labelled trees which is very helpful for the
formulation of the theory:

Definition (2.3). Let te DAT. We say that t is monotonically labelled if every
meagre vertex is associated with an integer i, 1 £i<p(f) and if, following any
branch of ¢, the labels are monotonically increasing. The number of possible
labellings of ¢ is denoted by «(t). Finally, LDAT, denotes the set of monotonically
labelled trees having a meagre root, LDAT, the set of monotonically labelled
trees having a fat root and LDAT=LDAT,u LDAT,.

Examples:

3 3 2
1 2 2 13 1
can be monoctonically labelled in exactly 3 ways :

2 3
\{ can be labelled in one only way: v

1

Elementary Differentials

We give now a recursive definition of the terms which appear in the Taylor
expansion of the exact solution of (1.1) and which are in one-to-one correspon-
dance with the trees of DAT.

Definition (2.4). For every tree t of DAT, we define a function F(t): ExE —~E
and for every tree u of DAT, a function G(u): E x E' — E’ recursively by:

a) F()(y,2)=y, Gy, 2)=z

b) F(Ty)(Ya Z)Zf: G(Tz)(y’ Z)=(—ng)‘1'Dyg'f

c) F(o)(y, z)=D’y‘Dif-(F(t1),..., F(t), Guy),..., Gu)) if t=[ty,..., 4y, Uy, ..., 4],
d) G(u)(y’z)=((_ng)—l) D: Dlzg(F(tl)9’ F(tk)’ G(”l)"") G(ul)) If u=[t1"“9
i, Uy, ..., U], where t,,..., ,eDAT, and u,,..., we DAT,

The expressions F(t)(y, z), respectively G{u)(y, z), are called the elementary
differentials associated with the tree ¢, respectively u.

Because of the symmetry of partial derivatives, this definition does not
depend on permutations amongst ..., &, Uy, ..., 4, and therefore the functions
F and G are well defined.
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Proposition (2.5). Let t be any tree of DAT, then the derivation with respect to
x of its elementary differential consists of . (1) Splitting each fat vertex into two
fat vertices and attaching at the lower of these vertices once v, and once 1, (deriva-
tion of (—D,g)” " with respect once to y and once to z). (2) attaching to each
vertex of t once t, (derivative of the other terms with respect to y) and once
1, {derivative of the other terms with respect to z).

Proof. Comes from Definitions (2.1) and (2.4). See also the next example.

Remark (2.6). If te LDAT (labelled tree), the labelling of the new trees built
by derivation of the elementary differential of ¢t simply consists of associating
the new meagre vertex with the integer p(£)+ 1.

Example:

corresponds to the elementary differential:
(_ng)~1 ‘Dy ng(j;(_ng)_l Dygf)

The derivation of this expression gives elementary differentials corresponding
to the following trees:

(1) Derivation of (—D,g) ™ *:

al with respect to y &/ i@

b) with respect to z

(2) Derivation of the other terms:

a) with respect to y

3
2 3
2 3 2 2
1 1 1
b} with respect to z 3 3 3
2
2 2 3 % 2
W
1 1 1

Following this procedure, the labels indicate the order of generation of the
meagre vertices. Therefore the numbers of ways of labelling a tree ¢ of DAT
is equal to the number of times an elementary differential appears in the Taylor
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expansion of the exact solutions of (1.1). As can be seen from Proposition (2.5)
and Remark (2.6), every tree te LDAT of order p appears once and exactly once
in the p-th derivative of y (if te LDAT)) or of z (if te LDAT,). Thus:

Theorem (2.7). For the exact solution of (1.1) we have:

Y2 (xo)= > F)yozo)= Y at)-F(®)(¥o, o)

1eLDAT,,pt)=p 1eDAT,,p(t)=p

Z(p)(xo)= z GW)(yo,20)= Z a(u)- G (yos 2o)

ueLDAT ;,pu)=p ueDAT,,p(u}=p

and
p(®)

h
y(xo+h)= te,%;ﬂy F()(yo, Zo)‘m

hp(u)

z(xo +h)=ueL§Ar, G @) (Yo, Zo)'m

3. DA-Series

In Sect. 2, we described a very simple way to find the Taylor expansion of
the exact solutions of (1.1) with the help of a “tree model”. To find the order
of a numerical method applied to (1.1), one has to compare the Taylor expansion
of the numerical solutions with those of the exact solutions. Applying Theo-
rem (2.7), we now extend the concept of Butcher-series (see [16]).

Definition (3.1). Let a: LDAT,—~R and b: LDAT, —»R be any mappings. The

series
p(1)

h
DAy(a, Yos Z())= Z a(t)'F(t)(y05ZO)——

teLDAT, p®)!

respectively
2 ()

h
DA, (b, yo,zo)= ). b)) GW)(vo,zo)— =

ueLDAT, pu)!

are called DA -series, respectively DA, -series.
Observe that the exact solutions of (1.1) are D A-series (see Theorem (2.7)):

Y(x)=DAy(py’ .VO’ZO)
Z(x)=DAz(pz: Yo, ZO)
where p,(t)=1 for all te LDAT, and p,(u)=1 for all ue LDAT,.

Results for DA-Series

Theorem (3.2). Let a and b be DA-series, a=DA,(a, yo, zo) and b=DA_(b, y,, zo).
We have: c=h-f(a, b) is a DA,-series with coefficients ¢: LDAT, — R defined by
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(=0 c(z,)=1
c(t)=p(t)alty) ... a{ty) buy) ... b(w)
fore=[ty,..., ty, uy,..., ul, where t,,..., t,e LDAT, and uy,..., e LDAT,.

Proof. This theorem can be seen as a generalisation of Theorem (2.11) in [16].
Consider first the n-th derivative of ¢ evaluated at h=0:

51: -1
A 0)=n- [W-—lf (a(h), b(h))]o

We have:
cP(0)=n- > (DX DL f)o-(als, ..., %, b0, pU0),  (3.3)
- EeSLDATy,o(f)=n
T=[t1,..s B Blsaers urly

where p(t)=1i;, s=1,...,k and p(u,)=j,, p=1,...,1 and SLDAT, < LDAT, is
the subset of trees having no ramification (except possibly at the root) and
such that only the vertices directly connected with the root can be fat. The
summand in (3.3) corresponding to a treec teSLDAT, begins with DiD; f if
t has k branches with a meagre root and / branches with a fat root. The number
of meagre vertices of each branch equals the order of differentiation of a (if
the branch has a meagre root) or of b (if the branch has a fat root).

For example

corresponds to the derivative D,aD, f.la"a%a, b}

As a and b are D A-series, we have:

a (0)= > a(t,) Fltdo
ts€ LDATy, p(ts) =i
bY2 (0)= Y b(u,)- G(up)o

upe LDAT, plup)=jp

We now insert the above formulae into (3.3) and get a summation over the
tuples (1, ty,..., &, ty,..., ). The main difficulty is now to understand that to
each such tuple there corresponds a labelled tree te LDAT, such that the sum-
mand is p(t)a(ty) ... a{ty) b(u) ... b(u)- F(t)o. This labelled tree ¢ is obtained
by replacing the branches of ¢t having a meagre root by t,,..., t, and those
having a fat root by u,,..., u,. The labelling is carried over in a natural way,
i.e. in the same order.
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Example:

8 5
] 7 3 2 2
2 4 2 3 !
v —-—
1 1 1
t t Uy

t

In this way, all the trees te LDAT, appear exactly once. Thus (3.3) becomes:
c”0)=n- Y a(ty) ... altdbuy) ... b(u)

teLDAT,,p(t}=n
E={t1seees ti Uty -es Uly

Dy D} f-(F(ty), ... F(t), G(wy), ... G(w))]o
= Y plt)-a(ty) ... a(ty) b(uy) ... b(u)- F(t)o.

teLDATy, pt)=n
[l [ TRV SO TR T

hn
Asc(h)=} c""(O)-m, using Definition (3.1), the proof is complete.

nz0
Theorem (3.4). Under the assumptions of Theorem (3.2), we have:
d=(—D.,g); ' -gla, b) is a DA -series
with coefficients d: LDAT, — R defined by:

d(Z)=0 d(z)=1
dw)=al(t,) ... a(ty) b(u,) ... blu))—bu)

Joru={ty,.... t,, uy,..., u]], where t,,..., t,e LDAT, and u,,..., ;e LDAT,.

Proof. Proceeding as in the previous proof we obtain:

a'l
4901 (~ D)5 | 535 8talh) b(n)|
[o]
and
d™(0)= )3 (~D.g"'D;D:g

#eSLDAT z,p(@)=n
B=[ty,0en, sty Uiz

.(a(ix), et a(ik), b(jl)’ e b(j')))o _ b‘"’(())

where p(t)=1i,, s=1,..., k and p(u,)=j,, p=1,..., L
Then

d"(0)= D a(ty) ... a(t) b(u,) ... b(w)-[(—~D.g)”’ Dy D:g
ueLDAT;,p(u)=n
U=[t1,eestic ey, U]z

(F(ty),..., F(ty), G(uy) ... G(u))]o— Y b(w)- G(u)o

ueLDATz,p(#)=n

= ) @(ty) ... 2@t buy) ... b(u)—b()-Gu)

ue LDAT z,p(#)=n
U=[tgy 0ttty e, ]z



Rosenbrock Methods for Differential Algebraic Equations 55

Finally we obtain the following results:

Theorem (3.5). a) (D, f)o- F(t)(yo, zo) = F([t],)(yo, o) for te LDAT,
b) (D, f)o- G(u)(yo, zo) =F ([ul ) yo, zo) for ue LDAT,
c) (—D.g)" ' D,g)o  F(t)(yo, 20)= G([t1.)(yo, zo) for te LDAT,.

Proof. Comes from Definition (2.4).

4. Order Conditions and Convergence

This section deals with the order and the convergence of one-step methods
for DAE’s of index one; the order and convergence conditions for method (1.3)
are given explicitly.
We consider the following general class of one-step methods (only formally
explicit) applied to (1.1):
Y1=Yo+th®(yo, 20, h) (4.1a)
z2,="(Yo, zo, h) (4.1b)

Definition (4.2). The method (4.1) is of order p if
v(ixe+h)—y=0HhP*?) and z(xo+h)—z, =0(Hh")

where y and z are the exact solutions of (1.1).
The proof of the next result can be found in [9].

Theorem (4.3). Consider method (4.1) and suppose:

a) its order is p
oy

b) (¥,2,0)

0z

Then convergence of order p occurs, i.e. for x=n-h fixed:

Sa<1 in a neighbourhood of the solution.

Ya—y(x)=0(h?) and z,—z(x)=0(h")

where y, and z, denote the numerical solutions of (1.1) when method (4.1) is
applied n times.

a) Order Conditions for Method (1.3)

We now use Theorems (3.2), (3.4) and (3.5) to derive the order conditions for
the coefficients a;;, 7;; and p; of method (1.3), by comparing the DA-series of
y(xo+h) and y,(x,+h) (the numerical solution) up to a certain order, and simi-
larly for z(xy+h) and z,(xq + h).

Let us first consider the functions a;, b;, I;, k;, (i=1,..., s) and y,, z, defined
by (1.3).

Theorem (4.4). The functions a;, b;, I;, k;, y1, z, are DA-series whose coefficients
a, b, 1, k;, y,,z, are recursively defined by:

t
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i—-1

a; ()= o;1(t) for teLDAT, 4.5a)
j=1

i—-1
j=1

L@)=0 Lx,)=1
0 if k+1>1

L@O=p@®alt;) ... a(ty) buy)...bw)+{ p(0) Z 7i;1;(t0) if k=1,1=0 (450

o) Y k) if k=0,I=1
j=1

J
fort=[ty,.... t, uy,...,u}, where ty,..., e LDAT, and u,,..., ;e LDAT,
ki(@)=0 ki(r)=1

a(tl)...a(tk)b(ul)...b(u,)—'Z (a;+7:) ki)  ifk+1>1

j=1
. 3 1) 1)~k ) ifk=1,1=0 434
j=1
foru=[ty, ..., t,, uy,..., u ], wheret,,..., , e LDAT, and u,, ..., uc LDAT,
yi=Y wl) fortcLDAT, @.50)
i=1
z,(u)= i w; k;(u) forueLDAT, (4.51)
i=1

Proof. (4.5a), (4.5b), (4.5¢) and (4.5f) follow directly from (1.3a), (1.3b), (1.3¢)
and (1.31).

(4.5¢) follows from (1.3¢), Theorem (3.2) and Theorem (3.5) (a) and b)).

(4.5d) follows from (1.3d), Theorem (3.4) and Theorem (3.5) (c)). Q.E.D.

To simplify equations (4.5¢) and (4.5d), we put:

Bij=ai;+y;  (Bu=7)

We obtain:
Y iy o T b (1) - K () ik I>1
LO=p0]3 8,1t ifk=1,1=0  (4.5¢)
i=1
B k;(uy) ifk=0,1=1
=1

J
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nh;‘nk Xiny oor i,y ln,(tl) km,(“l)_jgl ﬁij kj(u) ifhk+1>1
0= (4.54)
Bi;j(;(¢,) —k;(w) ifk=1,1=0
j=1

Proposition (4.6). For u=[t,],,t,€eLDAT,, we have:

ki(u)=1(z,)
Proof. For i=1, (4.5d) gives: k, (u)=1, (¢,).
Then use (4.5d), and induct. Q.E.D.

Example:

ki(w)=1;(2)

W=(w,;;)= E_ ! 4.7

YW Y Oy e O b () o K () iR
ki(w)=qi=1  moom (4.5dy”
1;(t;) ifk=1,1=0

Remark (4.8). Using (4.5¢) and (4.5d)", there is a very simple way to find the
order conditions for the trees of LDAT by comparing the DA-series (4.5¢) and
(4.5f) of Theorem (4.4) with the DA-series of the exact solutions (see Theo-
rem (2.7)).

Examples: K {
j - 2R wa,e st
i
n P
m
* { Z K, w, u'/l(a/[ Wim®mn amp =1

1
J & m . z “’/ a// a/k all w/lm an = T
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and as W =", the last equation is:
Z#i 0 Oy Xy =7

which is also obtained from the following tree:

Proposition (4.9). For u=[t,..., t;, uy,...,u], where t,,...,t,eLDAT, and
., e LDAT,, we have:

li([u]y):li([tl’ ey tka Uy ooy ul]y)

Proof. Comes directly from formulae (4.5¢) and (4.5d)”, or more nicely with
the help of Remark (4.8) and the above examples. Q.E.D.

Example: l l

1 i([ul) =1

An important consequence of Propositions (4.6) and (4.9) is that a lot of different
trees give the same order conditions.

Exanples: 3 3 p \} J\}
vt BUYY VY

c) All the trees of LDAT, of order n having no ramification. For

example, if n=3: /

Proposition (4.10). The order conditions for t having only meagre vertices are
identical to the order conditions of the classical Rosenbrock method for ODE’s.

Proof. Set I=0in (4.5¢c) (so one has trees with meagre vertices only) and compare
it with Theorem 1 or Theorem 2 of [13]. Q.E.D.

We give in Tables 1 and 2 the first order equations (for the z-component,
because of Proposition (4.6), we only give the supplementary conditions).

The equations given in Tables 1 and 2 are the conditions for having a method
of order 4. The convergence has now to be studied.
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b) Calculation of a

To assure convergence of method (1.3), the condition b) of Theorem (4.3) must
be satisfied; let R(z) be the stability function of the Rosenbrock method for
the test ordinary differential equation y'=21y, y(0)=1, AeC, z=h4i; we then
have:

Theorem (4.13). The contractivity number a is given by:

a=R(0)

. - ok
Proof. Let = ([S’,j), 1=I7% and 0 in the others places, I1=(1,..., 1) and E(O)

dak,
={—20),..., —S(O) !, vectors of dimension s. We have:
oz 0z

ok
a=1+g"—(0) (4.13.1)
0z

Derivating equation (1.3d) with respect to z and evaluating the result at h=0
gives:

0=(D.g)o (HZ s 520)

and then ~
gém%-Z(—JV I (4.13.2)

j =
Now, as

5 1 . N
R(oo)=1+ 3 (=1y — @ p'=* -1
j=1 Yj

so0, by inserting (4.13.1) into (4.13.2), one gets a=R(w0). Q.E.D.

Remark (4.14). The evident underlying reason for this result is that R(c0) must
be smaller than 1 because of the limit process ¢ —0 (or A — co in this case),
Le., stability at infinity is necessary because (1.1) is considered as a limit case
for (1.2).

5. Some Particular Methods

In this section we give the main results for the methods with s stages, s=1,..., 5
having the highest possible order. Notice first that the matrix W defined by

(4.7) satisfies )
152 J
-5
7o\ Y

which is helpful for the calculations of the order conditions.
Solving the order equations for different values of s, we obtain, for convergent
methods, the results given in Table 3.
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Table 3. Order of convergence for Rosenbrock methods

s 12 3 45

Order 1 2 3 3 4

Remark. For s=1, the method with u, =1 and y=1/2 is of order 2 but unfortu-
nately not convergent of order 2, (only of order 1 because x=1). The method
with ;=1 and y =1 is convergent of order 1;in fact it is exactly the semi-implicit
Euler discretization used in [9] for extrapolation.

We first give embedded methods of order 3(2) with s=3, R(c0)=0 and only
2 evaluations of the function f and g:

Choose y such that R(c0)=0 and such that A-stability is assured for purely
differential equations, ie. ye[1/3; 1.06858]; choose a;,=0 and oz, =a,,; to
assure only 2 evaluations of the functions f and g; choose also 1;=0, so that
§=2, i.e. 2 stages for the method of order 2. Now «,, and S, are non zero
free parameters. Then:

8 _Yo—y+y* , p _1/6—y+y? B,
2 —'}’2+Y/3 2 3 B3z B2y Ha 0‘%1 3
12—y—p, B
5312_——221“332 and g =1—p,—p;.

H3

In Table 4 we present one of these methods, cailled ROWDAZ3, having R(o0)=0
(i.e. y is root of the polynomial y* —3y% 43y —%) and a small error constant.

Proposition (5.3). There exists no method of order 4 with s=4.

Proof. For order 4 we have 13 equations to solve (see Sect. 4). After simplifica-
tion, we get:

taBaz B32 B2=ps (4.121)
Ha Bas B3z 95=py0 (4.13a)
Ua Baz d3 033 Br=py, (4.13¢)
HaBaz s a3, 03=pys (4.134d)
i-1
where o;= Y o;; and
i=1
I vy 3, 4
Pe=5q =5tV =7
3 2., 7
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Table 4. Coefficients of ROWDA3

y = 0.435866521508459

uy = 0.3197278911564624 /iy =0.926163587124091
uy, = 0.7714777906171382 f; =0.073836412875909
2y = —0.09120568177360061 4; =0

4= 07 a3, =07

ap= 0

y21= 0.1685887625570998 V31 = =4.943922277836421
732= 1

We have:

Ba_Ps _Piz
O‘% Pio P13

A calculation leads to the equation:
18y°—8y+1=0 unsolvableinR. Q.E.D.

Theorem (5.4). There exist embedded methods of order 4, convergent, with s=5
but only 4 evaluations of the functions f and g.

Proof. Set a,,=0 and B,,=0 in the equations; it is then very easy to solve
them and to have a couple of free parameters to choose. Q.E.D.

Remark. We asked convergence (x=0 is the best choice) only for the method
of order 4. Unfortunately, the methods of Theorem (5.4} have a contractivity
number « not equal to 0: the choice (x,,=0 and B,;=0) forces y to be 1/2
or 1/6 and for example, with y=1/2 we find a=1/3.

Table 5. A Rosenbrock method of order 4

y = 070751226521

By = 0.2523628037277470 Ay = 0.7747652563757017
1y = —0.2209698738798533 4, = 0.003017168075271842
3 = —0.2256411840923124 f#; = —0.2924038105920804
e = 0.3179133966013711 fia = —0.06984969876968235
us = 0.8763348576430476 s = 0.5844710849107893
o= 1.233311380872013 3= 0.6535453813273382
o3, =(.2295950748229277 agy= 2.681059792907162
%42 = —1.554590259558157 oq3 = —0.9682496302574051

a5y = —0.6021422614217772
as3= 0.4792338650945191

Y21 = —1.818714325256271
Ya2= 0.3613323897595465
Ya2 = 1.553491448551290
¥s51 = —0.2261466054228607
¥s3 = —0.3589041115714489

a5, = 0.2994399056322287
asqa= 0.8010415023569842

V31 = —0.4589460040608732
Ya; = —3.424045164556574
yaz= 1.249712740807497
755 = —0.3882326103473952
54 = —0.01860845389367294

il
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Nevertheless it is possible, using Newton iterations, to find convergent
embedded 5-stages methods of order 4(3) with ¢=0:
We have 19 equations to solve (13 for the method of order 4, 5 for the method
of order 3 and 1 for the convergence) and 31 unknowns.
Solving these equations by Newton iterations, we obtain for example the values
given in Table 5; every equation is satisfied with an error smaller than 107 %,

6. Numerical Examples

The methods described in Sect. 5 have been applied to several “test-problems”,
and the theoretical orders actually observed.

Example:

{y,=z Yo=0 (6.1)

0=y +z2—-1 z4=1
Exacts solutions: y(t)=sin (t) z(t)=cos ()
og
E(ymzo)_z'ZO_Q‘

All the numerical experiments have been carried out in double precision on
an Apollo DN330 computer (precision 10~ 15),

To test the convergence of method (5.5), we integrated the problem (6.1)
between t=0 and t=1 using constant stepsize h=1/n (for various values of
n). Let e,(h) be the error made on the y-component after n steps of length
h=1/n. As e,(h)= C-h”, the value

ey(h)
ey(h/2)

is taken as an approximation for p. Similarly p,=log

‘ / log(2) (6.2)

e.(h)
e (h/2)

p,=log

/log (2) is an

approximation for p. The results are displayed in Table 6.

Table 6

h e,(h) e,{h) Py P-
6.25-10"2 12-10°3 2.6-1074 3.85 3.65
3.125-10°2 86-1077 21-107° 3.92 3.81
1.5625-10"2 56-1078 15-107° 3.95 390
7.8125-1073 3.6-10°° 1077 391 407
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