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Summary. This paper deals with the numerical solution of Differential/Alge- 
braic Equations (DAE) of index one. It begins with the development of 
a general theory on the Taylor expansion for the exact solutions of these 
problems, which extends the well-known theory of Butcher for first order 
ordinary differential equations to DAE's of index one. As an application, 
we obtain Butcher-type results for Rosenbrock methods applied to DAE's 
of index one, we characterize numerical methods as applications of certain 
sets of trees. We derive convergent embedded methods of order 4(3) which 
require 4 or 5 evaluations of the functions, 1 evaluation of the Jacobian 
and 1 LU factorization per step. 

Subject Classifications: AMS(MOS): 65L05; CR: G 1.7. 

1. Introduction 

We consider the system of differential/algebraic equations (DAE) of index one 

y' =f(y,  z) Y(Xo) =Yo (1.1 a) 

0=g(y ,z )  Z(Xo)=Z o (1.1b) 

where y is in some space E and z in E'; we suppose that the initial values 
are consistent, i.e. g(Yo, %)=0. Moreover f and g are assumed to be sufficiently 
differentiable. Since x can be added to the system as x'= 1, it is of course no 
restriction of generality to assume (1.i) independent of x. We also assume the 
DAE system to be of index one; this means that (c~g/c~z)-1 exists and is bounded 
in a neighbourhood of the exact solution; index 0 systems are ordinary differen- 
tial equations and systems of index greater than one are algebraically incomplete 
which means that the existence and the uniqueness of the solutions are not 
guaranteed (see [1]). Recently much interest in the numerical treatment of (1.1) 
has appeared in the literature [-2-9]. Among the many applications of DAE's 
in science see [10-12]. 
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In this paper, we consider numerical methods which avoid non-linear equa- 
tions. The idea is to consider (1.1) as a limit case of the stiff singular perturbation 
problem 

y' =f(y,  z) y(xo) = Yo (1.2 a) 

1 
z '=-g(y ,  z) Z(Xo)=Zo (1.2b) 

where e is a very small real number, and to study the application of known 
classes of methods to the problem. In particular we apply the general Rosen- 
brock method (see [13]), premultiply the second equation of the method by 

and set e to 0. We then obtain the following formulae: 

i--1 

a i = y o +  ~ O~ijl j (1.3a) 
j = l  

i - 1  

bi=zo+ ~ eijki (1.3b) 
j = l  

i 

li = hf(ai, bi) + h ~ ?ij((D, f)o li + (Dzf)o k j) (1.3 c) 
j = l  

i 

0=g(a~, b~)+ ~ ?~((D,g) 0/j+(D~g)o kj) i=  1,..., s (1.3d) 
j = l  

Yl =Yo+ i #i Ii (1.3e) 
i = I  

Z l = Z o - } -  ~ fliki (1.30 
i=1 

where el j, ?i~ and #i are real parameters, s is the number of stages and (Dyf)o, 
(Dff)o, (Dyg)o, (D~g)o are the derivatives at the initial values (Yo, Zo). 

For  each i=  1 . . . . .  s, (1.3c) and (1.3d) form a linear system in l~ and ki with 
matrix 

I-h?u(Dyf)o --h?u(D~f)o'~ 
--h~u(Dyg)o --h~/u(Dzg)o ]" 

If we choose ? u = ?  for all i, all these matrices are equal and we only need 
one LU-factorisation per step. 

It happens that the limit process e ~ 0 destroys the order properties of the 
Rosenbrock methods. For  example the well known method of Kaps-Rentrop 
(see [14]) which is of order 4 for ordinary differential equations is only of order 2 
for the problem (1.1) as will be seen in Tables 1 and 2 below. Similar phenomena 
have been observed by Verwer [15]. 

The aim of this article is to study the order conditions for method (1.3). 
In Sect. 2 we develop a theory for the Taylor expansion of the exact solutions 
of a DAE of index one with the help of a "tree model". In Sect. 3, using this 
tree model, we find Butcher-type results for the numerical solution. In Sect. 4 
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Table 1. Order equation for the y-component 

p(t) t 

1 �9 ... ~ p i = l  (4.11 a) 

2 / "" ~.#,//,s = ~ (4.11 b) 

3 V . . .  ~ i O ~ i j O ~ i k = ~ .  (4.1 lc) 

3 / ... Y~,ui[3~jfljk= ~ (4.11 d) 

4 

Q 

4 ~ ... Z,u, ~,~ c~ik/dji = ~ (4.11t) 

4 y ~  ... Y~lliflijejk~l=~, (4.11 g) 

4 / . . .  2 [ ~ i f l i j f l j k f l k l = ~  (4.11 h) 

- (4.11 i) 4 . . .  ~,]Ai ~ i j  O;ik Wk I O~lm O~tn - -  41 

Table 2. Order equation for the z-component 

p(t) t 

2 V ... ~Pi wij ~jk ~ l =  1 (4.12a) 

M . g  

"'" ~ # i  Wtj O~jk O~jl O~jm = 1 (4.12b) 3 
0 

3 ~ _  . . .  ~ # i W i j ~ j k O ~ j l f l l m = � 8 9  (4.12c) 

3 ~ ... ~l~i wij Cgk c~jl wl,, C~,,, emp = 1 (4.12d) 

47 

the conve rgence  a n d  the o rd e r  c o n d i t i o n s  of  m e t h o d  (1.3) are s tudied.  So lv ing  
these c o n d i t i o n s  in  Sect. 5, we give the m e t h o d s  with s s tages s = 1 . . . . .  5 h a v i n g  
the highest  poss ib le  order.  In  Sect. 6 n u m e r i c a l  expe r imen t s  are  presented .  
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2. Trees and Elementary Differentials 

Notice first that differentiation of (1.1 b) gives 

O=Dyg.y' +D~g-z' 

so we have 

z'=(-- Dzg)- l Dyg. y ' (2.1) 

Using the chain rule, y'--f,  (2.1) and 

( ( -Dzg) -~) '=( - -Dzg) -~ ' (Dy D~g. y' + D~ g. z ') .(-  Dzg) -1 

a continued differentiation of (1.1 a) and (2.1) gives: 

y ' = f  
y"-=Dyf-f +Dzf.(--Dzg)-~.Dyg.f  

y"'= D~f. ( f  f )  + D~ Dy f .  ( ( -  Dzg)-I .Dyg.f f )  + Dy fDy f . f  

+ Dy TD~ f.  (-- Dzg )-~ .Dyg . f+  ... 

and 

z ' = ( - D z g )  - I  .Dyg.f 
z,,= ( _  Dzg )- 1 [Dy D~g-(f, (--D~g)-l.Dyg.f) 

+ D~ g.((-- D~g)- a . Dyg.f, ( -  D~g)- ~ . Dyg.f) + D~ Dyg.((-- Dzg)- t . Dyg.f f )  

+ DZy g.(f, f )  + Dyg. Dy f . f  + Dyg. D~ f .(-- D~g) -1 . Dyg. f ]  

We now identify f with a meagre vertex, any partial derivative of f with a 
branch leaving a meagre vertex, ( - -D~g)- lg  with a fat vertex, and any partial 
derivative of g with a branch leaving a fat vertex. The above expressions, which 
very soon become complicated, can be written in terms of trees as follows: 

,,-/ 

. . .  

U 
and 

J 
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For  a better unders tanding of  the recursive construct ion of  the trees, see Proposi-  
tion (2.5) and the example that  follows it. 

N o w  let zy and r~ be the following trees: 

�9 : 

Definition (2.1). We denote by DAT, DATy and DATz the sets of  the trees defined 
recursively by: 

a) ~eDATrc~DATz, zyeDATy, z~6DAT z. 
b) If tl . . . . .  t, eDATywDATz, then [t 1 .... , tJyeDATy 
c) If  tl ..... t,,eDATyuDAT~, r e > l ,  or m = l  and t~eDATy, then 
[tl, ..., t,,]~DAT~ 
d) DAT=DATyuDATz 
where t=[t~,..., t,]y is the tree obtained by connecting the roots of t l , . . . ,  t. 
by n arcs to a new meagre vertex which becomes the root  of t, and [t I . . . . .  t,]z 
is the tree obtained in the same manner,  but  with a new fat root. 

Examples: 

tl t 2 t 3 

[ t 1 . t 2 ]  r [ t 2 . t l ] y  [ t ~ . t  2 , t31 z 

Notice that  [tl ,  tz]y = [t2, t l ] r  

Remark. DATy and DAT~ can be seen as the sets of all the connected graphs 
with two different kinds of vertices, meagre vertices and fat vertices, which satisfy: 

a) The end vertices of  the graph  are meagre. 
b) A graph is in DATy if its root  is meagre, and in DATz if its root  is fat. 
c) If a fat vertex has no ramification, then the above vertex is meagre. 

Example: 

, OAT ooo DAT 
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Definition (2.2). The number of meagre vertices of a tree t is called the order 
of t, denoted by p(t). 

labelling 

We now introduce the concept of labelled trees which is very helpful for the 
formulation of the theory: 

Definition (2.3). Let t~DAT. We say that t is monotonically labelled if every 
meagre vertex is associated with an integer i, 1 < i <  p(t) and if, following any 
branch of t, the labels are monotonically increasing. The number of possible 
labellings of t is denoted by c~(t). Finally, LDA Ty denotes the set of monotonically 
labelled trees having a meagre root, LDAT= the set of monotonically labelled 
trees having a fat root and LDA T= LDA Ty u LDA 7"=. 

Examples: 

con  be monoton~cotty labeLtecl tn e x a c t l y  3 ways  : 

2F3 34 
2V3 

can  be label led ~n one on ly  way : 

1 

Elementary Differentials 

We give now a recursive definition of the terms which appear  in the Taylor 
expansion of the exact solution of (1.1) and which are in one-to-one correspon- 
dance with the trees of DA T. 

Definition (2.4). For every tree t of DATy we define a function F(t): E • E'--+ E 
and for every tree u of DATz a function G(u): E • E' -~ E' recursively by: 

a) F(;ZJ)(y, z)= y, G(fZJ)(y, z )=z  
b) F(zr) (y, z) = f 6 (%) (y, z) = ( -  D= g)- 1. Dyg. f  
c) V(t)(y, _ k t z ) - D y D = f ' ( F ( t O , . . . ,  F(tk), G(ul), . . . ,  G(ut)) if t = [ t l  . . . . .  tk, U~ . . . . .  Ut]y 
d) G(u)(y, z)= ( ( -  D~g)- 1). D~ Dig . (F( t l )  . . . . .  F(tk), G(uO . . . . .  G(ut)) if u = It  1 . . . .  , 
tk, Ul . . . . .  Ul]z where tl . . . . .  tkeDATy and ul . . . . .  uteDATz 

The expressions F(t)(y,z), respectively G(u)(y,z), are called the elementary 
differentials associated with the tree t, respectively u. 

Because of the symmetry of partial derivatives, this definition does not 
depend on permutations amongst  t~, . . . ,  tk, U~,..., Ut and therefore the functions 
F and G are well defined. 
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Proposition (2.5). Let t be any tree o f  DA T, then the derivation with respect to 
x o f  its elementary differential consists of: (1) Splitting each fa t  vertex into two 
fat  vertices and attaching at the lower o f  these vertices once z r and once z z (deriva- 
tion of  (--Dzg) -x with respect once to y and once to z). (2) attaching to each 
vertex o f  t once z r (derivative o f  the other terms with respect to y) and once 
rz (derivative o f  the other terms with respect to z). 

Proof  Comes from Definitions (2.1) and (2.4). See also the next example. 

Remark (2.6). If t ~ L D A T  (labelled tree), the labelling of the new trees built 
by derivation of the elementary differential of t simply consists of associating 
the new meagre vertex with the integer p( t )+ t. 

Example: 

corresponds to the elementary differential: 

( -  Dzg)-  1. Dy Dzg .(f, ( - -D~g)-  1. Dyg . f)  

The derivation of this expression gives elementary differentials corresponding 
to the following trees: 

(1) Derivation of (--D~g)- 1 : 

al wlth respect to y ~ 2  

I 

3 

b) with respect to z 

(2) Derivation of the other terms : 

a) with respect toy 

b) with respect to z 

3 

1 

2 3 3 T 

1 ( 1 

3 2 3 2 3 

Following this procedure, the labels indicate the order of generation of the 
meagre vertices. Therefore the numbers of ways of labelling a tree t of D A T  
is equal to the number of times an elementary differential appears in the Taylor 
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expansion of the exact solutions of (1.1). As can be seen from Proposition (2.5) 
and Remark (2.6), every tree t e L D A T o f  order p appears once and exactly once 
in the p-th derivative of y (if t ~ LDA Ty) or of z (if t ~ LDA Tz). Thus: 

Theorem (2.7). For the exact solution of  (1.1) we have: 

Y(P)(Xo) = Z F(t)(yo, Zo)= ~ ~(t)" F(t)(y o, Zo) 
t ~ LDA Ty,  p (t) = p t ~ DA Ty,  p (t) = p 

z~'~(Xo) = ~ ~ (u)(yo, Zo)= Y~ ~(u)-~(u)(yo, Zo) 
u~LDATz ,p (u )  = p u~DATz ,p (u )  = p 

and 
hp( t )  

y(x0+h)  = ~ F(t)(yo, zo) " -  
t e L D A T y  p(t)! 

hp(,) 
Z(Xo + h)= ~ G(u)(yo, Z o ) ' - -  

u ~ L D A T z  p ( u ) !  

3. DA-Series 

In Sect. 2, we described a very simple way to find the Taylor expansion of 
the exact solutions of (1.1) with the help of a "tree model". To find the order 
of a numerical method applied to (1.1), one has to compare the Taylor expansion 
of the numerical solutions with those of the exact solutions. Applying Theo- 
rem (2.7), we now extend the concept of Butcher-series (see [16]). 

Definition (3.1). Let a: L D A T y ~ R  and b: LDAT~--*R be any mappings. The 
series 

hp(t)  

DAr(a, yo, Zo)= ~ a(t)'F(t)(yo, z o ) - -  
t ~ L D A T y  p ( t )  ! 

respectively 

hp(u) 
DA~ (b, Yo, Zo) = ~ b(u)" G (u)(yo, Z O ) ' - -  

u ~ L D A T z  p ( U ) !  

are called DAy-series, respectively DA~-series. 
Observe that the exact solutions of (1.1) are DA-series (see Theorem (2.7)): 

y(x)= DAy(py, Yo, Zo) 

z(x) = DAz(pz, Yo, Zo) 

where py(t)= 1 for all tELDATy and p~(u)= 1 for all u~LDAT~. 

Results for DA-Series 

Theorem (3.2). Let a and b be DA-series, a = DAy(a, Yo, Zo) and b = DAz(b, Yo, Zo). 
We have: c = h.f(a, b) is a DAy-series with coefficients e: LDA Ty ~ R defined by 
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c ( ~ ) = 0  e (z , )=  1 

e ( t )  = p(t) a ( t , )  . . .  a ( tk)  b ( u l )  . . .  b (u , )  

for  t =  It  1 . . . . .  tk, Ul , . . . ,  U~] r where t l , . . . ,  t k e L D A T y  and u I . . . . .  u t e L D A T  ~. 

Proof. This theorem can be seen as a generalisation of Theorem (2.11) in [16]. 
Consider first the n-th derivative of  c evaluated at h = 0 :  

i- a"- '  
c("(0) = n . [ ~ = r f ( a ( h ) ,  b (h))]o 

We have: 

c(,)(0)=n" ~, k t , a(ik), b(J l ) ,  - ,  b(j,))o (D,  D= f )o"  (a(i') . . . . . .  (3.3) 
teSLDATyp(t) = n 

t = [ t t  . . . . .  tk, u~ . . . . .  Ut]y 

where p( t , )= i s ,  s =  1 . . . . .  k and p(Up):jp, p = l  . . . . .  1 and S L D A T y  c L D A T y  is 
the subset of  trees having no ramification (except possibly at the root) and 
such that only the vertices directly connected with the root  can be fat. The 

k l summand  in (3.3) corresponding to a tree [ ~ S L D A T y  begins with D y D = f  if 
/-has k branches with a meagre  root  and I branches with a fat root. The number  
of meagre vertices of each branch equals the order of  differentiation of  a (if 
the branch has a meagre root) or  of  b (if the branch has a fat root). 

For example 

t 

corresponds to the denvotive D } D  z f. ( a':a': a',b'). 

As a and b are DA-series ,  we have: 

a (i`) ( 0 )  = Z a (t~). F (ts)o 
ts~LDATy,p(ts)  = is 

b(JP)(O) = ~ b(u,). G(u,)o 
up~ LDA Tt, p(up) = jp  

We now insert the above formulae into (3.3) and get a summat ion  over the 
tuples (t, t l  . . . . .  tk, Ul . . . . .  U~). The main difficulty is now to unders tand that to 
each such tuple there corresponds a labelled tree t e L D A T y  such that the sum- 
mand is p ( t ) a ( t O  ... a ( t k ) b ( u l ) . . ,  b(uz) 'F(t)o.  This labelled tree t is obtained 
by replacing the branches of t having a meagre root  by t l  . . . . .  tk and those 
having a fat root  by u~ . . . . .  ut. The labelling is carried over in a natural way, 
i.e. in the same order. 
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Example: 

t l  t z  u l  t 

In  this way, all the trees t e L D A T y  appear  exactly once�9 Thus  (3.3) becomes:  

c(n)(O)=n" ~ a(tO ..�9 a(tk)b(uO ... b(ul) 
t E L D A  T y , p ( t )  = n 

t = [ t l , . . . , t k , U l , . . . , u l ] y  

k t �9 [Dy Dz f .  (F(tO . . . . .  F(tk), G(uO . . . .  G(ut))]o 

= ~ p( t ) .a( t l )  ... a ( tk )b(u l ) . . ,  b(ul).F(t)o. 
t~ L D A  T y ,  p ( t )  = n 

t=[ t~  . . . . .  t k , u l  . . . . .  ul]y 

h" 
As c(h)= ~, c(n)(O)'~., using Definition (3.1), the p roof  is complete�9 

n > O  

Theorem (3.4). Under the assumptions of  Theorem (3.2), we have: 

d = ( -  D~g)o 1 .g(a, b) is a DAz-series 

with coefficients d: L D A  T~ ~ R defined by: 

d ( ~ )  = 0  d(%)= 1 

d(u)=a(t l )  ... a(tk)b(ul).. ,  b(ul)-b(u) 

for  u = [ t l  . . . .  , 6 ,  ut . . . . .  Ul]z where tl . . . . .  t k~LDATy and ul . . . .  , uI~LDATz.  

Proof. Proceeding as in the previous proof  we obtain:  

and 
d (') (0) = ~_, (( - D~ g) - '  Dyk D~gl 

r ' ~ S L D A  T z , p ( ~ )  = n 
f i = [ t l  . . . . .  t k , u l  . . . . .  ul]z 

�9 ( a ( i O  . . . . .  a (ik), b ( J , )  . . . . .  bO')))o  - b(n) (0)  

where p(6)=i~,  s--  1 . . . . .  k and p(up)=jp, p =  1 . . . . .  1. 

Then 

d(n)(O) = a(tl) ... a(tk)b(Ul) ... b (uz) .V(-Dzg)  -1 D~D~g 
u 6 L D A T z , p ( u )  = n 

u = [ t l  . . . . .  t k , u l  . . . . .  ul]z 

�9 (F(tl)  . . . . .  F(tk), G(Ul) ... G(uz))]o-  ~, b(u). G(u)o 
u e L D A T x , p ( u ) = n  

~, (a(tO ... a(tk) b(uO ... b(ut)-b(u))" G(u)o 
u ~ L D A T z , p ( u ) = n  

U = [ t l ,  . . . ,  t k , U l , . � 9  Ul]z 
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Finally we obtain  the following results: 

Theorem (3.5). a)(Dy f)o" F(t)(yo, Zo)= F([t]y)(yo, Zo) for t~LDA Ty 
b) (Dzf)o" G(u)(yo, Zo)=F([u]r)(yo, Zo) for u~LDAT~ 
c) ((-- Ozg )- 1Drg)0-F(t)(yo, Zo)= G([t]=)(yo, Zo) for t e L D A T  r. 

Proof Comes  from Definition (2.4). 

4. Order Conditions and Convergence 

This section deals with the order  and the convergence of one-step methods  
for DAE ' s  of  index one;  the order  and convergence condit ions for me thod  (1.3) 
are given explicitly. 

We consider the following general class of one-step methods  (only formally 
explicit) applied to (1.1): 

Y, = Yo + h q~(yo, Zo, h) (4.1 a) 

z 1 = 7J(yo, Zo, h) (4.1 b) 

Definition (4.2). The method  (4.1) is of  order  p if 

y ( x o + h ) - y l = O ( h  v+l) and Z ( X o + h ) - z l = O ( h  p) 

where y and z are the exact solutions of  (1.1). 
The p roof  of the next result can be found in [9]. 

Theorem (4.3). Consider method (4.1) and suppose: 
a) its order is p 
b) OtP(Y'z'O) <c~< 

~3z 1 in a neighbourhood of the solution. 

Then convergence of order  p occurs, i.e. for x = n. h fixed: 

y , - y ( x ) = O ( M )  and z , - z ( x ) = O ( h  p) 

where y,  and z, denote  the numerical  solutions of  (1.1) when method  (4.1) is 
applied n times. 

a) Order Conditions for Method (1.3) 

We now use Theorems  (3.2), (3.4) and (3.5) to derive the order  condit ions for 
the coefficients oh j, Yij and /~i of  me thod  (1.3), by compar ing  the DA-series of  
y(x o + h) and Yl (x0 + h) (the numerical  solution) up to a certain order,  and simi- 
larly for z(x o + h) and z, (x0 + h). 

Let us first consider the functions ai, bl, li, k i, ( i=  1 . . . . .  s) and y,, z 1 defined 
by (1.3). 

Theorem (4.4). The functions ai, hi, li, ki, Yl, zl are DA-series whose coefficients 
al, hi, li, kl, Yt, zl are recursively defined by: 
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i - 1  

ai(t)---- ~ o~ijlj(t) 
j=l 
i - - 1  

bi(u)= ~ o~ijkj(u) 
j=l 

1,(;~)=o 

li(t) = p(t) a(tO ... a(tk) b(uO.., b(u3 +'  

for t~LDATy 

for u~LDAT~ 

li(z'y) = 1 

0 /f k + / > l  
i 

p(t) ~ yijlj(tO /f k =  1, I=0  
j - - i  

i 
p(t) ~, ~i j k j (U l )  /f k = O , / = l  

j=l 

(4.5a) 

(4.5b) 

(4.5 c) 

f l i j :O~ij '4-  ~ij ( f l i i : T )  

~, ~, ,  ... ai,,,l,,(tO ... km,(U3 i f k + l > l  
nl,...,nk 
m l , . . . , m !  

i 

2 f l i j l j ( t t )  if k =  1, I = 0  

i 

Z flijkj (ul) ifk=O, I=  1 

(4.5c)' li(t)=p(t). 

We obtain: 

for t=[ t l  .... , tk, Ul . . . .  , ut]y where t1 . . . . .  t k E L D A T y  and ul,. . . ,  u~eLDAT~ 

k i ( ~ )  = 0  k,(z~) = 1 
i 

[alt l)  ... a(tk)b(ul)...b(Ul)-j~=l (o~ij-+,ij)kj(u) /fk +1>  1 

0 =  " (4.5d) 
[j~=l (% + 7ij)(Ij(t 1)-  ki(u)) /f k = 1, l=  0 

for u=[t l  .. . . .  tk, Ul,..., Ul]z where tl .... , tkeLDATy and u~ ... . .  uleLDAT~ 

yl( t )= ~" /~li(t) for teLDATy (4.5e) 
i = 1  

Zl(U)= ~ piki(u) forueLDATz (4.50 
i = l  

Proof. (4.5a), (4.5b), (4.5e) and (4.50 follow directly from (1.3a), (1.3b), (1.3e) 
and (1.3t). 
(4.5c) follows from (1.3c), Theorem (3.2) and Theorem (3.5) (a) and b)). 
(4.5d) follows from (1.3d), Theorem (3.4) and Theorem (3.5) (c)). Q.E.D. 
To simplify equations (4.5c) and (4.5 d), we put: 
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i 

n,,...,Z nk (Xinz "'" O~im' 1.,(t l ) . . .  k , . , (u t ) - l~  "=  f l i jkj(u) 
m l , . . . , t n l  

O= 
i 

j ~  fl i j(l j(ta)- kj(u)) 

if k + / >  1 

ifk = 1, 1=0  

(4.5d)' 

Proposition (4.6). For u = [t~]z, t I E LD A Ty, we have: 

k~(u)=l~(t0 

Proof  For  i =  1, (4.5d)' gives: k i ( u ) = i l ( t 0 .  
Then use (4.5d)', and induct. Q.E.D. 

Example: 

u t 

ki(u) = li(t) 

We now set ]~= (flit)J:= ,,..,sl ..... i and 0 in the others places and 

w= (w 0 =/~-' (4.7) 

We then obtain:  
[ i 

k i (u)=] j__~l  wi j  Z ~jn~ ... ~jm, l . , ( t l ) . . ,  k,, , (ut)  i f k + l >  1 

/ ........ . (4.5d)" 
m l , . . . , m t  

[li(tl) if k =  1, 1=0  

Remark (4.8).  Using (4.5c)' and (4.5d)", there is a very simple way to find the 
order condit ions for the trees of  L D A T  by compar ing  the DA-series (4.5e) and 
(4.5f) of Theorem (4.4) with the DA-series of  the exact solutions (see Theo-  
rem (2.7)). 

Examples: 
k~j~ ~ Y ~,%%%=1 

! 

t 

1 
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and as W = fl-  1, the last equation is: 

which is also obtained from the following tree: 

j k t 

i 

Proposition(4.9). For u=[ t l  . . . . .  tk, Ul . . . . .  ul]z where tl .... , tk~LDATy and 
u 1 .... , uzELDAT~, we have: 

li([u]y) =li([ t l  . . . .  , tk, Ul .... , ul]y) 

Proof. Comes directly from formulae (4.5c)' and (4.5d)", or more nicely with 
the help of Remark (4.8) and the above examples. Q.E.D. 

Example: 

u t 

I i ( [ u ] r  ) = I i ( t )  

An important consequence of Propositions (4.6) and (4.9) is that a lot of different 
trees give the same order conditions. 

Examples:a) v ~  ~ 

 Yff? 
c) All the trees of L D A T  r of order n having no ramification. For  
example, if n = 3: 

t / / /  
Proposition (4.10). The order conditions for t having only meagre vertices are 
identical to the order conditions of the classical Rosenbrock method for ODE's. 

Proof. Set l=  0 in (4.5 c)' (so one has trees with meagre vertices only) and compare 
it with Theorem 1 or Theorem 2 of [13]. Q.E.D. 

We give in Tables 1 and 2 the first order equations (for the z-component, 
because of Proposition (4.6), we only give the supplementary conditions). 

The equations given in Tables 1 and 2 are the conditions for having a method 
of order 4. The convergence has now to be studied. 
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b) Calculation of 

To assure convergence of method (1.3), the condition b) of Theorem (4.3) must 
be satisfied; let R(z) be the stability function of the Rosenbrock method for 
the test ordinary differential equation y'=2y, y(0)=l ,  2eC, z = h 2 ;  we then 
have: 

Theorem (4.13). The contractivity number ~ is given by: 

c~=R(oo) 

Proof Let j = 1 ..... i- 1 8/~ fl=(flo')i=l ...... and 0 in the others places, 1=(1,. . . ,  1)' and ~-z (0) 

= ( ~ z l  (0) . . . . .  ~--~kz~ (0))~, vectors of dimension s. We have: 

,8~7 
~=1 +fi ~-z (0) (4.13.1) 

Derivating equation (l.3d) with respect to z and evaluating the result at h = 0  
gives: 

0=(Dzg)o'(1 +j=~ 1 fliJ~ (0)) 
and then 

NOW, a s  

0/~ .1 1 
~7( 0)= ~ ( -  1)~ ~7 fla- "]~ (4.13.2) 

j = l  

• 1 
R ( ~ ) =  1 + ~ fi' ( -  1),- /~J-'.~ k 

j= 1 YJ 

so, by inserting (4.13.1) into (4.13.2), one gets c~=R(oo). Q.E.D. 

Remark (4.14). The evident underlying reason for this result is that R(oo) must 
be smaller than 1 because of the limit process e-~ 0 (or 2 ~ oo in this case), 
i.e., stability at infinity is necessary because (1.1) is considered as a limit case 
for (1.2). 

5. Some Particular Methods 

In this section we give the main results for the methods with s stages, s = 1,..., 5 
having the highest possible order. Notice first that the matrix W defined by 
(4.7) satisfies 

7 j = o \  ~// 

which is helpful for the calculations of the order conditions. 
Solving the order equations for different values of s, we obtain, for convergent 

methods, the results given in Table 3. 
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Table 3. Order of convergence for Rosenbrock methods 

s 1 2 3 4 5 

Order 1 2 3 3 4 

M. Roche 

Remark. For  s = 1, the method with #1 = 1 and 7 = 1/2 is of  order 2 but unfortu- 
nately not  convergent  of order  2, (only of  order 1 because e =  1). The method  
with//1 = 1 and ? = 1 is convergent of  order  1 ; in fact it is exactly the semi-implicit 
Euler discretization used in [9] for extrapolation. 

We first give embedded methods of  order 3(2) with s = 3, R(oo)=  0 and only 
2 evaluations of the function f and g: 

Choose  ? such that  R ( o o ) = 0  and such that A-stability is assured for purely 
differential equations, i.e. 7e [1 /3 ;  1.06858]; choose (~32=0 and 0c31=0~21 to 
assure only 2 evaluations o f  the functions f and g; choose a l so / i  3 =0 ,  so that  
~=2,  i.e. 2 stages for the method  of  order  2. N o w  c%1 and fl32 are non zero 
free parameters.  Then :  

1/6 - 7 + 72 1 / 6 -  7 + 72 1/3 
f12, _ 7 2 + 7 / 3  ~21 # 3 -  f132f12, / / /=cd~  - - # 3  

1 / 2 -  7 -- #2 f121 
f l31-  fl32 and / /1=1--/ /2--/ /3 . 

//'/3 

In Table 4 we present one of  these methods,  called R O W D A 3 ,  having R ( o o ) = 0  
(i.e. 7 is roo t  of  the polynomial  73 -  3 y2 _t_37 _~) and a small error constant.  

Proposition (5.3). There exists no method o f  order 4 with s = 4. 

Proof  For  order 4 we have 13 equations to solve (see Sect. 4). After simplifica- 
tion, we get: 

//4 fl4-3 fl32 /~2 = P 6  (4.120 

1/4 fl43 fl32 ~2 = P l o  (4.13 a) 

/'24 fl43 0~3 a32 f12 =P12 (4.13c) 

//4 fl43 a3 a32 a2 =P l  3 (4.13 d) 

i -1  
where a~= ~ eij and  

j = t  
1 7 3 2 

P 6 = 2 4  2 4-2 7 - 7 3  

3 2 2 7 
p10=7 - - 5 7  -t 12 

73 5 2 } ] ? p~= - g 7  g 
y 1 

P13 = - -73  q--~ - 
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T a b l e  4. Coe f f i c i en t s  o f  R O W D A 3  

7 = 0 .435866521508459  

# :  = 0 .3197278911564624  

#~ = 0 .7714777906171382  

~3 = - 0 . 0 9 1 2 0 5 6 8 1 7 7 3 6 0 0 6 1  

~2~ = 0,7 

~32 = 0 

Y2~ = 0 .1685887625570998  

732 = 1 

~ l  = 0 . 9 2 6 1 6 3 5 8 7 1 2 4 0 9 1  

~z = 0 . 0 7 3 8 3 6 4 1 2 8 7 5 9 0 9  

~3 =0 

~31 = 0 . 7  

731 = = 4 , 9 4 3 9 2 2 2 7 7 8 3 6 4 2 1  

We have: 

f12 P 6  P I 2  

~ 2  P 1 0  P l 3  

A calculation leads to the equat ion:  

18 ~/2 _ 8 y + I = 0 unsolvable in R. Q.E.D. 

Theorem (5.4). There exist embedded methods of order 4, convergent, with s = 5 
but only 4 evaluations of the functions f and g. 

Proof. Set c~2a = 0  and /343=0 in the equations;  it is then very easy to solve 
them and to have a couple of free parameters  to choose. Q.E.D. 

Remark. We asked convergence (c~ = 0 is the best choice) only for the method 
of order  4. Unfortunately,  the methods  of  Theorem (5.4) have a contract ivi ty 
number  ~ not  equal to O: the choice (c%~=0 and fl43=0) forces ? to be 1/2 
or 1/6 and for example, with ~ = i/2 we find c~ = 1/3. 

T a b l e  5. A R o s e n b r o c k  m e t h o d  o f  o r d e r  4 

y = 0 .70751226521 

#1 = 0 . 2523628037277470  

P2 = - - 0 . 2 2 0 9 6 9 8 7 3 8 7 9 8 5 3 3  

~3 = - - 0 . 2 2 5 6 4 1 1 8 4 0 9 2 3 1 2 4  

~4 = 0 .3179133966013711  

#s  = 0 .8763348576430476  

~2i = 1 .233311380872013 

~3z = 0 .2295950748229277  

~42 = - - 1 . 5 5 4 5 9 0 2 5 9 5 5 8 1 5 7  

~sl  = - - 0 . 6 0 2 1 4 2 2 6 1 4 2 1 7 7 7 2  

~53 = 0 .4792338650945191  

721 = - - 1 . 8 1 8 7 1 4 3 2 5 2 5 6 2 7 1  

Ys2 = 0 .3613323897595465  

7 4 2 =  1 .553491448551290  

7 5 1 = - - 0 . 2 2 6 1 4 6 6 0 5 4 2 2 8 6 0 7  

753 = - - 0 . 3 5 8 9 0 4 1 1 1 5 7 1 4 4 8 9  

~1 = 0 .7747652563757017  

~z = 0 .003017168075271842  

~3 = - 0 . 2 9 2 4 0 3 8 1 0 5 9 2 0 8 0 4  

~a  - - 0 . 0 6 9 8 4 9 6 9 8 7 6 9 6 8 2 3 5  

~s  = 0 .5844710849107893  

~31 = 0 .6535453813273382  

~41 = 2 .681059792907162  

~43 = - -0 .9682496302574051  

~sz  = 0 .2994399056322287  

~54 = 0 .8010415023569842  

~31 = - - 0 . 4 5 8 9 4 6 0 0 4 0 6 0 8 7 3 2  

Y a l  = - - 3 . 4 2 4 0 4 5 1 6 4 5 5 6 5 7 4  

Y4s = 1 .249712740807497  

Y52 = - - 0 . 3 8 8 2 3 2 6 1 0 3 4 7 3 9 5 2  

Y ~ 4  = - 0 . 0 1 8 6 0 8 4 5 3 8 9 3 6 7 2 9 4  
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Nevertheless it is possible, using Newton iterations, to find convergent 
embedded 5-stages methods of order 4(3) with c~= 0: 
We have 19 equations to solve (13 for the method of order 4, 5 for the method 
of order 3 and 1 for the convergence) and 31 unknowns. 
Solving these equations by Newton iterations, we obtain for example the values 
given in Table 5; every equation is satisfied with an error smaller than 10-14. 

6. Numerical Examples 

The methods described in Sect. 5 have been applied to several "test-problems", 
and the theoretical orders actually observed. 

Example: 
y ' = z  Yo = 0  

(6.1) 
O= y2 + z2--1 z o = l  

Exacts solutions: y(t) = sin (t) z(t) = cos (t) 

~z  (yo, zo) = 2 . zo = 2 

All the numerical experiments have been carried out in double precision on 
an Apollo DN330 computer (precision 10- a 5). 

To test the convergence of method (5.5), we integrated the problem (6.1) 
between t = 0  and t = l  using constant stepsize h=  1In (for various values of 
n). Let %(h) be the error made on the y-component after n steps of length 
h= 1/n. As %(h)~C-h  p, the value 

, I e,(h) J/, 
p ,= tog  I ~ l / l o g  (2) (6.2) 

ez(h) /,  
is taken as an approximation for p. Similarly pz=log ~ / t o g ( 2 )  is an 

approximation for p. The results are displayed in Table 6. 

Table 6 

h e,(h) ez(h) pr p~ 

6.25.10- 2 1.2- 10- s 2.6-10-'* 3.85 3.65 
3.125-10 -1 8.6- 10 .7  2.1-10- 5 3.92 3.81 
1.5625. lO -2 5.6- 10 - s  1.5.10 .6  3.95 3.90 
7.8125.10 -3 3.6- 10 .9  10 -7 3.91 4.07 
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